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ABSTRACT

We analyze and implement for partial-match retrieval three file organization
methods: tries, extendible hashing, and superimposed coding. We compare predicted values of
storage and retrieval times derived from mathematical formulae with measurements based on
implementations done in a UNIX environment on a PDP 11/45 computer. The Suffolk
County, NY telephone directory serves as the database.

Tries require less storage than predicted; extendible hashing, more; superimposed
coding, the same. Actual retrieval times for tries and superimposed coding are twice the
predicted; that for extendible hashing is three times the predicted.

Tries and extendible hashing are similar in structure and can be used to speed up
retrieval time for superimposed coding at the expense of storage for an additional index. We
discuss the relative merits of each method for partial-match retrieval and note many issues that
arise in the implementations.

Thesis Supervisors: Ronald L. Rivest, Associate Professor of Computer Science
John F. Reiser, Member of Technical Staff, Bell Laboratories



TABLE OF CONTENTS

ACKNOWICABIMENLS......ooviiiiiieiie ettt ceree e e e s saesesar e eeanees 5
List Of TabIES.....c..oeoueeeiiieee et ee s s e s e e e eas s s e es s asnnens 6
List Of FIBUIES ..coveiiiiiiiiiiitiecciee et e s e s s e s e s enneeaes 7
L. INTRODUCTION ..ottt st e e s eaeseseesesenessaesans 8
L1 DEfiRItiONS.....c..cooiviiriint ittt eee e s e ee e eeteseseeseesseseean 8
1.1.1 Files, Records, Attributes ........c.coeevreoimrreeeeeeeeieeeeereeeeeeeeesesesans 8
1.1.2 Queries, Partial-Match QUeries .............ceceevvevoeeereeeereeees s, 8
1.2 File Organization TeChNiQUES .........c.voveeveeeeeeieeeeee oo, 12
1.3 Storage and Time Parameters. ...........c.ooueeveeeeeeeeeeeeeeeeereeeeeeennn 14
1.3.1 Secondary StOTAZE ...........ccoveveeeeriereeereeseeeeeeeeesse s s reessesseennas 14
1.3.2 Time Parameters............ccooovveuieeiiiieneeeeeeeeeeeeeee e es s s 14
1.4 ThesiS OUHNE ..........cooviiriiiiieeeieee e er s ee e e s en e e 15
2. STORAGE STRUCTURES OF TRIES, EXTENDIBLE HASHING,
AND SUPERIMPOSED CODING ......oooeeeveeeeeeeeeeree e e e eeeeeseeaees 16
2.1 TTHES oottt ettt et e et s e s ea s e eseeseeenrenesan 16
2.2 Extendible Hashing ............cccooeeiiieieeeieeeeeceeeeieeeeesessseereeennsans 16
2.3 A Brief Digression: Tries VEISUS.......oceevvveeerieerereeeereereeseressans e 21
Extendible Hashing
2.4 Superimposed COdING............ccoueieeeeeeeeeeeeeeeeeeeeeeeseessresseessssesans 25
JUSTORAGE ... er s 30
JUT TTHHES oot ettt ereen e ee e e 30
J L1 Internal NOAES.......c.ooiiviiiiieiieeeeeeeeeee e s 30
J L 2 LBAVES oot e s e 34
3.2 Extendible Hashing .................cocoveveiiiieee oo 37
J.2 0 DUHIBCIOTY .t ee e e e e e e s e een s et enmeeena 38
3.2.2 LBAVES ..ottt ee e e et s e e s aaean 39
3.3 Superimposed COding..........ccocvvmeeeeeeeeeeeeeeeeeeeeeeee e eere e eeeesaeenas 41
Jd SUIMMATY -t e eer et e veee e st e sreessesesessesess o 4]
4. RETRIEVAL TIME... ... 44
BT TS ettt e et e ee s e e eeeesseesesae s e eeseeaseean 44
4.1.1 General Model .............ooovevieiieeeieeeeeeeeeeeeeeeeeeree e 44
4.1.2 Modified Model: Retrieval Algorithm.......0cccoeevvveveereeeeenn . 44
4.1.3 Modified Model: Time Analysis...............coooeveemeveeereereeeen. 46
4.2 Extendible HaShing .............ccoeooivriiieeeereeeee e evee s e eeeeean e 48
4.2.1 General Model; Retrieval Algorithm ...........c.oocceveeeeeeveeennnn, 48
and Retrieval Time
4.2.2 Modified Model: Implementation Results........cccecevviveeennnnn.., 51
4.3 Superimposed COQING ..........cc.oveveerieireeeeeeeeeeeeeeee v eere e s e esseeseens 51
4.3.1 Retrieval AIZOTIthM ..........ocoevemiieeiereeeeee e e e 51
4.3.2 Retrieval TIME .......ocveeiiiiiiiiicie e s 52
4.3.3 Implementation ReSults ..............ocoeiemeereeeireeeeceeeeeeee e 55
G4 SUMMATY ..ot e e eeee e et e e e ess s ee e s esesessesseans 55
S.DISCUSSION L.t e e e eeeean 58
5.1 Storage and Retrieval Time ...........c.ccooovvmeemereeeeeeieeeeeeeeeeeeeeeeenn. 58



LT U0 B - DU OO OO OO P USSP 58
Are frequency counts necessary?
Implementation issues

5.1.2 Extendible Hashing............cccocoeeirirrmvnenniiineren i 59
Depth of the directory
Implementation issues

Width of an scw and the coding function
Implementation Issues

5.2 Insert and Delete OPerations........ccccccvvvevvveeeerveencieercererrennsecssseenas 63
I8 B 5 =Y. O U SO RSOOSR 63
5.2.2 Extendible Hashing .......c.ccovveeiveerirriiiinrnnrinemrncretenmnnn, 64
5.2.3 Superimposed Coding ...........ccovvrerreiiiiiciieetee e 64

5.3 COMPATISON ....eveienveeiieiiieiteeeireeseeereesseesbesrsbasreaesresebneseassaeesraees 65
5.3.1 SUMMAIY .c.ovvieiiiiiiiriee e eettee e eet e e ssevtaees s nnr e e sannnneeseens 65
5.3.2 Implementation ISSUES ........cccecvveeviirrieniien et 66

6. CONCLUSIONS ...t e tr e e s e senaeseennes 68

6.1 SUMMATY v eeeeecre e e ceeee s tr e e s bas e e sreeserseesnanaenss 68

6.2 Suggestions for Future Work ..........cccoceeoeeiienieerccenenncerceeeenae 69
6.2.1 Best-Match QUETIES ...ocvevie et eire e e ereeeeneresens 69
6.2.2 Structured LiStNgS .......c.vvvvieiiiiiieecieeccerce e 70
6.2.3 Hardware Implementation.........c...covveevvnreriieiiniciniimnrnrrrneeneenens 70
6.2.4 Combining the Methods .......ccccoeiiiiiiiniini e 70

6.3 Final ThOUBQLS ....coooeiiiiiieii et eereise st s 71

APPENAIX A Lot ree e 72
APPENAIX Bo.ooiiiiiiiii e e e 14
REFEIBICES ...oocvviiiiieeeviie e eeetieee e eertvveeerer e e e s earateeesssts s e s ssasraeesasasseassss baes 79



ACKNOWLEDGMENTS

I am deeply grateful to the members of the Interactive Computer Systems Depart-
ment at Bell Laboratories for their help throughout the progress of my thesis.

John D. Gabbe provided invaluable assistance in my undérstanding the working
software version of superimposed coding for partiai-match retrieval. Thomas B. London gladly
answered questions about superimposed coding, UNIX, and C.

Both Matthew S. Hecht and Howard P. Katsef’s general advice and interest; Ken
Swanson’s patience and help in maintaining the system; the fellow PDP 11/45 users’ tolerating
my use of the machine and disk drives; are all greatly appreciated.

I also wish to thank Charles S. Roberts for giving me the opportunity to work in his
department, for introducing me to my thesis topic, and for his guidance through my CO-OP
assignment.

Finally, I wish to express sincere thanks to my advisors: Professor Ronald L. Rivest
for his perceptive suggestions, and John F. Reiser for his technical help and for his constant
moral support and encouragement.



LIST OF TABLES

Table 1.1. A sample file of 10 1€COrdS.....coovoveereemormeee oo

Table 1.2. Query types and sample QUETIeS. ...........co.oovovevoeoeeeeeeeoooee,
Table 3.1.  Storage for internal nodes for tries. ..............o..ooovveverriereereennnann.
Table 3.2. Storage for leaves fo; EEIES. .ot
Table 3.3. Storage for leaves for hashing. .............ccccooeeievericcnvveereereeennn.

Table 3.4. Summary of storage requirements for tries, extendible
hashing, superimposed coding (units in bytes). ......ocovvveceerernennn.

Table 4.1. 1/0 time for tries for 20 queries and per query.
The predicted I/0 time is 0.55 seconds per quUEry.........ccoovververnenne.

Table 4.2. 1/0 time for hashing for 20 queries and per query.
The predicted 1/0 time is 0.25 seconds per query........ccccoeeeveeuveenn..

Table 4.3. /0 time for superimposed coding for 20 queries and per query.
The predicted 1/0 time is 5.0 seconds per query.........coeceereiennne.

Table 4.4. . Summary of retrieval times for tries, hashing, and
Superimposed COING. .........cccivvviiieiiiiiieeeriiiie et eereeeee s

Table 5.1. Comparison of tries, extendible hashing, and superimposed
coding: predicted and actual values for storage
and retrieval tiMe. ........ooooii e e

Table A.1. Frequency counts of the five most frequent words in the
name, street, and town fieldS............oooomeeeieieeeeeeeee e

Table A.2. Number of distinct uni-, di-, and trigrams. ..........ccoocvvveveeneeenn..
Table B.1. Timing results for tries............. e et
Table B.2. Timing results for extendible hashing. ........cccccooevevvvvsveeveeenn..

Table B.3. Timing results for superimposed coding. ..........cooveveevevirvverernnnn.

