236

[10] Guttag J. V., Garland S. J. and Horning J.1.: Debugging Larch Shared Language
Specifications. IEEE Transactions on Software Engineering, 16(9), pp. 1044-1075,
Sept. 1990.

[11] Horning J.J., Guttag J. V. and Wing J. M. : Larch in Five Easy Pieces. Technical
Report 5, DEC SRC, Palo Alto, U.S.A., 1985.

[12] Kaufman E.: A Graphical Front-Ent to an enhanced Proof Management System
for the Larch Prover. Master Thesis, the Hebrew University of Jerusalem, Israel,
1992.

[13] Larch 1992 : Proceedings of the first International Workshop on Larch. U. Martin
and J. Wing Editors, Dedham, Mass., U.S.A., 1992.

[14] Paulson L. C.: Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, UK., 1987.

Thoughts on a Larch/ML and a New
Application for LP

Jeannette M. Wing, Eugene Rollins, and Amy Moormann Zaremski
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract

We describe a preliminary design for a Larch interface language for the
programming language ML.! ML’s support for higher-order functions
suggests a need to go beyond the first-order logical foundations of Larch
languages. We also propose a mew application, specification matching,
for the Larch Prover, which could benefit from extending LP to handle
full first-order logic. This paper describes on-going work and suggests
a number of open problems related to Larch/ML and to LP as used for
specification matching. We assume rudimentary knowledge of Larch, its
languages and two-tiered approach.

1 Introduction

1.1 ML

ML is a “mostly-functional,” strongly-typed, polymorphic programming lan-
guage with a published formal semantics [8]. On top of ML’s small core lan-
guage is a modaule facility that supports the incremental construction of large
programs. An ML program is a collection of self-contained program units with
explicitly-specified interfaces. ML programmers define interfaces, called signa-
tures, separate from their implementations, called structures. Structures define
environments (i.e., bindings between identifiers and values); they are ML’s way
of encapsulating sets of variable, function, and type definitions. Functors are
parameterized structures and are used to create and compose structures: ap-
plication of a functor to a structure that matches a given signature yields a
structure. ML supports separate compilation through its ability to export and
import functors.

A Larch/ML specification extends the information contained in an ML sig-
nature. Like other Larch interface specifications, it associates ML types with
Larch Shared Language (LSL) sorts and uses pre- and post-conditions to specify
the behavior of declared functions. It adds semantic information to the syntac-
tic information contained in a signature, but abstracts from the details of data
representation and specific algorithms that would be found in the structures or
functors that implement it.

1Since this design covers only a subset of Standard ML, we will refer to our interface
language as Larch/ML rather than Larch/SML.

298

1.2 Why Larch and ML?

Larch complements ML. The Larch and ML communities both advocate taking
a rigorous approach to software development. Larch is particularly well-suited
for specifying properties of data types. Whereas precise static and dynamic
semantics have been given for ML, they have assumed a set of basic types from
which more interesting data types are built. Semantic properties of even the
basic types in ML are left unspecified; hence, Larch provides a way to specify
these properties.

Though most ML programmers strive to write code in a purely functional
style, the ML community is not dogmatic about it. For example, in the Venari
Project at Carnegie Mellon we are addressing issues like concurrency and per-
sistence, and have found the existence of “impure” features critical, not just for
performance, but for expressibility (e.g., the Threads interface to ML exports
sharable mutex locks and adds a notion of process state [1]). Larch addresses
state changes like side effects and resource allocation (e.g., creation of new ob-
jects) explicitly in interfaces. Larch interfaces highlight potential state changes
that an ML programmer might otherwise miss when reading just the code.

Since Larch interfaces are defined in terms of the target programming lan-
guage’s model of state, to define a Larch/ML formally one needs to write an ML
“state” trait. Writing such a “state” trait has always been a difficult exercise in
designing other Larch interface languages since most programming languages
do not come equipped with a formal semantics and/or their model of state is
complex. Fortunately ML has both a formal semantics and a straightforward
notion of state, so writing the Larch traits for ML state should be simpler than
doing so for other programming languages (like C).

In Section 2 we give two examples of Larch/ML interface specifications and
discuss some open problems.

1.3 A New Application for LP: Specification Matching

We are working on the design of Larch/ML in the context of the Venari Project’s
application of interest: searching large software libraries. We would like to
be able to use specifications as search keys and do specification matching to
determine whether a module should be returned as a result of a query [14]. We
assume a specification, s;, is associated with each component, p;, in a software
library of i components. For example, a procedure’s specification might be a
Larch interface describing the procedure’s behavior. Specification matching is
the process of determining whether for a given query, ¢, and specification, s;, 5
satisfies q. If we assume the query and specification language are both drawn
from the same logical language then satisfies is logical implication; specification
matching is the process of showing an implication holds.

In Section 3 we discuss how we might use the Larch Prover as the backend
“theorem prover” to do specification matching and suggest some extensions to
LP that would make our task easier.

