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I propose four broadly stated agenda items for providing a foundation 
for understanding survivability: what it means and how we can design 
systems with it in mind.  I also briefly describe a specific method 
and tool that we are using that speaks to these general research 
goals. 
 
Four Research Agenda Items 
 
Let's start with an assertion.  By definition a survivable system must 
tolerate faults: both accidental and malicious; both expected and 
unexpected. 
 
1. Revisit results from fault-tolerant research in light of security, 
and vice versa. 
 
Today people design systems to be fault-tolerant or secure, but not 
both.  They assume well-behaved users, but unreliable system 
components, or they assume reliable system components but 
ill-intentioned users.  The designer of a survivable system must 
assume system components are unreliable and users untrustworthy. 
 
Thus, techniques for ensuring survivability should be inspired by 
those for making systems more fault-tolerant (to handle accidental 
faults) and by those for making systems more secure (to handle 
malicious faults).  "Inspired by" does not mean "applied directly to." 
The tricky part is that a given technique may make assumptions that do 
not hold in a context broader than originally imagined.  For example, 
many of the results from the fault-tolerant community (including the 
use of redundant hardware, database transactions, and Byzantine 
agreement and other distributed consensus protocols) hold under the 
assumption that failures occur independently.  Some techniques are 
devised to ensure that this assumption will hold.  (For example, 
strict two-phase locking guarantees no cascading aborts.)  In 
practice, this assumption may not hold; the failure of a system 
component may be triggered only in the event of the failure of 
another.  If so, then an attacker can exploit this failure dependency 
to his or her advantage.  These simple observations suggest: 
 
  - We need to understand better when a given technique for increasing 
    fault-tolerance (e.g., use of replication of system components to 
    increase reliability and availability) is valid when also trying to 
    increase a system's security (e.g., use of cryptography, 
    authentication protocols, access control mechanisms, firewalls); and 
    vice versa. 
 
  - We need to understand how the different techniques interact with 
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    each other.  A given technique's set of assumptions may be violated by 
    the effects of another.  Or, a given technique's set of guarantees may 
    be subsumed by another; we can avoid unnecessary redundancy in this 
    case.  Or, the same technique (e.g., diversity of system components) 
    used both to address fault-tolerance and to address security in isolation 
    may no longer work when addressing both at the same time. 
 
To come to some understanding of when one technique applies or not, 
and how different techniques work together, 
 
  - We need a class of models for describing a system's behavior that is 
    rich enough so we can determine the effects of the interaction between 
    different techniques. 
 
  - We need a logic (a specification language and verification method) 
    that allows us to specify a system's behavior, to assert system 
    properties, and to verify that a given system model satisfies or 
    violates these properties. 
 
2. Devise models to handle both expected and unexpected failures. 
 
Ideally, in designing a system to be survivable, we would identify all 
potential conditions of failure and guard against their occurrence, 
mitigate their effects if a failure occurs, and if necessary, repair 
and restore the system to normal operation.  In practice, however, it 
is impossible to predict all failure conditions; we must design a 
system with in mind that a system's environment may be unpredictable, 
perhaps due to natural disasters or humans being in the loop.  (On the 
one hand, humans make mistakes, and on the other, they cleverly 
exploit system vulnerabilities.)  Thus, 
 
  - Our models and logics must be rich enough to accommodate 
    unpredictable environmental behavior. 
 
3. Devise models to handle finer-grained behavior. 
 
There are many dimensions of granularity we could consider.  Here are 
just a few to think about. 
 
First, rather than think of fault-tolerance and security, and hence 
survivability, as boolean properties, we should think in terms of 
degrees of reliability and degrees of trustworthiness. 
 
Even for predictable failures, not all are expected with equal 
likelihood.  For example, we may assume that the links between the 
Federal Reserve Banks are highly reliable (e.g., because of 
redundancy), but those between ATM machines and banks are less 
reliable (because it is not worth the cost).  A model should be rich 
enough to let us model degrees of reliability, e.g., measured in terms 
of probability of failure. 
 
Similarly, even for trusted components, some may be trusted more than 
others.  For example, we may assume that the system administrator for 
the bank's database server is trustworthy, but that all ATM users are 
potentially not.  A model should be expressive enough to let us 
specify fine-grained access control, along many dimensions including 
application, history, context, and resource usage.  We should be able 
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to state context-sensitive security policies such as "When the editor 
is controlled by user A, it can access any file; otherwise it can only 
access /tmp" or resource-sensitive policies such as "This applet can 
only send 1KB/minute." 
 