11
35

37
40

42,43

57

65

73
76
17
78



LIST OF FIGURES

FigUre 2.1, A e .ocouiiiiicicicee et e e et sas b 17
Figure 2.2. A directory and €aves...........cccocvveverveireeeceiencreereessneesveesseens e 20
Figure 2.3. Splitting POINtErs. .....cccoomviiiiiieeeee e erier e ee s eee e e e eeee e 22
Figure 2.4. Doubling the direCtory. ......ccccovivieeiiiiiiiieieceircecireecnrreseevee e 23
Figure 2.5. Figure 2.1 conyerted into a directory and leaves a la

extendible RASHNG. .........coov oo 24
Figure 2.6a. A file F of names and the corresponding superimposed

codeword flle S, ......ooooiiiiiiii e 27
Figure 2.6b. The bcw’s of thie keywords of file F of Figure 268 e, 28
Figure 3.1. A trie with an overflow node at level 2...........cccoeccivieriiccnenennn. 33

Figure 4.1. If the SCW file is stored by column, only the three-bit
vectors corresponding to bit positions 2,3, and 10
need to be retrieved for the records 1 and 4
to be dropped. ... ferreeerreets i —————————————tooaes 54



1. INTRODUCTION

Given the class of queries a user makes in an information retrieval system, the
engineer organizes the database within storage constraints to yield an acceptable response time.

Thus, two questions arise:
1. What kind of queries will the user make?
2. How should the database be organized?

This thesis addresses only partial-match queries. It analyzes three database organization tech-
niques for partial-match retrieval: tries, extendible hashing, and superimposed coding. We
compare, in terms of storage and time requirements, the performance predicted by analytical

models with the performance measured from implementations of these techniques.

Previous studies of partial-match retrieval algorithms analyze search time in theoreti-
cal terms, like the number of nodes visited in a trie or buckets accessed in hashing. However,
storage requirements modeled in terms of disk space, and retrieval time modeled in terms of

access time help a user decide how to organize the database for a particular application.
1.1 Definitions
1.1.1 Files, Records, Atiributes

A record r is defined to be an ordered k-tuple (ry,ry,...,r,) of values (or keywords)
chosen from some finite set X. Eaéh coordinate of the k-tuple is referred to as a key, armribute,
or field. Let £ = {0,1,...,v—1} so that T* is the set of all k-letter words over the alphabef I,
and has size ‘v". A file F is defined to be any nonempty subset of £ Throughout this thesis

we let N denote the size of the file.
1.1.2 Queries, Partial-Match Queries

Let O denote the set of queries which the information retrieval system is designed
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to handle. For a given file F, the proper response to a query ¢ € Q is denoted by g(F)and is a

(perhaps null) subset of F.

Two classes of queries are intersection queries and best-match queries. Intersection
queries ask for records that fall within a specified subset, whereas best-match queries ask for all

the nearest neighbors in the file [Ri,74].

The class of intersection queries contains exact-match, single-key, partial-match and
range type queries. Table 1.1 presents a sample file and Table 1.2 illustrates each of these types
of intersection queries. The keywords of each record are for the attributes name, house number,
street, and town. Let the retrieved set be the set of record numbers corresponding to the

response q(F) to the query gq.

An exact-match query asks for a specified record from a file. A single-key query
asks for all records having a specified value for' a certain attribute of the record. A partial-
match query asks for all records having a specified value for one or more attributes of a record.
More generally, a range query asksvfor all records having a value within a given range of values

specified for each attribute of the record.

Since we only consider partial-match queries in this thesis, we will use the following
notation for the formal definition of a partial-match query. A partial-match query ¢ with s keys
specified for some s in the range 0 < s < k is represented by a record FeR with k-s keys
replaced by the special symbol ™" which means "unspecified”. If 7 = (F1,...,7), then for k-s
values of j attributes, 7, = * The set q(E*) is the set of all records agreeing with 7 in the

specified positions. Thus

a(2H = lre2Hly, 1 < j < DIG="NGE=r)])
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Record House
Number Name Number Street Town
i Appleby Lloyd 15 Bermann Way Middletown
2 Barone Paul 14 Knox Lane Englishtown
3 Barone Ronald 9 Tanglewood Road Englishtown
4 Barone Sandra 111 Newark Avenue Bradley Beach
5 Fox Norman 84 Tower Hill Avenue | Bradley Beach
6 Gillies David 8 Monmouth Road Middietown
7 Hagg B 52 Maxwell Englishtown
8 Lanzo O 612 Lorillard Avenue Bradley Beach
9 Lanzo PJ 8 Hill Hazlet
10 Richey Marjorie 85 Spruce Drive Hazlet
Table 1.1. A sample file of 10 records.
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Query Type

Query q

Retrieved Set q(F)

Exact-match

Retrieve the record for

.a "Sandra Barone" who

lives on "111 Newark
Avenue" in ‘"Bradley
Beach".

{4)

Single-key

Retrieve all records for
those people whose last
name is "Barone”.

(2,3,4}

Partial-match

Retrieve the records for
all those people whose
last name is "Barone"
and who live in
"Englishtown".

{2,3)

Range

Retrieve all records for
those peopl¢ whose
house numbers are
greater than "100" and
live in "Bradley Beach".

(4,8}

Table 1.2. Query types and sample queries.
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and

q(F) = Fnq(ZH.

That is, the response to the query q is the intersection of the file F and the set of all records

(not necessarily in the file) that match the query.
1.2 File Organization Techniques

Familiar techniques of organizing a file include storing records in a sequential file, in

inverted lists, in a tree structure, or in buckets via hashing.

We can retrieve a record from a sequential file by linear search or by binary search.
But since binary search is possible only for the attribute type by which the file has been
ordered, a partial-match retrieval requires a linear search of O(N) records, where N is the

number of records in a file.

If the database is too large for linear search to be practical, then we can use inverted
lists. An inverted list is similar to an index usually found in the back of a textbook. We make
an index for an attribute from values found for that attribute in the records. Each value heads
a list of records, or pointers to records, which have that value for that attribute. Thus, the
inverted lists in an index of a textbook would be the lists of page numbers, each list headed by
a keyword found in the text. The time required to retrieve a record via an index is the timé to

find the value of an attribute and depends on the number of values kept in the index.

We can use tree structures to yield on O(log N) search time for exact-match
queries. Bayer and McCreight [BM] introduce B-trees that use multiway branching to maintain
a balanced tree efficient for searching and updating. They analyze the Storage utilization and

the costs to retrieve, insert, and delete a single key. They measured the performance of B-trees
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under varying retrieval, insertion, and deletion conditions. Bayer [Ba] similarly studies sym-
metric binary B-trees. Wedekind [KK] compares B-trees to indexes and Aho et. al. [AHU] dis-

cuss 2-3 trees, a specific case of B-trees.

Another tree structure is a "trie", a data structure introduced by de la Briandais
[diB]. A trie is a type of radix-search tree whose internal nodes at level / specify a [E}way
branch on the i" character of the word being stored. Rivest [Ri, 74, 76] proves that in partial-
match retrieval for s letters specified of k-letter words, a trie-search algorithm requires an aver-
age time O(N%=9/%)  Burkhard [Bu, 76, 77a, 77bl gives bounds on the worst case perfor-
mance and an explicit expression for the average performance on a class of partial-match file

trie designs.

Hashing, or key-to-address transformation, is a technique that provides an O(1)
search time for exact-match queries. Both Rivest and Burkhard analyze the performance of

hashing-search for partial-match queries in the aforementioned references.

Fagin et al [Fa] introduce extendible hashing as an alternative to conventional
hashing because it has a dynamic structure which makes hash tables extendible and keeps

radix-search trees balanced. Extendible hashing is particularly attractive if the database grows

and/or shrinks.

Similarly, Larson [La] analyzes the storage requirements for extendible hashing
which he calls "dynamic" hashing. Because of the close relationship between tries and extendi-
ble hashing, Larson uses the results for storage for tries from Knuth [Knl. A user subroutine,
recently implemented in the UNIX® environment, offers a version of extendible hashing for

database management [RT).

A less familiar technique used for partial-match retrieval is superimposed coding.
Mooers [Mo] describes a simplified superimposed code used in Zatocoding retrieval systems in

the early 1950s. Each record corresponds to a notched-edge card. Long metal needles are
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mechanically used to select cards (records). The query determines which needles to use in
selection. The subset of records that drop from the file of notched-edge cards includes all the
records ("good" drops) that match the query. This subset can also inclhde "false” drops. We

further discuss this method of partial-match retrieval in Section 2.

Superimposed coding is experimentally used on a directory assistance retrieval Sys-
tem for partial-match queries at Bell Laboratories [Gal. I base my predictions and measure-
ments for superimposed coding on this system. Roberts [Ro] presents an algorithm to generate
the superimposed codes without the use of a stored code dictionary and analyzes its false-drop

probability,
1.3 Storage and Time Parameters
1.3.1 Secondary Storage
Current media for secondary storage (;f large files are magnetic tape, disk, and drum.

Magnetic tape parameters are the widrh, length, density of the tape, and the number

of rracks.

Disk and drum parameters are the number of disks, (or surfaces), the number of
cylinders (which equals the number of tracks per disk surface), and the number of secrors per
track. A block is a software-defined portion of a track equal to an integral number of sectors. It
is the unit of information actually transferred between secondary storage and main memory.

This thesis presents storage requirements in terms of disk parameters only.
1.3.2 Time Parameters

The average time to reach a specific position on disk or drum storage is the random-

access time which consists of a seek time and a rotational delay.

When the proper position is reached, the rate at which the actual data is read from

or written to secondary storage is the transfer rate. For example, on disks the transfer rate is a
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function of rotational speed and track density. If the transfer rate is ¢ bytes/msec. and the

block size is B bytes than the block transfer time is bir = B/t msec.
1.4 Thesis Outline

This thesis examines the storage requirements and the retrieval time of using tries,
extendible hashing search, and superimposed coding for partial-match retrieval in terms of

storage and time parameters. The times to do insert and delete operations are also discussed.

Section 2 discusses in detail the three file organization techniques. Section 3
presents a comparison among a theoretical model, a modified theoretical model, and an imple-
mentation model for the storage requirements for each of the three techniques. It explains the
assumptions of the theoretical model and how the implementation decisions differ from these
assumptions and lead to a modified theoretical model that is used to predict the results of the
actual implementation. Similarly, Section 4 pr.esents analyses for retrieval time; Section S
discusses the results from Sections 3 and 4, and some of the issues that arose in the implemen-
tations. Section 6 summarizes the conclusions of the thesis and suggests topics for future

study.
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2. STORAGE STRUCTURES OF TRIES, EXTENDIBLE HASHING, SUPERIMPOSED CODING
2.1 Tries

A trie, a type of tree, stores records at its external nodes, or leaves. An internal node
at level / specifies a |Z|-way branch based on the i" character of the key being stored. The root
is at level one. The trie nodes collectively form the trie index. In a simple trie, only one record
is stored at each leaf. More generally, a leaf can have a capacity of / records in the range

1 < 1 < cwhere cis a fixed maximum capacity.

