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ABSTRACT Computer science has produced, at an astonishing and breathtaking pace, amazing 
technology that has transformed our lives with profound economic and societal impact. In the course 
of the past ten years, we have come to realize that computer science offers not just useful software and 
hardware artifacts, but also an intellectual framework for thinking, what I call “computational thinking”. 
Everyone can benefit from thinking computationally. My grand vision is that computational thinking will 
be a fundamental skill—just like reading, writing, and arithmetic—used by everyone by the middle of the 
21st Century.
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SOMMARIO L’informatica ha prodotto, a un ritmo sorprendente e mozzafiato, una straordinaria 
tecnologia che ha profondamente trasformato le nostre vite con importanti conseguenze economiche e 
sociali. Negli ultimi dieci anni ci si è resi conto che l’informatica non solo offre utili artefatti software e 
hardware, ma anche un paradigma di ragionamento che chiamo “pensiero computazionale”. Ognuno di 
noi può trarre vantaggio dal pensare in modo computazionale. Mi aspetto che il pensiero computazionale 
costituirà un’abilità fondamentale - come leggere, scrivere e far di conto – che verrà utilizzata da tutti 
entro la prima metà del XXI secolo.

PAROLE CHIAVE Pensiero Computazionale, Educazione, Curriculum.

1. WHAT IS COMPUTATIONAL THINKING?
This article describes how pervasive computational thinking has become in research and education. Re-
searchers and professionals in an increasing number of fields beyond computer science have been reaping 
benefits from computational thinking. Educators in colleges and universities have changed undergradu-
ate curricula to promote computational thinking to all students, not just computer science majors. Before 
elaborating on this progress toward my vision, let’s begin with describing what is meant by computational 
thinking.
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1.1. Definition
I use the term “computational thinking” as shorthand for “thinking like a computer scientist” (Wing, 2006). 
To be more descriptive, however, I now define computational thinking (with input from Al Aho at Columbia 
University, Jan Cuny at the National Science Foundation, and Larry Snyder at the University of Washing-
ton) as follows:

Computational thinking is the thought processes involved in formulating a problem and ex-
pressing its solution(s) in such a way that a computer—human or machine—can effectively 
carry out.

Informally, computational thinking describes the mental activity in formulating a problem to admit a com-
putational solution. The solution can be carried out by a human or machine. This latter point is important. 
First, humans compute. Second, people can learn computational thinking without a machine. Third, “com-
puters” of today combine the intelligence of humans and the intelligence of machines. Also, computational 
thinking is not just about problem solving, but also about problem formulation.
In this definition I deliberately use technical terms. By “expressing” I mean creating a linguistic represen-
tation for the purpose of communicating a solution to others, people or machines. The expressiveness of 
a language, e.g., programming language, can often make the difference between an elegant or inelegant 
solution, e.g., between a program provably absent of certain classes of bugs or not. By “effective,” in the 
context of the Turing machine model of computation, I mean “computable” (or “decidable” or “recursive”); 
however, it is open research to revisit models of computation, and thus the meaning of “effective,” when 
we consider what is computable by say biological or quantum computers (Wing, 2008) or what is solvable 
by humans (Levin, 2013; Wing, 2008).

1.2. Abstraction is Key
Computer science is the automation of abstractions (Aho & Ullman, 1992)1. So, the most important and 
high-level thought process in computational thinking is the abstraction process. Abstraction is used in defining 
patterns, generalizing from specific instances, and parameterization. It is used to let one object stand for many. 
It is used to capture essential properties common to a set of objects while hiding irrelevant distinctions among 
them. For example, an algorithm is an abstraction of a process that takes inputs, executes a sequence of steps, 
and produces outputs to satisfy a desired goal. An abstract data type defines an abstract set of values and oper-
ations for manipulating those values, hiding the actual representation of the values from the user of the abstract 
data type. Designing efficient algorithms inherently involves designing abstract data types.
Abstraction gives us the power to scale and deal with complexity. Applying abstraction recursively allows 
us to build larger and larger systems, with the base case (at least for traditional computer science) being 
bits (0’s and 1’s). In computing, we routinely build systems in terms of layers of abstraction, allowing us 
to focus on one layer at a time and on the formal relations (e.g., “uses,” “refines” or “implements,” “sim-
ulates”) between adjacent layers. When we write a program in a high-level language, we are building on 
lower layers of abstractions. We do not worry about the details of the underlying hardware, the operating 
system, the file system, or the network; furthermore, we rely on the compiler to correctly implement the 
semantics of the language. The narrow-waist architecture of the Internet demonstrates the effectiveness 
and robustness of appropriately designed abstractions: the simple TCP/IP layer at the middle has enabled a 
multitude of unforeseen applications to proliferate at layers above, and a multitude of unforeseen platforms, 
communications media, and devices to proliferate at layers below.

