Extensions to Standard ML to Support Transactions

Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett, and Scott Nettles*
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A transaction is a control abstraction that lets programmers treat a sequence of operations as an atomic
(“all-or-nothing”) unit. This paper describes our progress on on-going work to extend SML with trans-
actions. What is novel aboul our work on iransactions is support for mulli-threaded concurrent trans-
actions. We use SML’s modules facility to reflect explicitly orthogonal concepis heretofore inseparable
in other transaction-based programming languages.

1 Revisiting Transactions

1.1 Separation of concerns

Transactions are a well-known and fundamental control abstraction that arose out of the database
community. They have three properties that distinguish them from normal sequential processes: (1) A
transaction is a sequence of operations that is performed atomically (“all-or-nothing”). If it completes
successfully, it commits; otherwise, it aborts; (2) concurrent transactions are serializable (appear to
occur one-at-a-time), supporting the principle of isolation; and (3) effects of committed transactions
are persistent (survive failures). Systems like Tabs [8] and Camelot [3] demonstrate the viability of
layering a general-purpose transactional facility on top of an operating system. Languages such as
Argus [4] and Avalon/C++ [2] go one step further by providing linguistic support for transactions
in the context of a general-purpose programming language. In principle programmers can now use
transactions as a unit of encapsulation to structure an application program without regard for how
they are implemented at the operating system level.

In practice, however, transactions have yet to be shown useful in general-purpose applications pro-
gramming. One problem is that state-of-the-art transactional facilities are so tightly integrated that
application builders must buy into a facility in foto, even if they need only one of its services. For
example, the Coda file system [7] was originally built on top of Camelot, which supports distributed,

*This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems
Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F 33615-90-C-1465, Arpa Order
No. 7597.

104

concurrent, nested transactions. Coda needs transactions for storing “metadata” (e.g., inodes) about
files and directories. Coda is structured such that updates to metadata are guaranteed to occur by
only one thread executing at a single-site within a single top-level transaction. Hence Coda needs
only single-site, single-threaded, non-nested transactions, but by using Camelot was forced to pay the
performance overhead for Camelot’s other features.

The Venari Project at CMU is revisiting support for transactions by adopting a “pick-and-choose”
approach rather than a “kit-and-kaboodle” approach. Ideally, we want to provide separable modules to
support transactional semantics for different settings, e.g., in the absence or presence of concurrency.
Programmers are then free to compose those modules supporting only those features of transactions
they need for their application.

1.2 Non-traditional applications

A second problem with existing transactional facilities is that they have been designed primarily with ap-
plications like electronic banking, airline reservations, and relational databases in mind. Non-traditional
applications such as proof support environments, software development environments, and CAD/CAM
systems want transactional features, most notably data persistence, but have different performance
characteristics. For example, these applications do not manipulate simple database records but rather
complex data structures such as proof trees, abstract syntax trees, symbol tables, car engine designs, or
VLSI designs. Also, users interact with these data during long-lived “sessions” rather than short-lived
transactions; indeed we can view a “session” itself as a sequence of transactions. For example, during a
proof session a user might explore one path in a proof tree transactionally; if the path begins looking like
a dead-end the user may choose to abort, backing all the way up to the first node in the path or perhaps
to some intermediate node along the way. Also, though multiple users may need to share these data,
simultaneous access might be less frequent. For example, proof developers might work on independent
parts of a proof tree, perhaps each proving auxiliary lemmas of the main theorem; software developers
might modify different modules of a large program. Finally, these non-traditional applications typically
support different update patterns. Whereas travel agents make frequent updates to airline reservations
databases, we do not expect to make updates as frequently to proofs of theorems saved in proof libraries.

The Venari Project’s application domain is software development environments; one specific problem
we are addressing is searching large libraries, e.g., specification and program libraries, used in the
development of software systems. We imagine the scenario in which a user searches a large library for
a program module that “satisfies” a particular specification. We might wish to perform each query as
a transaction, for example, to guarantee isolation from any concurrent update transaction or to abort
the query after the first n modules are returned.

Our effort to support a “pick-and-choose” approach for transactions has the advantage of providing
us with a way to take performance measurements on different combinations of our separable modules.
We have the potential to do different kinds of performance tuning for the non-traditional applications
we hope to support.