For example, let Z = {0,1), and k = 4, so that I is the set of all tetragrams of the
binary digits 0 and 1. Let the file F = {0000,0001,0010,1001,1010,1011,1lll} and let the
maximum capacity of a leaf be ¢ = 2. Then we store the records in Fin a trie as shown in Fig-
ure 2.1. An internal node is denoted by a rectangle; a leaf, by a circle. At an internal node, a

left branch is taken when the corresponding digit is 0, a right branch is taken otherwise.

Instead of generating all internal nodes for all possible records in Ik we store a
record, such as 1111 in the figure, as a leaf as soon as it is one of at most 2 (because c=2)
records in its subtree. Also, a null link "-" indicates an empty subtree, such as that for records

01** in Fig. 2.1. (Recall that ™" is used for an unspecified value.)

Because a leaf can store at most ¢ records, when we insert a record into a leaf that
already holds the maximum number of records, we must generate a new internal node and sub-
divide the c+1 records accordingly. Thus, we generated the leftmost internal node of the third
level of the trie in Fig. 2.1 upon inserting the record 0010. This property of tries is identical to
a property inyextendible hashing which makes the two file-organization techniques similar. Lar-

son [La} and Fagin et al , [Fa] note this connection between tries and extendible hashing.

2.2 Extendible Hashing

The storage for the file is organized into two levels: the directory and the leaves. The



-17 -

10T
0101

)

L V

001

'T'¢ 34NOId




-18 -

*

directory contains pointers to the leaves and the leaves store the records. Each leaf has a max-

imum capacity of c records.

Let 4, a fixed hash function, be a mapping from the records in file F into the set B

of infinite binary sequences. That is,

such that

h(r) = (bo.by by..), beld,1}, i=0,1,2,.., reF.

If r is the record to be stored then let r' = A(r) be the pseudokey associated with r. For practi-

cal purposes and in the following discussion, we truncate each pseudokey to a moderate bit vec-

tor of fixed length.

The directory not only contains the pointers to the leaves but also a depth 4 which
never exceeds the length of a pseudokey. This depth 4 determines the number of pointers (not

necessarily distinct) in the directory to be 29

How are these pointers organized? Informally, the pointers are laid out as follows.
The first pointer in the directory points to a leaf that stores all records whose pseudokeys begin
with d consecutive zeros. The second pointer points to a leaf that stores all records whose
pseudokeys begin with the d bits 0...01. The next pointer is for all records whose pseudokeys
being with the d bits 0...010, and so on lexicographically, to the final pointer for all records

whose pseudokeys begin with d consecutive ones.
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These pointers are not necessarily distinct as noted before. That is, neighboring
pointers may point to the same leaf. What determines to which leaf a pointer points? Each
leaf also has a local depth d' < d. The local depth d' for the leaf indicates the number of bits

which are lexicographically the same in the pseudokeys for the records stored in that leaf.

For example*, if d = 3, the directory looks like the left side of Fig. 2.2. The 000
and 001 pointers point to the same leaf in the figure because all records whose pseudokeys
begin with the two bits 00 hash to that leaf. The local depth 4’ for that leaf is correspondingly

2.

More formally, let £ be the function mapping the set of natural numbers to the set
of the d-bit binary representations of the natural numbers. That is, n) is the d-bit binary
representation of n where n is a natural number. Then the i entry in the directory points to
the leaf storing all records whose pseudokeys beéin with the leading &’ bits of f(i—1) where d'
is the local depth of that leaf. (A quick check in the example shows that for i = 1, the first
entry points to the leaf, with d' = 2, storing records whose pseudokeys begin with the leading

2 bits 00 of A0), as in the figure).

To do a simple insertion of a record r, first we compute ' = h{(r). Then, using the
leading d bits of ', we find the entry of the directory which contains the pointer to the leaf
where r is to be stored. Finally, we access that leaf from secondary storage and insert r in the

leaf.

Two events may occur upon inserting a record in a leaf. The first occurs wheri an
insertion cau;es a leaf p to overflow, that is, exceed the maximum capacity of a leaf. We allo-
cate a new sibling leaf p’ and split the pointers pointing to p between pand g. We then increase
the local depth of p by one and set the local depth of p’ equal to this. Finally, we distribute all

the records originally stored in p' between pand p’. Since the local depth of p has been

-

This example and subsequent ones for extendible hashing are taken from [Fal.
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increased, using an additional bit from the pseudokeys of the records hopefully distributes the
records between p and p' and not to just one of them. Figure 2.3 illustrates what happens when

the leaf pointed to by the pointers 100,101,110,111 in Figure 2.2 overflows.

The second event occurs when an insertion overflows a leaf p and the increased (by
one) local depth p’ exceeds the directory depth d. Then, the directory doubles in size. We
must then increase the depth of the directory by one and appropriately copy the pointers from
the old directory to the new. That is, we only need to access the leaf p that overflowed and no
others. Figure 2.4 illustrates how a directory doubles upon overflowing the leaf p pointed to by
the 010 pointer in Figure 2.3. We allocate a new leaf p' and increase the depth of the directory

and the local depth of p each by one. Pointers are copied in a straightforward manner.

Two similar events may occur upon deletion of a record: pointers merge and/or the

directory halves.
2.3 A Brief Digression: Tries Versus Extendible Hashing

We now show the similarity between tries and extendible hashing. If we collapse the
levels of a trie into a single level, this level is exactly the directory of the extendible hashing
scheme. The leaves of a trie with capacity c¢ are exactly the leaves in the extendible hashing
scheme, also with capacity c. The records stored in the trie of Figure 2.1 would be stored in
the directory and leaves of Figure 2.5 if the hashing function 4 is the identity function. That is,
h(r) = r for all reF. The number of levels of internal nodes in a trie equals the depth of the
corresponding directory. The level at which a leaf of a trie is found equals the local depthAof
the correspon&ing leaf in the extendible hashing scheme. If the capacities of a trie leaf and a
hashing leaf are the same then the contents of a trie leaf and its corresponding hashing leaf are

identical.
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The difference, of course, is in the hashing function. If the identity function was
not chosen for the above example, then the distribution of the records among the leaves might
be different. Thus, one ad\'aniage of extendible hashing is that if the distribution of the
records in the input file is itself not uniform, (which would lead to an unbalanced trie) then the
distribution of the records after hashing could be uniform if a suitable hashing function is

chosen.

Another advantage of extendible hashing is that the scheme guarantees at most two
secondary storage accesses: one to the directory and one to the leaf. In fact, if the directory is
small enough to fit into main memory, only one secondary storage access is needed. The
number of secondary storage accesses in the worst case for a trie equals the number of internal

nodes touched in traversing the path from the root to a leaf of the trie.
2.4 Superimposed Coding

Superimposed coding is a technique similar to hashing. However the terminology

used in describing superimposed coding differs from that used for hashing.

We code each keyword r; of a record r = (ry,...,r,) into a binary bit vector of fixed
length b using a coding algorithm C. This bit vector is called a binary code word (bcw). We
superimpose (logical inclusive OR) the bcw’s (one for each keyword) of a record to form a
superimposed code word (scw) for that record. Thus, we generate an scw for each record in the
file F and keep each scw, along with a pointer to the corresponding record, in a secondary file S,

the superimposed code word file.

Then, for a query ¢ = (q,, B .q,), using the same coding algorithm C, we code
the s specified keywords into S bcw’s. We superimpose these bcw’s to form a query mask and
logically AND this mask with all the scw’s in S. Finally, we put all scw’s in S that have the

same bits set as in the query mask in a dropped subset S'.
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For example, Figure 2.6a shows a sample file of names. The keywords in the file
are {John, Smith, Dave, Wing, Mary, Jane, Mark, Bell, Labs}. Let the coding algorithm set for
each keyword in a record 3 ran'dom bits of a bit vector of length 10. Figure 2.6b shows the
bew’s corresponding to each of the keywords. Then the two appropriate bcw’s are OR-ed to
form an scw for each record as shown on the right. in Figure 2.6a. Bits that are not set are left

blank for readability.

Suppose the query g, is {Smith). Since the bew for Smith sets bits 2, 3, and 10, we
form the query mask 0110000001. We AND this query mask with each of the scw’s in S and
drop the subset S = (0111000011,0111011001} corresponding to the records {John Smith,
Mark Smith) respectively. However if the gq, is {Jane}, the query mask is 1000100001 and the
records {Dave Wing, Mary Jane} are retrieved. Dave Wing is a false drop in this case. Addition
of the keyword Mary to the query g, will uniquely identify the record Mary Jane. However,
uniqueness is not guaranteed: Dave Wing always falsely drops for Bell Labs since all the bits set
by Bell Labs are a subset of the bits set by Dave Wing. Knuth gives a more extensive (and

more appetizing) example of superimposed coding than the one presented here [Knl.

The records not dropped cannot possibly match the query. Let SK'CS' be the set of
the scw’s of all the records that match the query ("g" for "good") and S,CS, the set of all
records that do not match the query ("f* for "false”). Then § = S;US; and §,NS; = @.

Those records whose scw’s are in S — S are guaranteed to not match the query.

Let F be those records represented by the scw’s of S. Only the records in F need
to be retrieved from F. A search of F is necessary to determine which records actually satisfy

the query.

The number of false drops is determined by the length of the scw, the weight
(number of bits set) of the bcw’s, and the number of keywords per record. Increasing the

length of the scw reduces the number of false drops, but increases the storage required for the
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F S
Superimposed Code Word
Record
Number Name bits 2 3 5 10
1 John Smith 1 1 1
2 Dave Wing o1 1 1
3 Mary Jane 1 1 1
4 Mark Smith 1 1 1
5 Bell Labs 1 1

Figure 2.6a. A file Fof names and the

corresponding superimposed

codeword file S.




-28 -

Binary Code Word

KeywordsinF | bits 1 2 3|4 5 6|7 8 910
John 1 1 1
Smith 1 1 1
Dave 1 1 1
Wing 1 111
Mary 141 1
Jane 1 1 1
Mark 1 111
Bell 1 1 1
Labs 1 1 1

Figure 2.6b. The bcws of the keywords of

file Fof Figure 2.6a.
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scw file. Optimally, the weight of an scw should be /2, where b is the length of the scw [Rol.
Too large a weight for bcw’s will cause too many bits to be set in the scw so that the number of
false drops is large. However, too small a weight for bew’s will cause too few bits to be set in
the scw, decreasing its effective length and also increasing the number of false drops. Thus,

the coding algorithm is selected so that each scw will have approximately half of its bits set.

