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" Abstract
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Avalon/C++ programs should read this document, though not necessarily all of it It contains a quick overview of
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manual for the Avalon extensions to C++, a library of built-in classes, and a list of practical programming
guidelines. The appendices include the language’s grammar and the UNIX man pages for acc, the Avalon/C++
Preprocessor.
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1. Overview

1.1. Terminology

A distributed system consists of multiple computers (called nodes) that communicate through 2 petwork.
Distributed systems are typically subject to several kinds of failures: nodes may crash, perbaps destroying local disk
storage, and communications may fail, via lost messages or network partitions. A widely-accepted technique for
preserving consistency in the presence of failures and concurrency is to organize computations as sequential
processes called transactions. Transactions are atomic, that is, serializable, transaction-consistent, and persistent.
Serializability means that transactions appear o execute in a serial order. Transaction-consistency ('‘all-or-
nothing’*) means that a transaction either succeeds completely and commits, or aborts and has no effect. Persistence
means that the effects of a committed transaction survive failures.

An Avalon/C++ program consists of a set of servers, each of which encapsulates a set of objects and exports a set of
operations and a set of constructors. A server resides at a single physical node, but each node may be home to
multiple servers. An application program may explicitly create a server at a specified node by calling one of its
constructors. Rather than sharing data directly, servers communicate by calling one’ another’s operations. An
operation call is a remote procedure call with call-by-value transmission of arguments and results. Objects may be
stable or volatile, stable objects survive crashes, while volatile objects do not. Avalon/C++ includes a variety of
primitives for creating transactions in sequence of in parallel. and for aborting and committing transactions. Each
transaction is identified with a process, and is the execution of a sequence of operations.

Transactions in Avalon/C++ méybe pested. A subtransaction’s commit is dependent on that of its parent; aborting a

parent will cause a committed child’s effects to be rolled back. A transaction’s effects become permanent only
when it commits at the top level. We use standard tree terminology when discussing pested transactions: a
transaction T has a unique paremt, a (possibly empty) set of siblings, and sets of ancestors and descendants. A
uansu:ﬁoniscomidexeditsownancestorordescendant. IfuansactionBisanancutorofA,nmAiscownimd
with-respect 10 B ifcverymacﬁonthaisbothmancestmoanndapmperdcscendamofBhmcommitted. IfB
isnotanancstorofA.thenAiscomnﬁuedwithmpeamB if A is committed with respect to the least common
ancestor of A and B in the transaction tree. :

Avalon/C++ provides transaction semantics via atomic objects. All objects accessed by transactions must be atomic
to ensure their serializability, transaction-consistency, and persistence. Avalon/C+ provides a collection of built-in
atomic types, and users may define their own atomic types by inheriting from the built-in ones.

Sometimes it may be too expensive to guaraniee atomicity at all levels of a system. Instead it is often useful to
implement atomic objects from non-atomic components, called recoverable objects in Avalon; they satisfy certain

weak consistency properties in the presence of crashes. Users who define their own atomic types from non-atomic
components are responsible for ensuring that their types are indeed atomic.

1.2. Avalon/C++ Specifics

Avalon/C++ is a superset of C++[14], itself an extension of C [7). C++ is designed to0 combine advantages of C,
such as concise syntax, efficient object code, and portability, with important feamures of object-oriented
programming, such as abstract data types, inheritance, and generic functions. We assume the reader has some
knowledge of C++ and freely use its terminology; see [14] for more information on C++.

Avalon's run-time environment relies on the Camelot system [13, 12] to handie operating-system level details of



transaction management, inter-node communication, commit protocols, and automatic crash recovery. We benefited
extensively from the Camelot Library [1], which provides a clean interface between the Avalon and Camelot
implementors. Some of Avalon’s design was influenced by Camelot, in particular those aspects that Camelot
implementors worked hard to make efficient; however, the reader is not expected to know Camelot nor use it

directly.

Much of Avalon’s design has been inspired by Argus [11] and we owe the descriptions of some of Avalon’s control
structures to the Argus Reference Manual [10]. For other papers on Avalon/C++, please see [2, 5, 6_. 16).

1.3. A Roadmap to this Document
The rest of this document is divided as follows:

Chapter 2 A tutorial introduction to the language. Detailed walkthroughs of three simple examples.
Chapter 3 . i\ reference manual for the Avalon extensions to C++. Note that it is only about nine pages
ong. :
Chapter4 - A library of Avalon built-in classes and the catalog server.
Chapter 5 A list of practical guidelines for novice and expert programmers.
Appendix I The full grammar for Avalon/C++.
Appendix )11 The Unix man pages for running acc, the Avalon/C++ Preprocessor. -
A Note on Specifications

In writing the descriptions of the meanings of operations, in particular a class’s member functions, we use the
following clauses: ' ' .
« modifies: A list of objects whose values may possibly change as a result of executing the operation. -

oreqnirazApte-condidononmyinvocaﬁon.santbeoperaﬁon. The caller is responsible for

ensuring it bolds; the implementor may assume it holds at the point of invocation.
owhen:Aconditionontbesmeofthesystetnthatmustholdbefo:etheopenﬁonproceeds. This

.

condiﬁonisoﬁennecessarytogivesineemesm of the syscmmaychangcbetweenthepmnof-
invocaﬁonandmeacmalpoimofexecuﬁonofmopenﬁcn. :

omra:Apost-condiﬁononthemnnningm. Theimplemenwrmusemneﬂmitholds;thecaller
may assume it holds upon remm. . '

In C++, a pointer to the object forwhichamnberfuncdonisinvokedisahiddenarginnemtotheﬁmcﬁon. As
C-++ does, we refer 10 this implicitargmnenusthisinour specifications.
Theabsenceofareqnhu(when)clmseismesmasthepwdicatcbeingTRUE The absence of a modifies

clause indicates that no changes are made to the values of any object. This specification style and notational
conventions are borrowed from Larch [4]. ‘



2. A Tutorial Introduction

An Avalon/C++ system consists of a set of programs, each of which is an application or a server. Applications
invoke operations on servers, which may, in tum, invoke operations on other servers.
}

An Avalon server is very much like a C++ class. Just like a class, a server encapsulates some data, and defines the
operations that can be used to manipulate that data. A client invokes an operation on a server object using the same
syntax it would use to invoke an operation on a class object. There are two main differences between classes and
_ servers. First, a server supports concurrency: more than one client may invoke operations on a server at the same
time. These concurrent operations execute as concurrent threads (or lightweight processes) within the server. The
server must be implemented so that this concurrency makes sense. . Second, a server's data (if the server is
implemented correctly) is persistent, i.e., it will survive crashes ina consistent state.