T

299

2 Larch/ML Examples

2.1 Queue
2.1.1 A Specification

Figure 1 shows an example Larch/ML specification of a queue type. We elabo-
rate the ML signature module, QUEUE, with Larch/ML specification informa-
tion, delimited by (*+ ...+ *). Since ML comments are delimited by (* ... *),
we can compile a Larch/ML specification as a normal signature, using the ML
compiler without preprocessing.

signature QUEUE = sig
(*+ using Que +%)
type 'a t (*+ based on Que.E Que.C +%)
exception Deq (*+ raised by deq +%)
val create: unit — ’'a t
(*+ create () = q
ensures q = Que.new +#)
valenq: 'at x’a — 'at
(*+ enq (q,e)
ensures result = Que.insert(q,e) +#)
val deq: 'at — ('a *’at)
(x+deq q = (e, ql)
ensures if Que.isSEmpty(q) then raise Deq
else (e = Que.first(q)) and (q1 = Que.rest(q)) +%*)
val len: ’at — int
(*+len q
ensures result = Que.size(q) ++*)
end

Figure 1: Larch/ML Specification of an Immutable Queue

The specification begins with a using clause, which lists traits used by the
Larch/ML interface. QUEUE uses the Que trait (Figure 2).

A based on clause may be attached to any type declaration to associate
ML types with LSL sorts. In Figure 1, the based on clause associates the ML
type t with the sort C from the Que trait. It also states that in any use of
the type constructor t, the instance for the type variable ’a must be associated
with a sort that can substitute for the sort E from the Que trait.2 Later we
explain how we type check specifications.

An ML signature declares exception values that may be raised in the mod-
ule; the raised by clause enables specifiers to name the functions that may
raise a particular exception. In QUEUE, Deq is the only exception value and
deq is the only function that may raise it.

2In ML, type variables like 'a begin with a prime and are used for defining polymorphic
types.

300

Que(E,C) : trait
includes Integer
introduces
new: — C
insert: C,E — C
first: C— E
rest: C - C
isEmpty: C — Bool
size: C — Int
asserts
C generated by new, insert
Vq: C,e:. E
first(insert(q, €)) == if isEmpty(q) then e else first(q)
rest(insert(q, e)) ==
if isEmpty(q) then new else insert(rest(q), e)

isEmpty(new)

~ isEmpty(insert(q, €))
size(new) ==

size(insert(q,e)) == succ(size(q))

Figure 2: Que Trait

The specification for each function begins with a call pattern consisting of
the function name followed by a pattern for each parameter, optionally followed
by an equal sign (=) and a pattern for the result. In ML, patterns are used in
binding constructs to associate names to parts of values (e.g., (x, y) names x as
the first of a pair and y as the second). ML programmers typically use patterns
in function implementations to bind names to parameters and subcomponents
of parameters; we borrow this ML feature as a way to introduce names in
specifications. We adopt the convention that if the result pattern is not given,
the default name for the result value is “result” (e.g., as used in the enq and
len functions in QUEUE).

Like other Larch interfaces, the requires clause specifies the function’s pre-
condition as a predicate consisting of trait operators and names introduced by
the call pattern. Similarly, an ensures clause specifies the function’s post-
condition. If a function does not have an explicit requires clause, the default
is requires true. In the QUEUE example, none of the functions have explicit
requires clauses.

In QUEUE, the create function returns an empty queue; enq returns a queue
that is a result of inserting an element in a given queue; deq raises the exception
Deq if the queue is empty and otherwise returns a tuple whose respective values
are the first element of the queue and the rest of the queue; finally, len returns
the size of a given queue.

2.1.2 Type-checking

In type-checking a function specification, we assign the names in the call pattern
ML types based on the type of the function. These ML types are associated

301

with LSL sorts according to the based on clauses (or built-in associations
for base types). We type check the requires and ensures clauses using the
sorts associated with the types of the pattern names and the signatures of trait
operators and interpreting the resulting type expression. For example, suppose
the following were part of the QUEUE specification in Figure 1.

val convert: int t — bool t
(*+ convert q
ensures Que first(q) = Que.first(result) +x)

This function specification contains a type error, discovered upon type
checking: In step 1, we list the names used in the ensures predicate, along
with their types, and substitute (=) associated sorts for ML types. In step 2,
we substitute sort expressions for names within the ensures predicate, then
simplify in step 3 and note the type error.

1) q :int t (substitute sorts) = Int C
result : bool t (substitute sorts) = Bool C
first :(EC)—E

2) ((EC)— E) (Int C) = ((E C) — E) (Bool C)

3) Int = Bool

This next example converts a queue to a stack. It shows how type checking
works in the presence of type variables and multiple type constructors; it uses
sorts from two different traits, Que and Stk.

signature StackToQueue = sig
(*+ using Que, Stk +%)
type 'at (*+ based on Que.E Que.C +#)
type ’as (*+ based on Stk.A Stk.S ++)
val convert: 'at — ’as
(*+ convert q
ensures Que first(q) = Stk.top(result) +x)

This example type checks successfully. In the second step below, the type
checker unifies E of (E C) with the ’a of (’a C), which implies that any type
that substitutes for 'a must be associated with a sort that can substitute for E
in Que; the A of (A S) unifies with the ’a of (’a S), with a similar implication.