One advantage of superimposed coding is that operations such as retrieve and update
are done on bit vectors. This lends itself readily to implementation in hardware, where parallel
processing can be used to decrease the response time to a query. Both a software [Ga, 77] and
a hardware [Ah] implementation exist at Bell Laboratories as an experiment to computer-aided

directory assistance.
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3. STORAGE

Sections 3 and 4 discuss the storage and retrieval time, respectively, for each of the

three file organization techniques: tries, extendible hashing, and superimposed coding.

For tries and extendible hashing, we introduce a general model, develop a modified
model, and present the results of the actual implementation. We compare predictions based on
the modified model with measurements taken from the implementations. For superimposed

coding we do not need a modified model and base our predictions on the general model.

Reasons discussed in these two sections and in Section 5 justify implementing a
modified version of the general model for tries and extendible hashing. In fact, we modify the

extendible hashing model sufficiently to warrant calling the implementation (simply) "hashing".
3.1 Tries

For partial-match retrieval, we build a trie from the set of all k keywords, of a single
attribute, found in the records of the file. Thus, we build a trie for each of the name, street,
and town attributes of a telephone directory. We keep a list of records (or pointers to records)

at each leaf of the trie and intersect these lists to obtain the records which match the query.

The keywords are words of finite length whose characters are from the alphabet ¥.
The total space required for trie storage consists of the space used for the internal nodes plus
the space used for the leaves. First, we will discuss the space for the internal nodes, then, the

space for the leaves.
3.1.1 Internal Nodes

Assume that we build an M-ary (M=|Z|) trie for k keywords, and such that at most
¢ records are stored at each leaf. Recall that ¢ is the maximum capacity of a leaf. Knuth shows

that for such a trie, the expected number of nodes is
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where g(x) is a periodic function which can be ignored for small M and ¢ because its absolute

value is very small.

Various statistics of the file (see Appendix A) used for the implementation of trie-
* retrieval, such as the word and character frequencies, make the above assumptions for an M-ary
tric too general. For instance, the word "INCORPORATED" occurs over 10,000 times in the
name field of the single-line listings. We would need ¢ = 10,000 and an internal node at
level 12. But with a capacity of 10,000 we would waste storage for the many keywords that
occur infrequently. Also, we might generate all internal nodes necessary for each keyword
occurring not greater than 10,000 times, regardless of the length of the keyword. In the worst
case, for example, if a word, 20 characters in length occurring once in the database, differs only
on the 20th character from a word occurring ¢ times in the database, we would have to generate
a node at each of 20 levels and place the single record at the leaf on the 21 Clearly, an

impractical and unnecessary amount of storage is used.

Thus, we add the following restriction to the model. We build a trie with at most d
levels and use only d characters of each keyword for the trie index. For instance, we use only
the first three characters of each keyword in the actual implementation. This implies that we do
not store records at leaves once at most ¢ records are at a leaf, but that we store records with

the same leading trigram at the same leaf.

With this restriction to the general model, the number of nodes generated for a &

level trie in the worst case is:
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This assumes that for each node at level J, there is an M-ary branch to the nodes at level i + 1.

However, in practical implementations, a full tric is likely to be unnecessary.

Instead, at each level /of the trie, only a fraction /; of the possible igrams will occur in the file.

i
If the branching factor at level i is denoted M then there are at most [] M, possible -grams at
J=1

level i. Let the number of nodes at level i +/ be n,,,. Then n,,, = M, n,, where each M,

[_/}'MI for some fraction /; of M. Thus, the total number of internal nodes is

d d—1
=3 fiMun (3.3)

i=] i=0

where fo = 1, ny = 1/M so that the number of nodes at level 1 is one and M, = M.

We approximate values for the f; f}om the statistics of the file. [See Section 5.1.1
for a discussion of the need to take statistics.] The amount of storage actually required
depends on the size of each node and the representation of the trie. In the implementation, we
allow a maximum of m < M characters for each internal node, thus saving space because many
nodes require fewer than M characters. We also keep a pointer to an overflow node at each
node because some nodes require more than m characters. Figure 3.1 gives an example for

d=3, m=4, M = 8, and F = [aagb, ababb, acad, ada, aeag). Call these nodes of size m, nr

) .. . M
nodes, so that an internal node of a trie is comprised of at most l——l n-nodes.
m

The number of m-nodes at level i depends on the branching factor at level i It is

the product of the number of internal nodes at level i and the number of m-nodes needed to
. . . fiM

support the branching factor at level /. That is, the number of m-nodes at level /is is #;- el &

Recall that the number of nodes at level i+ 1 depends on the branching factor at level /.
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Also, we assume the branching factor is the same for each internal node at any given level.

Thus, the total number of m-nodes is:

4 | rM
~—1n . 3.4)
E], m |7
The total amount of storage, in bytes, is therefore
4 | M
NAINGE R 35
b §' . l"’ (3.5)

where b, is the number of bytes per m-node.

For the implementation, M = 37, m = 14, d = 3, and b, = 46. For the name
field, =L =12/ /3 = 1/6. Equation 3.4 predicts that the total number of mrnodes is
632, requiring 29,072 bytes of storage. We actually allocate 616 m-nodes using 32,256 bytes of
storage. We use more storage than predicted even though we allocate fewer m-nodes than
predicted because of the way we packed the m-nodes in secondary storage. Also, the number
of actual m-nodes is not equal to the predicted number because the f; are approximations and
the branching factor is not, in fact, uniform at any given level as assumed in the model.
Table 3.1 summarizes these results plus those for the street and town fields. Note that the f;

change from field to field.

2.1.2 Leaves

Assuming each leaf with capacity ¢ is 100 percent full, we need ¢ times the size of a

record to store records at the leaves.
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Field m-nodes bytes

-Predicted  Actual | Predicted Actual

Name 632 616 29072 32256
fi=1
f2=2/5

/=176

Street 410 396 18860 22528
L= 1
Jr=1/4

fi=1/10

Town 170 152 7820 9728
f1=2/3
=177

S3=1/20

Table 3.1. Storage for internal nodes for tries

However, because of the similarity between tries and extendible hashing, we can
apply Larson’s results on the capacity of each hash bucket to the capacity of a trie leaf. Larson

shows that for ¢ = 9, an average of 69.3 percent of the leaf is used and that the expected

number of allocated leaves a is

— —_—N_ _ _ _ [y 2—1
E(a) = [C'ln2 ”1 c[l In2-2 i§ D ” , (3.5
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Thus the expected amount of storage used for leaves is (.693) £ (a)- (size of a record).

One modification to the general model of a trie proves useful.. Instead of storing the
records themselves at the leaves, we store pointers to the records, Using pointers has two
advantages. One is that we save storage. We need only store each record once in a separate
file instead of & times for the & keywords in the record. This advantage arises when we do not
have a single primary key for each record as is the case for partial-match retrieval. The other
advantage is that using pointers is more amenable to partial-match queries than exact-match or
single-key queries. A leaf is a list of pointers to the records that have the keyword whose inser-
tion in the trie led to that leaf. For each keyword in the query, we retrieve the corresponding
list. Then we intersect lists of pointers (instead of lists of records) to find the records which

match the query.

With this modification, if the size of the file is N, the number of keywords in each
record is k, and the number of bytes per pointer is b,, then we require N kb, bytes of storage

for the lists.

These lists vary in size. In practice, we could represent a list as a linked list or as an
array of fixed maximum size. An intermediate approach is to use bucket chaining where each
bucket is of fixed size of B entries. This parallels the method of linked m-nodes used for inter-
nal nodes of the trie. That is. we use linked buckets for the leaves of a trie. This implementa-

tion decision leads to the following model for the total amount of leaf storage:

ALY by (3.6)

where b is the size of a bucket in bytes.
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For the actual implementation of the trie for the name field,
N = 350,000, k = 4, B =8, and by = 36. Then Equation 3.6 predicts a total of 25,000 buck-
ets using 900,000 bytes of storage. We actually allocate 21,448 buckets using 784,384 bytes.
Table 3.2 shows the results for the street and town fields as well. Note that the average
number of keywords is different for each field. Since these average numbers of keywords are

approximations the difference between the actual and predicted number of buckets is not unex-

pected.

buckets bytes

Field

Predicted Actual | Predicted  Actual

Name 25000 21448 900000 784384

(k=4)
Street 18750 13524 675000 494592
(k=3)
Town 12500 8470 450000 309760
(k=2)

Table 3.2. Storage for leaves for tries

3.2 Extendible Hashing

Extendible hashing requires storage for the directory and the leaves. The similarity
between tries and extendible hashing makes the analysis of the storage requirements for exten-

dible hashing similar to that for tries.
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Larson represents a directory by a forest of binary hash tries. As shown in Sec-
tion 2, these tries can be collapsed into one level which is exactly the ”di(ectory" introduced by
Fagin, et al [Fa]. Their analysis. of storage requirements considers two probabilistic models of
the inputs: the Poisson model and the Bernoulli model. For the Poisson model, the number of
records is a Poisson distributed random variable; for the Bernoulli model, the numbér of
records has a deterministic value. The results for both these models are the same and are dis-
cussed in Section 5.1.2. In the following sections we discuss first the storage for the directory,

then the storage for the leaves.
3.2.1 Directory

Using Larson’s results for the expected number of external nodes for his binary

where N is the number of

tries, the expected number of distinct directory entries is 2
c-in

records and ¢ is the capacity of a leaf. Assuming that more than half of the directory entries

are distinct, then the depth of the directory is ,log ] (logarithm to the base 2). If each

N
cin2

directory entry is b, bytes, the size of the directory is

Ilog '~,I\)112|
2l b, + b,

where b, is the number of bytes to store the depth of the directory.

The expression for the depth of the directory merits more analysis than presented
here. In fact, the "birthday paradox” [Kn} helps justify the given expression for large enough c.

Section 5.1.2 discusses this issue in more depth (no pun intended).

As with the case for tries, we adapted to the peculiarities of the database by modify-

ing our approach to extendible hashing. For instance, a word like "INCORPORATED" would
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hash to the same leaf over 10,000 times since it occurs over 10,000 times in the database.
Since the blocksize on the UNIX operating system is 512 bytes, the total number of bytes for a

leaf could not be greater than 512.

At first, we considered keeping a separate file for those words that occur frequently
in the database. However, this file would be very large since for just the name field, 88 words

occur over 300 times.

Instead, we decided to link buckets together as done with trie leaves. Thus, an
entry in a directory points to a leaf which is a linked list of buckets. Note that we lose one of
the advantages of extendible hashing: we now may need more than two secondary storage

accesses to retrieve a record.

In extendible hashing a directory may.double or halve upon overflowing or emptying
a leaf. Since a leaf no longer has a fixed size, the directory can theoretically never double or
halve. Instead, we give the directory a fixed depth 4 Thus, the predicted and actual values for
the size of the directory are the same. In the implementation d = 12 so that the directory for
each of the name, street, and town fields has 4096 entries at 2 bytes per entry plus 2 bytes for

1

storing the depth of the directory.

