
Weaving Formal Methods into the
Undergraduate Computer Science Curriculum

�Extended Abstract�

Jeannette M� Wing�

Computer Science Department
Carnegie Mellon University

Pittsburgh� PA USA
wing�cs�cmu�edu

WWW home page� http���www�cs�cmu�edu��wing�

Abstract� We can integrate formal methods into an existing under�
graduate curriculum by focusing on teaching their common conceptual
elements and by using state of the art formal methods tools� Common
elements include state machines� invariants� abstraction mappings� com�
position� induction� speci�cation� and veri�cation� Tools include model
checkers and speci�cation checkers� By introducing and regularly revisit�
ing the concepts throughout the entire curriculum and by using the tools
for homework assignments and class projects� we may be able to attain
the ideal goal of having computer scientists use formal methods without
their even realizing it�

� Philosophy

Rather than treat formalmethods solely as a separate subject to study� we should
weave their use into the existing infrastructure of an undergraduate computer
science curriculum� In so doing� we would be teaching formal methods alongside
other mathematical� scienti�c� and engineering methods already taught� Formal
methods would simply be additional weapons in a computer scientist�s arsenal
of ways to think when attacking and solving problems�

My ideal is to get to the point where computer scientists use formal methods
without even thinking about it� Just as we use simple mathematics in our daily
life� computer scientists would use formal methods routinely�

By formal methods I mean the speci�cation and veri�cation of hardware and
software systems� Some methods will be accessible to undergraduates�these are
the ones I hope computer scientists will use without realizing it� Some methods
are more advanced� requiring either more mathematical sophistication or domain
knowledge�those can be taught in upper�level electives� in graduate courses� or
through independent undergraduate research projects� In this paper I focus on
the former�

Dating back to the Dijkstra�Gries predicate transformer approach of program
development �Gr��	� we already have a long history of inculcating undergraduates



with notions of program speci�cation and veri�cation� While there are varying
degrees of success in teaching programming using this approach� the method is
not used by programmers in practice� Moreover� specifying and verifying small�
simple programs does not address the problems of scale and complexity faced
by software engineers in industry� What should we do di
erently or why should
we be more optimistic now�

First� we should focus on teaching the common elements of all �or most

methods� rather than on the speci�c notation or stylistic requirements of the
method itself� Students writing large programs are not easily going to be able
to do a stepwise re�nement of design to code following the Dijkstra�Gries ap�
proach� but they can certainly learn and apply the notions of program speci�
�cation� loop invariants� and termination functions� Programming�in�the�small
and programming�in�the�large are inherently creative problem solving activities�
Thinking in terms of formal methods concepts� e�g�� invariants� forces the de�
signer to take a more abstract perspective of a system than that taken with an
algorithmic or operational approach� This more abstract thinking invariably pro�
vides the designer with new insights and a deeper understanding of the system�s
desired behavior�

Second� tools are essential� Without su�cient tool support� a method will
not scale to practice� Model checking �CGP��	 is a successful formal method
because it addresses scale in two ways� it is applicable to a narrow problem do�
main �control aspects of hardware and protocols
 and we do not have to specify
the whole system before we can do some interesting veri�cation� Furthermore�
without appropriate tool support� typical computer science students have no in�
centive to use them� While mathematics students may be happy to do pencil and
paper proofs� computer science students grow up using compilers� interpreters�
operating systems� databases� graphical user interfaces� editors� electronic mail
systems� spreadsheets� document preparation packages� web browsers� search en�
gines� and so on� Formal methods tools have to be packaged in a way to �t into
the way computer scientists work on a daily basis�

What follows is �rst� a list of the common elements and tools which we
can teach to undergraduates� and second� speci�c suggestions on where to teach
them with respect to existing courses found in a typical undergraduate computer
science curriculum�

� What We Can Teach

��� Common Elements

Below is a list of the elements that transcend the speci�c syntax and semantics
of most formal methods� A �rm understanding of these concepts goes a long way�

� State machines� The notion of a state machine as a tuple of a set of states�
a set of initial states� and a transition relation between states� variations
include accepting states� nondeterministic transition relations� �nite state
machines� labelled states� and labelled transitions� The notion of a state as a



mapping from variables to values� enrichments include using typed variables
and values� and modeling both the environment and store as needed for
imperative programming languages� The notion of executions as sequences
of interleaved states and transitions� various projections on executions� for
example� on just states� transitions� objects� or processes �these projections
are often termed traces or histories
� The notion of behavior and observable

behavior of a state machine as a set of executions �or traces or histories
�

� Invariants� The notion of state invariants� variations include abstract and
representation type invariants in the context of abstract data types� The
notion of loop invariants for statement�level reasoning�

� Abstraction mappings� The notion of abstraction functions for reasoning
about abstract data types� The more general notion of simulation relations�
for example� in relating states �or transitions or executions
 of one machine
to those of another�

� Composition� The notion of composition as a way to build larger machines
�systems
� Basic functional composition as in sequential composition of state�
ments and nested and recursive procedure calls� The use of interfaces to com�
pose modules� as already manifest in programming languages like Java and
ML� Process composition for concurrent and distributed systems� Problems
due to interference when composing concurrent processes�

� Induction� The basic notions of mathematical and complete �strong
 induc�
tion� Structural induction for reasoning abstract data types� Computational
induction for reasoning more generally about state machines�

� Speci�cation� The notion of writing a formal description of what the sys�
tem is supposed to do� not how� i�e�� the di
erence between a speci�cation
and code� The notion of a type as a �weak� �in terms of expressibility
�
but extremely powerful �in terms of practicality
 speci�cation� Going fur�
ther� pre�conditions and post�conditions and other predicates �e�g�� Larch�s
modi�es clause �GH��	
� Going even further� the use of rely and guarantee
predicates for reasoning about concurrent programs�

� Veri�cation� The notions of correctness and termination of a program� and
more generally� notions of safety and liveness properties of concurrent and
distributed systems� Proof techniques for showing a system satis�es its spec�
i�cation� Termination functions and well�founded orderings for proofs of ter�
mination�

There are clearly mathematical prerequisites or corequisites for understand�
ing these concepts� They are ��
 discrete mathematics� minimally� algebraic
structures and their properties� and ��
 mathematical logic� minimally� �rst�
order predicate logic� and proof techniques�

��� Tools

There are two classes of tools that we can use at the undergraduate level� model
checkers and speci�cation checkers�



There is no excuse not to be using model checkers in our undergraduate
courses today� With a veri�cation tool� we can more easily teach that veri�ca�
tion complements the testing and simulation activities of practicing hardware
and software engineers� Model checkers verify temporal properties of �nite state
machines� They are fast� completely automatic� and relatively easy to learn�
There are industrial�strength� commercial model checkers available on the mar�
ket� If the trend of using them in the hardware industry continues� then it be�
hooves us as educators to ensure that our students are well�versed in the state
of the art veri�cation technology�

Speci�cation checkers are less common and are still making their transition
from research environments to industry� One promising kind of speci�cation
checker is exempli�ed by LCLint �EGHT��	 and ESC�Java �CSRC��	� which
both support incremental speci�cations� as we add more to a speci�cation� the
tool can check more of the code� LCLint does much of the traditional lint checks
of C programs� including unused declarations� type inconsistencies� and use�
before�de�ntion� additional source code annotations� in the form of pre��post�
conditions� modi�es clauses� and representation invariants� enable more powerful
checks such as determining violations of information hiding� memory manage�
ment errors� and dangerous data sharing or unexpected aliasing� ESC�Java �Ex�
tended Static Checking �DLNS��	 for Java
 also relies on annotated source code
and can catch many common programmingmistakes such as array index bounds
errors� null dereference errors� type�cast errors� and deadlocks and race condi�
tions in multi�threaded programs� The checker uses an automatic theorem prover
to reason about the semantics of conditional statements� loops� procedure and
method calls� exceptions� and mutex locks�

As an aside� I leave for the more advanced student� the upper�level elective
courses� and the undergraduate researcher two other classes of formal methods
tools� design checkers such as Nitpick �JD��	 and Alcoa �Ja��	� which are still
in the research incubator� and theorem provers� which still require sophisticated
users� Design checkers have much promise in their use in upper�level software
engineering courses� but need more time to mature� Theorem provers require
more expertise than we can expect our students to acquire in one semester� all
the while learning other course material�

� Speci�c Undergraduate Courses

Introduction to Programming� Here we can teach the concepts of speci�ca�
tion and veri�cation but likely only informally and at a high�level� Still� accli�
mating students to the di
erence between a speci�cation and code and to the
idea of veri�cation in addition to testing is a good �rst step� Students should get
in the habit of writing informal speci�cations� loop invariants� and termination
arguments in their comments�

Data Structures and Algorithms� This course lends itself naturally to
introducing and exercising notions of abstraction� representation invariants� in�
ductive proofs� and state machines�



Programming Principles� This is the traditional course that many schools
use to teach the concepts of program speci�cation and veri�cation� It may make
sense to revisit this course if some of the material is distributed across the oth�
ers� At Carnegie Mellon we use this course to teach the functional programming
language paradigm �we use ML
 with a heavy emphasis on types �as weak speci�
cations
� modules �interfaces versus implementation� composition and abstrac�
tion techniques
� and the course mantra �code with proof in mind� �recursive
programs lend themselves to inductive proofs
�

Programming Languages� This course provides the opportunity to revisit
more formally the concepts perhaps learned only informally during the students�
�rst year� For example� we can give semantics for imperative and object�oriented
programming languages in terms of state machines� We can use logic program�
ming languages to illustrate advantages and disadvantages of using executable
speci�cations� i�e�� where speci�cations are code and vice versa�

Compilers� Translators and interpreters� by de�nition� provide rich exam�
ples of abstraction mappings �de�ning or simulating one machine in terms of
another
� Correctness preserving transformations require statements of invari�
ants �formal or not
 and soundness arguments �formal or not
� Target machines
�compiler back�ends
 are just state machines� This course comes close to the
ideal� where students are using some elements of formal methods without real�
izing it�

Software Engineering� Students can complement the use of informalCASE
tools and semi�formal design methods such as UML with the use of formal ones�
e�g�� model checkers and speci�cation checkers� Here would be the place to in�
troduce design checkers such as Nitpick and Alcoa�

Computer Architecture� Students can use model checkers such as SMV
to verify properties of simple circuits� simple processor designs� bus protocols�
and cache coherence protocols�

Operating Systems� Students can use model checkers to check safety prop�
erties� e�g�� freedom from deadlock� of various mutual exclusion algorithms �e�g��
Peterson�s tie�breaker algorithm or Lamport�s bakery algorithm
� and with var�
ious synchronization primitives �e�g�� semaphores� mutex locks� condition vari�
ables
�

Networking� Students can use model checkers to check properties of simple
network protocols� �A Carnegie Mellon undergraduate did an honors thesis using
Nitpick to discover a �aw in the Mobile IPv� protocol �JNW��	�


Databases�We can use relational databases and other data models to discuss
all �avors of invariants� Transactional systems require understanding executions�
observable behavior� consistency �correctness
 constraints� and interference due
to concurrency�

User Interfaces� Modeling the user� environment� and system as a set of
interacting concurrent processes can provide the foundation for usage scenarios�
Using model checkers such as FDR makes sense here�

Undergraduate upper�level electives such as Arti�cial Intelligence and Graph�
ics presumably o
er other opportunities as well�



� Future Work

All the real work is future work� The ideas sketched in this paper are just ideas of
what might be possible� We are faced with working out the details� The biggest
obstacle is getting �buy�in� from our colleagues� convincing co�instructors� cur�
ricula committees� and administrators that integrating formal methods unintru�
sively is a good thing to do�

Also� while philosophically in Section � we argued to emphasize concepts�
not notation� concrete notation is the conveyor of abstract ideas� To e
ectively
weave in the teaching of elemental concepts with existing courses means adapt�
ing notations and methods to the languages already in use� For example� using
ESC�Java makes sense to use in a data structures and algorithms course taught
in Java� but using Z tools for that same course may require too much additional
overhead�

The nitty�gritty hard future work is in thinking of the examples to use in
lectures� in designing appropriate homework and exam problems� and in making
learning these concepts and tools enjoyable�

We do not have to do everything� and we do not have to do everything all at
once� We can begin� for example� by discussing state machines in a programming
languages course� and by introducing model checkers in a homework assignment
or project of a computer architecture course� The main thing is to start doing
something�

References

�CGP��� Clarke� E�M�� O� Grumberg� and D�A� Peled� Model Checking� MIT Press�
�����

�CSRC		� Compaq Systems Research Center�
http���www�research�compaq�com�SRC�esc�Esc�html

�DLNS�
� Detlefs� D�� K� Rustan M� Leino� G� Nelson� and J�B� Saxe� Extended Static
Checking� Compaq SRC Research Report ���� ���
�

�EGHT��� Evans� D�� J� Guttag� J�J� Horning� and Y�M� Tan� LCLint� A Tool for Using
Speci�ations to Check Code� SIGSOFT Symposium on the Foudations of Software

Engineering� December �����
�Gr
�� Gries� D�� The Science of Programming� Springer�Verlag� ��
��
�GH�
� Guttag� J�V� and J�J� Horning� editors� Larch� Languages and Tools for Formal
Speci�cation� Springer�Verlag� ���
�

�JD��� Jackson� D� and C� Damon� �Nitpick Reference Manual�� Carnegie Mellon
University Technical Report CMU�CS�����	�� Computer Science Department� Pitts�
burgh� PA� January �����

�Ja		� Jackson� D�� �Alloy� A Lightweight Object Modelling Notation�� MIT Technical
Report ���� February �			�

�JNW		� Jackson� D�� Y� Ng� and J�M� Wing� �A Nitpick Analysis of Mobile IPv���
to appear in Formal Aspects of Computing� accepted January �			�


