Int J Softw Tools Technol Transfer (2003) 4: 261-265 / Digital Object Identifier (DOI) 10.1007/s10009-002-0105-2

The opinion corner

Platitudes and attitudes

Jeannette M. Wing

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; E-mail: wing@cs.cmu.edu

http://wuw.cs.cmu.edu/~wing/

Published online: 10 April 2003 — © Springer-Verlag 2003

Abstract. In October 2002 I attended the Ninth Mon-
terey Software Engineering workshop held in Venice, Italy.
This year’s theme was titled “Radical Innovations of Soft-
ware and Systems Engineering in the Future.” In prepar-
ing my talk for the workshop, I thought hard about what
I could possibly say on this topic that would not sound
stupid. I certainly thought it would be awfully presump-
tious of me to predict how people will or should be devel-
oping software in the future. More easily, I could imagine
what the systems of tomorrow will look like and who will
be developing them, though anything I would say would
sound like platitudes. I could also state some strong opin-
ions about what matters and what doesn’t in the process
of software development. Stating such attitudes would at
least provoke some discussion. Hence, what follows cap-
tures some of what I said at the workshop?.

Keywords: Future — Computing systems — Complexity —
Diversity — Science

1 Platitudes: what and who of tomorrow

Imagine the computing systems of tomorrow. What will
they look like? Who will build them?

1.1 What

Systems of the future will be more complex than they are
today. Users will expect greater capability without com-
promise to performance; at the same time users will de-

1 Sections 1 and 2 are derived almost verbatim from my abstract
published in the workshop proceedings: “Radical Innovations of
Software and Systems Engineering in the Future: Workshop Pro-
ceedings,” Martin Wirsing and Simonetta Balsamo and Alexander
Knapp, editors, CS-2002-10, Universita Ca Foscari di Venezia, Di-
partmento di Informatica, September 2002.

mand increased reliability, security, customizability, etc.
Systems will be even more heterogeneous, where diversity
will be measured along many dimensions. Some systems
will be stand-alone; others, highly interconnected. Some
will be autonomous; others tightly controlled. Systems
will be self-probing, self-monitoring, self-adapting, and
self-healing.

One major source of a system’s complexity arises
from the constraints imposed by the system’s environ-
ment. These external constraints may arise naturally or
by fiat.

External constraints due to nature are unpredictable,
or at best stochastic, if modeled mathematically. Con-
sider an autonomous vehicle sent to Mars where the sys-
tem’s environment is completely unknown. Or, consider a
computer that is under attack by an intruder deliberately
operating the system outside its design assumptions. Nat-
ural environmental constraints include temperature, alti-
tude, wind, air pressure, and distance below the planet’s
surface. Natural disasters include fires, earthquakes, and
hurricanes. These events are difficult to monitor; their ef-
fects are difficult to control. Perhaps at best we can only
hope to contain their damage once they occur. Humans
also are part of a system’s environment, and their behav-
ior is also a source of inherent unpredictability. Noise in
the environment further complicates knowing what the
correct system response should be: has the sensor failed,
or in the next cycle will it start sending valid signals
again? Is this aberrant behavior part of an attack pattern
or not?

External constraints by fiat include methods adopted
by community practice (e.g., corporate culture), stan-
dards imposed by professional organizations (e.g., IEEE,
IETF), and policies imposed by law (e.g., US export
restrictions).

Here are ten other dimensions to consider when think-
ing about the increase in complexity of a system.



262 J.M. Wing: Platitudes and attitudes

— Functionality. Systems will be built with more capa-
bility, more features, and more options.

— Size and configuration. Some systems will be small and
nimble. Some will be large and monolithic. Many —
small and large — will be connected together, loosely or
closely. They will have to interoperate, synchronously
or asynchronously.

— Lifetime. Some systems will be throw-away. Others
will operate 24 x 7. More and larger datasets will be
expected to persist, perhaps in outdated formats.

— Openness. Some systems will be self-contained or em-
bedded. Some will be open and exposed.

— Physical look. Some systems will be built out of nano-
technology, maybe even biochips. Computer archi-
tects will use new types of materials to build new
computing fabric. Computing devices will come in dif-
ferent shapes, sizes, and textures. They will be both
pervasive and invisible.

— Properties other than performance and correctness.
Demands for performance (space, time, weight, power)
will continue, as will expectations that systems “do
the right thing” (or in reality, that systems are “good
enough”). Increased demands, however, for fault-
tolerance, safety, security, dependability, verifiability,
maintainability, etc. will force system designers to re-
think the traditional tradeoffs between performance,
correctness, and all these other -ilities.