We could implemént extendible hashing using linked buckets by keeping a sum of
the number of entries in the buckets that are linked together. Once this sum exceeds a
predetermined number then the directory doubles. Similarly, once this sum falls below a cer-
tain level the directory halves. This option requires a storage manager to dynamically allocate

and free buckets.

3.2.2 Leaves

For the general model of extendible hashing, Larson derives an expression for the

expected number of leaves allocated. It is the difference between the expected number of
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directory entries (Larson’s term is "external nodes") and the expected number of directory
entries which contain duplicate pointers. Larson’s term for this is "empty buckets." He derives
the approximation in Equation 3.5 as the expected number of leaves allocated. Fagin, et al

discuss the number of leaves in a probabilistic argument (see Section 5.1.2).

However, since we store leaves for hashing in the same manner as we do for tries,
we can use Equation 3.6 repeated below. Again because of partial-match retrieval and storage

constraints, we keep pointers to records in the leaves.

If N is the size of the file, k is the number of keywords, B is the number of entries
in a bucket and b, is the size of the bucket in bytes, the number of bytes to store the leaves is

N-k

Table 3.3 presents the results from building a hash directory for each of the name, street, and

town fields with varying k&, N = 50,000, B = 84, and b, = S12.

Two reasons for the difference between the predicted and actual values are that the

buckets are not 100 percent full and that the k’s given are approximations.

buckets bytes

Field Predicted Actual | Predicted Actual

Name 2380 4861 1219047 2488832
(k=4)
Street 1785 2880 914285 1474560
(k=3)

Town 1190 1009 609523 516608

Table 3.3 Storage for leaves for hashing
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3.3 Superimposed Coding

Superimposed coding only requires the additional superimposed code word (SCW)
file in addition to the records themselves. If each scw is b bits in width and the size of the file
is N, then the total number of bytes of storage for the scw file is

N-b 3.7)

where 8 is the number of bits per byte. This assumes the width of an scw is a fixed size.

Gabbe et al, [Ga] use a larger input file in implementing superimposed coding than
we use for tries and extendible hashing. The number of records is 58,587 and includes multi-
line and structured listings (e.g., U. S. Government). As a result, they use two code word
sizes: 127 bits for most (72 percent) of the listings and 191 bits for multi-line and structured
listings. Thus the index file occup-ies 1,061,303 bytes, or about 1 megabyte. If each listing
occupies an average of 80 bytes, then the superimposed code word index is approximately

20 percent of the file of records itself.
3.4 Summary

Table 3.4 summarizes the models used to predict the amount of storage required for
tries, extendible hashing, and superimposed code words. The expression given for extendible
hashing is for true extendible hashing and not for our implementation. If we do not store the
actual records. at the leaves of a trie or at the leaves in extendible hashing then the size of the
file must be added to each of the corresponding expressions. This term is included in the

expression for superimposed coding.
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Tries

d | SiM N-k
by, Z P B bg

n +
m

i=1

(storage for 1 trie)

number of bytes per m-node
number of bytes per bucket
number of entries in a bucket
number of levels of the trie

fraction of igrams that occur of all
possible jgrains

average number of keywords in a record

maximum branching factor of a
m- node

maximum branching factor of an
internal node

number of internal nodes at
level i

number of records in the file
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N N - 27
E i . +b, + —{l — |l — In2 -~ TEETY
xtendible 2[Iog c-anl b, b, ) [l c[ In 2 ,-zi D ”b,
Hashing
where
b, = number of bytes to represent an
integer (for the depth of the
directory)
b, = number of bytes per directory entry
b= number of bytes per leaf
¢ = maximum capacity of a leaf
N = number of records in the file
Superimposed —Ns—b + N-b,
Coding

b= number of bits per superimposed
code word

b, =  number of bytes per record

N = number of records in the file

Table 3.4. Summary of storage reqﬁirements for tries, extendible hasing, superimposed coding (units in bytes).
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4. RETRIEVAL TIME
4.1 Tries
4.1.1 General Model

For the general model of a trie, Rivest [Ri,74] gives a recursive algorithm for
retrieving a record from a trie. He derives expressions for upper and lower bounds for search-
ing in a full trie in [Ri,74] and an expected cost for searching in a binary trie in [Ri,76] in
terms of the number of internal nodes examined by the retrieval algorithm. These expressions
are O(N*=9%) for N records in the file, k keywords per record, and s specified keywords per

query.

For a M-ary trie with a capacity of s records for a file of N records, Knuth [Kn]

gives an expression for the average number of characters examined in a successful search to be

l”N + Y - Ht‘—l
InM

+ % —§(N) + O(NTY) 4.1)

and the average number of comparisons made in a successful search to be

+ 0N (4.2)

1 c—1 -
+ 1 ——
1 (1 M)[/n + g(N)

where vy is Euler’s constant, H, is the " harmonic number, and §(N) and Z(N) are periodic

functions similar to £ (N) mentioned in Section 3.1.
4.1.2 Modified Model: Retrieval Algorithm

For the modified model of the trie used for the implementation of trie retrieval, we

fixed the number of levels of the trie and we let the leaves store a varying number of pointers
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to records. Given a query ¢ = (q,, . . ., q;), for each query keyword g; we search the trie on d
of the letters in the keyword énd return the leaf storing a list of pointers to all records contain-
ing those d letters in the keyword. Then we. intersect the returned listé to yield a final list of
pointers to records. We retrieve each of these records from the ﬁvle and match each of the
actual query keywords with the keywords of the record, since we only use d letters of the query
keyword search. Thus, we use the following algorithm for an M-ary trie with m-nodes used to
represent an internal node. Note that an m-node stores at most m characters and m "child”
pointers to subtries and an "onode” to an overflow m-node. Initially, rieretrieve is called with

as the root of the trie and query g¢.

Procedure rrieretrieve (g,1):
begin
for g e q = (g;,...,q; )

I, = triesearch (¢;, 1),

linat = intersect (1y,....0);
for riely,
if (match (r,,q) = true) print r;)

end iricretrieve

Procedure rriesearch (keyword, 1):
begin
=L
while j<d+1 begin
i=1.
while i<m+1 begin
if (kevword, = 1—char,)
if(j=d) return (t— child;)
else begin
t=t—child ;
j=jt+1.
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i=0;
end
i=i+1;
end
if (i=m)
if(t—onode '= nulh begin
t=t—onode;
=il
end
else begin
print ("no such keyword");
return (null);
end
=it

end
end rriesearch
4.1.3 Modified Model: Time Analvsis
The intersection is done optimally if we sort the lists and intersect them in increas-
ing size order [AMP]. The intersect and march routines are done in main memory. Thus, the
retrieval time is bounded by the number of records actually retrieved plus the product of the
time to execute a friesearch and the number of times we call it. We call it once for each query

keyword.

The time to execute each friesearch is bounded by the number of levels of the trie.
Thus, if examining an internal node requires one secondary storage access, we will need o
secondary storage accesses to search down a trie of 4 levels. Then we need an additional access

to retrieve the list of pointers to records.

We model the retrieval time 7, to be:

T =r, T, + k(d+DT, + T, +r,Ty (4.3)
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where T, is the time to do a secondary storage access; 7; is the time to do the intersection of
lists; Ty, is the time to do a ﬁ1atch; r, is the number of records that must be retrieved, k is the
number of query keywords; and d is the number of levels in the trie. Since 7, and T}, are on
the order of one or two milliseconds, actual retrieval time is bound by the first two terms of T

to yield
Tx = lr,+k(d+DIT, (4.4)

We can break T, down into the sum of three components: seek time s, rotational
latency r, and block transfer time b1, Now we can predict the time needed to retrieve the

records satisfying a query of 4 keywords.

For the actual implementation the secondary storage device used is a Digital Equip-
ment Corporation RP02 disk. Average seek time is 47 msec., and average latency is 12.5 msec.
The transfer time is 7.5 usec/word, yielding a transfer time of 1.92 msec/bloci(. Thus s+ r+ b
= 61.4 msec. For an average of 2 keywords/query and a median of only one record (rq=l)

actually retrieved to satisfy a random query, Equation 4.4 yields 97, or 0.55 seconds.

We tested two sets of queries. One set contained random trigrams grouped in
queries of one, two, and three trigrams per query. However, two random trigrams in a single
query rarely resulted in any records matching the query. Thus, we did not pursue timing this

set of test queries.

We made the second set of queries in the following manner. The first query con-
sists of a randomly selected trigram. The second query consists of the same random trigram
plus a different trigram actually present in one of the records retrieved by the first query. The
third query added a third trigram (if present) to the second query. We repeated this procedure

until we had 20 queries.
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We then measured the time to perform these 20 queries. We made twelve trials: for
the first six, we suppressed the actual printing of the records and for the remaining six, we
printed them to verify that the ;etrieval was done correctly, Table 4.1 shows the results of the
first six timing experiments.* It presents the total times for secondary storage access.
Appendix B presents the results from the time command, and the results of user and system

times from the times subroutine.

The average 1/0 time per query is about two and a half times the predicted. The
UNIX operating system performs an additional disk access per user read request in maintaining
the file system. This accounts for the difference in retrieval time between the actual and

predicted values.
4.2 Extendible Hashing
4.2.1 General Model: Reirieval Algorithm and Rewieval Time

Retrieval in an extendible hashing scheme requires at most two secondary storage
accesses: one for the directory and one for the appropriate leaf. If the directory can be read
into main memory initially and kept resident, then a retrieval will require only one secondary

storage access.

For partial-match retrieval, each keyword in the query takes at most two accesses.
We compare the records on the retrieved leaves for an intersecting set of records that satisfy
the query. Or similarly if we keep pointers to records in the leaves, we intersect the lists _

of pointers as with the leaves of a trie discussed in the previous section.

We use the following partial-match retrieval algorithm for extendible hashing. Let

directory, an array of pointers, be the hash directory, and let the query be ¢.
*  Using the UNIX fime command, we measured the total elapsed ("real"). user, and system times in executing the
entire process to perform the 20 queries. This includes opening and closing files and other initialization and cleanup
procedures. Also we used the UNIX imes subroutine to measure the user and system times of executing just the
retrieval for the 20 queries. The time spent doing secondary storage accesses (/O time) is approximately the
difference between the elapsed time and the sum of the user and system times.
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Total 1/0 time Average
Trial for 20 queries | 1/0 time/query
| (in seconds) (in seconds)
1 27.8 1.4
2 26.5 1.3
3 275 1.4
4 26.5 ' 1.3
5 29.3 1.5
6 28.9 1.4
Average 27.7 1.4

Table 4.1.  1/O time for tries for 20 queries and per query. The predicted 1/0 time is 0.55

seconds per query.