1 In this book, the authors define Computer Science to be “The Mechanization of Abstraction”.
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2. COMPUTATIONAL THINKING AND OTHER DISCIPLINES
Computational thinking has already influenced the research agenda of all science and engineering disci-
plines. Starting decades ago with the use of computational modeling and simulation, through today’s use 
of data mining and machine learning to analyze massive amounts of data, computation is recognized as the 
third pillar of science, along with theory and experimentation (President’s Information Technology Advi-
sory Council, 2005).
Consider just biology. The expedited sequencing of the human genome through the “shotgun algorithm” 
awakened the interest of the biology community in computational concepts (e.g., algorithms and data struc-
tures) and computational approaches (e.g., massive parallelism for high throughput), not just computational 
artifacts (e.g., computers and networks). In 2005, the Computer Science and Telecommunications Board of 
the National Research Council (NRC) published a 468-page report laying out a research agenda to explore 
the interface between biology and computing (National Research Council, 2005). In 2009, the NRC Life 
Sciences Board’s study on Biology in the 21st Century recommends that “within the national New Biology 
Initiative, priority be given to the development of the information technologies and sciences that will be 
critical to the success of the New Biology” (National Research Council, 2009). Now at many colleges stu-
dents can choose to major in computational biology.
The volume and rate at which scientists and engineers are now collecting and producing data—through 
instruments, experiments, simulations, and crowd-sourcing—are demanding advances in data analytics, 
data storage and retrieval, as well as data visualization. The complexity of the multi-dimensional systems 
that scientists and engineers want to model and analyze requires new computational abstractions. These are 
just two reasons that every scientific directorate and office at the National Science Foundation participated 
in the Cyber-enabled Discovery and Innovation2, or CDI, program, an initiative started when I first joined 
NSF in 2007. CDI was in a nutshell “computational thinking for science and engineering.”
Computational thinking has also begun to influence disciplines and professions beyond science and en-
gineering. For example, areas of active study include algorithmic medicine, computational economics, 
computational finance, computational law, computational social science, digital archaeology, digital arts, 
digital humanities, and digital journalism. Data analytics is used in training Army recruits, detecting email 
spam and credit card fraud, recommending movies and books, ranking the quality of services, and per-
sonalizing coupons at supermarket checkouts.  Machine learning is used by every major IT company for 
understanding human behavior and thus to tailor a customer’s experience to his or her own preferences. 
Every industry and profession talks about Big Data and Cloud Computing. The combination of machine 
learning, especially deep learning, and large-scale compute infrastructure, built from CPUs, GPUS and 
FPGAs, underlies the current resurgence of artificial intelligence, with no end in sight. Cognitive tasks, 
such as image classification and speech recognition, performed computationally now reach human-level 
performance. Every industry —automotive, finance, healthcare, journalism, law, manufacturing— is being 
disrupted by technological advances in computer science. People working in those industries are going to 
have to think computationally.

3. COMPUTATIONAL THINKING AND EDUCATION
In the early-2000s, computer science had a moment of panic. Undergraduate enrollments were dropping.  
Computer science departments stopped hiring new faculty. One reason I wrote my 2006 CACM article on 
computational thinking was to inject some positive thinking into our community. Rather than bemoan the 

2 http://www.nsf.gov/crssprgm/cdi/
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declining interest in computer science, I wanted us to shout to the world about the joy of computing, and 
more importantly, about the importance of computing. Sure enough, today enrollments are skyrocketing 
(again). Demand for graduates with computing skills far exceeds the supply; six-figure starting salaries 
offered to graduates with a B.S. in Computer Science are not uncommon.

3.1. Undergraduate Education
Campuses throughout the United States and abroad are revisiting their undergraduate curriculum in com-
puter science. They are changing their first course in computer science to cover fundamental principles 
and concepts, not just programming.  For example, Carnegie Mellon revised its undergraduate first-year 
courses to promote computational thinking for non-majors (Bryant, Sutner, & Stehlik, 2010). Harvey Mudd 
redesigned its introductory course with stellar success, including increasing the participation of women in 
computing (Klawe, 2013). At Harvard, «In just a few short years CS50 has rocketed from being a middling 
course to one of the biggest on campus, with nearly 700 students and an astounding 102-member staff» 
(Farrell, 2013). Harvard’s CS50 is now Yale’s most popular class (Annear, 2015). For MIT’s introductory 
course to computer science, Eric Grimson and John Guttag say in their opening remarks «I want to begin 
talking about the concepts and tools of computational thinking, which is what we’re primarily going to 
focus on here. We’re going to try and help you learn how to think like a computer scientist» (Grimson & 
Guttag, 2008).
Many such introductory courses are now offered to or required by non-majors to take. Depending on the 
school, the requirement might be a general requirement (CMU) or a distribution requirement, e.g., to sat-
isfy a science and technology (MIT), empirical and mathematical reasoning (Harvard), or a quantitative 
reasoning (Princeton) requirement.

