SPECIFICATION FIRMS: A VISION FOR THE FUTURE

. Jeannette M. Wing

Computer Science Department
University of Southern California
Los Angeles, California 90089-0782 USA

ABSTRACT

The analogies that specifiers are like
lawyers and that specifiers are like architects
are often drawn. Pursuing these analogies
further leads to the conclusion that in the
future we may expect to see specification
firms for which specifiers work and are hired
out independently much like lawyers are in
law firms and architects are in architectural
firms. In this position paper, I justify these
analogies, and explore their ramifications to
the software engineering process.

1. Introduction

We presume that formal specifications can be and
should be practically -used in software development.
Furthermore, we are interested in specifications of
large systems, not just of program modules. For the
sake of sticking to one point in this paper we take a
simplistic view of the. software development process
by considering the players involved to be clients,
designers, specifiers, and programmers and the phases
to be requirements analysis, design and specification,
and émplementation. In practice, of course, other
players are involved, players have multiple roles, the
entire process is iterative, each phase is iterative, and
each phase may feedback to previous phases. Our
reasoning and conclusion’ holds for any of these realis-
tic complications of our simplistic view.

Author's present address: Department of Com-
puter Science, Carnegie-Mellon University, Pitts-
burgh, PA 15213, USA. ' This work was sup-
ported in part by the National Science Founda-
tion under Grant No. ECS-8403905.  ~

CH2138-6/85/0000/0241$01.00 © 1985 IEEE

241

2. The Two Analogies

2.1. Basis of the Two Analogies

Specifiers as lawyers

The analogy that specifiers are like lawyers is
based on the use of a specification as a contract. The
specifier draws up an agreement between the client
and the programmers. Specifiers translate the client’s
informally stated requirements into a formal
specification and programmers implement the system
according to the specification. Both parties are bound
to the specification; the clients can expect no more
than what is agreed upon and the programmers must
satisfy at least what is agreed upon. -As with lawyers
and their clients, a good amount of trust must hold
between clients and specifiers and between program-
mers and specifiers.

Specifiers as architects

The analogy: that specifiers are like architects is
based on_the use.of a specification as a design. The
specifier..produces -a blueprint as the design of the
eventual system to be built. The specification serves
as a description of an abstract model of the real sys-
tem.

In architecture, preliminary sketches approved by
a client are further refined into detailed blueprints.
Similarly, in an ideal specification process, a prelim-
inary specification would gradually be refined into a
detailed design of the system. This detailed design
specification would include specifications of the indivi-
dual system modules that constitute the system.
After an initial speciﬁéﬁion of a system is refined to a
level where each system module is specified, the pro-
grammers can regard the fingh specification as a first
design of the entire system, and proceed to implement
the individual module specifications. . Programmers
have the advantage over builders who work from
blueprints in that after a first implementation, further
modifications can be made to improve the system.
(Builders do not have the luxury of tearing down their
initial building and redoing it.)



2.2. Justification

Below are four reasons why the two analogies
make sense for software engineering.  The first two
reasons deal with the nature and use of specifications;
the second two, with the role of specifiers.

1. A Specification is Written
Language.

in a Specialized

In both analogies the contract and the blueprint
are each written in a highly-specialized language that
may be only partially understood by all parties con-
cerned. For example, typically both parties involved
in a legal contract do not fully understand legal terms
or legal implications of the contract. A formal
specification is. also written in - a  highly-specialized
language (mathematics) that cannot always be
expected to be understood fully by two of its possibly
many communities of readers: clients and program-
mers. Much in the way a lawyer interprets legal jar-
gon for both parties of a contract, specifiers must
interpret the mathematics for clients on-the one hand,
and  programmers ‘on ‘the other. Fortunately, with
proper training programmers ¢an be taught to read
and even write formal ‘specifications since they ‘are
already fluent in ‘at least one formal language--their
programming language. Much like with a “blueprint
whose details are presumed ‘to be understood by a
builder, we can hope that specifications will reach the
stage where programmers can read ‘and understand
them.

Thus, most of the work of interpreting a
specification by a specifier would have to be aimed at
the clients who may not have the mathematical back-
ground to understand a formal specification, the time
and resources to gain such a background, or the desire
to do so. “Specifiers must ‘convey ‘the formal meaning
of a specification in a natural language-description to
the clients who ‘can then ‘decide whether the
specification captures the intuition . properly. Con-
versely; clients who informally state their system’s
requirements must make the effort to convey their
intuition to the specifier as accurately and completely
as possible.

2. A Specification is ¢ Common Point of Reference.

A physical document like a speclﬁcatlon is a
point of reference common to programmers, clients,
and specifiers. Programmers can refer to it to answer
questions that arise while doing an implementation.
Clients, through the interpretation of _specifiers, can
refer to it to recall what requirements were requested,
and are obligated to have the specifier modify it if any
changes or additional requirements arise. The docu-
ment is useful especlally if ‘the client-and the program-
mers are in geographically separate locations so that it
would be impractical for programmiers to contact the
client and ‘discuss issues verbally.

242

8. A Specifier i3 an Intermediary.

A specifier serves as an intermediary between the
client and the programmer. It should not be left up
to only the programmer to discuss the client’s desired
requirements, to- interpret a formal specification for
the client, or to demonstrate that the system satisfies
the requirements. A specifier should play an impor-
tant role in each of those functions. One reason is
that often programmers may not be able to abstract
from implementation details to be able to pose ques-
tions of the client at a level to which the client could
relate. The specifier serves as a go-between by per-
forming the proper abstraction and interpreter of
natural language, the specification language, and even
possibly the programming language. .