1.3 Contributions of this paper

SML’s modules system lets us cleanly exemplify our “pick-and-choose” approach. In the case of singie-
site, single-threaded, nested transactions, we support separately the persistence and undoability prop-

105

erties of transactions in terms of two different modules; we then compose them to build a module for
transactions [6]. We reported on this work at the Pittsburgh 1991 ML workshop. Also, along with
others at Carnegie Mellon, we have separately designed and built a threads package for SML/NJ (1].
We reported on this work at the Edinburgh 1990 ML workshop. !

This paper reports on our progress for combining our support for threads and that for transactions.
We address concurrency, in two ways: making an individual transaction multi-threaded and allowing
multiple transactions to run concurrently. To the transaction and database community, our work is novel
because it is the first to cast within a programming language a model of computation that supports
multi-threaded transactions. To the programming language community, our work is among the few
to extend the functional programming paradigm to support a traditionally imperative feature. To the
SML community, our application of the modules facility should be of particular interest.

In the rest of this paper, we motivate the desire to keep threads and transactions as separate control
abstractions (Section 2), give a snippet of the SML programmer’s interface to multi-threaded concurrent
transactions (Section 3), describe some details of our design (Section 4), discuss what features of SML
helped in our design and implementation effort (Section 5), and close with a list of future work (Section
6).

We emphasize that this paper describes on-going work. We are taking a pragmatic, bottom-up
approach; by prototyping individual features (e.g., persistence, undoability, read/write locking, nesting,
threads, and transactions) incrementally and then combining them in various ways, we can explore a
rich design space. This paper focuses on the hardest combination: threads and transactions. (Examples
of other reasonable combinations are “multi-threaded persistence” and “multi-threaded undoability.”)
Thus, for now we are concerned with providing efficient enough run-time mechanism to give systems
builders flexibility in deciding policy. Although the design described in Section 4 does reflect one
particular policy, our runtime mechanism is general enough to support alternate policies. Finally, we
have not thought greatly about the “ideal” programming interface to provide the SML end-user, but
look forward to designing one in the near future.

2 Keeping Threads and Transactions Separate

In languages like Argus and Avalon, a single thread of control is associated with each transaction. But
threads and transactions are orthogonal control abstractions. So, we would like to relax the restriction
of identifying threads and transactions by allowing multiple threads of control to execute within, and
on behalf of, a single transaction.

Figures la and 1b depict the traditional model, where we use a wavy line to denote a thread and a
box to denote a transaction; time moves from left to right. Figure la shows a single thread executing,
first entering a transaction and then leaving successfully (i.e., committing). Figure 1b shows two
single-threaded transactions executing concurrently. Figure lc depicts our new model where multiple
threads execute within a single transaction. And finally, Figure 1d depicts multi-threaded concurrent
transactions, the “composition” of Figures 1b and lc. The goal of Venari’s version of SML is to support
Figure 1d through module composition.

1For this paper to be somewhat self-contained, we include the cited Pers, Undo, Trans, and Threads signatures in
Appendices A and B.

106

(a)

(b)

(c)

(a)

sS4+ """~ 9 Single-threaded

transaction
e T e ——
Concurrent
transactions
e
Multi-threaded
r— e transaction

/@\‘—\J Multi-threaded
concurrent
Qﬁ_/\ N,

transactions

Figure 1: Threads and transactions are separate control abstractions.

107

2.1 Why have multiple threads within a transaction?

The most compelling argument for supporting multiple threads within a transaction is modularity.
Consider the following kinds of multi-threaded programs: (1) a search procedure that uses multiple
threads to find program modules satisfying a specification, returning when the first one is found; (2) a
procedure with benign side effects, e.g., rebalancing a B-tree or doing garbage collection, that executes
in the background of the main computation; (3) a netnews server that uses multiple threads to minimize
latency.

We would like to able to run such a multi-threaded program from within a transaction without
having to modify the source code. We would like to treat the program as a black box, reuse it in its
entirety, but have its effects done transactionally (i.e., atomic, serializable, and persistent). Without
being able to simply “wrap” a transaction around the program, we are forced to recode each separate
thread as a concurrent subtransaction of a top-level transaction. This violates one aspect of modularity
since the entire program has to be recoded.