3.2. What about K-12?
Not till computational thinking is taught routinely at K-12 levels of education will my vision be fully re-
alized. Surprisingly, as a community, we have made faster progress at spreading computational thinking 
to K-12 than I had expected. We have professional organizations, industry, non-profits, and government 
policymakers to thank.
The College Board, with support from NSF, designed a new Advanced Placement (AP) course that covers 
the fundamental concepts of computing and computational thinking. This new course, called Computer 
Science Principles3, launched in Fall 2016. Not coincidentally, the changes to the Computer Science AP 
course are consistent with the changes in introductory computer science courses taking place now on col-
lege campuses.
Industry is also promoting the importance of computing for all. Since 2006, with help from Google and 
later Microsoft, Carnegie Mellon has held summer workshops for high school teachers called “CS4HS.” 
These workshops are designed to deliver the message that there is more to computer science than computer 
programming. CS4HS spread in 2007 to UCLA and the University of Washington. Since 2009, under the 
auspices of Google, CS4HS4 had spread to over 40,000 teachers in over 40 countries reaching over one 
million students.
Launched in 2013, code.org5 is a non-profit organization promoting making computer science accessible to 
all students. It is supported by donations from companies, foundations, and individuals. Many companies 

3 https://advancesinap.collegeboard.org/stem/computer-science-principles
4 https://www.cs4hs.com/
5 https://code.org/
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support code.org out of their own need for more professionals trained with computer science skills. Code.
org hosts a rich suite of educational materials and tools that run on many platforms, including smart phones 
and tablets. It lists local high schools and camps throughout the US where students can learn computing.
Computer science has also gotten attention from government leaders. President Barack Obama, in his 
2016 State of the Union address, advocated for the nation to provide «pre-K for all, offering every student 
the hands-on computer science and math classes that make them job-ready on day one». Included in the 
Computer Science for All Initiative6 he announced on January 30, 2016, is $120 million from the National 
Science Foundation. This money will be used to train as many as 9,000 more high school teachers to teach 
computer science and integrate computational thinking into their curriculum.
Computational thinking has also spread internationally. In January 2012, the British Royal Society pub-
lished a report that says that «Computational thinking’ offers insightful ways to view how information 
operates in many natural and engineered systems» and recommends that «Every child should have the 
opportunity to learn Computing at school» (“School” in the UK is the same as K-12 in the US.) Since that 
report, the UK Department for Education changed its national curriculum to include the mandatory study 
for computing starting Fall 2014 by all K-12 students in the UK (UK Department for Education, 2013). 
Much of the legwork behind this achievement was accomplished by the grassroots effort called “Comput-
ing at School”7. 
More recently, the Danish Growth Council published a 120-page report (The Danish Growth Council, 
2016) with recommendations to the Danish government that include making computational thinking a 
mandatory component in education at all levels, from primary school through adult education. The report 
recognizes that «the proper digital and analytical level of knowledge [be] secured among teachers through-
out the educational system” and that “computational thinking must be part of the educational food chain».
Other countries are also making rapid strides in the same direction. The Australian National Curriculum 
includes a Digital Technologies subject for K-10 students in which they «use computational thinking and 
information systems to define, design and implement digital solutions». China’s Ministry of Education is 
discussing plans for making computational thinking be a required core competency for high school gradu-
ation. I am aware of similar efforts in Japan and Korea.

4. PROGRESS SO FAR AND WORK STILL TO DO
Ten years after the publication of my CACM Viewpoint, how far have we come? We have come a long 
way, along all dimensions: computational thinking has influenced the thinking in many other disciplines 
and many professional sectors; computational thinking, through revamped introductory computer science 
courses, has changed undergraduate curricula. We are making inroads in K-12 education worldwide.
While we have made incredible progress, our journey has just begun. We will see more and more disci-
plines make scholarly advances through the use of computing. We will see more and more professions 
transformed by their reliance on computing for conducting business. We will see more and more colleges 
and universities requiring an introductory computer science course to graduate. We will see more and more 
countries adding computer science to K-12 curricula.
Practical challenges and research opportunities remain. The main practical challenge is that we do not have 
enough K-12 teachers trained to teach computer science to K-12 students. I am optimistic that, over time, 