This chapter describes at length three examples, illustrating all the basic features of Avalon/C++. The first example
shows how to create, commit, and abort transactions; to invoke operations on servers: and to define and use a simple
atomic type derived from the built-in Avalon class atemic. The second and third examples illustrate the use of
two otber built-in classes, txans_id and subatomic, to show another way Avalon users can define atomic
types, and to show what makes Avalon especially different from other (fault-tolerant) distributed programming
languages. We hope the reader will see that programming in Avalon/C++ is not much different from ordinary C++

programming.

2.1. Array of Atomic Integers .

In this section, we walk through the use and implementation of a simple Avalon server, called “Jill,"”” and client,
called **Jack,”” (so named for historical reasons). The Jill server encapsulates an array of atomic integers. From the
client’s viewpoint, each of these integers is atomic; they are recovered after a crash to the state observed by the last
mminedmacﬁm.andtheyememeseﬁnhubmwofthemsacdommaa&ssmem. Since each of the
elements of the array is atomic, the amray as a whole is also atomic. The elements of the Jill array are initially given
the value -1 to represent an uninitialized state, after which the Jill server permits only non-negative values to be
written in the array.

An atomic array of integers might be useful as a representation for a conference room reservation system. The
elements of the array could represent blocks of time, and writing a value into an elefent could represent reserving
the conference room at that time for the person represented by that value. Or, the array could be used to represent a
set of bank accounts, indexed by account pumbers. Applications that wished to transfer money from one account t0
another could do so within a transaction, so that no partial transfers would ever happen. These examples are only
meant to be suggestive: in both cases, other representations might be more coavenient and/or efficient. - Stll, they
show that even a very simple server such as Jill is not too far removed from real-world applications.

2.1.1. Using Jack and Jill
Before we show any Avalon code, let us first see how a user mighi interact with Jack and Jill. We begin by
assuming that the Jill server has been started. To start up Jack onaUnixsystem(aﬁermakingsurethmmedimctory
containing the av_jack executable is on your search path), type:

s av_jack
The Jack application starts a transaction and responds with:

Type ? for a list of coumands .
Jack({l]

Jack[1] is the prompt. The *‘1°" indicates the current transaction nesting level. If we type “7, we get the



following list of commands:
Commands are:
Read array element.
Write array element.
Begin Dested transaction.
Commit innermost transaction.
Abozt innermost transaction.
Abort top level transaction.
Abort top level transaction and quit program.

ApPeavan

Jack(1]

Let’s say we want to read what is stored at location 7 of the array:
Jack(l] = :
Location to read: 7
Location 7 is uninitialised.

Jack{l]

As we can see, we have not yet given location 7 a value. Let’s do so:

Jack({l] ¥

Location to write: 7
Value to write: 7

Write succeeded.

Jack(l] =

Location to read: 7
Value at location 7 is 7.
Jack([1]

Noivwecmbeginambmmacﬁon.usingthe“b"cmmmd. mmisunnsacﬁon,weﬁxstxeadthevalminlocaﬁon

7.andthengiveiunewvﬂm:

Jack([l] »

Jack{2] =

Location to read: 7
value at locatioa 7 is 7.
Jack(2] w

Looation to write: 7
Value to write: 27

‘Wgite succeeded.

Location to read: 7

value at locatiom 7 is 27.

Jack (2]
Notethlﬂnpmmpthlschmgedtoindiwethemacﬁonmsdnglevel Let’s

Jack(2] ®

Jack(3] *

Locatiea to read: 7

value at losatioca 7 is 27.

Jack(3] w

Location to write: ¥

value to write: 37

Write succeeaded.

Jack({3] = .

Location to read: 7

value at locatiom 7 is a7.

Jack([3] .
If we commit this subtransaction, then we teunntoitspuen&withits effects visible:

Jack(3) ¢

Transsction committed.

Jack(2) =

Location to read: 7

Value at location 7 is 37.

Jack([2]

conimewithanothernested

Now,bowever.ifwetbonthesecond-hvelmnsaaimweremmwﬂletop-lcvelmon.b\unmoftbe

effects of the aborted transaction (or its children) are visible.



Jack(2] a

Transaction aborted as per request.
Jack{l] ©

Location to read: 7

Value at location 7 is 7.

Jack([1l]

Now, suppose we start up another instance of av_jack (in another window, perhaps). In this Jack, we start a
(ransaction, and write into location 10. Then we attempt o read the value we have written into location 7.

s av_jack

Type ? for a list of commands .
Jack(l]) w ]

Location to write: 10

Value to write: 10

Write succeeded.

Jack([l] =

Location to read: 7

The otber Jack (*‘Jack B’’) does not immediately return an answer. This is because the first Jack (*‘Jack A™)
obtained a write lock on location 7. This lock excludes all other transactions from observing the value written there.
This is needed to ensure serializability: Jack A’s transaction may either commit or abort. If it commits, then Jack
B’s query should rewm 7; if it aborts, then Jack B should inform the user that location 7 is still uninitialized. Thus,
Jack B cannot return anything until Jack A’s top-level transaction terminates. Let’s commit Jack A’s transaction:

Jack{l] e

Transaction cosmitted.

(Transaction was top level.) Value at location 7 is 7.
Jack[1l] Jack{l)

Committing Jack A’s transaction allowed Jack B’s transaction to proceed with the completion of the read operation.
Now let Jack A start a new transaction. If we attempt to write a new value into location 7 in this transaction, we are
also suspended, for similar reasons: '

Jack[l] w
Location to write: 7
Value to write: 70

Jack A cannot write into location 7, because Jack B’s transaction has already observed a value there. Jack A must
wait for Jack B's transaction to terminate before it can invalidate this observation. Let’s terminate Jack B’s
transaction with an abort:

Jack(l] a
: Transaction aborted as per request.
Write succeeded. " (Transaction was top level.)
Jack(l] = ) Jack(l]

Location to read: 7
Value at location 7 is 70.
Jack(2]

Note that in this particular situation, even if Jack B had committed, Jack A still reads a 70 at location 7 since Jack
A’s write would still be serialized after Jack B’s read This scenario has shown how the Jack application can
manipulate the atomic integers contained in a Jill server. In doing so, it has demonstrated some of the properties of
transactions, nested transactions, and atomic objects.