Second, the fault models for a survivable system should consider 
degrees of severity of a fault and degrees of maliciousness.  For 
example, the fail-stop model from the fault-tolerant computing 
community is inappropriate for understanding survivability; any 
malicious fault that is not self-contained (e.g., a virus or a 
distributed denial of service attack) falls outside of this model. 
Also, the Byzantine fault model from the fault-tolerant computing 
community seems too general for handling degrees of malicious 
behavior, both in the sense that not all users are malicious and that 
some malicious acts have graver consequences than others. 
 
Thus, 
 
  - We need models that support finer-grained analysis along multiple 
    dimensions.  They should at least (1) exploit information about why a 
    failure has occurred and who or what caused it; (2) allow direct 
    cost-benefit analysis with respect to tolerating faults and 
    intrusions; and (3) allow dependency analysis between failures. 
 
4. Revisit fault-tolerance, security, and hence survivability, 
in light of the Internet computing environment. 
 
A survivable system must be both fault-tolerant and secure. Neither of 
those properties is new.  As argued above, considering them together 
in a system design is the new challenge. 
 
But what is brand new? The way in which systems are constructed today. 
Systems are not closed, static entities. Open system architectures 
make it more challenging to design and analyze a system to be 
fault-tolerant, secure, and hence survivable. Ditto for software 
applications that use mobile code (e.g., Java, ActiveX), the 
programming paradigm of the Internet. 
 
Also, the increasing interdependencies of system infrastructures 
create more opportunities for points of failure and targets of attack. 
So the scale (size and complexity) of the today's problem has outgrown 
yesterday's solutions. 
 
Given the openness of systems today, in terms of design, use, and access: 
 
  - We need new models of computing to grapple with systems with no 
    boundaries, with greater anonymity of users, and with scales in size 
    and time of the Internet.  These new models will likely lead to new 
    distributed algorithms, new distributed system architectures, etc. 
    These models might benefit from thinking in terms of biological 
    systems metaphors (e.g., immunology, epidemiology, and ecology), and 
    from applying rich mathematical theories (e.g., game theory, Markov 
    Decision Processes, decision analysis, econometrics). 
     
Finally, Ellison et al. argue that it does not make sense to talk 
about the survivability of a system without putting it in the context 
of the "mission", i.e., the end service, that the system provides, 
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e.g., electricity, telephony, or health-care [Ellison et al.97]. They 
further argue that one identifies a mission's "essential services" and 
design a system to ensure these are sustained in the presence of 
faults.  Thus, 
 
  - We should understand more formally what the role of the mission 
    (and its essential services) plays in the notion of survivability. 
    Is it fundamental in some way, and if so, how?  Or is it merely useful 
    as a design criterion? 
 
A Specific Example 
 
Towards this broad research agenda, my colleagues and I defined a 
two-phased method for analyzing the survivability of a networked 
system [JWLL00], and Somesh Jha has implemented a tool, Trishul, to 
support it. 
 
Phase One 
 
We build a scenario graph representing the sequences of states and 
events that lead to final states that satisfy a given property. 
 
Phase Two 
 
We annotate a subset of the scenario graph's edges (events) with 
probabilities, which can be symbolic or numeric, such that we can 
compute the cost of a given function, e.g., the worst-case reliability 
metric of a given property. 
 
For Phase One, we modified an off-the-shelf model checker, NuSMV, to 
produce the scenario graph automatically.  Suppose we want to express 
the property that "It is not possible for a node N to reach a faulty 
state if the network starts from one of the initial states."  Letting 
"fault" represent the property that node N is in a faulty state, we 
can express the property as a CTL formula as "AG (~fault)".  Feeding 
this assertion into a model checker, which produces counterexamples 
(i.e., sequences of states for which the negation of the property 
holds in the final state), gives us the scenarios for which N reaches 
an undesirable (faulty) state. 
 
For Phase Two, we first construct a Bayesian network, which allows us 
to model dependent events, for some (not necessarily) all fault 
events.  We use these conditional probabilities to annotate the 
scenario graph produced by Phase One.  We are left then with a state 
transition system that has both nondeterministic states (states with 
unlabeled outgoing edges) and probabilistic states (states with 
outgoing edges labeled with probabilities).  Interpreting the 
nondeterministic transitions as the environment making a choice (thus 
modeling some degree of unpredictability), for computing a worst case 
reliability metric, we use a policy iteration method similar to that 
used for optimal control of Markov Decision Processes (MDPs).  This 
method determines the worst case scenarios for a given property. 
 
Currently we are reimplementing our support for Phase One using a 
different model checker since for some of the industrial-sized case 
studies, we cannot handle a large enough state space with NuSMV.  We 
also plan to generalize the analysis we do in Phase Two, allowing 
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different cost functions and allowing other analyses besides 
worst-case reliability.  We also plan to hook up our new tool to a 
linear programming package to exploit the power of off-the-shelf 
automated analyses of MDPs. 
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