1) q ‘at (substitute sorts) = ’a C
result ‘as (substitute sorts) = ’a§
first :(EC)—E
top :(AS)— A

2) (EC)—E)(aC)=((AS)~—A)(aS)

3) 'a="a

The expression Que.first(result) would not type check. Substituting sort
expressions gives us ((E C) — E) (’a S), but (E C) does not unify with (’a S).

302

2.1.8 Ezample Implementations

Figures 3 and 4 show two different ML implementations that satisfy the QUEUE
specification. The first implementation represents a queue as a list, where the
head of the list is the first element. The second implementation represents a
queue as a pair of lists, where the head of the first list is the first element and
the head of the second list is the last element. If a dequeue is performed when
the first list is empty, the second list is reversed to form a new first list.

2.2 Symbol Table

Although most ML programs are purely functional, ML programmers do
use imperative constructs (i.c., refs, arrays, and commands for input and out-
put). Thus, we do need to be able to specify side effects. Larch is particularly
appropriate for dealing with the impure aspects of ML; in contrast, Sannella
and Tarlecki’s Extended ML specification language [11], also based on algebraic
axioms, handles only the purely functional subset of ML.

The symbol table example in Figure 5 shows a Larch/ML interface used to
specify a mutable symbol table. It uses the SymTab trait in Figure 6.

The based on clause states that objects of the ML type table range over
values denoted by the terms of sort S specified in the SymTab trait. Each
modifies clause lists those objects whose value may possibly change as a result
of executing the corresponding function; lookup is not allowed to change the
state of its symbol table argument, but insert and delete are. In an ensures
clause we use t% to stand for the value of the table in the final state and simply
t for the value in the initial state. The clause fresh(t;) in the init function
specifies that the object top; is newly created.

This example shows how in ML a signature may contain substructures, e.g.,
Key and Value, and hence refer to names they export, e.g., key and value. For
this reason, to avoid possible name conflicts in the pre- and post-conditions, we
qualify each operator name with the name of the trait in which it is introduced;
alternatively, we could name for each trait listed in the using clause the sort
and operator names explicitly “imported” from that trait.

2.3 Open Problems
2.3.1 Handling higher-order functions

ML functions typically take functions as arguments and return them as results.
Since the assertion language of Larch interfaces is first-order, we cannot write
in the post-condition of function P the assertion “apply(Q, A)” where “apply”
is a higher-order function, Q is the functional argument to P and A is some
list of arguments for Q. We do not necessarily even want to state this kind
of assertion since the interface should specify only the effects of P, not how
to achieve them (e.g., by applying Q). In principle, since P’s implementor is
not required to call Q, but only to ensure P’s effects are as if P called Q, P’s
implementor is free to completely ignore Q.

Our current design of Larch/ML mimics other Larch interface languages
by handling functional arguments using a “macro-substitution” approach. In-
stead of writing “apply(Q, A)” we would write in P’s post-condition something

303

structure Queue : QUEUE =
struct
type 'at = ’alist
exception Deq

fun create () =[]

fun enq ([],x) = [x]
| enq ((hd::tl),x) = hd::(enq(tl,x))

fun deq [] = raise Deq
| deq (hd::tl) = (hd,tl)

fun len q = length q

end

Figure 3: A Queue Implemented by a List
structure Queue : QUEUE =
struct
datatype ’a t = Q of {front: 'a list, rear: ’a list}
exception Deq
fun create () = Q{front=nil,rear=nil}
fun enq ((Q{front=f,rear=r}),x) = Q{front=f rear=(x:r)}
fun deq (Q{front=(hd::tl),rear=r}) = (hd,Q{front=tl rear=r})
| deq (Q{front=nil,rear=nil}) = raise Deq
| deq (Q{front=nil,rear=r}) = deq(Q{front=rev r,rear=nil})

fun len (Q {rear, front}) = length (rear) + length (front)
end

Figure 4: A Queue Implemented by a Pair of Lists

304

signature SYMBOLTABLE = sig
(++ using SymTab +%)
structure Key: KEY
structure Value: VALUE
type table (»+ based on SymTab.5 +%)
val init: unit — table
(++init () = ¢t
ensures t = SymTab.emp and fresh(to!,j) +%)
val insert; table + Key.key * Value.value — unit
(*+ insert (t, k, v)
modifies t
ensures t% = SymTab.add(t, k, v) +%)
val lookup: table * Key.key — Value.value
(*+ lookup (t, k) = v
requires SymTab.isin(t, k)
ensures v = SymTab find(t, k) +%)
val delete: table * Key.key — unit
(*+ delete (t, k)
requires SymTab.isin(t, k)
modifies t
ensures t% = SymTab.rem(t, k) +%)
end

Figure 5: Larch/ML Specification of a Mutable Symbol Table

SymTab: trait
introduces
emp: — S
add: §, K,V — S
rem: S, K —S
find: §, K=V
isin: S, K — Bool
asserts
S generated by (emp, add)
S partitioned by (find, isin)
¥ (s: S, k, kl: K, v: V)
rem(add(s, k, v), k1) == if k = k1 then rem(s, k)
else add(rem(s, k1), k, v)
find(add(s, k, v), k1) == if k = k1 then v else find(s, k1)
isin(emp, k) == false
isin(add(s, k, v), k1) == (k = k1) V isin(s, k1)

implies

converts (rem, find, isin) exempting V k: K (rem(emp, k), find(emp, k))

Figure 6: SymTab Trait

305

like “Q.spec with (A for F),” which refers to Q’s specification, Q.spec, with
appropriate renamings of actuals, A, for formals, F.

For example, in Figure 7, the function map takes a function convert as an
argument. The specification of map refers to the specification of convert as
convert.spec. We can think of these references as follows. For each application
of map, the specification clause of the actual parameter for convert is macro-
expanded into the specification of map. In the call pattern for map, we give
the argument of convert a local name, x, which stands for the argument of any
function passed as an actual parameter for convert. Renaming of the local name
stands for renaming of the argument within the specification of any function
passed as an actual parameter for convert. The local name result is given
to the result of all function parameters. Note that the specification of map
refers to itself. If we assume that macro expansion is lazy, a recursively-defined
specification is well-formed if a base case is given.

signature Q = sig
(#+ using Que +%)
type 'a t (++ based on Que.E Que.C +#)
val map: 'a—'b) = ’at > 'bt
(*+ map (convert(x)) q
ensures
convert.spec with
(Que.first(q) for x, Que. first(result) for result)
an
map.spec with
(convert for convert, Que.rest(q) for q,
Que.rest (result) for result) +x)
end

Figure 7: Specification of a Higher-Order Function

This solution is not entirely satisfying. Aside from the cumbersome syntax,3
the thorniest technical problem is in dealing with functional arguments with
side effects. Since an interface denotes a predicate over two states, in speci-
fying the behavior of a function P with a side-effecting functional argument
Q, we cannot explicitly assert anything about the intermediate states that P
would see in calling Q, but be hidden from P’s caller. The semantics of Larch
interface languages designed so far (e.g., for C [3}, CLU [13], and Modula-3 [6})
have either ignored or have been limiting in their way of handling functional
arguments. The advantage of looking at this issue in ML is that ML’s formal
semantics makes it possible to talk precisely about state and side effects. On
the flip side, ML naturally pushes Larch to deal with higher-order functions as
“first-class citizens” rather than as at the fringes of more traditional imperative
programming languages; this push may be sufficient impetus for going beyond
Larch’s first-order restriction.

3which would be especially annoying to ML programmers who use functional arguments
as the norm rather than the exception.

306

2.8.2 Sharing

In ML it is possible, and sometimes necessary, to allow sharing of types and even
substructures between different program modules. For example, in building a
compiler, a parser module and an abstract syntax tree module might need
to share a symbol table. ML has a facility for letting programmers specify
sharing constraints between types and between structures. Checking whether
a constraint is met is determined by type or structure equality, as the case may
be, since this check is easily computable. In a more complete Larch/ML we
would like to allow the specifier to attach additional semantic constraints (e.g.,
expressed as equations or a trait) on a shared type or structure. We would
view these constraints as a shared theory in the sense of Larch.

2.8.9 Polymorphism

ML functions and structures can be defined using type variables. The closest
that previous Larch interface languages have come to dealing with type vari-
ables is with CLU’s parameterized modules. Again, the Larch treatment was
syntactic in nature. Unlike for functional arguments, however, the syntactic
approach to dealing with type variables should suffice for a Larch/ML, which
we have done in our current design. However, we need to do a more careful
semantic analysis to support this claim.

2.8.4 Other “lypes” of types

Features of ML we have not touched on in this paper include: equality types,
sirong versus weak types, datatypes, and abstractions. We have not at all
addressed the semantics of Larch/ML with respect to these features; some
(equality and weak types) raise new questions and others (datatypes and ab-
stractions) raise issues already addressed in other Larch interface languages.

In ML the equality test is defined for values constructed of integers, reals,
strings, booleans, tuples, lists and datatypes. Equality testing is not possible for
function types and abstract types. Therefore ML supports the notion of equality
types, types that admit equality testing, which users may define through an
eqtype declaration. Just as for a type declaration, Larch/ML allows a based
on clause attached to an eqtype declaration.

ML’s reference values denote store locations that can be updated. Since
ML'’s basic type checking algorithm does not cope with assignments to poly-
morphic references, ML provides a class of type variables called weak type
variables (e.g., '1a), which offer a limited degree of polymorphism. Larch/ML
allows weak type variables in function declarations and relies on the ML type
checker to ensure that the rules applied are the same as those for checking a
plain ML signature module.

In Larch/ML we treat ML’s datatype declarations as “exposed” (concrete)
types (a la Larch/C) since defining a datatype in a signature module is like
exposing the representation of an abstract type to the module’s client.