The next two sections describe the declaration and definition of the Jill server, all the way down to the level of the
Avalon built-in atomic_int type; then the following section describes the Jack application program.

2.1.2. The Jill Server Declaration _

A C-++ class has a declaration and a definition. A class declaration is generally put in an include file, so that all files
that peed to use the class can have access 1o the necessary information. The class definition (the bodies of the class
operations) is put in one or more files, each of which includes the declaration. An Avalon server should be written



av_jilLh:
#include <avalon.h>

// Error return codes from ‘operation procedures. .
const int INDEX OUT_OF_BOUNDS = 1; // Attempt to access a location out of bounds.

const int ILLEGAL VALUE = 2; // Attempt to insert & negative number.

// System Constants. .
const int ARRAY SIZE = 1000; // Bumber of cells in the array.

sezver 3jill {
stable atomic_int dats [ARRAY_SIZE];
stable atomic_int generation;

public:
int read(int index);
void write(int index, int value);
3411 () : ("av_3ill", "localhost"”, 5);
void main ();

}:

Figure 2-1: Declaration of Jill Server

using the same conventions. Thns,wewillﬁxstexamincﬁng-l,meincludeﬁlethadeduatheJillserver.

The first line of this file includes the file avalon.h. All Avalon programs must include this file before all others.
Thenenﬂneesmmemsintheﬁkdeclueandiniﬁaﬁzecommsmdinmepmgﬂm. We follow the C++
recommendation against using Preprocessor Macros whenever possible. The first two constants,
INDEX_OUT_OF_BOUNDS and ILLEGAL VALUE, are used as error codes. The third, ARRAY_SIZE, determines
the size of the array. ' '

Next, we come to the declaration of the Jill server. Thisis.textuallyideuialtoaC#clmdechmion.withthe
keyword server substituted for class. A Jill server contains one data member, data, and four operations,
whichared:eonlymeansofacwssingtheserva’sdat& Aserverdiffetssligtnlyﬁ'omadminthaalldan
members of a server must be private. Here, data is also declared to be stable, which assents that it is persistent,
iLe.. will survive crashes. Avalon guarantees persistence of the built-in atomic daa type, atomic_int; in genenal,
the programmer must correctly implemeat any user-defined type of stable variables to cosure their persistence.
Though the Jill server does not, a server could also have data members that are volatile, that is, pot stable. Volatile
data are often useful for efficiency, but care should be taken to ensure that ail important data is stable. For example,
a server might represent a database as set of records, and maintain a volatile index that allows operations to look up
records based on different fields of the record. Thcindexv)ouldspwdupthesemrdnﬁngnomnlopemion.bm
could always be reconstructed after a crash. '

The four operations of the Jill server come in two categories: user operations and server operations. Read,
write, and the constructor, 3ill, are user operations, the ones that clients can invoke. Read retums the integer
stored at the given index, and write writes the given value at the given index. The intent of these should be fairly
clear; we will go over their implementations shortly. The constructor is a special user operation invoked to initialize
the Jill server. A server will not accept any calls to other user operations until it has received a constructor call, and
it will not accept any ¢ ctorcallsonceithasstmedaccepﬁnguﬂstootheruseropenﬁom. Since all servers
implicitly inherit from the server_root class, the colon syntax tells the server_root constructor where to
find the server executable (first argument), what machine to start it on (second argumeat), and how many chunks of

recoverable storage to allocate (third argument). See section 4.4 for a more complete description of the



server_root CONSUUCIOr. The remaining operation, main, is invoked automatically by the server. For
implementation reasons, every server must have a main operation, even if it has no body. (The definition of main
serves as a marker, so the Avalon preprocessor can decide where to put the C++ main procedure for the server.) If
the main operation does have a body, it is executed in the background, concurrently with user operations. Another
kind of server operation (not shown here), invoked automatically by the system, is an optional recover operation.
If defined, it is executed whenever the server is started after any crash. A typical recover operation might

reinitialize volatile data.

2.1.3. The Jill Server Definition

2.1.3.1. Jill’s Data Member

Jill's data member, data, is a stable array of ARRAY_SIZE atomic_int's. Anatomic_int isan atomic
integer, an integer specially implemented so that it ensures the serializability of transactions that access it, and is
recovered after a crash with the value observed by the last committed transaction that accessed it. These properties
are quite easy to achieve in Avalon. Figure 2-2 shows the declaration and definition of the atomic_int class.

atomic_inth:
// Declares the atomic integer class.

#$include <avalon.h>

class atomic_int: public atomic (
int wval;

public:

int operatorm(int zhs);

operator int();

};

atomic_int.av:
// Defines the atomic integer class.

#include <avalon.h>

int atomic_inat: :operators(int hse)
write_lock();
pinning () returm val = rhs;

}

atemic_int::operator int() {
read_lock();
return val;

}
Figure 2-2: The atomic_int Class

The file atomic_int.h declares the atomic_int class. This is derived from the class atomic, which
provides operations that are used to make integers appear atomic. In particular, class atomic has two operations,
read_lock and write lock, which can be used in implementing operations of derived classes.

The class atamic_int has one data member, an integer called val, which holds the value of the atomic integer.
We show two operations of atomic_int’s, both of which are C++ overloaded operators. “One is the assignment
operator, and the other is the coercion operator that converts an atémic_int into an int. The assignment
operator is the only way to change the value of an atomic_int, and the coercion to iat is the only way of using



that value in a program. Thus, these operators mediate all access to the atomic integer.

In the file atomic_int .av, we sce that the implementations of these operations are quite simple. Taking them in
reverse order, we sec that the operator int () simply calls read_lock and returns the current value. The
assignment operator gets a write lock on the atomic_int, and then, within a pinning block, it sets the value to
a new value, and retumns the new value. The pinning block informs the Camelot system that the change must be -
logged permanently (i.e., to stable storage) so that in the event of crash recovery, the value of an atomic integer is
consistent. Modifications to any atomic object should always be made from within a pinning block. The use of read
and write locks gunmmestlmifamnsaction observes the value ofanatomicinteger,thennooﬂaerumsaction
may change it until the observer terminates. (Note d:atdatatypeinductionisneedédtomﬂymakzthisguannwe;
we can prove that this is true only if these two operators are the only ways of accessing atomic_int's.)

2.1.3.2. JilI’s ¢ itions
Now that we unc 1 atomic integers, we can consider the implementation of the operations of the Jill server.
Figure 2-3 shows u.. .ontents of the file av_3jill.av, which contains the definitions.

av_jill.av:
// The body of the "av_3jill" server.