Procedure hashrewrieve (q) begin

for g, e qg= (qyeensqy)

I, = hashsearch (g;)
tinas = intersect (1, . .., 1);

for rie Ifina

if (march (g,r) = true) print (r);

end
end hashreirieve

Procedure hashscarch (keyword): returns leaf
begin

hashed_keyword = # (keyword);
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directory_entry = enrry (hashed_keyword);
leaf_pointer = directory [directory entry];

read leaf _pointer into buffer;
leaf = search (buffer, keyword):
end
end hashsearch
The efficiency of the search and intersect subroutines depends on how the entries on
the leaves are kept. If they are sorted then binary search yields an 0(log n) time where n is the
number of entries on a leaf. Also (as mentioned in the previous section) the intersect subrou-

tine can be optimally fast if we intersect sorted lists in order of increasing size. We execute the

intersect, match, h, entry and search subroutines all in main memory.

Thus the retrieval time is bounded by the time necessary to perform at most two
secondary storage accesses per query keyword. This yields the following expression for partial-

match retrieval time for extendible hashing:
TR ==qu0 + a/\Ta +I\TS +TI +quM (45)

where k is the number of query keywords, T, is the average access time, and r, is the number
of records actually retrieved. T, is the sum of the seek time, rotational latency and the block
transfer time. Tg, T,, Ty, are the times to perform the search, intersection, and match subrou-

tines, respectively. The times to execute / and entry for each query keyword are not significant.

The coefficient « in the second term in Equation 4.5 is 1 if we keep the directory

resident in main memory; otherwise it is 2.

Retrieval time is bounded by the number of secondary storage accesses leading to

the following expression:

T = (r,+ak)T, (4.6)
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4.2.2 Modified Model: Implementation Results

The actual implementation does not guarantee at most Fwo secondary storage
accesses. Depending on the nu.mber of entries in one leaf bucket and the number of pairs of
keywords and record pointers that hash to the same bucket, additional secondary storage
accesses may be necessary to find the appropriate hashed keyword in the leaf. However, the
expected number of entries in one leaf bucket is less than the maximum size chosen for a leaf
bucket, so the expected number of secondary storage accesses is still at most two per query

keyword.

Table 4.2 presents the results from six trials on the same set of queries as those
used for tries. Using the same values for s, r, and b as for tries, Equation 4.6 yields a time T,
of 0.25 seconds per query, where a=1 since we keep the directory in main memory, & is an
average of two keywords per query, and r,,=2.~ (One record satisfies the random query; one
record does not but is retrieved because of keyword collisions.) Appendix B includes the

breakdown of these numbers in terms of user time and system time.

The actual 1/0 per query is about three times more than predicted because the use
of linked buckets and because of keyword collisions. In particular, for one query for which one
keyword is "INCO", we readv98 buckets (¢=98) instead of the expected value of 1. Also for
two other queries we retrieved (r‘,) 38 and 64 records respectively when actually only one
record satisfied each query. Finally, the additional 1/0 performed by the UNIX operating sys-
tem contributes to the actual /O retrieval time per query. All these factors account for the

difference between the actual and the predicted results.
4.3 Superimposed Coding

4.3.1 Rerrieval Algorithm

The following procedure presents the steps required to do retrieval via superimposed
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coding given a query ¢, and superimposed code word file S and file F of records.
procedure scretrieve (q)
qmask = 0;
begin
for ge g = (q,,....q,)
gmask = gmask V' h(q;) I*\/ is bitwise inclusive "OR" */
for (seS) .
if (s5; \ gmask) then
put r,in F' /* " A is bitwise "AND" */
for (reF") :
if (match (r,,q) = true) print (r,)

end
end screrrieve

The time to retrieve records is bounded by the number of secondary storage

accesses needed to compare the query mask with the scw’s of the superimposed code word file.

The comparison can be done in t§vo ways. Since the superimposed code word file is
just an N x b array of 0’s and 1's, it can be étored by row or by column. (Here N is the
number records and b is the width of an scw.) If the SCW file is stored by row, then each row
vector represents a record in the file and is b bits in width. Retrieval requires the query mask

to be compared with all N of the records making b bit comparisons for each record.

However, if the SCW file is stored by column, then each column vector represents
one of the b positions in an scw and is N bits in length. Retrieval requires only »'< b compari-
sons of bit vectors'with the query mask where b’ is the number of 1's in the query mask. Fig-
ure 4.1 illustrates this for the query {Smith} and the example given in Section 2.4. Only the bit
vectors corresponding to rows 2, 3, and 10 need to be retrieved for the records {John Sm-ith,
Mark Smith} to be dropped. Therefore, we do not need to look at all N-b bits in the SCW file,

just N-b' bits. Roberts [Rol calls this method of storing the SCW file "bit-sliced organization."

4.3.2 Retrieval Time

Using bit-sticed organization, we would store N bits per bit vector. Thus, we model

the retrieval time Ty to be:
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Total 1/0 Average 1/0
Trial time for 20 Queries time/query
| (in seconds) (in seconds)
1 162 8
2 15.4 8
3 16.2 .8
4 15.7 8
5 14.8 i
6 16.6 .8
Average 15.8° 8

Table 4.2. 1/O Time for Hashing for 20 Queries and per query. The predicted [/0 time per

query for extendible hashing is 0.25 seconds per query.

TR = TQ + TB + qua + quM (47)
where Ty is the time to make the query mask, Tj is the time to retrieve bit vectors from the
SCW file, T, is the time to retrieve a record from secondary storage, Ty is the time to match a

retrieved record with the query. The retrieval time is bounded by secondary storage accesses so

Equation 4.7 reduces to

Te =Ty +1,T, (4.8)
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SCW File
record number
query
bitnumber [ 1 2 3 4 5 | mask
1 0 1 1 0 1 0
2 1. 0 0 1 O 1
3 1 1 1 1 1 1
4 1 0 1 1 0 0
5 0 1 1 0 1 0
6 ¢ 0 0 1 o 0
7 6 0 1 1 o 0
8 0 1 0 0 1 0
9 1 1. 0 0 O 0
10 1 1T 1 1 0 1
Figure 4.1. If the SCW file is stored by column, only the three bit vectors corresponding to

bit positions 2, 3, and 10 need to be retrieved for the records 1 and 4 to be

dropped.
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The time Ty can be represented as follows:

N
8-b

5

Tg = < (r+bt)-g + sq (4.9

-1

where b, is the number of bytes per sector, 8 is the number of bits per byte, tis the number of

sectors per track, ¢ is the average weight of the query mask, and s, r, and bu are seek time,

rotational latency, and block transfer times, respectively. We derive the factor from the

N
8-bt

number of tracks necessary to store the SCW file. If there are N records, then each bit vector

is N bits in length.
4.3.3 Implementation Resulis

Equation 4.8 yields a time T, of 5.0 seconds per query, where N is 60,000 records,

b, is 512 bytes/sector, tis 10 sectors/track, ¢ is 73 bits, r, is 1, and s, r, and bir are 47, 12.5,

¢

and 1.92 msec. respectively.

Table 4.3 presents the results from six trials on the same set of queries as these used
for tries and hashing. Appendix B includes a breakdown of these numbers in terms of user and

system times.

The implementation for superimposed coding uses 11 UNIX processes, not all of
which can fit into main memory at once. Thus about a 2-second overhead for swapping
processes in and out of main memory accounts for part of the difference between the actual and

predicted values.
4.4 Summary

Table 4.4 summarizes the retrieval times for tries, hashing, and superimposed cod-

ing.
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Total 1/0 Average 1/0
Trial | time for 20 Queries | time/query
(in seconds) (in seconds)
1 179.0 9.0
2 179.5 9.0
3 177.8 89
4 183.3 9.2
5 192.9 9.7
6 179.8 9.0
Average 182.1 9.1

Table 4.3.  1/0O time for superimposed coding for 20 queries and per query. The predicted

[/0 time is 5.0 seconds per query.
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Tries TR = qu(l -+ I\(d+l)Ta -+ TI + quM

Hashing | T = r, T, + o-hT, + kTs + T, + 1, Ty

Superimposed

COding TR = TQ + TB + rq T(l + quM.

where
a = 1 if the hashing directory is kept in main memory;
2, otherwise
d = the number of levels in a trie
k = the number of query keywords
r, = the number of retrieved records

T, = access time (seek + rotational latency +
Hock mransfer ame
Ty = time to retrieve bit vectors from the SCW file
7, = time to intersect lists
Ty = time to match a retrieved record with the query

Ty = time to make a query mask

Table 4.4.  Summary of retrieval times for tries, hashing, and superimposed coding.
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5. DISCUSSION

5.1 Storage and Retrieval Time

5.1.1 Tries

Are frequency counts necessary?

The present model for the amount of storage needed for tries depends on the statis-
tics of the data base. This dependency has its drawbacks if a general model is desired but in
practice it is not an unreasonable task to take statistics on the database. In fact, the database
organizer often computes statistics such as character and keyword frequency counts depending

on the application.

The question arises whether the model can be extended for a file from several
thousands to over a million records and whether keeping the frequency counts of digrams and
trigrams occurring in such a file is plausible. Sorting the keywords (as done in this study, for
convenience) can be avoided by keeping approximate counts of these large numbers [Mor].

Thus we only need one pass through all keywords in the records.

Also, depending on the statistics of the database, we may choose to build the trie
index on the first d consonants of each keyword or any combination of d letters of each key-
word where d is the number of levels of the trie index. The objective is to distribute the
records somewhat uniformly across the leaves of the trie, so that the entire trie is balanced.

(This hints again at the similarity between using tries and hashing.)

Implementation issues.

Because of the limited address space of the PDP 11/45, we could not construct the

entire trie index in main memory. Thus, in constructing and retrieving from the tries (one

each for the name, street, and town fields) we simulate a cache memory scheme using a least
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recently used algorithm for buffer replacement. Since we chose the maximum number of char-
acters stored in an m-node to be 14, the maximum expected numbers of _m-nodes at levels one,
two, and three are 3, 2, and 1,'respectively. One buffer of 512 bytes can hold at most 11 m
nodes. Thus we waste storage in fragmentation, and the number of actual bytes used to store

the trie index is greater than the predicted value.