— Specificity. Systems will be more custom-tailored. Sys-
tems will be personalized, not just to individuals,
but to an individual’s different persona. Educators
are now envisioning that students graduate with their
own massive, permanent, searchable and updatable,
multi-media recording of all their individual campus
experiences, inside and outside the classroom.
Systems will be domain-specific; what works for auto-
mobiles will be different for hospitals, and different yet
again for supermarkets, and so on.

— Connectivity. We can expect all modes of connectivity:
disconnected operation, intermittent connectivity, full
connectivity; ad hoc and mobile networks; point-to-
point, broadcast, multicast; dynamic and static rout-
ing; multi-media physical and virtual links; and wide
ranges in latency, bandwidth, frequency.

— Heterogeneity and interoperability. We can expect di-
versity in devices, networks, standards, operating sys-
tems, platforms, languages, software applications.

— Expectations of the end user. The population of com-
puting users will continue to grow with each gener-
ation expecting more than the previous. The infu-
sion of computing technology, transparent or intru-
sive, into modern society will continue.

1.2 Who

Systems of the future will be developed by teams of peo-
ple. These teams will be cross-cultural, cross-disciplinary,
cross time lines, and involve different skill sets.

Not all team members will or need be savvy with com-
puters. There will be artists, astrophysicists, linguists,
psychologists, policy makers, social scientists, statisti-
cians, etc. We will not try to turn computer scientists into
biologists or biologists into computer scientists; rather,
we will draw from their different expertises in creating a
computational biology team.

2 Platitudes: toward a scientific or engineering
discipline

While we could build the systems of tomorrow using to-
day’s methods, can we do better? The short answer is
that there is no silver bullet. However, let that not be an
excuse for taking an unprincipled approach to software
engineering.

2.1 Mathematical models and theories

What we need first and foremost, as for any scientific dis-
cipline, are mathematical models and theories. We have
many already. For the foreseeable future, we will con-
tinue to have many and more. No one model, one the-
ory, or one method will enable us to build the diverse
range of systems of tomorrow. We will need to rely on
many different models, theories, and methods. The first
challenge is to explore different models to address new
domain-specific problems or new technology-driven ques-
tions. We should not be afraid to invent new mathe-
matical theories, if no existing one suffices to explain
the artifacts we want to build. For example, hybrid sys-
tems allow us to talk about continuous dynamics and
discrete mode changes, all within the single context of
state transition systems. A second challenge is to fig-
ure out how to integrate the different models in a se-
mantically meaningful way. We should expect to rely on
the mathematical principles of abstraction, composition,
and hierarchy to define the results of these integrated
models.

2.2 Experimental and empirical methods

We must not only develop theories, but we must also con-
duct experiments, following sound and scientific methods.
These methods must allow us to set up controlled ex-
periments, build prototypes, take measurements, and
validate theoretical models. Other scientists must be able
to replicate our experimental results.

Experimentation and measurement allow us to im-
prove the quality of our products. Quality is hard to
quantify. We can count the number of lines of code, the
number of bugs found, or the number of test cases passed.
Are these the appropriate metrics? How do they relate to
quality of the end product? We should think of other mea-
sures and of ways to instrument our code and designs such
that we can determine improvement in software qual-



J.M. Wing: Platitudes and attitudes 263

ity. In principle, we can formally verify that code meets
a given specification, but we are still far from making
this a practical method for determining quality; more-
over, we will always be limited by what the specification
captures.

The laboratories in which we conduct our experi-
ments will undoubtedly rely on automated tools, which
we ourselves will have to build initially. These tools
should allow us to experiment on or to simulate real
systems: large-scale testbeds, legacy code, and working
prototypes. These tools should facilitate analysis of our
systems, giving us predictive power that complements
our theories. These tools should allow us to measure
the quality of the artifacts we produce (more on tools
below).

3 Attitudes: tools, processes, people, analogies

While mathematical and experimental methods are ne-
cessary, we know they are not enough in addressing the
longstanding challenge: how can we better develop better
software?

While I dare not predict how, I will state some ob-
servations and opinions about what matters and what
doesn’t. Some things that matter go beyond math, sci-
ence, and engineering; they are non-technical issues, for
example, having to do with processes and people.

8.1 Tools are essential

For readers of this journal, it is a given that tools are es-
sential. But what kinds of tools?

In practice, 80% is good enough. A tool that helps a
software developer find bugs quickly is more likely to be
used than any full-fledged verification tool. A tool that
finds one “serious” bug is better than one that finds many
less “serious” ones. The tool can be incomplete — missing
cases are ok. The tool can be approximate — false positives
are ok.

There is a lot of “low hanging fruit” waiting to be
picked using today’s tools such as static analyzers, model
checkers, and theorem provers. We should use them all!
Finding 60 bugs in 100 device drivers? is better than do-
ing nothing; besides, since these drivers run on millions of
workstations and laptops around the world, the effect of
fixing any of the serious bugs found can have a dramatic
impact on a huge customer base.

Use of these tools must be a seamless part of the soft-
ware development process. Software developers are un-
likely to use a brand new tool unless they see value added
in doing so; however, if a tool they already use, e.g., a
compiler or linker, is enhanced slightly by doing some ad-
ditional checks, then they would get these checks almost
“for free.”

2 Ball T, Lichtenberg J, Rajamani S (2002) (private communi-
cation)

3.2 Process is important

While tools are essential, they are not enough. They are
aids to help automate parts of the software development
process. While the idea that process is important is not
new, the idea of evaluating the quality of the process is.

As argued earlier, measuring quality of product is dif-
ficult. Measuring quality of process is even harder. Today,
many software development processes rely on checking off
boxes on lists, filling out forms, abiding by certification
procedures, or following best practices. Many companies
follow the only process they know that produces results:
code, code, code. How do we determine that one process
is better than another? Surely not by comparing the num-
bers of boxes checked off or the numbers of forms filled
out!

Worse, we have no scientific basis for correlating qual-
ity of product to quality of process. Ideally, the better
the process, the better the resulting product. This corre-
lation, after all, underlies the Software Engineering Insti-
tute’s Capability Maturity Model. However, some high-
quality software products are produced by small teams
that follow no strict development process; at the same
time, adhering to a rigid process does not necessarily
mean a better product. Processes that involve checklists
and templates do not speak directly to the quality of the
product — the end system. We need to understand bet-
ter the relationship between process and product: what
improvement in process translates directly into an im-
provement in product?

3.8 People are part of the process

There are three important ingredients in software devel-
opment: product, process, and people. It is perhaps un-
comfortable for scientists to talk about the “people fac-
tor” since unlike products and processes, people are even
less controllable or measurable. If we are to improve the
quality of software, however, we cannot completely ignore
the people involved.

We do know that high-quality people can produce
high-quality software, perhaps even independent of the
process they follow. Since talent is limited, however, we
need to define processes that can best use the people at
hand — to exploit their individual and collective strengths
and talents.

The reward system also has to be appropriate for
the end goal. If we hire only people who are good pro-
grammers, then all we have are good programmers. We
could end up with an implementation of a system whose
architecture/design does not match the customer’s re-
quirements, resulting in a working, but useless system. If
we promote people because they produce lots of lines of
code, then all we have are lots of lines of code. The code
may be buggy or hard to read, modify, maintain, etc.

In training future software professionals we must con-
sider the science and the engineering ingenuity needed to



264 J.M. Wing: Platitudes and attitudes

build the systems of tomorrow. Computer scientists al-
ready agree on the importance of discrete mathematics
and logic in undergraduate curricula. We now see a re-
newed demand for multivariate calculus, linear algebra,
and probability and statistics. Back to basics!

Finally, given that systems of tomorrow will be built
by teams of people with varying backgrounds, not only
are mathematical, programming, and problem solving
skills important, but so are good interpersonal communi-
cation skills. Being able to write and speak clearly can be
critical to the success of a project.

8.4 Do not be seduced by inaccurate analogies

It is irresistible for the software engineering community
to draw analogies when looking to our brethren engineer-
ing fields such as electrical engineering, civil engineering,
or design engineering. Software, however, is not just like
a circuit, a bridge, or a piece of furniture. The fundamen-
tal differences between our artifacts and theirs are that we
can instantaneously change our systems and we can in-
stantaneously copy our systems. Indeed, it is typical for a
software developer to copy someone else’s (or perhaps his
own previously written) code because it does almost the
right thing, modify it slightly, and install the result. At
best, there is extraneous functionality or code; at worst,
old bugs perpetuate.

In addition, while software engineering researchers
worry a lot about maintaining code that evolves, in look-
ing at systems of tomorrow, we need also to worry about
code that is copied and distributed widely. This ability to
spread code (and data) easily is the source of security and
privacy problems such as viruses and spam. They may be
only annoyances now, but they could be more harmful in
the future.

One thing we can learn from our engineering brethren
is the idea of “overengineering” software. In particular,
we would like to be able to overengineer software without
sacrifice to performance, e.g,. in using redundant run-
time checks, or without sacrifice to usability, e.g., pro-
viding multiple ways to accomplish the same end-user
task.

The speed at which we can change and copy our de-
signs and implementations also suggests that the “soft-
ware factory” analog to manufacturing processes and the
“design-by-handbook” analog to engineering processes
will break down unless undue discipline and restrictions
are placed on the software engineer. The trend of open
source software and even the new interest in extreme pro-
gramming are examples of how these other engineering
disciplines may even miss the mark.