2.2 Why have multiple threads at all?

Concurrent transactions have to be serializable. Thus, by definition, we can view transactions as
happening one after another. On the other hand, threads are often used for two-way communication
through shared, mutable resources (e.g., refs). If we identify each thread with a single transaction, then
we can no longer do two-way communication between threads. For instance, assuming we associate
each thread with a transaction, then Figure 2a shows thread/transaction A and thread/transaction B
executing concurrently. Transaction semantics require that the effects of A and B executing concurrently
are the same as that of either A executing first followed by B (Figure 2b), or vice versa. Suppose A
sends a message to B and B wants to acknowledge A; we cannot put A’s execution before B (since A
will never get the acknowledgment) nor can we put B before A (since B will never get the message).
Thus if we want to support two-way communication between processes, we need to support multiple
threads independent of transactions.

Another argument for supporting both threads and transactions as orthogonal concepts is perfor-
mance. In existing transactional systems, the runtime cost of creating and managing a transaction
(“heavyweight” process) is not the same as that for a thread (“lightweight” process). Transactions
require runtime mechanism to support protocols for locking, logging, committing/aborting, and crash
recovery. There are cases when parallelism is desired without the performance overhead of transactions.
Again, even if we were to recode one of our example multi-threaded programs with transactions, we
probably do not want to incur the cost of making each thread a transaction.

In short, transactions provide features that threads do not: persistence, undoability, isolation of
effects, atomicity of a sequence of operations, and crash recovery. Threads provide functionality, e.g.,
two-way communication, and performance benefits that transactions do not.

108

thread/transaction A

I~~~ —~—
(a)

W\/\

thread/transaction B

® ~~——_ 4+ L ——"

thread/transaction A thread/transaction B

Figure 2: Transactions are serializable.

109

3 Design Overview

As in our design for single-threaded transactions for SML [6], if £ is a function applied to some argument
a, then to execute:

fa

in a transaction, we want programmers to be able to write:
(transact f) a

or more probably,
((transact f) a) handle Abort => [some work]

Here £ might be multi-threaded. Informally, the meaning of calling £ with transact is the same as that
of just calling £ with the following additional side effects: If £ returns normally, then the transaction
commits, and if it is a top-level transaction, its effects are saved to persistent memory (i.e., written
to disk). If £ terminates by raising the exception Abort, then the transaction aborts and all of £’s
effects are undone. Through SML’s exceptional handling, in the case of an aborted transaction, the
programmer has control of what to do such as clean-up and/or reraising Abort. Note that we support
the usual model for subtransactions: the persistence of a child’s effects is relative to the commit of its
parent and aborting a child does not imply the abort of its parent.

We have implemented the interfaces shown in Figure 3. We use standard two-phase read/write
locks to ensure serializability among concurrent transactions. We use Moss’s locking rules for nested
concurrent transactions (5].

Two items of note are visible through these interfaces. First, the TRANSACT signature shows the
clear separation between threads (the substructure Thread System) and transactions (the substructure
Trans).2 The functor header additionally shows how we have achieved modularization of our support:
concurrency within a transaction is packaged in TRANS_.THREAD; concurrency among transactions,
in RW_LOCK; transaction undoability, in UNDO.

Second, we guarantee the principle of isolation for transactions by making use of “safe” refs [9] (and
correspondingly “safe” arrays). In the context of just threads, a normal SML ref is unsafe, while a ref
protected by a mutex is a safe ref. In the context of transactions, a ref protected by only a mutex is an
unsafe ref, while a ref protected by both a mutex and a read/write lock is a safe ref. A read or write of
a safe ref will fail unless the thread (transaction) holds the mutex (read/write lock) of the ref. Thus, it
is impossible to violate the isolation principle if the programmer uses only safe refs.

2 pAppendix B shows parts of the THREAD_SYSTEM and other relevant signatures; see [1] for a discussion of threads
in SML.

110

signature TRANSACT =

sig
structure Trans :
sig
exception Abort
val transact : (’a -> ’b) -> ’a => 'b
val abort_top_level: unit -> ‘a
val abort: unit -> ’a
eqtype rw_lock
val rw_lock : unit -> rw_lock
val acquire_read : rw_lock -> unit
val acquire_write : rw_lock -> unit
end
structure SRef : SREF

structure SArray : SARRAY

structure Thread_System : THREAD_SYSTEM

sharing type SRef.lock = SArray.lock = Trams.rw_lock
sharing type SRef.uref = Thread_System.SRef.sref
sharing type SArray.uwarray = Thread_System.SArray.sarray

end
functor Transact (structure TT : TRANS_THREAD

structure RW : RW_LOCK
structure SRef : SREF
structure SArray : SARRAY
structure Undo : URDO
sharing type SRef.lock = SArray.lock
sharing type SArray.lock = RW.T
sharing type SRef.uref = TT.TS.SRef.sref
sharing type SArray.uarray = TT.TS.SArray.sarray)

: TRANSACT = struct ... end

Figure 3: Signature and functor modules for transactions.

