
 1

 TOWARDS A SCIENCE OF SURVIVABILITY:
 A Research Agenda and a Specific Method

 Jeannette M. Wing
 Computer Science Department
 Carnegie Mellon University
 Pittsburgh, PA 15213

 24 July 2000

I propose four broadly stated agenda items for providing a foundation
for understanding survivability: what it means and how we can design
systems with it in mind. I also briefly describe a specific method
and tool that we are using that speaks to these general research
goals.

Four Research Agenda Items

Let's start with an assertion. By definition a survivable system must
tolerate faults: both accidental and malicious; both expected and
unexpected.

1. Revisit results from fault-tolerant research in light of security,
and vice versa.

Today people design systems to be fault-tolerant or secure, but not
both. They assume well-behaved users, but unreliable system
components, or they assume reliable system components but
ill-intentioned users. The designer of a survivable system must
assume system components are unreliable and users untrustworthy.

Thus, techniques for ensuring survivability should be inspired by
those for making systems more fault-tolerant (to handle accidental
faults) and by those for making systems more secure (to handle
malicious faults). "Inspired by" does not mean "applied directly to."
The tricky part is that a given technique may make assumptions that do
not hold in a context broader than originally imagined. For example,
many of the results from the fault-tolerant community (including the
use of redundant hardware, database transactions, and Byzantine
agreement and other distributed consensus protocols) hold under the
assumption that failures occur independently. Some techniques are
devised to ensure that this assumption will hold. (For example,
strict two-phase locking guarantees no cascading aborts.) In
practice, this assumption may not hold; the failure of a system
component may be triggered only in the event of the failure of
another. If so, then an attacker can exploit this failure dependency
to his or her advantage. These simple observations suggest:

 - We need to understand better when a given technique for increasing
 fault-tolerance (e.g., use of replication of system components to
 increase reliability and availability) is valid when also trying to
 increase a system's security (e.g., use of cryptography,
 authentication protocols, access control mechanisms, firewalls); and
 vice versa.

 - We need to understand how the different techniques interact with

 2

 each other. A given technique's set of assumptions may be violated by
 the effects of another. Or, a given technique's set of guarantees may
 be subsumed by another; we can avoid unnecessary redundancy in this
 case. Or, the same technique (e.g., diversity of system components)
 used both to address fault-tolerance and to address security in isolation
 may no longer work when addressing both at the same time.

To come to some understanding of when one technique applies or not,
and how different techniques work together,

 - We need a class of models for describing a system's behavior that is
 rich enough so we can determine the effects of the interaction between
 different techniques.

 - We need a logic (a specification language and verification method)
 that allows us to specify a system's behavior, to assert system
 properties, and to verify that a given system model satisfies or
 violates these properties.

2. Devise models to handle both expected and unexpected failures.

Ideally, in designing a system to be survivable, we would identify all
potential conditions of failure and guard against their occurrence,
mitigate their effects if a failure occurs, and if necessary, repair
and restore the system to normal operation. In practice, however, it
is impossible to predict all failure conditions; we must design a
system with in mind that a system's environment may be unpredictable,
perhaps due to natural disasters or humans being in the loop. (On the
one hand, humans make mistakes, and on the other, they cleverly
exploit system vulnerabilities.) Thus,

 - Our models and logics must be rich enough to accommodate
 unpredictable environmental behavior.

3. Devise models to handle finer-grained behavior.

There are many dimensions of granularity we could consider. Here are
just a few to think about.

First, rather than think of fault-tolerance and security, and hence
survivability, as boolean properties, we should think in terms of
degrees of reliability and degrees of trustworthiness.

Even for predictable failures, not all are expected with equal
likelihood. For example, we may assume that the links between the
Federal Reserve Banks are highly reliable (e.g., because of
redundancy), but those between ATM machines and banks are less
reliable (because it is not worth the cost). A model should be rich
enough to let us model degrees of reliability, e.g., measured in terms
of probability of failure.

Similarly, even for trusted components, some may be trusted more than
others. For example, we may assume that the system administrator for
the bank's database server is trustworthy, but that all ATM users are
potentially not. A model should be expressive enough to let us
specify fine-grained access control, along many dimensions including
application, history, context, and resource usage. We should be able

 3

to state context-sensitive security policies such as "When the editor
is controlled by user A, it can access any file; otherwise it can only
access /tmp" or resource-sensitive policies such as "This applet can
only send 1KB/minute."

Second, the fault models for a survivable system should consider
degrees of severity of a fault and degrees of maliciousness. For
example, the fail-stop model from the fault-tolerant computing
community is inappropriate for understanding survivability; any
malicious fault that is not self-contained (e.g., a virus or a
distributed denial of service attack) falls outside of this model.
Also, the Byzantine fault model from the fault-tolerant computing
community seems too general for handling degrees of malicious
behavior, both in the sense that not all users are malicious and that
some malicious acts have graver consequences than others.