#include 'av_ji.ll.h'

int 3ill::read(int index) (
// 1f index is cut of bounds, return ‘an error code.
i (index < O || index >e ARRAY SIZEK) unde (INDEX_OUT_OF_BOUNDS) leave;
return data(index]; . .
}
void 3jill: :write(int indax, iat value) {
// 1If index is out of bounds, return an error code.
if (index < O || indax >= mm_sm) undo (mn_ou!_cr_mﬂ leave;

// 1If valve is negative, return an error code.
if (value < 0) undo (m.r.m_vn.u:) leave;

data[index] = value;
}
4411::3412 0 (

for (int i = 0; i < mu_sxu; i++) datafi] = -1;
}

wvoid 3jill::main{() (}

Figure 2-3: Definition of the Jill Server

noadtakumindex.andmmmsthevalueanhatindex. R-adassmmmaitisbeinginvokedbyacﬁentthais
executing within a transaction. If the index is not within the array bounds, read executes the statement:
undo (IWDEX_OUT_OF_BOUNDS) leave;

This aborts the client’s transaction. The abort code INDEX_OUT_OF _BOUNDS can be used in an except Clause,
as wewﬂlseewhenweexaminethelackappﬁeaﬁon. Ifthcindexpmﬂﬁsmthenwesimplymmmmevalu
in the data armray at the index. Acmaﬂyﬂ:isisa_litﬂemmsnbtlethantmt:theelememsofdataaxe
atomic_int’s, and read remms an int. Thus. the C++ automatic coercion mechanisms call the coercion
operator on the indexed element before returning it. The coercion operator gets a read lock on the element before
returning its value. Write is very similar. It checks that the index is within the proper range, and that the value to



be written is not negative: if so, it assigns the new value to the element. Again, the overloaded assignment operator
of atomic_int takes care of getting the write lock on the atomic integer and logging its new value. The
important lesson 10 learn from the Jill server is how the right implementation of atomic_int made it possible to
treat atomic__int’s almost as if they were regular int’s within the bodies of the server’s operations.

The constructor, jill. sets all the elements of data to -1, as we specified in the description of Jill. Finally, the
server operation main has no body but, as we have explained, every server must have 2 main operation.

2.1.4. The Jack Application

This section shows the code for the Avalon application, +*Jack," which uses a Jill server. Most Avalon applications
look very similar to Jack so in subsequent examples, we will omit the application-side code. When Jack starts. it
enters a transaction. It then executes user commands until the user enters the command 1o ¢xit the program. ¢
user may read or write array elements, start nested transactions, and commit or abort wransactions. Figure 2-4 shows
the first part of the code in av_jack.av.

Like all Avalon programs, av_jack.av sars by including avalon.h It also includes stream.h and
ctype.h from the C+ library, and av_Jjill.h to get the declaration of the Jill server. After the includes,
av_jack.av declares two more constants used as abort codes within this file and declares the two functons
defined in this file so that they can be used before they are defined. The next statement declares a global variable of
the Jill server type. The client program can invoke operations on this server object just as if it were a class object.

The main procedure priats out an initial message and locates the jill server. If it cannot find it, it calls the jill
constructor. It then repeatedly calls jill_t:ansaction until the value of quit_flag indicates that the user
wants to exit the program. Finally, the print_help procedure prints out 2 belp message.

Now we consider the heart of the Jack application, the §ill_transaction function. jill_t:ansaction_
begins (Figure 2-5) by starting a transaction. It then enters a command loop, in which it remains until the
user decides to quit the program, of {erminate (commit or abort) the current top-level transaction. It prints out a
prompt (which contains the current transaction pesting level, which it is given as an input.) Next, it gets an input
command, and enters a switch statement that processes that input. The ‘r’ and ‘w’ commands should be fairly
self-explanatory: Note that the read and write operations are invoked on the object denoted by the jill_szv
variable exactly as if it were a pormal class object. The ‘c’ command uses the leave statement t0 commit and exit
the current transaction. The ‘3’ command aborts the innermost wransaction, using the undo leave statement. We
pass an abort code that indicates that the user aborted the transaction. The ‘A’ command aborts the current top-level
transaction. This is implemented by first aborting the innermost transaction. using a special abort code. We will see
in 8 moment how this code is processed- The ‘q’ command exits the program. To do this, we set the quit_flag,
and exit §ill_transaction. We use the special undo return statement to indicate that we not ooly waot
to return from the current procedure, but also to-abort any transactions started by that procedure. The ‘b’ command
starts a nested wransaction by making a recursive call to jill_t:ansaction (with level incremented by one.)
An input of ‘7" causes the help message to be printed, and if the input command is none of these, a message to that
effect is printed.

The rest of jill_transaction is shown in Figure 2-6. The first statement in this figure is just after the body of
the loop that waited for the quit_£lagto be set (by a nested transaction.) If we reach bere, we do the same thing
we did when the user entered 2 'q’: undo return. The pext scope we leave is that of the transaction. This
ransaction block has an except clause appended to it. An except clause allows access to the abort codes
provided in undo leave statements. If a transaction with an except clause aborts, the abort code, if there is one,
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av_jack.av:
#include <avalon.h>
#$include <stream.h>
#include <ctype.h>
#include ‘av_j:ul.h'

const uemmsmm-loo;

cemst int TOP_LEVEL_ABORT = 101;

// Torward declarations.
void jill_emalctien(ut, int*);
void print_help();

// Global sarver wvarisble.
4111 *3ill_exv;

void main() {
int quit_flag = 0;

cout << "lLooking for 3411...\n%;

3ill _szv = (Jill®) Glocate_server ("31i11%);

if (34ll_szv == WOLL){
cout << "Couldn’t find §ill. Starting a new 3111...\n%;
4ill_szv = new 3411;

}else cout << “pound 3ild.\a";

cout << "Type ? for a list of commands.\n";
while (quit_flag < 2) {

quit_flag = 0;

jul_gzm‘ef-l.on(l, squit_zlag);

cout << " (Tramsaction was top level.)\n";

} .
axit (0);
) .