111

4 Design Details

4.1 Simplifying assumptions

To simplify our model, and hence our design, we assume that there is exactly one thread that enters a
transaction and exactly one that leaves a transaction. We do not lose any generality since we can always
immediately fork off multiple children upon entry and we can always force all threads to join into one
upon exit. Second, again without loss of generality, we will assume that conceptually the thread exiting
is the same as that entering; we call this the transaction’s root thread.® Finally, we assume no mutexes
are held before a transaction begins. We make this assumption so we do not have to reacquire locks
that were held upon entering a transaction in case an abort occurs. Doing so could cause a deadlock:
Suppose the entering thread ¢ holds a lock and then releases it sometime during the transaction. A
thread s outside the scope of the transaction then acquires it. If the transaction now aborts, and we
are to undo all of its effects, including reacquiring the lock, we may deadlock if s is waiting to acquire
some other held lock.

4.2 Per transaction state

Just as there is per thread state [1], we assume there is per transaction state. This state includes four
pieces of separable information:

e The data objects accessed by the transaction. Since the order of modifications to these data
objects is important with respect to abort, we call this information the (data) undo list.

e The set of mutex locks held by threads within a transaction. We call this information the mutez
lock set.

e The set of read and write locks held for the duration of the transaction. We call this information
the read-write lock set.

e The set of threads running on behalf of the transaction.

The first piece of information (data state) is separable from the other three (synchronization state)
which we need to maintain because of concurrency due to threads.

4.3 Who commits and who aborts?

Our design gives the root thread the privilege of committing the transaction and the responsibility of
knowing when it is safe to do so. However, for abort, any thread may encounter a state in which the
th-ead cannot back out of and knowingly wish to cause the abort of the entire transaction; the root
thread need not be the only thread to determine that an abort is necessary. Thus, rather than requiring
such a thread to communicate with the root thread who could then cause the abort, we permit any
thread to cause an abort.

3We could relax this assumption by letting threads pass a “baton” among each other, where the baton’s flow of control
would reflect that of the root thread, but this relaxation is unnecessarily general.

112

4.4 What happens upon commit?

The effect of a commit is to preserve all data state changes made by the committing transaction. Upon
commit, we do the following:

1. Stop all other active threads running on behalf of the transaction so they do not continue to
modify state;

2. If the transaction is top-level, throw away the data undo list since we do not need to save the old
data values; otherwise, anti-inherit the list to its parent.

Release all mutex locks held by non-root threads running on behalf of the transaction.
Anti-inherit all read/write locks to its parent [5].

If the transaction is top-level, save the state of persistent memory.

1 g

Exit the transaction and continue processing.

4.5 What happens upon abort?

A transaction may voluntarily abort or be involuntarily aborted (e.g., due to a system crash). Following
our semantics for single-threaded transact [6], we mask any exception as an abort. Moreover, we treat
any unhandled exception as an abort. The effect of an abort is to undo all changes to the data state
made by all threads executing on behalf of the transaction. Upon abort, we do the following:

1. Stop all other active threads running on behalf of the transaction so they do not continue to
modify state;

2. Follow the undo list backwards, rewriting all old data values.
3. Release all mutex locks held by threads running on behalf of the transaction.
4. Release all read/write locks.

It is critical that we first undo the data values, then release mutexes, and then release read/write
locks. Data are protected by mutexes; read/write locks are implemented using them. If we were to
release mutexes before undoing all data values, then a thread may modify a data object after the old
value gets rewritten. In order to release a read/write lock, we need to be able to acquire other mutexes;
if we were not to release mutexes before read/write locks, we could end up in a deadlock situation.

5 Where SML Made a Difference

The SML modules facility is key to our “pick-and-choose” approach. It lets us explicitly reflect the
inherent orthogonality of concepts like persistence, undoability, multi-threading, and transactions by
letting us define separate structures for each and then functors that compose them. The Transact
functor that builds a structure for multi-threaded transactions is one example (Section 3). When we
prototyped our implementation for single-threaded, non-concurrent transactions (Appendix A), we also

113

used a functor parameterized over Pers and Undo structures, which respectively provide persistence
and undoability.