ML supports abstract data types through abstraction modules.* An ab-
straction, abstraction S: SIG = struct ... end, is a special kind of structure

4In our design of Larch/ML we choose to ignore abstypes since they have been supplanted
by abstractions.

307

in ML that limits the view of the structure to be exactly what is specified in the
signature SIG of the abstraction S. Thus Larch/ML interfaces might very well
be implemented by abstractions. Rules for determining when an abstraction
satisfies a Larch/ML interface would extend existing ML rules for determining
when an abstraction satisfies an ML signature.

3 A New Application for LP
3.1 Specification Matching

We are exploring the idea of using the Larch Prover to do specification match-
ing. In general we need to prove some formula that looks like:

s; satisfies q

Consider the specification of the symbol table in Figure 5 to be the query g¢.
We might want to retrieve different symbol table implementations that satisfy
q. Suppose there are four implementations, each (informally) specified to have
the following properties:

1. 5; stores its entries in an order based on the lexicographic ordering of
keys. No duplicates are stored.

2. s, stores its elements in insertion order. No duplicates are stored.

3. sg retains multiple, possibly duplicate, bindings to the same key, but upon
lookup always returns the value most recently bound to the given key.

4. s4 retains multiple, possibly duplicate, bindings to the same key, and
upon lookup returns any one of the values bound to the given key.

Intuitively, the first three, and not the fourth, satisfy the query ¢ and hence
should be retrieved. (¢ maintains an unordered set of keys to which values are
bound, and lookup always returns the most recently bound value.)

To make this intuition more concrete, let us first assume that the specifica-
tion and query languages are drawn from the same logical language. Let this
logical language be a first-order predicate language over equality, where terms
are drawn from the term language of LSL, equality is defined as in LSL, and
quantifiers are over state variables. We now need to show for a given module
specification s;:

s;. Th D q.Th

where s;.Th stands for associated theory of the i*" specification and ¢.Th stands
for associated theory of the query g. It is beyond LP’s ability to handle the
above formula since it is a statement about theory containment.

However, now consider a subproblem-that of matching an individual func-
tion’s specification-which would be necessary to partially prove the above. For
retrieving ML functions whose specifications, s;, are written in terms of pre-
and post-conditions (as in Larch/ML), we need to match the corresponding
pre- and post-condition predicates of a given function query ¢. A pre-condition
is satisfied if the pre-condition of the query implies the pre-condition of the ML

308

function. That is, the function’s pre-condition can be weaker than the query’s
pre-condition, meaning that the function can be called in any context required
by the query as well as other contexts. A post-condition is satisfied if the post-
condition of the ML function implies the post-condition of the query. That is,
the function’s post-condition can be stronger than the query’s post-condition,
meaning that the function may produce results for any context required by
the query as well as other contexts. We capture these ideas in terms of LP

commands as follows:

... % other declarations and assertions
assert S generated by emp, add

... % other declarations and assertions
prove g.pre => s;.pre by induction
prove s;.post = q.post by induction

where z.pre and z.post stand for the pre- and post-conditions of component
z. Among the declarations and assertions in ..., we assert (as in the SymTab
trait) that terms of sort S are generated by operator symbols emp and add.
We then tell LP to prove the two implications by induction.

For example, suppose we want to retrieve the ML functions that assume an
element ¢ is in a collection ¢ upon invocation and ensure that it no longer is

upon return. That is,

g.pre = isin(c,e), and
g.post = ~ isin(c%,e).

Then looking at the delete function of Figure 5,

delete.pre = isin(t, k), and
delete.post = t% = rem(t, k).

To show that isin(c,e) = isin(t, k) LP needs to do appropriate renaming of
variables. More subtly, LP needs to show (or more realistically, to be told
by the user through LSL’s includes construct) that the theory of elements is
included in the theory of keys and the theory of collections is included in the
theory of symbol tables. To show t% = rem(t, k) =~ isin(c%,e) (i.e., that
an element removed from a collection implies that it no longer is a member
of the collection when that collection is a table), LP needs to do equational
reasoning. Figure 8 shows a proof sketch of what LP would need to prove given
the appropriate human guidance.

3.2 Open Problems
8.2.1 Re-engineering LP’s interface

We begin with some obvious limitations of LP with respect to its user interface,
rather than its functionality.

Translating a Larch/ML specification into LP input. As for other Larch in-
terfaces, associated with a Larch/ML specification is a set of predicates. These
predicates along with any of the trait theories the Larch/ML interface uses can
be stored in a file in a format that LP interprets as commands. LP already

309

Prove: t% = rem(t, k) =>~ isin(c%, ¢).

Rename ¢% to be t% and e to be k by the same reasoning above
about theory inclusion.
Then we need to show:

t% = rem(t, k) =~ isin(t%, k).

Assume t% = rem(t, k). Show ~ isin(t%, k).
Hence, show ~ isin(rem(t, k), k) by substitution for t%.

Proof: By induction on ¢.
Base: { = emp
~ isin(rem(emp, k), k). Exempt case
since rem(emp, k) is exempt.

Ind. step: Assume for all t1,k . ~ isin(rem(tl, k .
Let ¢ = add(t1, k1, v1). (rem(t1, b,). (1)
Show ~ isin(rem(add(tl, k1,v1),k), k).

Case 1: k = k1. From the then part of equation
for rem, we get:
~ isin(rem(t1, k), k) which is true by IH.
Case 2: k # k1. From the else part of equation
for rem, we get:
~ isin(add(rem(tl, k), k1,v1), k)
By the last equation in SymTab trait, we have:
~ isin(rem(t1, k), k) which is true by IH.

Figure 8: A Proof Sketch for Specification Matching

has an execute command that has the effect of reading in a list of commands
from a file.

User Interaction. Once the translation from a Larch/ML specification to
LP input is done, then LP can essentially take over. Here is where the crux of
the problem lies. LP is designed to be a proof checker, not an automatic theo-
rem prover. Hence, the human user must painstakingly guide it into finding the
proof 9f a formula. Though LP does invoke some built-in rules of inference au-
to_mat.lcally, the human user plays a critical role in seeing a proof to completion.
Given the goal of retrieving software components from a program module li-
brary through specification matching, for typical queries, such interaction with
LP would be an unacceptably high price to pay.
. Hmfvever, given a sufficiently restricted specification and query language, it
is possible to do specification matching automatically. As a feasibility study.
we recently experimented with using AProlog [7] to show the use of speciﬁca-’
tions as search keys [10]. Our implementation encodes both LSL traits and
Larch interfaces into AProlog clauses. We used our AProlog version of Larch as
a specification language to describe a toy library of ML functions. We relied
on AProlog’s built-in higher-order unifier to do the satisfies check “for free”
(i.e., no theorem-proving or user interaction is needed). In support of our hy-
pothesxs, we f9l_md that including more semantic information in the search key
increases precision of a match. However, the primary limitation of our AProlog

310

experiment is AProlog’s inability to deal with equality; our specifications were
similarly limited in expressibility.® _

Vandevoorde uses LP as a backend to his Speckle checker [12]. He restricts
his input to LP to that which LP can handle automatically. His work sug-
gests that with similar kinds of restrictions, we can use LP as a backend for a
restricted form of specification matching.

3.2.2 Extending LP’s functionality

The problem of specification matching raises the following issues with respect
to the current functionality of LP. These issues are orthogonal to the inter-
face issues described above. and hence can be pursued in parallel. Extending
LP’s underlying logic would benefit not just our own resea:rch., but the Larch
specification community and the theorem proving community in geperal.

Algorithmic. LP supports a limited form of universal quantification through
its deduction rules. Every Larch interface language needs to be able to han-
dle not just universal quantification in a more general form, l{ut existential
quantification as well. Other users of LP have also suggested adding existential
quantification to support proofs of (bounded) liveness properties of concurrent
systems.

For a Larch/ML interface, we need to be able to specify higher-order func-
tions. If we were to extend the assertion language of an interface to support
higher-order logic, then we would need to understand how to extend LP sim-
ilarly. This extension would push against some known theoretical boundaries
(e.g., unification is known to be undecidable for orders greater than two and the
result is unknown for order equal to two when variables are restricted to range
over only types [5]); however, there exists a complete second-order matching
algorithm [4]. Performing even first-order unification over equational theories
raises some interesting issues. For example, EQLOG (2], which is based on
Horn clause logic with equality rather than full first-order predicate Falcull{s
with equality, uses the technique of narrowing as a means of exploiting uni-
fication and term rewriting in one system. It would be intere'sting‘ to explore
the design of efficient algorithms for performing (first-order) unification modulo
“small” (application-specific) equational theories. '

Finally, in order to perform the kind of specification matching suggested
by the symbol table example, in principle we need to show that some theory
includes another. A certain kind of theory containment (specifically, conser-
vative extensions) was once considered in the design of LSL (i.e., through the

imports clause) but was recently discarded; one of the reasons was that LP

cannot in general be used to check for conservative extension nor can reasonable
sufficient conditions be found for any but the most trivial examples. It would
be interesting to revisit this issue given a different motivating application.
Methodological. In reality, an LP proof of whether specification s; satisfies
a query q might best be broken into smaller subproofs. For example,_a pr9of
that a symbol table ML implementation satisfies the symbol table spec1ﬁca!.10n
is necessarily going to depend on the proofs of each of the il.n‘iividual functions
defined (e.g., insert and delete). LP comes with limited facilities to help users

5Sometimes a library component may satisfy a query, but without equality it cannot be
proved. Thus, the query processor may miss some library components that would be of
interest to the user.

311

manage proofs through a proof stack. A logically tree-structured proof is thus
flattened into the LP-imposed linear structure of a stack. One possible exten-
sion to LP would be to let users maintain and traverse a proof tree, rather than
a stack, to reflect more naturally proof structures and proof development.