Thus,

 - We need models that support finer-grained analysis along multiple
 dimensions. They should at least (1) exploit information about why a
 failure has occurred and who or what caused it; (2) allow direct
 cost-benefit analysis with respect to tolerating faults and
 intrusions; and (3) allow dependency analysis between failures.

4. Revisit fault-tolerance, security, and hence survivability,
in light of the Internet computing environment.

A survivable system must be both fault-tolerant and secure. Neither of
those properties is new. As argued above, considering them together
in a system design is the new challenge.

But what is brand new? The way in which systems are constructed today.
Systems are not closed, static entities. Open system architectures
make it more challenging to design and analyze a system to be
fault-tolerant, secure, and hence survivable. Ditto for software
applications that use mobile code (e.g., Java, ActiveX), the
programming paradigm of the Internet.

Also, the increasing interdependencies of system infrastructures
create more opportunities for points of failure and targets of attack.
So the scale (size and complexity) of the today's problem has outgrown
yesterday's solutions.

Given the openness of systems today, in terms of design, use, and access:

 - We need new models of computing to grapple with systems with no
 boundaries, with greater anonymity of users, and with scales in size
 and time of the Internet. These new models will likely lead to new
 distributed algorithms, new distributed system architectures, etc.
 These models might benefit from thinking in terms of biological
 systems metaphors (e.g., immunology, epidemiology, and ecology), and
 from applying rich mathematical theories (e.g., game theory, Markov
 Decision Processes, decision analysis, econometrics).

Finally, Ellison et al. argue that it does not make sense to talk
about the survivability of a system without putting it in the context
of the "mission", i.e., the end service, that the system provides,

 4

e.g., electricity, telephony, or health-care [Ellison et al.97]. They
further argue that one identifies a mission's "essential services" and
design a system to ensure these are sustained in the presence of
faults. Thus,

 - We should understand more formally what the role of the mission
 (and its essential services) plays in the notion of survivability.
 Is it fundamental in some way, and if so, how? Or is it merely useful
 as a design criterion?

A Specific Example

Towards this broad research agenda, my colleagues and I defined a
two-phased method for analyzing the survivability of a networked
system [JWLL00], and Somesh Jha has implemented a tool, Trishul, to
support it.

Phase One

We build a scenario graph representing the sequences of states and
events that lead to final states that satisfy a given property.

Phase Two

We annotate a subset of the scenario graph's edges (events) with
probabilities, which can be symbolic or numeric, such that we can
compute the cost of a given function, e.g., the worst-case reliability
metric of a given property.

For Phase One, we modified an off-the-shelf model checker, NuSMV, to
produce the scenario graph automatically. Suppose we want to express
the property that "It is not possible for a node N to reach a faulty
state if the network starts from one of the initial states." Letting
"fault" represent the property that node N is in a faulty state, we
can express the property as a CTL formula as "AG (~fault)". Feeding
this assertion into a model checker, which produces counterexamples
(i.e., sequences of states for which the negation of the property
holds in the final state), gives us the scenarios for which N reaches
an undesirable (faulty) state.

For Phase Two, we first construct a Bayesian network, which allows us
to model dependent events, for some (not necessarily) all fault
events. We use these conditional probabilities to annotate the
scenario graph produced by Phase One. We are left then with a state
transition system that has both nondeterministic states (states with
unlabeled outgoing edges) and probabilistic states (states with
outgoing edges labeled with probabilities). Interpreting the
nondeterministic transitions as the environment making a choice (thus
modeling some degree of unpredictability), for computing a worst case
reliability metric, we use a policy iteration method similar to that
used for optimal control of Markov Decision Processes (MDPs). This
method determines the worst case scenarios for a given property.

Currently we are reimplementing our support for Phase One using a
different model checker since for some of the industrial-sized case
studies, we cannot handle a large enough state space with NuSMV. We
also plan to generalize the analysis we do in Phase Two, allowing

 5

different cost functions and allowing other analyses besides
worst-case reliability. We also plan to hook up our new tool to a
linear programming package to exploit the power of off-the-shelf
automated analyses of MDPs.

References

[Ellison et al. 97] Ellison et al., "Survivable Network Systems: An
Emerging Discipline," Carnegie Mellon University/Software Engineering
Institute, CMU/SEI-97-TR-013, November 1997, revised May 1999.

[JWLL00] Somesh Jha, Jeannette M. Wing, Richard Linger, and Tom
Longstaff, ``Analyzing Survivability Properties of Specifications of
Networks,'' in Proceedings of the International Conference on
Dependable Systems and Networks, Workshop on Dependability Despite
Malicious Faults, New York City, NY, June 25-28, 2000, pp. 613-622.