// print_help -- Prints the commands.

void print_help() {

. esut << "\a\

Commands are: \a\

Read array element.\nm\

Write array element.\a\

Begin nested transaction.\n\

Cesmit innermost transaction.\n\

Abort innermost transaction.\n\

Abert top level transaction.\n\ _
Abort top level transaction and quit program.\n\n";

APpPsoatren

Figure 2-4: First Part of the Jack Application

is assigned to the variable named after the except. The rest of the except statement is exactly like a switchon
this value. In jill_transaction, the first two cases handle user-requested aborts. In either case, we print out
a message and rewm. 17 2 top-level abort has been requested, then we set the quit_£lag to exit all enclosing
jul_tzmaction' calls. The third and fourth cases handle transactions that were aborted by server operations
because of improper inputs. They both print an appropriatc Message and rewrn from §41l_transaction.
Fmﬂly.ifﬂnmnsacﬁonabbnedbmhcodeisnone of the above.thentheabmmmbeenmedbythe

underlying system. We can find out why by calling the routine avalon abort code_to_string, which
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// Intezactively construct and perform a transaciton utilizing the i1l
// server. Can be called recursively to construct nested transactions.

void jill_t:nn.acti.ou(int level, int* quit_flag ptr) {
start transaction {
char omd;

while (!*quit_flag_ptr) {
int index = 0;
int value = 0;

cout << "Jack{" << level << "1 %
while(isspace(cmd = getchar()))

’
'

switch (amd) { .
case ‘T’ // Read an array element
cout << "Locatien to read: *;
ecin >> index;
value = jill_-rv->:.-d(s.uhz);
if (value == -1)
cout << "Location " << index << * is uninitialised.\n";
else

cout << "Value at locatien " << indax << “ is " << value << ".\n%;
break;
case ‘W : // Write an array element

cout << "Location to write: "
ein >> indax;

cout << "Value to write: ";
cin >> value;
jill_-rv-»:it-(indnz, value);
cout << "WNrite succeeded.\n";

break;
case ‘¢’ : // Commit this transaction
leave;
case ‘a’: // Abort this transactiom

undo (USER_REQUESTED_ABCRT) leave;

case ‘A // Abort top-level transaction
undo (TOP_LEVEL_ARCRT) leave; :

case 'q’': // Abort to top leval transaction and quit.

*quit_flag ptr = 2;
undo return;

case ‘d’: // Begin s subtransaction
jiu_em--ction(lov.lﬂ., quit_flag_ptz);
continue;

case ’'?': // Print short help message
print_help();
break;

default:
cout << "Unknown ccmmand. Type ? for a list of commands.\n";

}
y // ...continued...

Figure 2-5: Beginning of the jill_transaction Function
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takes an integer argument (Section 3.4.6). All arms of the except statement retum from ji.ll_t:ansaction,
50 if we exit the transaction and reach the last line of the procedure, the wransaction must have committed. We print
a message to that effect.

/! ...vest of j:l.ll_t:-n-aceicn. ..

// quit_flag from nested transaction is non-Zero, so we must undo retuzn.
undo return;

} except (tml_ntntus) {

case m_um_nm :
nquit_flag _pte = 1;

case um_msm_m:
cout << "Transaction aborted as per request.\n";
retura;

case nmn_ou'r_or_nams:
cout << "Transaction aborted: Array indax out of bounds.\a";
return;

case ILLEGAL VALUE:
cout << epransaction aborted: Attempt to write a negative value.\n";
return;

default:
cout << avalon_abc:t_cod._tc_.t:inq (t:uu__ltatul) << "\n";
return;

}

// otherwise, Wwe committed.

cout << »pransaction committed.\n";

}

Figure 2-6: End of the jill_transaction Function

2.2. FIFO Queue

Let us consider how one would implement an atomic first-in-first-out (FIFO) queue. The easiest way to define such
aqueueistoinhetitfrom atcmic. Aﬁmita:ionofthisappmaehisthatcnqanddnqcpenﬁonswouldbothbe
classified as writers, permitting litle concurrency. instead, we show how a highly concurrent atomic FIFO queue
can be implemented by inheriting from subatomic. Our implementation is imeresting for two reasons. First. it -
supports more ConCurrency than commutativity-based concurrency control schemes such as two-phase locking. For
example, it permits concurrent eng Operations, even though enq’s do not commaute. Second, it supports more
concurrency than aoy locking-based protocol, because it takes advantage of state information. For example, it
permits concurrent enq and deq operations while the queue is non-empty.

In order to permit such concurrency it is Decessary to provide: ,
1. A way to compare whether one transaction has committed with respect to another. In particular,
_suppose A and B are concurrent {ransactions:
o If it is known that A has committed with respect t0 transaction B, then'B should be allowed to
observe the effects of A’s operations. Thus. B need not wait and may proceed.

olfitisnotknownthatAhmcommimdwithmpeatoB,thenB must not do anything that

depends on A’s effects, since A may still commit or abort. B should aiso not invalidate any

results that A may have observed, since B may commit before A. Thus, B might have to wait tll

A completes.
2. Exclusive access to an object per operation. That is, while transactions may g0 on concurrently, we
need to prevent individual operations from interfering with each other.

Fortunately, Avalon provides the first capability with the class trans_id, which gives us 2 'way 10 test transaction-
commit order, and the second with the class subatomic, which gives us 3 way to provide mutual exclusion per
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object.

In Avalon when a transaction commits, the run-time system assigns it a imestamp generated by a logical clock [8].
Atomic objects are expected to ensure that all transactions are serializable in the order of their commit timestamps, a
property called hybrid atomicity [15]). This property is automatically ensured by two-phase locking protocols [3],
such as that used for the atomic_int’s in Jill’s array. However, additional concurrency can be achieved by taking the
timestamp ordering explicity into account. The trans_id class provides operations that permit run-time testing
of transaction-commit order, and thus of serialization order. In particular, trans_id provides a partial-ordering
function <: for transactions with trans_id’s t1 and 2, if t1 < 12 evaluates to true, then if both transactions commit, tl
is serialized before 2. Note that < induces a partial order on trans_id’s; as transactions commit they become
comparable. Section 4.1.2 describes this type in more detail. ‘

Class subatomic provides operations that give transactions exclusive access t0 objects. Each subatomic object
has a short-term lock. similar to a monitor lock. used to ensure that concurrent operations do not interfere. Avalon's

special control construct. the when statement, is used as a kind of conditional critical region:

when ( <TEST> ) {
<...BODY...>
}

The calling process atomically acquires the object’s short-term lock, blocks until the condition becomes true
(releasing the lock if it is not), and then executes the body. The lock is released after the body is executed. Any
changes made to the object while the lock is held will not be backed up to stable storage until sometime after the
lock is released. A transaction's changes are guaranteed to be backed up before it commits.