LP’s interface with the file system can be extended to support a library of
proofs. The proof and specification subdirectories included with the sources to
LP are a step in this direction. Organizing proof and specification libraries so
they can be accessed from LP smoothly would be convenient for users.

4 Status of Design and Tools

We are in the midst of designing Larch/ML and have only been speculating on
the use of LP for specification matching.

We are building a checker/translator for Larch/ML. Since a Larch /ML spec-
ification is an ML signature with specification clauses included as special com-
ments, an ML compiler can check and compile a Larch/ML specification as a
regular ML signature. The Larch/ML translator parses, checks, and translates
the specification clauses. To check a Larch/ML specification fully, we first run
an ML compiler over it and then run the Larch/ML translator over it.

Since we can use names from the ML signature in the specification clauses,
the Larch/ML translator processes the ML signature, noting identifiers defined
in the signature and their types. In processing the specification clauses, the
translator does structural checks (e.g., a based on clause follows a type decla-
ration), namespace checks (e.g., all identifiers are uniquely defined), and type
checks (e.g., all clauses are well-typed).

For a given specification, the Larch/ML translator generates a fully-checked
abstract syntax tree that can be deposited into a persistent object base [9].
Then to search a software library, the Larch/ML translator would convert a
specification query to an abstract syntax tree, which would be matched against
all trees in the persistent object base. To match a query tree against a library
component tree, we would first signature match on the trees. If this succeeds,
we would then match each function in the query against a function in the
component, and then specification match on their specifications using the Larch
Prover as indicated in Section 3.

To date, we have completed structural and namespace checking for the
Larch/ML translator and are implementing type checking. We have already
added the capability of using a persistent object base to an ML compiler. We
have implemented signature matching (on ML function types), but not yet
specification matching.

Acknowledgments

We thank Greg Morrisett and Scott Nettles for their feedback on our design of
Larch/ML and Stephen Garland for his help with using LP.

This research was sponsored by the Avionics Lab, Wright Research and
Development Center, Aeronautical Systems Division (AFSC), U. S. Air Force,
Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa
Order No. 7597.

312

References

[1] Eric C. Cooper and J. Gregory Morrisett. Adding Threads to Standard
ML. Technical Report CMU-CS-90-186, School of Computer Science,
Carnegie Mellon University, December 1990.

[2] J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic mod-
ules for logic programming. In D. DeGroot and G. Lindstrom, editors,
Functional and Logic Programming, pages 179-210. Prentice-Hall, 1986.

[3] J.V. Guttag and J.J. Horning. Introduction to LCL: A Larch/C Interface
Language. Technical Report 74, DEC/SRC, July 1991.

[4] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

[5] G.P. Huet. A unification algorithm for typed A-calculus. Theoretical Com-
puler Science, 1:27-57, 1975.

[6] K. Jones. Lm3: A Larch Interface Language for Modula-3. Technical
Report 72, DEC/SRC, June 1991.

{7} D. A. Miller and G. Nadathur. Higher-order logic programming. In Third
International Conference on Logic Programming, London, July 1986.

[8] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[9] Scott M. Nettles and J.M. Wing. Persistence + Undoability = Transac-
tions. In Proc. of HICSS-25, January 1992.

{10] E.R. Rollins and J.M. Wing. Specifications as search keys for software
libraries. In Proceedings of the Eighth International Conference on Logic
Programming, Paris, June 1991.

[11] D. Sannella and A. Tarlecki. Program specification and development in
Standard ML. In Proceedings 12th ACM Symp. on Principles of Program-
ming Languages, pages 67-77, New Orleans, January 1985.

[12) M.T. Vandevoorde. Exploiting formal specifications to produce faster code.
MIT Ph.D. dissertation in progress, 1993.

[13) .M. Wing. A Two-Tiered Approach to Specifying Programs. PhD thesis,
MIT, May 1983. Available as MIT-LCS-TR-299.

[14] Amy Moormann Zaremski. Using semantic information to find program
modules. CMU Ph.D. dissertation in progress, 1993.

Author Index

Garland, S.J. ..o

Grgnning, P. "

GUASPATE, D. oot s 104
Guttag, J.V. cvncinsnnneneseinns 201
HENNICKET, R. o.oevvvreerrrrariennecessenensssssmtssssssssssssasssnsnstssssssssesssosssasasssssssss 18
HOMING, J.Jo cerreeemnitincessarsnrsssssessesenssisssinsssssiissss s sssissessssssssinss 201
JONES, KD coierierrencrrserecctsssesessnssssassssssssonssssscatassssssnsnsnenssassans 142