Similarly, we use separate buffers and UNIX files to store the pointers to records in
the leaves of the trie. Because the leaves are stored by linked buckets, we make additional disk
accesses when a leaf overflows into the next disk block. That is, 14 buckets can fit onto one
UNIX disk block and 8 pointers can fit into one bucket. If a leaf points to a bucket which is
linked to another bucket on to a different block then both blocks may haye to be read into
main memory. We chose the size of the bucket to approximate the average number of records
that would have any random trigram occurring in the file. Clearly a trigram like "INC" (as in
"INCORPORATED") will generate a leaf that spans several disk blocks and thus if "INC" occurs
in a random query (as it does in two of the test set of 20 queries) the number of disk accesses
can dramatically increase. This also accounts for part of the difference between the actual and

predicted values for retrieval time.

3.1.2 Extendible Hashing

Depth of the directory.

Hashing is attractive because of its O(1) exact-match retrieval time and because a

uniform distribution of hashed keywords can result if a good hash function is chosen.

However, collisions can hamper the effectiveness of the hashing technique and in

fact, can be devastating in the case of extendible hashing.

The problem of clustering occurs if there is a collision in the (full) hash value when

a leaf overflows. This causes the directory to double in size (because the records hash to the



- 60 -

same directory entry) until in the worst case the maximum size of the directory is reached. In
other words, just redistributing one leaf’s entries may generate many directory entries which

contain duplicated pointers.

What then is the depth of the directory? We know from the "birthday paradox” that
if 23 or more people are present in a room then the probability of a birthday coincidence
exceeds 1/2. So out of 365 possible directory entries to which a record could hash, after only
23 insertions, chances are greater than one in two that a collision will occur. Knuth [Kn., exer-
cise 6.4.4] poses this problem for 3 people and Pinzka [Pi] extends it for the cases of 3, 4, and
5 people. Using a Poisson approximation, Pinzka concludes that 88, 187, and 314 people must
be present for the probability to exceed one half that 3, 4, and 5 people, respectively, have the

same birthday.

For the Poisson model, if the number of records » is the Poisson distributed random

variable then

vNe

P(n=N) = N1

where N is the number of records in the file and v is the average number of records. Assuming

that all leaf pages appear at two successive levels, Fagin et al. [Fal show

1. the number of directory entries is

ezl

where c is the size of a leaf and

2. the average number of directory entries is
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—r
c-(h2)?
They show for practical values of ¢ and » that indeed all leaf pages appear at two
successive levels with probability nearly one for this model. HoWever, they note that if ¢
remains fixed and v—oo they have no conclusive estimates for the average number of directory

entries or for the depth of the directory.

The probability bounds they derive for the Poisson mode! hold for the Bernoulli

model as well.

From the above discussion based on the "birthday paradox" and the Poisson model

N given in Section 3.2.1 as
c-in2

developed by Fagin, et. al., we suggest that the expression [/og

the depth of the directory may be off by a factor of 2.

Implementation issues.

We chose the hashing function from a class of universal hash functions [CW] using

a pseudo-random number generator.

For the name field, the number of directory entries which actually point to leaves is
3757, only 339 (or 8 percent) shy of the maximum possible 4096 entries. Thus, the hash func-

tion is "good" in that any clustering that arose was eventually smoothed out.

Because of the large size of each bucket (512 bytes) the buckets are only about 50
percent full. Again, wasted storage in each bucket explains why more actual buckets are

required than predicted.

Comparing the name field to the street and town fields, the number of nonnull
directory entries decreases whereas the number of actual buckets approximates the predicted

value better. This is not surprising since few, dense lists are expected in the street and town
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fields because fewer keywords occur in those fields than in the name field and these keywords

occur more often in the file.

The same issue that arises for tries of linked buckets extending over more than one
disk block holds for the implementation of hashing. This is noted in Section 4.2.2 in the

presentation of the timing results.

5.1.3 Superimposed Coding

Width of an scw and the coding function.

The additional storage for the SCW file depends on the number of records in the file
and the width of an scw. The width and the coding function are related to each other and to
the number of records in the file. The choices for the width and the coding function can be
made by taking statistics on the database. Ideally the coding function should set half of the bits
in an scw. Hence, the width of an scw should be chosen so that the records are not coded to an

scw that is too sparse or too dense.

Other approaches include varying the width of an scw, or varying the weights each
keyword contributes to an scw. Also keywords that occur frequently should be given a smaller

weight than average.

Implementation issues.

Two different code widths are used: one (127 bits) for single line listings and one

(191 bits) for long listings including structured listings like that for U.S. Government.

The coding function considers only the first four characters of each keyword, with
each character contributing a varying number of bits to the scw depending on the character’s

position. For most words the first character contributes 4 bits and the second, third, and fourth

characters each contribute 3 for a total of 13 bits per keyword. However, for example, in the



- 63 -

case of the first letter beirg a "C" then only ! bit is set in the scw since "C" occurs as the first
letter about 26,000 times in less than 60,000 records. Thus, the coding uses the knowledge of

character and word frequencies in the database.

To decrease the search time through the SCW file, we can order the code words.
Then a binary search can decrease the search through the file from O(N) to O(jog N). How-
ever, ordering the SCW file increases the time to perform insert, delete, and update operations,
requires additional overload for storing a record number besides an scw number (currently they
are the same), and is less amenable to a changing coding function (since then the entire SCW

file would have to be resorted).
5.2 Insert and Delete Operations

A complete analysis of a file organization technique should include a study of the
insert, delete and update times. An update can be regarded as an deletion followed by an inser-
tion, although this is wasteful if only a-small n;odiﬁcation is made to a record. Depending on
the application, on whether the file is dynamic or static, and on the typical requests of the user,
inserts, deletes, and updates can be performed as they enter the retrieval system or they can be

batched and all performed at once.
5.2.1 Tries

Insertion of a record into a trie requires the same "trie" walk as a retrieval. If the
record is not in the leaf then we insert it. How the leaves are stored and if they are kept sorted
determines how simple this operation is. If we keep an unsorted linked list, then we simply _add
the record to either end of the list. If we keep a sorted list then one insertion to the beginning

of the list requires moving all records to make room for the inserted one.

We did not measure insertion times but we did record the times to build the entire
trie. For the name field alone, it took almost 15 hours (real time)* to construct the trie index

* And over 11 hours of CPU time alone.
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and leaves for about 50,000 records. The records were processed so that partially sorted key-

word and record identifier pairs were input to the program that constructed the tries.

Deletion of a record raises similar problems. First a "trie" walk is done, followed by

a search in the list for the record and a reorganization of the list.

If we store characters alphabetically in each internal node and if we maintain sorted

lists then a retrieval is easy but an update is tedious.
5.2.2 Extendible Hashing

One of the attractive features of extendible hashing is its flexibility for insertions
and deletions. An insertion may cause a leaf to overflow which may then cause the directory to
double. But if the directory doubles, only pointers need to be copied to the appropriate direc-
tory entries. The leaves are not affected at all. Similarly, a deletion may cause a leaf to
become empty, which may then cause the directory to halve. ‘Still, only the pointers change,

not the leaves themselves.

In either case we search for a record on a leaf. Thus the size of the leaf is impor-
tant, not only because it affects how often the directory doubles or halves but because it
influences the search technique that we use to find the record. Again, if we keep the leaves
sorted, a binary search is appealing, although if any one leaf has few entries, then a linear

search is just as acceptable.

Because of the dynamic nature of the directory in extendible hashing, an updat_e is

not as expensive as in the case of tries.
3.2.3 Superimposed Coding

One advantage of superimposed coding is the ease of inserting and deleting records.

For an insertion, a record’s scw is generated and added to the (end of the) SCW file. For a
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deletion, the record’s scw is removed from the SCW file. Deletion may be accomplished "in
place” by setting the scw to all zeroes. This wastes some space (until the next reorganization)

but may be preferred if deletions are infrequent.

However if the SCW file is stored in a bit-sliced organization then inserting and
deleting are not so easy. Since the SCW is stored by column and we want to update by row, we
have the canonical problem of performing a row operation on a matrix stored by column. Also
if the SCW file is ordered, these insertions and deletions must maintain the order which intro-

duces the same problems as mentioned for sorted lists for tries.
5.3 Comparison

5.3.1 Summary

Table 5.1 presents a summary of the predicted and actual values for storage and

retrieval time for all three methods.

Predicted . Actual

Storage Retrieval Time | Storage Retrieval Time

(in bytes) (in seconds) | (in bytes) (in seconds)

Tries 2,080,752 .55 1,653,248 1.4
Hashing 2,767,437 .25 4,504,582 .8
Superimposed | 1,061,303 5.0 1,061,303 9.1
Coding

Table 5.1. Comparison of tries, extendible hashing, and
superimposed coding: predicted and actual values

for storage and retrieval times.
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Note that the numbers for storage for tries include the trie indices and leaves for all three
fields: name, street, and town. Similarly, for hashing, the numbers for storage include the
directories and leaves for all three fields. Since we perform partial-match retrieval across the
three fields and since the storagé for superimposed coding inherently includes information from
all three fields, storage for all three fields should be included. The storage numbers do not
include the amount of storage required by the file (the Suffolk County directory) itself. This is
an appropriate omission in the case of partial-match retrieval because each record is expected to
appear many times in any index. Hence each index will use pointers rather than storing the

actual records many times.

The storage actually required by tries and superimposed coding are not significantly
different. In fact, hindsight reveals more efficient ways of packing nodes and leaves for tries so
that storage for tries would be nearly the same as that for superimposed coding. Storage

required by hashing is much greater than either because the leaves are only 50 percent full.

We only specified keywords in the name field for the random queries used to meas-
ure retrieval time. This is representative of queries in the context of directory assistance. Also
the differences in time are not expected to be significant from field-to-field or across fields.

The actual retrieval times listed in Table 5.1 are the averages over the set of queries.

Overall, using tries is a reasonable compromise between the fast but storage-wasting
extendible hashing method and the slow but storage-saving superimposed coding method for
file organization. However, if space is not a constraint, and if ease of performing insert and

delete operations is desired, extendible hashing may be preferred.
3.3.2 Implemeniation Issues

Retrieval time for superimposed coding appears much worse than that for tries or
hashing. To fairly compare superimposed coding to the other two techniques, important

differences between the implementations must be considered.
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First, the purpose of the implementation using superimposed codes for partial-match
retrieval was not for speed of retrieval but for applicability of this retrieval technique to direc-

tory assistance.

The implementation for superimposed coding includes structured listings (e.g. U.S.
Government) whereas those for tries and hashing do not. The superimposed coding program
uses |1 UNIX processes and message handling capabilities which slow down the performance of
the overall system significantly. The process that performs the search is actually run twice,
once for short listings and once for long listings. The process that performs the match between
the dropped records and the query does a best-match for each keyword so that eventually
records output to the user are ordered with best matches first. Finally, the retrieval system
includes a feedback mechanism that returns the number of dropped records after each character

is typed in by the user.