2.2.1. The Queue Representation

Figure 2-7 shows that information about eng invocations is recorded in a struct. The item component is the
enqueued item, the engx component is a trans_id generated by the enqueuing transaction, and the last component
defines a constructor operation for initializing the struct. Information about deq invocations is recorded similardly in
deq_rec’s.

The queue is represented as follows: The deqd component is a stack of deq_rec’s used 10 undo aborted deq
operations. The enqd component is a partially ordered heap of enq_rec’s, ordered by their enq_tid fields. A
partially ordered heap provides operations {0 enqueue an enq_rec, to test whether there exists a unique oldest
eng_rec, 10 dequeue it if it exists, and to keep and discard all eng_rxec’s committed with respect to a particular
transaction identifier.

Our implementation satisfies the following representation invariant: First, assuming all enqueued items are distinct,
an item is eitber *‘enqueued’ or “‘dequeued,”” but not both: if an enq_rec containing (item, enqi] is in the
enqgd component, then there is no deq_rec conwining [item, enqT, . degqr] in the deqd compooent. and
vice-versa. Second, the stack order of two jtems mirrors both their enqueuing order and their dequeuing order: if
d1 is below d2 in the deqd stack, then d1->enqz < d2->engr and d1->deqr < d2->deqr. Finally, any
dequeued item must previously have been enqueued: for all deq_rec’sd, d->enqr < d->degqr.

2.2.2. The Queue Operations

£nq and deq operations (Figure 2-8) may proceed under the following conditions: A transaction A may dequeue
an item if (1) the most recent dequeuing transaction is committed with respect to A, and (2) there exists a unique
oldest element in the queue whose enqueuing wransaction is committed with respect to A. The first condition ensures
that A will not have dequeued the wrong item if the earlier dequeuer aborts, and the second condition ensures that
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struct enq_rec {
int item;
trans_id énqs;

// Item enqueued.
// Who enqueued it.

eng_rec(int i, trans_ids t) { item = i; enqr = t; )

}i

. struct deq_rec {
int item;
trans_id enqr;
tzans_id deqr;

~

// Item dequeued.
// Who enqueued it.
// Who dequeued it.

deq_rec(int itm, tzans_idsé ea, trans_idé de);
{ item = itm; enqr = &4; deqr = de; }

}:

class atomic_int_queue
d.q_leank deqd;
eng_heasp enqd;
publie:
atomic_int_gqueue() {};
void enq(int item);
int deq();
void cosmit (trans_idé);
void abort (trans_id&);
~atomic_int_queue();

}:

: public subatomic {

// Scack of daq records.
// Beap of enq records.

// Create empty queue.

// Eaqueue an item.
// Dequeue an item.

Figure 2-7: Queue Representation

there is something elemeat for A

to dequeue. Similarly, A may enqueue an item if the last

enquawdbyamnswﬁchommimdwimmpeawA.ThiseondiﬁmemmmnAwmnm

B, violating the FIFO ordering.

item dequeued was
be serialized before

wvoid ntnse_ut_qw::.nqun: item) (
trans_id tid = crans_id();

when (d.qd.i-_qty() 1| (deqd.top()~>enqE < tid))

enqd. insect (item, tid);
}

int atomic_int_queue: :deq() {
tzans_id tid = vrans_3id();

hen T(deqd.is_smpty() || deqd.top()->deqr < tid)
66 engd.min_exists() 56 (engd.get_min () ->enqr < tid)) {

rec® Bin_er = .nqd.d.loco_ﬁn();
rec dr({*"min_er, cid); -
deqd.push (dr) ;
return min_er->item;
}
}

annr; 2-8: Queue Operations

Bothonqanddnqﬁmobtainanew.unique trans_id for the calling transaction.

commits a ‘‘dummy’’ subtransaction, reurning the subtransaction’s trans_id to the w:.
Sinoethisconmuctorcaﬂremmamique m_id;apMmWCantm
ordendintheseﬁ;linﬁonorderoftheircreaﬁonevents_. We exploit this property berc

the éunem eng (deq) operation.

~onstructor creates and
\nsaction (i.e., parent).
se multiple trans_id’s

.sing this trans_id to tag
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As for the atomic_int example, the modifications done by enq and deq must be wrapped in a pinning construct
10 ensure persistence (that is. changes are made to stable storage).

We use the when statement {0 guard against simultaneous access to the queue object itself. Enq checks whether the
item most recently dequeued was enqueued by 2 transaction committed with respect to the caller. If so, the pew
trans_id and the new item are inserted in enqd. Otherwise, the transaction releases the short-term lock and tries
again later. Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether enqd has a unique oldest item. If the transaction that enqiicued this item has committed with respect to the
caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term lock,
suspends execution, and tries again later.

2.2.3. Commit and Abort

Avalon lets programmers define type-specific commit and abort operations for atomic data types inheriting from
class subatomic. They each take a trans_idasan argument. The Avalon run-time system automatically calls
an object’s abort operation whenever 2 (ransaction that may have modified the object aborts. Whenever a
top-level transaction commits. the system calls the commit operatioa on all subatomic (and atomic) objects that the
wransaction (or any of its descendants) may bave modified. We make no guarantee about the arrival times of commit
operations, ie., when the run-time system is informed of a transaction’s commit. In particular, if T1 commits before
T2, the run-time might execute T2's commit before T1's. In addition, the order in which commit (abort) operations
for a given transaction are applied to multiple objects is left unspecified.

Figure 2-9 gives the code for the queue’s commit and abort operations. Whena top-level transaction commits, it
discards deq_rec’s no longer peeded for recovery. The representation invariant ensures that all deq_rec’s
below the top are also superfluous (tbey have all committed with respect to the top), and can be discarded. Abort
has more work to do. It undoes every operation executed by a transaction committed with respect to the aborting
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the items back

in enqd. Abor then flushes all items enqueued by the aborted transaction and its descendants.

void .te-ie_int_qnm::ee—ie (tm-_idt committer) {
when (TRUR)
if (ldoqd.i_-_qty() &6 descendant (d.qd.t@()-x.qz, cemmitter)) {
deaqd.clear RN
}
}

void atomic_int_queue: :abort (trans_ids sborter) {
when (TRUE) { .
while (!d.qd.i-_qty() &6 descendant (d.qd.top()-mqr, aborter)) {
deq rec* d = deqd.pop();
angd.insezt (d=>item, d->enqge) ;

}
engd.discard( aborter);

}
}

Figure 2-9: Queue’s Commit and Abort

Notice that commit and abort for the queue example use the descendant operation of t:ans__i..d’s rather
than the < operation. For example. when we are aborting, we wanl 0 [Cmove all items enqueued by transactions
that we know are aborting, i.c., the aborting transaction (abozt’s argument) and all of its descendants. If we were
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to use <, an item enqueued b* 1 separate top-level transaction that committed before the aborting transaction would
be incorrectly deleted. .