6 https://www.whitehouse.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-sci-
ence-all-initiative-0
7 http://www.computingatschool.org.uk/
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we will solve this problem.
There also are interesting research questions that I would encourage computer scientists to pursue, working 
with the cognitive and learning sciences communities. First, what computer science concepts should be 
taught when, and how?
Consider an analogy to mathematics. We teach numbers to 5-year-olds, algebra to 12-year-olds and calculus 
to 18-year-olds. We have somehow figured out the progression of concepts to teach in mathematics, where 
learning one new concept builds on understanding the previous concept, and where the progression reflects 
the progression of mathematical sophistication of a child as he or she matures. 
What is that progression in computer science? For example, when is it best to teach recursion? Children 
learn to solve the Towers of Hanoi puzzle (for small n) and in history class we teach “divide and conquer” 
as a strategy for winning battles. But is the general concept better taught in high school? We teach long 
division to 9-year-olds in 4th grade, but we never utter the word “algorithm.” And yet the way it is taught, 
long division is just an algorithm. Is teaching the general concept of an algorithm too soon for a 4th grader? 
More deeply, are there concepts in computing that are innate and do not need to be formally learned?
Second, we need to understand how best to use computing technology in the classroom. Throwing com-
puters in the classroom is not the most effective way to teach computer science concepts. How can we use 
technology to enhance the learning and reinforce the understanding of computer science concepts? How 
can we use technology to measure progress, learning outcomes and retention over time? How can we use 
technology to personalize the learning for individual learners, as each of us learn at a different pace and 
have different cognitive abilities?
We have made tremendous progress in injecting computational thinking into research and education of all 
fields in the last ten years. We still have a way to go, but fortunately, academia, industry and government 
forces are aligned toward realizing the vision of making computational thinking commonplace.

5. PERSONAL NOTES AND ACKNOWLEDGEMENTS
This piece is based in large part on a January 10, 2014 blog post “Computational Thinking Benefits Soci-
ety”8, written to celebrate the 40th anniversary of the book Social Issues in Computing by C.C. Gotlieb and 
A. Borodin, published in 1973. In turn, that post takes content from an article I wrote for Carnegie Mellon 
School of Computer Science’s publication The Link (Wing, 2011), which was based on earlier unpublished 
writings authored with Jan Cuny and Larry Snyder. I thank them for letting me them use our shared prose 
for the blog post and for their own efforts in advocating computational thinking.
Looking back over how much progress has been made in spreading computational thinking, I am grateful 
for the opportunity I had while I was the Assistant Director of the Computer and Information Science and 
Engineering (CISE) Directorate of the National Science Foundation. I had a hand in CDI from its start. I 
also helped start the Computing Education for the 21st Century program in 2010, designed to help K-12 
students, as well as first- and second-year college students, and their teachers develop computational think-
ing competencies. These two programs allowed me—through the reach of NSF—to spread computational 
thinking directly to the science and engineering research (CDI) and education (CE21) communities in the 
US. Jan Cuny’s initiative and persistence led to NSF’s efforts with the College Board and beyond.
I thank Michael E. Caspersen9, Professor in Computing Education and director of Center for Computational 
Thinking at Department of Computer Science, Aarhus University, Denmark, for pointing me to the Danish 

8 http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
9 http://www.cs.au.dk/~mec/

Jeannette M. Wing



13

Italian Journal of Educational Technology / Volume 25 / Issue 2 / 2017

Growth Council report and providing the translations of the relevant passages.
Since the publication of my CACM article (Wing, 2006), which has been translated into Chinese, French, 
German, Italian, Japanese, Korean, and Portuguese, I have received hundreds of email messages from 
people of all walks of life—from a retired grandfather in Florida to a mother in central Pennsylvania to a 
female junior high school student in Seattle, from a Brazilian news reporter to the head of a think tank in 
Sri Lanka to an Egyptian student blogger, from artists to software developers to astrophysicists—thanking 
me for inspiring them and eager to support my cause. I am grateful to everyone’s support.
Besides the citations I gave in text, I recommend the following references: CSUnplugged (Bell, Witten, & 
Fellows, 2015) for teaching young children about computer science without using a machine; the textbook 
used in MIT’s 6.00 Introductory to Computer Science and Programming (Guttag, 2016); a book on the 
breadth of computer science, inspired by Feynman lectures for physics (Hey & Papay, 2014); a framing for 
principles of computing (Denning, 2010); and two National Research Council workshop reports (National 
Research Council, 2010; 2011), as early attempts to scope out the meaning and benefits of computational 
thinking.
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