Lamport, L. c.eeiiencnnionnenereescssisinnns cerreearasterensase et st san s benens 86
Leavens, G.T.mevenrnsneciseninissimmsesnas st sscsisssssnsssanse v 159
LESCANNE, P. .oieierererereererrssesestsinsassestssss st sssasssssseesesisssassnsssensasasasss 55
Marceau, C. .ooeveveveseeveeeimrecnnieninas 104
Mellergaard, N. ...coooomieninenncnimiiiininns 185
NOITIE, K.J. coovrverrrrrrrrienecsesecvsssassssesessssssnnns 227
POLaK, W. ...oovirierenreniennescsmssessnsesssssssssssssssenessss 104
ROIINS, B oo ceereetreeesen s sersaerassse st s sssssnas s sessssasssisssssnsssasans 297
SAXE, J.B. reeeeereerecsrererennenss st e sttt s e s bR 201
SCOU, E.A. oooeeriiriereereresnsesesosisissstsssnsssnsssssssstsssssscrsasssressssanssssnsasnanss 227
Staunstrup, J. ...ccovvierernanns 185
Tan, YM. .eveceinene 246
Vandevoorde, ML.T. ... eieninasinosisissssissssssisssisesssssssssrssssass 262
VOISIN, F. coesesreresesesasensessesnccsstssssssnss s s assssssseanesesesssssssssessssasaanes 282
98

297

ZaremMSKi, A M. ..o seseertenssisis b et ssaa s st sre s et s 297

Also in this series

ALPUKS91, Proceedings of the 3rd UK
Annual Conference on Logic Programming,
Edinburgh, 10-12 April 1991

Geraint A.Wiggins, Chris Mellish and
Tim Duncan (Eds.)

Specifications of Database Systems
Intemational Workshop on Specifications of
Database Systems, Glasgow, 3-5 July 1991
David J. Harper and Moira C. Norrie (Eds.)

7th UK Computer and Telecommunications
Performance Engineering Workshop
Edinburgh, 22-23 July 1991

1. Hillston, P.J.B. King and R.J. Pooley (Eds.)

Logic Program Synthesis and Transformation
Proceedings of LOPSTR 91, International
Workshop on Logic Program Synthesis and
Transformation, University of Manchester,

4-5 July 1991

T.P. Clement and K.-K. Lau (Eds.)

Declarative Programming, Sasbachwalden 1991
PHOENIX Seminar and Workshop on Declarative
Programming, Sasbachwalden, Black Forest,
Gemmany, 18-22 November 1991

John Darlington and Roland Dietrich (Eds.)

Building Interactive Systems:
Architectures and Tools
Philip Gray and Roger Took (Eds.)

Functional Programming, Glasgow 1991
Proceedings of the 1991 Glasgow Workshop on
Functional Programming, Portree, Isle of Skye,
12-14 August 1991

Rogardt Heldal, Carsten Kehler Holst and
Philip Wadler (Eds.)

Object Orientation in Z
Susan Stepney, Rosalind Barden and
David Cooper (Eds.)

Code Generation — Concepts, Tools, Techniques
Proceedings of the Intemational Workshop on Code
Genention, Dagstuhl, Germany, 20-24 May 1991
Roben Giegerich and Susan L. Graham (Eds.)

Z User Workshop, York 1991, Proceedings of the
Sixth Annual Z User Meeting, York,

16-17 December 1991

J.E. Nicholls (Ed.)

Formal Aspects of Measurement

Proceedings of the BCS-FACS Workshop on
Formal Aspects of Measurement, South Bank
University, London, 5§ May 1991

Tim Denvir, Ros Herman and R.W. Whitty (Eds.)

Al and Cognitive Science *91
University College, Cork, 19-20 September 1991
Humphrey Sorensen (Ed.)

5th Reflnement Workshop, Proceedings of the 5th
Refinement Workshop, organised by BCS-FACS,
London, 8-10 January 1992

Cliff B. Jones, Roger C. Shaw and

Tim Denvir (Eds.)

Algebraic Methodology and Software
Technology (AMAST'91)

Proceedings of the Second Intemational Conference
on Algebraic Methodology and Software
Technology, Iowa City, USA, 22-25 May 1991

M. Nivat, C. Rattray, T. Rus and G. Scollo (Eds.)

ALPUK92, Proceedings of the 4th UK
Conference on Logic Programming,
London, 30 March-1 April 1992
Krysia Broda (Ed.)

Logic Program Synthesis and Transformation
Proceedings of LOPSTR 92, Intemational
Workshop on Logic Program Synthesis and
Transformation, University of Manchester,

2-3 July 1992

Kung-Kiu Lau and Tim Clement (Eds.)

NAPAW 92, Proceedings of the First North

American Process Algebra Workshop, Stony Brook,

New York, USA, 28 August 1992
S. Purushothaman and Amy Zwarico (Eds.)

Formal Methods In Databases and Software
Engineering, Proceedings of the Workshop on
Formal Methods in Databases and Software
Engineering, Montreal, Canada, 15-16 May 1992
V.S. Alagar, Laks V.S. Lakshmanan and

F. Sadri (Eds.)

continued on back page...

Ursula Martin and Jeannette M. Wing (Eds.)

First International
Workshop on Larch
Proceedings of the First International

Workshop on Larch, Dedham,
Massachusetts, USA, 13—15 July 1992

Published in collaboration with the
British Computer Society

Springer- Verlag

London Berlin Heidelberg New York
Paris Tokyo Hong Kong

Barcelona Budapest