We also parameterized the Thread System structure itself so that the programmer can pick-and-
choose among separable support for persistence, undoability, and multi-threading. The Fox Project at
CMU, for example, needs only multi-threading; it does not have to use a separate threads module, but
rather it just has to apply the Thread_System functor to Undo and Pers structures that are essentially
“no-ops.” Moreover, it is to SML’s credit that modifying the original Thread System structure to work
with Undo required only two lines of additional code: to “turn off undo” while doing a thread operation
(e.g., acquiring a mutex) and to “turn it back on” when the operation is completed.

Another way we are able to exploit the modules facility is in code reuse. For example, we use only
one functor to implement both kinds of safe refs, that for just threads and that for transactions (q.v.,
sharing type SRef.uref = TT.TS.SREf.sref of Figure 3).

Having first-class functions in SML lets us easily support first-class transactions. This view of trans-
actions is a radical departure from the more traditional view taken by other transaction-based program-
ming languages. Programmers in Camelot, Argus, and Avalon write constructs like begin_transaction

end_transaction to bracket transaction boundaries and cannot treat the compound statement
as a value.

We relied on the “mostly functional” nature of SML in our implementation of undoability and
persistence. For example, our implementation for undoability keeps a log of all modifications to the store
and the old values originally assigned to the modified locations. For traditional imperative languages
where modifications to the store would be frequent, maintaining and replaying such logs would be
expensive. Such a log is inexpensive to maintain for SML since we can assume mutations are rare.

Though we greatly benefit from SML’s static typing, one place where we need dynamic types is in
our support for persistence. Our interface allows us to add bindings between identifiers and values to a
persistent environment; SML cannot statically determine whether the type of the value returned by a
subsequent retrieve (e.g., upon startup of a new SML session or upon crash recovery) on some identifier
is the same as the type of the value when it was initially bound.

In summary, SML is a nice vehicle with which to express separable concepts. Though SML may not
be the natural language of choice in which to support transactions, it is a natural language of choice for
the non-traditional applications of transactions that we have in mind. Many of CMU’s projects that
involve reasoning about programs, Edinburgh’s LEGO “proofs-as-programs” system, Cornell’s NuPrl
system, and AT&T Bell Labs’s proof support environment all use SML as their implementation lan-
guage. These applications need some, if not all, transactional features like data persistence, concurrency
control, checkpointing, backtracking, and crash recovery. We hope to provide these potential users with
a set of SML modules that they can use in a “pick-and-choose” fashion.

6 Status and Future Work

We have a working prototype of all the interfaces given in this paper, but much work remains:

e Language design: As mentioned in the introduction we have yet to do a design of an SML end-
user’s interface for multi-threaded concurrent transactions. We are also still exploring different
policies that our mechanisms can support. We may export different end-user interfaces, each
reflecting a different policy.

114

o Semantics: We have been negligent in working out any formal semantics for our extensions to SML.
Some of the challenges specific to SML include a semantics for undoability and a semantics for
the interactions between callcc and tramsact; specific to transactions, a model of computation
and meaning of correctness for multi-threaded concurrent transactions.

e Implementation: After our prototype becomes stabler, we intend to build sample applications and.
perform experiments to measure the costs of our extensions.

Acknowledgments

We thank the rest of the Venari Group for their discussions: Gene Rollins, Amy Moormann Zaremski,
Nick Haines, Darrell Kindred, and Drew Dean. Nick and Darrell, in consultation with Scott Nettles and
Greg Morrisett, are now rebuilding the prototype implementation originally built by Greg and Manuel
Faehndrich. Drew, who is building a file system in SML, may very well be Venari’s first real client.

References

[1] E.C. Cooper and J. Gregory Morrisett. Adding threads to Standard ML. Technical Report CMU-
CS-90-186, CMU, December 1990.

[2] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties
in Avalon/C++. IEEE Computer, pages 57-69, December 1988.

[3] J. Eppinger, L. Mummert, and A. Spector. Camelot and Avalon: A Distributed Transaction Facility.
Morgan Kaufmann, 1991.

[4] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed
programs. ACM TOPLAS, 5(3):382—-404, July 1983.

[5] J.E.B. Moss. Nested transactions: An approach to reliable distributed computing. Technical Report
MIT/LCS/TR-260, MIT, April 1981.

(6] Scott M. Nettles and J.M. Wing. Persistence + Undoability = Transactions. In Proc. of HICSS-25,
January 1992.