2.2.4. Enq and Deq Synchronization Revisited

Let us look more carefully at the synchronization conditions on enq and deq. Consider why enq must wait for the
enqueuer of the last dequeued item to commit. If it does not wait, then it is possible that a dequeuer may get the
wrong head of the queue as a result of the commit of some concurrent enqueue. For example, suppose a transaction
A starts two subtransactions Al and A2. Al enqueues 5 and commits. A2 does a dequeue (A2 can proceed becanse
Al has committed with respect to A2), gets a 5. but does not yet commit. Now suppose another top-level
transaction B starts and tries to enqueue 7. (R and A2 are both concurrent.) If B does not wait then it proceeds to
put 7 at the head of the queue (A2 has temp  ‘ly claimed the 5). If B commits before A (the parent transaction of
Al and A2), then B is serialized before A, i ng that A2 should get a 7, pot a 5. In short, the FIFO behavior of
the queue is violated because B did not wait .0 commit.

The condition on engq is sufficient as well. in particular, an enqueuing transaction does not need to wait for the
dequeuer of the last dequeued item to commit because in some circumstances it can proceed evea if the dequeuer
has not finished. For example, suppose transactions A, B, and C are top-level transactions. A enqueucs S and
commits. B dequeues 5, but remains active. If C wants to enqueue, it should be allowed to proceed even though B
(the dequeuer of the last dequeued item) has not completed. Here, if B commits, it does not mauer whether B
commits before or after C; B will correctly see 5 asmeheadofmeqnemdewillconecdyplace7astbenew
head. 1f B aborts, then C-will correctly place 7 after 5, which remains at the head of the queue. Thus, C can proceed
without waiting for B to complete because there is no way C can be serialized before A and it does not matter in
which order B and C are serialized. ’

It is easier to see why a dequeueing transaction, B, must wait forﬂndequew.A.ofmelastdequeuediu:m to be
committed with respect B. If B proceeds to dequeue without waiting for A to complete, then it will have dequeued
the wrong item if A aborts.

2.3. Atomic Counters

As our final example, suppose we wish to implement an atomic counter with operations to incremeat (inc),
decrement (dec), and test for zero (is_zero). This counter could be used to represent a joint checking account:
One party might be depositing mooey -at one branch, another party may be withdrawing money from somewbere
else.andathixdpmy.pexhapsanauditor.maybesearchingfordepletedaceoums. This is not quite realistic since
onecouldnotﬁndouttheexactbalanceoftbeaccomt(thcxeisnomadoperaﬁon).bmaddingthatfuncﬁonwould
complicate our example.

By deriving from class atomic, we can easily implement the atomic counter as shown in Figure 2-10. (Recall that
class atomic provides read_lock and write_lock operations.) The counter is represented by a
nonnegative_int, a class supporting all the usual arithmetic operations on integers, with the property that its
value must be greater than or equal to zero. (The overloaded subtraction operation is a **‘monus’’ operation.) Again,
one can see that building a new atomic class from class atom: = is fairly straightforward: before performing its real
work, an accessing operation (*‘reader’) should first obtair 4 lock: a modifying operation (**writers’) should
first obtain a write lock and then pin the object.

This implementation, however, does not realize much concurrency. From the abstract viewpoint of our atomic
counter, incrementing and decrementing wransactions can go on concurrently (inc and dec are ‘‘blind”’ writes
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class atomic_counter: public atomic {

nonnegative_int count;
publie: .

.te-ie_count.:() {pinning() count = 0;)} // initialize counter
void inc();
void dec();
bool is_zero();

}

void atomic_counter:: inc() (
write_lock();
pinning () count 4= 1;.

}

void neo-ie_count.:: : dec() {

v:ie._lock() H )

pinning () couant -= 1; // will return max of count-1 and 0
) .

bool L-_z.:o(); {
:oul_lock();
_ return (count == 0);

}

Figure 2-10: Atomic Counter Derived from Class Atomic

since they do not return any results); moreover, under certain conditions, it should be possible to retum a resuit to
is_zero cven before all incrementing and decrementing transactions have completed. The implementation in
Figure 2-10 does not support this degree of concurrency since it is based on standard two-phase read/write locking.

Thus, as for the queue example, we will use trans_id’s and subatomic objects as an alternative way to build atomic

objects.

2.3.1. Counter Representation
Letuswalkthroughthexep;esenutionofme atonﬁccounterbybeginningwithsonw auxiliary structures.

Figure 2-11: Families

2.3.1.1. counter_range

A counter_range (Figure 2-12) keeps track of the range of possible values of the counter in order to permit
is_zero o rcwm in some cases before all transactions have completed. The range of possible values is
represented by a *‘committed”” value (committed), a positive effect (pos), and a negative cffect (neg).
Committed is the value of the counter constructed from the actual committed value of the counter and any
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operations that are committed to the top level, but whose commit operations have not yet been called. Pos is the
maximum amount by which the effects of uncommitted operations included in the counter_range could
increment the counter. Neg represents the maximum amount by which they could decrement the counter. Neg may
be positive, in which case the operations do not decrease the value of the counter.

The counter_range class provides operations that allow a counter_range (0 be constructed from a
“family’', i.c., a list of operations whose trans_idsare committed to the least common ancestor. In Figure 2-11,
ifa3andadmcannﬁnedandh.al.andazmstillactive.az.as.anduminthesamefamily. a2is
includedinthefamilyeventhoughitissﬁllaaivebemseﬁ anda'latecomminedwithxespecttoil. Aand al
are separate families. Each operation in a family shifts the range computed so far, thus allowing operations within
the family to cancel each other out. A counter_range may also be constructed from a list of families. In this
case. a counter_range is constructed for each family in the list. These counter_ ranges arc then combined
to increase the total range. ,

class counter_range {
nonnegative_int committed;
nonnegative_int pos;
int neq; :