4. A Specifier is a Source of Knowledge.

A specifier is a source of knowledge for (1)
evaluating the feasibility of a desired system and (2)
investigating whether similar systems to the one
requested have already been built. As alawyer or an
architect, the specifier can evaluate the feasibility of
building a 'system -according - to the -constraints
imposed by the system’s _environment. Any contract
drawn up by a lawyer, for example, is interpreted
with respect to local, state, and federal ‘regulations.
Nothing. could ‘be included in a- contract that would
violate any of those regulations. Sumlarly, if a new
house is being designed, structural engineering princi-
ples, the availability and cost of materials and sup-
plies, and even local weather conditions may make it
difficult or impossible to satisfy all of the client's
requirements. Similarly, in the design of a software
system, properties of the environment in which the
system will be embedded, limitations of the hardware,
choice of programming language, availability and cost
of resources. (hardware; tools, human}, and deadlines,
are all factors that may- mecessitate compromising
some of the client's requirements.

Specifiers can: also’ build upon previously acquired
experience ‘from  “designing* systems similar to the
current request. - If the software .itself cannot be
reused, at least parts of the specifications can be. If
existing ‘software can-be-reused; ‘bought, or traded,
startup costs and development tlme can ‘be saved for
the client.

3. Impliéitions for the Software
Engineering Process

Arguments for the usefulness of formal
speciﬁcations throughout the software life cycle have
been given, e.g., see (1], [2], [3]. Their uses in design,
program transformation, testing and debugging, docu-
mentation, and maintenance are widely accepted in
concept, though rarely used in practice. Instead of
focusing on specifications, which are the results of
specifying, however, let us focus on the specifiers.

N~
\



In the immediate future we can expect to see a
team of formal specifiers as part of the entire group
involved in the development of a large project. This
team would enhance, not replace, the usual team of
designers and help interface between clients and
implementors. Eventually, within a large enough
company or corporation, we may then see the
existence of a division of formal specifiers who are
brought on to assist in various in-house systems and
applications-software projects. Groups of specifiers in
these divisions may eventually spinoff to form their
own private firms. Small companies who cannot
afford their own team of specifiers or larger ones who
contract out specification work can then rely upon the
expertise of the members of these specification firms.

Just as with law firms and architectural firms,
specification firms can be specialized. Specialties
might break down along classical lines of computer
science disciplines, e.g., real-time systems, operating
systems, compilers and optimizers, networks, data-
bases, graphics, distributed systems; according to
different application areas, e.g., medical systems,
digital hardware design, military systems; along other
axes, e.g., size (large versus small systems), cost (over
$100K projects), time (under 3-months projects); or
combinations of these. For example, a specification
firm might specialize in dealing with only large mili-
tary systems or in dealing with only projects with a
budget of over $100K and with a one-year delivery
deadline.

In general, it should not be surprising that
specifiers might be hired for various unrelated pro-
jects. They may be hired for their expertise in writing
formal specifications and using associated specification
tools, for their ability to state formally a set of infor-
mally described requirements, for their knowledge of
what is and is not feasible, or for their knowledge of
what has already been done. People already recognize
the benefits of obtaining outside advice and criticism
from those who are not intimately related or have a
conflict of interest in the project under development.

A more global point can be made: One cannot
expect all members of a software project to be
talented in all phases of the project. Writing formal
specifications for complex systems requires some
expertise that not everyone has or is willing to cul-
tivate. We already see software teams break along
the lines of the talents of its members; specifiers sim-
ply have one other kind of talent to contribute.

243

4. Closing Remarks

Especially for large, complex systems, people
recognize the need to be more rigorous in their design
and specification phase. Formal specifications, how-
ever, are rarely used in practice. Many reasons
including a lack of incentive or motivation to do so
(from the engineer’s and manager’s points of view), a
lack of training, and a lack of high-level specification
languages and support tools account for the scarce use
of formal specifications. Hiring trained specialists
would be a feasible way of overcoming these
difficulties and increasing the use of specifications in
software development. As these specialists gain recog-
nition for their expertise, specification firms may arise,
thereby creating sources of specialists willing to do the
work that others need done, but do not want to do
themselves.

Finally, pursuing the notion of specification firms
that hire out experts to write specifications leads to
implications beyond the traditional issues of software
engineering. If indeed a specification is treated as a
contract, i.e., a legal document, then legal issues deal-
ing with software have a tangible piece of evidence
over which to base cases. A breach of contract might
be legitimate grounds for a lawsuit. Perhaps software
engineers would feel more responsible for the robust-
ness of their programs than they do now. We leave
up to the reader’s imagination further implications of
using specifications in the legal process; they are seri-
ous and somewhat scary to think about.

References

[1] J.V. Guttag, J.J. Horning, and J.M. Wing, **Some
Notes on Putting Formal Specifications to Pro-
ductive Use,” Science of Computer Programming,
vol. 2, no. 1, pp. 53-68, October 1982.

[2] B.H. Liskov and S.N. Zilles, “Specification Tech-
niques for Data Abstractions,” IEEE Transac-
tions on Software Engineering, vol. 1, no. 1, pp.
7-19, March 1975.

[3] D.L. Parnas, “The Use of Precise Specifications
in the Development of Software,”” Information
Processing 77, B. Gilchrist, Editor, IFIP, North-
Holland Publishing Company, pp. 861-867, 1977.

S