One advantage that the superimposed coding implementation has over the other two
is that raw 1/0 (and not UNIX 1/0) is used. This takes advantage of the SCW file being stored

in a bit-sliced organization so multiple units of a UNIX block size can be read in at once.

Roberts [Ro] developed a program, the precursor to the current implementation,
using superimposed codes that was written specifically with the goal of measuring retrieval time.
He used the same database - the single listings - as that used for tries and hashing. Measure-
ments taken by Roberts show that a lower bound for actual retrieval time is 1.5 seconds per
query. This is significantly lower than those measurements taken on the current implementa-

tion.
Whereas Roberts’ version considered speed of retrieval and minimized the number

of features, the current implementation considered the number of features without major con-
cern for retrieval time. Thus, actual retrieval time per query for superimposed coding probably
lies in between Roberts’ result and our result. The general conclusion is the same: retrieval

time is greatest for superimposed coding.
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6. CONCLUSIONS
6.1 Summary

As a result of analyzing and implementing three file organization methods (tries,
extendible hashing, and superimposed coding) for partial-match retrieval, the following conclu-

sions can be made:

1. Storage: The actual amount of storage used is less than predicted for tries, more than
predicted for hashing, and as predicted for superimposed coding. Tries and superim-

posed coding use a comparable amount of storage. Hashing requires more than either.

2. Retrieval time: All three actual average retrieval times are higher than the predicted.
For tries, the actual value is about twice the predicted; for hashing, about three times
the predicted; for superimposed coding, about twice the predicted. Retrieval via hash-

ing is fastest, then tries, then superimposed coding.

3. As partial-match retrieval techniques: Tries and superimposed coding are suited for
partial-match retrieval on characters within keywords whereas extendible hashing is not.
For tries, one can specify up to dcharacters for each keyword where d is the number of
levels in the trie index. For superimposed coding, using the appropriate coding func-

tion one can also partially specify the characters of a keyword.

For extendible hashing, for a random hash function, one cannot partially
specify the characters of a keyword but must specify all characters that the hash func-
tion uses. That is, "HE" does not necessarily hash to the same directory entry as "HEL"

so the user cannot just input "HE" if "HEL" occurs as part of the keyword.

Both tries and extendible hashing are better techniques for single-key queries
rather than for partial-match queries. For single-key queries, we can store the entire
record in a leaf instead of a pointer to the record. Partial-match requires redundancy in

the leaves.
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4. Tries and extendible hashing are similar in structure. The levels of the trie index can
be collapsed into a single level - the directory of extendible hashing. The difference is
that the hashing function may distribute the records of a_file more uniformly

throughout the leaves:

5. Implementation decisions cloud the issues. Unfortunately, implementations must con-
form to real constraints like the size of main memory and disk access time. (Things
could be a lot different if we used a machine with a larger address space, say 224 bytes,
and sufficient real memory.) This especially is true with extendible hashing since the

UNIX page size limits the size of leaf.

6.2 Suggestions for Future Work

6.2.1 Best-Match Queries

We applied the file organization techniques presented in this thesis to partial-match
retrieval. Suppose instead, we want those records which also fall as "nearest neighbors" to the
response to a partial-match query; that is, we specify a best-match query. How easy is it to
adapt what we know about tries, extendible hashing, and superimposed codes to best-match

queries?

Retrieval from tries readily adapts to best-match queries. The siblings of the nodes
traversed for a partial-match query will lead to the leaves which contain records that are nearest

neighbors to the records satisfying the partial-match query.

Neither extendible hashing nor superimposed coding readily adapts to best-match
queries. Because query keywords are encoded either by a hash function or into a query mask, a
nearest neighbor search would require the information retrieval system to be smart enough to

generate all other queries that might satisfy the input query.

The motivation for the capability of satisfying best-match queries stems from the

directory assistance problem of alternate spellings for a name. For example, in a typical tele-
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phone directory, under "Brown" often one also reads "See also Braun". Also, if a user
overspecifies a name like "John Doe" when "J. Doe" is listed, we would like to retrieve records
for all "J. Doe™s. Similarly, the thesaurus problem arises because profg:ssions are frequently
listed in more than one way: doc‘tor and physician, lawyer and attorney. These problems can be
solved in an engineering fashion, but for instance, can we solve it in the coding function itself

for superimposed coding?

6.2.2 Structured Listings

The implementations for retrieval from tries and extendible hashing avoid structured
listings because the problems that arise in including them merely hide the issues addressed in
this thesis. However, structured listings do pose interesting problems for superimposed coding
since varying the code word widths affects the overall performance of the retrieval system.
Another approach might be to encode the information in the scw that a record is from a struc-

tured listing.

6.2.3 Hardware Implementation
For superimposed coding, if we do the search through the SCW file in hardware, the
retrieval time is no longer bounded by the search time. In fact, preliminary analyses done by

Ahuja [Ah] at Bell Laboratories show that with the help of special-purpose hardware one can
process about 7200 queries per minute as opposed to 6 queries per minute with the current

software implementation.

If time is a crucial factor such as in directory assistance where one may reasonably
require about 400 queries per minute, then special-purpose hardware is essential in the informa-
tion retrieval ‘system. Perhaps similar hardware applications can be made for tries and extendi-

ble hashing.

6.2.4 Combining the Methods
The search through the SCW file slows down the retrieval time for superimposed

coding. If we add a trie index or an extendible hashing directory as a level of indirection to the
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SCW file, then we can reduce the number of scw’s actually compared to the query mask.
Retrieval time should improve at the expense of additional overhead for the extra level of

indirection.
6.3 Final Thoughts

Throughout this thesis, we allude to many problems that arise from implementation
decisions. We tend to attack these problems based 6n engineering intuition and not theoretical
results. Such is the state of affairs in the database and information retrieval business. It is
often necessary to obtain an intuitive grasp from an actual implementation before one can make

meaningful generalizations.
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The January 1975 edition of the Suffolk County, New York white pages telephone

directory serves as the common database for the thesis’ implementations. For tries and exten-

dible hashing, only the 47,466 single line listings are used; for superimposed coding, the 2187

structures, (e.g., U.S. Government) are also included.

Table A.1 presents the statistics on word frequencies of the five most frequent

words in the name, street, and town fields [Bel.

Field: Number of Word Frequency
Distinct Words (per 1000 listings)
incorporated 221
company 83
Name: 23,026 corporation 73
service 50
A 37
avenue 225
road 224
Street: 5328 main 100
highway 73
E 56
Huntington 84
E 56
Town: 603 station 48
Farmingdale 48
Islip 45

Table A.1. Frequency counts of the five most frequent words in the name, street, and town

fields.

Table A.2 presents the number of distinct uni-, di-, and trigrams for each field.

-T2
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Field | Unigrams | Digrams | Trigrams

Name 36 467 2919
Street 38 339 1325
Town 24 125 249

Table A.2. Number of distinct uni, di-, and trigrams.
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We use the UNIX rime and rimes subroutine to compute the 1/0 time for retrieval.
Time returns three numbers: real (R), user (U), and system (S) time. Times returns a more

precise estimate of the user and system times in units of 1/60 second.’

Real time is the actual clock time that a user spends waiting for a response. User
time plus system time gives the total CPU time. Thus to approximate I/O time, the following

equation is used:

1/0 time =R — (U + 8)

where R is real time, S is system CPU time, and U is user CPU time.

Time was used to time total time elapsed for the process that runs 20 queries and
retrieves the proper records. It includes forking UNIX processes, initializations, opening and
closing UNIX files. For superimposed coding, it includes time for sending and receiving mes-
sages through the UNIX pipes. Times was used for tries and extendible hashing to yield more

precise times for the retrieval of records in response to the test set of 20 random queries.

Finally, the times in seconds to read the directory for extendible hashing into main
memory before any retrievals are executed. The times are 6.0 (real), 3.0 (user), and 0.4 (sys-
tem). These times are considered in calculating the [/0 time for 20 queries to yield the follow-

ing:

1/0 time = R — (U +S) — [Ry, — (Uy + Sl

where Ry, Uy, and Sy are the real, user, and system times to read in the hash directory.

.74 -
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We performed six trials. The results are shown in Tables B.1, B.2, and B.3 for tries,

extendible hashing, and superimposed coding respectively.
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Trial time(in sec.) | times(in 1760 sec.) | rimes(in sec.) || I/O time (in sec) | I/O time (in sec.)
for 20 queries for 20 queries for 20 queries for 20 queries per query
R 40.0
11U 99 595 9.9 27.8 1.4
S 2.3 109 1.8
R 40.0
20U 9.9 594 9.9 26.5 1.3
S 3.6 192 32
R 41.0
3U 10.9 656 10.9 275 14
S 2.6 129 2.2
R 40.0
4U 9.5 571 9.5 26.5 1.3
s 40 208 35
R 42.0
5U 94 567 9.4 29.3 1.5
S 3.3 170 2.8
R 41.0
6U 9.5 570 9.5 28.9 1.4
s 2.6 132 2.2

Table B.1 Timing results for tries.
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Trial | time(in sec.) | rimes(in 1/60 sec.) | times(in sec) |[ 170 time (in sec) | I/O time (in sec.)
for 20 queries for 20 queries for 20 queries for 20 queries per query
R 2710
1U 6.0 169 2.8 16.2 0.8
S 22 84 1.4
R 26.0
2U 6.1 172 29 15.4 0.8
S 1.9 75 1.3
R 27.0
3ju 6.4 192 32 16.2 038
S 1.8 64 1.1
R 270
4U 6.1 173 28 15.7 0.8
S 2.6 175 1.9
R 26.0
5U 6.1 169 2.8 14.8 0.7
S 2.5 98 1.6
R 28.0
6 U 6.2 179 3.0 16.6 0.8
s 2.6 112 1.9

Table B.2. Timing results for extendible hashing.
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Trial | rime(in sec.) || 170 time (in sec.) | 1/0 time (in sec.)
for 20 queries for 20 queries per query
R 186.0
11U 0.5 179.0 9.0
S 6.5
R 186.0
2U 1.0 179.5 9.0
S 55
R 184.0
3u 0.3 179.5 8.9
S 59
R 190.0
4 U 1.1 183.3 9.2
) 5.6
R 200.0
S5U 0.7 192.9 9.7
S 6.4
R 186.0 :
6U 0.6 179.8 9.0
S 56

Table B.3. Timing results for superimposed coding.
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