
Book Title
Book Editors
IOS Press, 2003

1

Scenario Graphs Applied to Security
(Summary Paper)

Jeannette M. Wing

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 US

Abstract. Traditional model checking produces one counterexample to illustrate a
violation of a property by a model of the system. Some applications benefit from
having all counterexamples, not just one. We call this set of counterexamples a
scenario graph. In this paper we present two different algorithms for producing
scenario graphs and explain how scenario graphs are a natural representation for
attack graphs used in the security community.

Keywords. Scenario graphs, attack graphs, counterexamples, model checking,
security.

1. Overview

Model checking is a technique for determining whether a formal model of a system
satisfies a given property. If the property is false in the model, model checkers typically
produce a single counterexample. The developer uses this counterexample to revise the
model (or the property), which often means fixing a bug in the design of the system.
The developer then iterates through the process, rechecking the revised model against
the (possibly revised) property.

Sometimes, however, we would like all counterexamples, not just one. Rather than
produce one example of how the model does not satisfy a given property, why not pro-
duce all of them at once? We call the set of all counterexamples a scenario graph. For
a traditional use of model checking, e.g., to find bugs, each path in the graph represents
a counterexample, i.e., a failure scenario. In our application to security, each path rep-
resents an attack, a way in which an intruder can attack a system. Attack graphs are a
special case of scenario graphs.

This paper gives two algorithms for producing scenario graphs and summarizes our
findings in the application of scenario graphs to security. The first algorithm was pub-
lished in [6]; the second in [5].

2. Relation of This Paper to Previously Published Work

All the ideas in this paper can be found in greater detail in Oleg Sheyner’s doctoral
dissertation [11]. Portions of his dissertation have appeared in conference and jour-



2 J.M. Wing / Scenario Graphs

nal papers [6,9,7,5,10]. Thus, this paper does not present any new work. Except for
Sheyner’s thesis, however, no published paper has both algorithms presented in one place
or presents them in the broader context of scenario graphs. Previously published papers
have focused exclusively on attack graphs.

3. Algorithms for Generating Scenario Graphs

We present two algorithms for generating scenario graphs. The first is based on symbolic
model checking and produces counterexamples for only safety properties, as expressed in
terms of a computational tree logic. The second is based on explicit-state model checking
and produces counterexamples for both safety and liveness properties, as expressed in
terms of a linear temporal logic.

Both algorithms produce scenario graphs that guarantee the following informally
stated properties:

• Soundness: Each path in the graph is a violation of the given property.
• Exhaustive: The graph contains all executions of the model that violate the given

property.
• Succinctness of states: Each node in the graph represents a state that participates

in some counterexample.
• Succinctness of transitions: Each edge in the graph represents a state transition

that participates in some counterexample.

These properties of our scenario graphs are not obvious, in particular for the second
algorithm. See [11] for formal definitions and proofs.

3.1. Symbolic Algorithm

Our first algorithm for producing scenario graphs is inspired by the symbolic model
checking algorithm as implemented in model checkers such as NuSMV [8]. Our presen-
tation and discussion of the algorithm in this section is taken almost verbatim from [9].

In the model checker NuSMV, the model M is a finite labeled transition system and p
is a property written in Computation Tree Logic (CTL). In this section, we consider only
safety properties, which in CTL have the form AGf (i.e., p = AGf , where f is a formula
in propositional logic). If the model M satisfies the property p, NuSMV reports “true.”
If M does not satisfy p, NuSMV produces a counterexample. A single counterexample
shows a scenario that leads to a violation of the safety property.

Scenario graphs depict ways in which the execution of the model of a system can
lead into an unsafe state. We can express the property that an unsafe state cannot be
reached as:

AG(¬unsafe)

When this property is false, there are unsafe states that are reachable from the initial
state. The precise meaning of unsafe depends on the system being modeled. For security,
unsafe might mean that an intruder has gained root access to a host on a network.

We briefly describe the algorithm (Figure 1) for constructing scenario graphs for
the property AG(¬unsafe). The first step is to determine the set of states Sreach that



J.M. Wing / Scenario Graphs 3

Input:
S – set of states
R ⊆ S × S – transition relation
S0 ⊆ S – set of initial states
L : S → 2AP – labeling of states with propositional formulas
p = AG(¬unsafe) – a safety property

Output:
Scenario graph Gp = 〈Sunsafe , Rp, Sp

0 , Sp
s 〉

Algorithm: GenerateScenarioGraph(S, R, S0, L, p)
1. Sreach = reachable(S, R, S0, L)

(* Use model checking to find the set of states Sunsafe that
violate the safety property AG(¬unsafe). *)
2. Sunsafe = modelCheck (Sr, R, S0, L, p).

(* Restrict the transition relation R to states in the set Sunsafe *)
3. Rp = R ∩ (Sunsafe × Sunsafe).

Sp
0 = S0 ∩ Sunsafe .