It is also tempting to look to other sciences such as
ecology, entomology, and immunology for understanding
the behavior of complex systems; however, while they can
serve as inspirations for ideas and alluring metaphors, it’s
unlikely that their models directly apply to software and
software engineering.

We are more likely to be able to borrow and adapt
techniques from disciplines such as behavioral and or-
ganizational science, economics, and social and decision
sciences in order to model and analyze software develop-
ment processes — because of the “people factor.” Under-
standing human behavior in general and how people make
value judgments in particular would be useful.

4 Attitudes: research agenda

What follows are some ideas for possible short-term re-
search projects and longer-term research goals.

4.1 Short-term research

— Featherweight checkers. The next step beyond
“lightweight formal methods” 3 is featherweight check-
ers. These kinds of tools must fit unintrusively into a
software developer’s life. One approach is to include
featherweight checks into existing tools, such as a type
checker or debugger, that the developer uses already.
Another approach is to build a tool that performs an
extremely specific, but critical check, e.g., ensuring
that procedure X is never called from procedure Y
because it would open up a security vulnerability.

— Programming language support. Types give us a

kind of verifiable code, albeit type checkers verify only
simple properties of code. In support of writing code
for verifiability, we should continue to push the bound-
ary between what we can express in a type and what
we can check automatically.
Much of the tedium of producing a large software sys-
tem is doing regular, e.g., daily, “builds.” It would be
nice to incorporate mechanisms directly in the pro-
gramming language that would help in the monitoring
and management of the “build” process as part of the
design-code-test-debug cycle.

— Certification processes. Different organizations re-
quire different processes for certifying software. The
Federal Aviation Authority uses something different
from the Food and Drug Administration. Industry
differs from government as well. We should examine
the certification processes of today, understand where
they fall short and why. We can then extract best
practices, spread the word, and codify/systematize
them. We should look more closely at the corre-
lation between process and the quality of the end
product.

— Human behavior. To better understand a given
software development process, we should study the
role of humans. In such a study we need to involve so-
cial, behavioral, organizational, and management sci-
entists. We should look for opportunities to exploit

3 Jackson D, Wing J (1996) Lightweight formal methods. IEEE
Comput 29(4):21-22



J.M. Wing: Platitudes and attitudes 265

any innate human advantage over computers (e.g., vi-
sion, speech, pattern matching, tolerating faults, real-
time/priority task scheduling).

4.2 Long-term research

— Evaluating design*. Given that we understand the
processes of coding and testing, and that we have some
measures for these processes, how can we measure the
“goodness” of a design? It would nice to be able to
know how to evaluate whether a design is “good” or
“better” and to able to predict the effects of a “good”
design versus a “bad” one. We could then begin to
think about building tools to help measure and evalu-
ate designs, to teach people what makes a design good,
and to reward and promote people for being good de-
signers. Without evaluation criteria, preferably quan-
tifiable, software developers and their managers will
be reluctant to change, especially if the code-code-
code process is the norm.

— Revisit specification languages. Specification is in
vogue again, but not in phase with current technology
or practice. We should revisit specification languages,
logics, models, theories, and application-specific do-
mains given the breadth and complexity of tomor-
row’s systems.

— Lightweight verification. We should strive to make
verification (static and dynamic analyses) truly light-
weight, like compilation.

— Scale. We still need to figure out how to scale every-
thing up — through new abstraction and compositional
techniques. While we should continue to understand
how to build reliable systems out of unreliable compo-

4 By “design” here, I mean anything above the source code level,
e.g., at the module level or architectural level.

nents, why not also think about how to build reliable
systems out of reliable components?

— Probabilistic verification. We should consider rad-
ical approaches to verification. One idea is prob-
abilistic verification. Perhaps we can use approxi-
mation/randomization algorithms in either the veri-
fication process or in implementing verification tools.
We can certainly use stochastic models (Markov De-
cision Processes, Bayesian networks) to help model
the complexity of a system’s environment. Open for
exploration is the different interpretations of what
“probabilistically true” or “probabilistically correct”
might mean.

5 Summary

The complexity and diversity of computing systems will
continue to grow. We need to continue to develop the
mathematical and scientific foundations so we do not
have to put quote marks around the word “engineer-
ing” in the term software engineering. In the short-term
more featherweight tools will help. In the grand scheme
of things, however, we need to understand better — with
a scientific basis — the roles of process and people as
they affect quality of product. Perhaps one day we can
look back and see that my attitudes have turned into
platitudes.

Acknowledgements. This work is supported in part by the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485,
the National Aeronautic and Space Administration under contract
NCC2-1241, and the National Science Foundation under contract
no. CCR-0121547. The views and conclusions contained herein
are those of the author and should not be interpreted as nec-
essarily representing the official policies or endorsements, either
expressed or implied, of the DOD, ARO, NASA, NSF, or the U.S.
Government.