[7] M. Satyanarayanan et al. Coda: A highly available file system for a distributed workstation envi-
ronment. J[EEE Trans. Comp., 39(4):447—459, April 1990.

[8] A.Z. Spector et al. Support for distributed transactions in the TABS prototype. IEEE TSE,
11(6):520-530, June 1985.

[9] A.P.Tolmachand A.-W. Appel. Debugging Standard MU without reverse engineering. In Proceedings
of the ACM Lisp and Functional Programming Conference, pages 1-12, 1990.

115

Appendix A: Persistence and Undoability

Figure 4 illustrates persistence and undoability as orthogonal concepts; we compose tze= 1o icrmsingle-
threaded, non-concurrent, nested transactions. In Figure 4a, as a thread execuies. = :ail ic pers:ist
has the effect of saving all values reachable from a persistent handle to disk. Iz Figzre 4%, a cali to
checkpoint has the effect of “remembering” the store at the point of call; a call to rest=ze has the efect
of undoing the effects on the store, reverting back to that at the (dynamically) last ¢z 1o czeckpoint.

Finally, Figure 4c shows how we compose checkpoint with persist to give us trazsacuicz commit:
checkpoint with restore to give us transaction abort. The signatures for persistence. =ndoadility. and
transactions that follow are unfortunately slightly different from that described in I . but Zo rezfect

the current working version of our implementation. The primary difference between :ze TRANSACT
signature here and its analogue in Figure 3 is the absence of an interface for reac wriis iocxs. which 1s
not needed in the absence of concurrency.

signature PERS = sig
exception INIT_FAILED
exception PERSIST_FAILED
val init: string * string * bool -> unit
val persist: (’a -> ’b) -> ’a -> 'b

type identifier -

exception UnboundId

val bind: identifier * ‘a -> unit

val unbind: identifier -> unit

val retrieve: identifier -> ’a
end

signature UNDO = sig
exception Restore of exn
val checkpoint: (’a -=> 'b) => 'a ->’b
val restore: exn -> ’a

val exn2restore: (’a -> ’'b) -> ’‘a -> 'b

val restore2exn: (’a -> ’b) -> ’a =>’b

val restore_on_exn: (’a -> 'b) => ’a =>’'b
end

signature TRANSACT = sig
val transact: (’a -> ’b) -> ‘a ->’'b

exception Abort
val abort_top_level: unit -> ’'a
val abort: unit -> ‘a

end

116

(a) Persistence only

_bl persist

conmsammeeess=® L ootore (b) Undoability only

checkpoint

N~ f~———p Commit

checkpoint persist (c) Transactions
(single-threaded)
Oops!
/V\N9< Abort
e
checkpoint restore

Figure 4: Persistence + Undoability = Transactions

117

Appendix B: Threads
Our Threads interface and parts of the TRANS_.THREAD and THREAD_SYSTEM signatures:

signature THREAD = sig
val fork : (unit -> unit) -> unit
val exit : unit -> unit

type mutex
val mutex : unit -> mutex
val with_mutex : mutex -> (unit => ’a) -> ’a

type condition

val condition : mutex -> condition

val with_condition : condition -> (unit -> ’a) -> 'a
val signal : conditiom -> unit

val broadcast : condition -> unit

val await : condition -> (unit -> bool) -> unit

val vwait : condition -> (unit -> ’a optiom) -> ’a

exception Undefined

type ’'a var

val var : unit -> ’la var

val get : 'a var -> ’a

val set : ’a var -> ‘a -> unit
end

signature TRANS_THREAD = sig
structure TS : THREAD_SYSTEM
structure TransID : sig ... end

end

signature THREAD_SYSTEM = sig
structure Thread : THREAD

structure SRef : sig ... end
structure SArray : sig ... end
end

118

</‘/m‘(2’/f M
/

ACM SIGPLAN Workshop on ML and its Applications

San Francisco, California
June 20-21, 1992

Workshop Committee

General Chair

David MacQueen AT&T Bell Laboratories
Program Chair

Peter Lee Carnegie Mellon University
Program Committee

Simon Finn Abstract Hardware, Ltd.

Emden Gansner AT&T Bell Laboratories

Robert Harper Carnegie Mellon University

Peter Lee Carnegie Mellon University

Michel Mauny INRIA

John Mitchell Stanford University

Mads Tofte University of Copenhagen