Sp
s = {s|s ∈ Sunsafe ∧ unsafe ∈ L(s)}.

4. Return Gp = 〈Sunsafe , Rp, Sp
0 , Sp

s 〉.

Figure 1. Symbolic Algorithm for Generating Scenario Graphs

are reachable from the initial state. (This is a standard step in symbolic model checkers,
where Sreach is represented symbolically, not explicitly.) Next, the algorithm computes
the set of reachable states Sunsafe that have a path to an unsafe state. The set of states
Sunsafe is computed using an iterative algorithm derived from a fix-point characterization
of the AG operator [2]. Let R be the transition relation of the model, i.e., (s, s ′) ∈ R if
and only if there is a transition from state s to s ′. By restricting the domain and range of
R to Sunsafe we obtain a transition relation Rp that encapsulates the edges of the scenario
graph. Therefore, the scenario graph is 〈Sunsafe , Rp, Sp

0 , Sp
s 〉, where Sunsafe and Rp

represent the set of nodes and set of edges of the graph, respectively, S p
0 = S0 ∩ Sunsafe

is the set of initial states, and Sp
s = {s|s ∈ Sunsafe ∧ unsafe ∈ L(s)} is the set of

success states.
In symbolic model checkers, such as NuSMV, the transition relation and sets of states

are represented using ordered binary decision diagrams (BDDs) [1], a compact represen-
tation for boolean functions. There are efficient BDD algorithms for all operations used
in our algorithm.

3.2. Explicit-State Algorithm

Our second algorithm for producing scenario graphs uses an explicit-state model check-
ing algorithm based on ω-automata theory. Model checkers such as SPIN [4] use explicit-
state model checking. Our presentation and discussion of the algorithm in this section is
taken almost verbatim from [5].

Figure 2 contains a high-level outline of our second algorithm for generating sce-
nario graphs. We model our system as a Bücchi automaton M . Bücchi automata are finite
state machines that accept infinite executions. A Bücchi automaton specifies a subset of



4 J.M. Wing / Scenario Graphs

Input:
M – the model Bücchi automaton
p – an LTL property

Output:
Scenario graph Mp = M ∩ ¬p

Algorithm: GenerateScenarioGraph(M, p)
1. Convert LTL formula ¬p to equivalent Bücchi automaton N p.
2. Construct the intersection automaton I = M ∩ ¬Np.

I accepts the language L(M) \ L(p), which is precisely
the set of of executions of M forbidden by p.

3. Compute SCC, the set of strongly-connected components of I that
include at least one acceptance state.

4. Return Mp, which consists of SCC plus all the paths to
any component in SCC from any initial state of I .

Figure 2. Explicit-State Algorithm for Generating Scenario Graphs

acceptance states. The automaton accepts any infinite execution that visits an acceptance
state infinitely often. The property p is specified in Linear Temporal Logic (LTL). The
property p induces a language L(p) of executions that are permitted under the property.
The executions of the model M that are not permitted by p thus constitute the language
L(M) \ L(p). The scenario graph is the automaton, Mp = M ∩ ¬p, accepting this lan-
guage. The construction procedure for Mp uses Gerth et.al.’s algorithm [3] for convert-
ing LTL formulae to Bücchi (Step 1). The Bücchi acceptance condition implies that any
scenario accepted by Mp must eventually reach a strongly connected component of the
graph that contains at least one acceptance state. Such components are found in Step 3
using Tarjan’s classic strongly connected component algorithm [12]. This step isolates
the relevant parts of the graph and prunes states that do not participate in any scenarios.

4. Attack Graphs are Scenario Graphs

In the security community, Red Teams construct attack graphs to show how a system is
vulnerable to attack. Each path in an attack graph shows a way in which an intruder can
compromise the security of a system. These graphs are drawn by hand, usually on huge
floor-to-ceiling, wall-to-wall white boards. Since they are drawn by hand, they are prone
to error: they might be incomplete (missing attacks), they might have redundant paths or
redundant subgraphs, or they might have irrelevant nodes, transitions, or paths.

The correspondence between scenario graphs and attack graphs is simple. For a
given desired security property, we generate the scenario graph for a model of the system
to be protected. An example security property is that an intruder should never gain root
access to a specific host. Since each scenario graph is property-specific, in practice, we
might need to generate many scenario graphs to represent the entire attack graph that a
Red Team might construct manually. Our main advantage is that we automate the pro-
cess of producing attack graphs: (1) Our technique scales beyond what humans can do by
hand; and (2) since our algorithms guarantee to produce scenario graphs that are sound,



J.M. Wing / Scenario Graphs 5

exhaustive, and succinct, our graphs are not subject to the errors that humans are prone
to make.

5. Practical Experience

We built a suite of tools that allows us to model networked systems [10]. We write XML
input specifications that model the following kinds of information of a system: connec-
tivity between hosts on the network, services running on each host, firewall rules, host-
based and network-based intrusion detection systems, and most importantly, the actions
an intruder might take in attempting to attack a system. We use our modifications of
NuSMV and SPIN, reflecting our two algorithms, to produce attack graphs.

In practice we found that the explicit-state algorithm has good performance: the
speed to generate the attack graph is linear in the number of reachable state transi-
tions [11]. We also found that for our limited number of examples, our explicit-state algo-
rithm is better than our symbolic algorithm in terms of time to generate graphs. In all of
our examples, our models are large due to their large number of state variables, but at the
same time they have a very small reachable state space. Thus we have a double whammy
against the symbolic algorithm: Small reachable state spaces are better for explicit-state
model checking, and larger numbers of state variables are worse for symbolic model
checking.

These performance results, however, are not definitive. For one, we did not try to fine
tune the implementation of our symbolic model checking algorithm. But most impor-
tantly, our application to security biases our experimental results in favor of our explicit-
state algorithm. For other applications, the symbolic algorithm might be the better choice.

6. Future Work

We are now producing scenario graphs so large that humans have a hard time interpreting
them. We plan to address the problem of size in several ways:

• Apply optimization techniques from the model checking literature to reduce the
size of scenario graphs. For example, we can use symmetry and partial-order re-
duction techniques.

• Find ways to compress either or both the internal representation of the scenario
graph and the external one displayed to the user.

• Design and implement new graph-based analyses on scenario graphs. For exam-
ple, for attack graphs, we can determine which actions need to be prevented to
guarantee an intruder cannot succeed (for a given property). We reduce our prob-
lem to the Minimum Hitting Set Problem (MHS), reduce MHS to the Minimum
Set Covering Problem (MSC), and then adapt a greedy approximation algorithm
for the MSC to perform this analysis [7]. We would like to explore more such
analyses for scenario graphs in general.

• Rather than actually construct the scenario graph and display it to the end user,
we could simply produce the answer to a domain-specific query on the internal
representation of the scenario graph.



6 J.M. Wing / Scenario Graphs

Finally, we are also interested in pursuing further uses of attack graphs, e.g., in using
them in conjunction with on-line intrusion detection systems and in using them to help
with alert correlation.

Acknowledgments

Oleg Sheyner deserves all the credit for the technical contributions summarized in this
paper. The initial idea of using model checking to produce attack graphs is due to my
collaboration with Somesh Jha.

This research is sponsored in part by the Army Research Office under contract
no. DAAD190110485 and DAAD19-02-1-0389, the National Science Foundation un-
der grant no. CCR-0121547 and CNS-0433540, and the Software Engineering Institute
through a US government funding appropriation.

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the sponsoring institutions, the US Government or any other
entity.

References

[1] Randal E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE Trans-
actions on Computers, C-35(8):677–691, August 1986.

[2] Edmund M. Clarke, Orna Grumberg, and Doron Peled, Model Checking, MIT Press, 2000.
[3] Rob Gerth, Doron Peled, MOshe Y. Vardi, and Pierre Wolper, “Simple on-the-fly automatic

verification of linear temporal logic,” Proceedings of the 6th Symposium on Logic in Com-
puter Science, Amsterdam, July 1991, pp. 406–415.

[4] Gerald J. Holzmann, The Spin Model Checker: Primer and Reference Manual, Addison-
Wesley, 2004. http://www.spinroot.com/spin/whatispin.html.

[5] Todd Hughes and Oleg Sheyner, “Attack Scenario Graphs for Computer Network Threat
Analysis and Predication,” Complexity, 9(2):15–18, November/December 2003.

[6] Somesh Jha and Jeannette M. Wing, “Survivability Analysis of Networked Systems,” Pro-
ceedings of the International Conference on Software Engineering, Toronto, May 2001.

[7] Somesh Jha, Oleg Sheyner, and Jeannette M. Wing, “Minimization and Reliability Analy-
sis of Attack Graphs,” Proceedings of the Computer Security Foundations Workshop, Nova
Scotia, June 2002, pp. 49–63.

[8] NuSMV: a new symbolic model checker, http://afrodite.itc.it:1024/ nusmv/.
[9] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippman, and Jeannette M.Wing, “Auto-

mated Generation and Analysis of Attack Graphs,” Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2002.

[10] Oleg Sheyner and Jeannette M. Wing, “Tools for Generating and Analyziing Attack Graphs,”
Proceedings of Formal Methods for Components and Objects, Lencture Notes in Computer
Science 3188, 2004, pp. 344–371.

[11] Oleg Sheyner, “Scenario Graphs and Attack Graphs,” CMU Computer Science Department
technical report CMU-CS-04-122, Ph.D. dissertation, April 2004.

[12] R.E. Tarjan, “Depth first search and linear graph algorithms,” SIAM Journal of Computing,
1(2):146–160, June 1972.