{ init (0); )}
{ ianit (0); schig+mos; )

counter_range() -
counter_range (cp_ooqs o8) .
mntu_m!.(int', ep_u-:_liats) ;

void init (nonnegative_int e) ( pos = 0; neg = 0; cosmitted = ¢; }
bool is_zero (int i = ) { return ((ut(ee—ietod)+i.at(po.)+1)
R <= 0); }

bool is_not_zero {(int.i = 0) { veturn {{((neg+i) <= 0) &&

{ (committed+negtl) > o)) 1!
(((neg+i) > 0) &b
((committed+i) > 0))); }
counter_rangeé operatorts (ap_-oqi);

countes_range& operator+e (int i) { pos = pos + i; neg w neg + i;
retura *this; }
counter_rang &  op torte 1 -_:-ngo‘ ar)

{ pos += int (cr.pos);
if (cr.neg < O) neg 4= cr.neg;
committed = int (cz.committed) ;
return *this; }
ter_ranget op t (counter_ranged erx) .
{ pos = CIX.pos; neg = cr.neg; committed = cr.committed; return wehis; )

};
_ counter_range: :counter_range (int 1, cp_u.at__u-tﬁ oll)

init (1);
if (ell.ol '= NWOULL)({
for (cp_lilt__lilt *l = §oll; 1; 1 = 1->naxt)
counter_range cr (*(1->ol->head));
wthis += GF;
}
.}
}

counter_rangeé counter_ range: :operatorts (op_seqé té_uld)

for (op_seq* op = &to_add; op; op = op->next_op)
wthis += op->to_dec ? -1 : 1;
return *this;

}
Figure 2-12: counter_range
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Counter_range also provides is_zero and is_not_zero operations which may be used by a query to
determine the state of the counter. If the state of the counter is known, one of these operations will reurn TRUE.
Otherwise, they will both return FALSE. These operations take an optional argument which specifies an amount by
which to shift the range before doing the test. This argument is used by the is_zero_work operation to represent
operations that are known to serialize immediately before a query.

23.1.2. op_seq and op_list

An op_seq (Figure 2-13) keeps track of operations which are in the same family. An op_list (Figure 2-13)is
used to construct an op_seq. Itis assumed that each operation added to an op_list is in the same family as the
other operations in the list and is not serialized before any of the other operations. '

An op_list_list (Figure 2-13) sorts operations into families. It is assumed that each operation appended to an
op_list_list is not serialized before the any of the other operations already in'the list.

2.3.1.3. Recoverable Sorted Association List and log_entry

Our atomic counter will allow concurrency by putting all operations into a log and applying them to the counter at
commit time, rather than applying them to the counter at the time they are requested. Assume we have defined
elsewhere  (recov_sorted_alist.h)  types for a recoverable sored  association  list
(recov_sorted alist), parameterized over the tag type (e.g.. trans_id) and value type (e.g., pointer t0
log_entry) of the pairs to be inseried in the list, an equality function (e.g., on trans_ids) used for list
insertion, lookup, and removal, and a comparison function (e.g., < on trans_ids) used for ordering the elements
in the list. Its iterative version, (:ecov_sortcd_alist_i,tt:), similar to that used in the C++ Manual (p. 183
of [14]), provides a method for looping over all elements in the list, guaranteeing that elements are yielded in sorted
order. Our list (Figure 2-14) is sorted by tzans_id’s partal order < so that we can iterate over transactions in
commit-time order.

Each log_entry bas a unique trans_id (id) for serialization and a bool (zero) which represents the
operation which was done. The value of zero can have a couple of different meanings. If the log_entry
represents a query, zezo is the result of the query. If the log_cntry represents an increment or decrement
operation, zexo is TRUE if that operation takes the counter value toward zero, i.e., if it is a decrement. Zero is
FALSE if the operation is an increment. We keep these different types of log_entrys in different recoverable
sorted association lists.

2.3.1.4. The atomic_counter Class :

The representation of the atomic_counter class is shown in Figure 2-15. We represent the counter by a
non-negative integer (count), an operation log (op_log), which keeps track of inc and dec operations, and a
query log (query_log), which keeps track of is_zezro operations. The value of count is determined by the
operations of transactions that have committed to the top level, and whose commit operations have been called.

Implementations of the inc and dec operations are shown in Figure 2-15. They use the internal auxiliary functions
shown in Figure 2-16. The add_op_to_log routine first calls the trans_id constructor with the value
CURRENT to obtain the trans_id of the calling transaction. It then uses a when contstruct to ensure exclusive
access 1o the counter and verifies that the insertion of the operation record is possible by calling
add_op_to_log_work. The add_op_to_log_(vo:k routine returns FALSE if the operation cannot be added
at this time, causing the when construct 10 pause and be reactivated at a later time when the situation changes.
When the condition in the when statement succeeds, add_op_to_log obtains a unique trans_id and adds the
operation to the op_log. ‘



class op_seq {
friend class counter_range;
friend class op_list;
trans_id id;
bool to_des;
op_seq* next_op;
public:
op_seq(txans_. ids t, beol b)
op_! _seq(cp_seqé os)
~op_seq()
bool family (op_ -.q& os)
};

id = ¢; tod.c-b, next_op = NULL; )

id = on.id, to_dec = os.to_dec; next_op = os. next_op; }
if (next_op = , WOLL) delete naxt _op; }

return both (id, os.id); }

o~k g ot

class op_list {
friend class counter_range;
op_seq” head;
op_ ..q' tail;
ublie:
op__ 1ist () ( head = tail = NULL; )
op_listé operator<< (op_seqt);
~op_ 148t () { if (head) deleta head; )

bool family (op_seqé os) { return head->family (os); }
bool empty () { retuzn (head == NULL); }
operator op_seq () { retuza *head; }

8 H

op_lists op_list: :oparatoz<< (op_seqt o8) {
if (tail == NULL)({
head = tail = new op_seq (os.id, os.to _dea) ;
}else{
tail->next_op = new op_seq (0s.id, os.to_des);
tail = tail->next ._Op;}
}
zeturn *this;
) .

class op_list_list {
friend class counter_range;

op_list* ol;
op_list_list* next;
publie: .
op_. list_: list() . { o1 = WULL; naxt = MOLL; )

~op_ u-: list() . { if (ol != NULL) dalete ol; if (next !=m NULL) delete naxt; }
op_list__ Tists opezator<< (op_! -oqs), .
};

op_list_listé op_. list_list::operator<< (op_seqt os) {
op_: list list* prev = MULL;

if (o) == WULL){
ol = new op_list;
*0) << o8;
seturn *this;
}
‘for (op_list l1ist* 1 = this; 1; prevm l, 1l = 1->next) {
if (1-»1->¢'-:Lly(u))(
% (le>0l) << o8;
return *this;
}
}
prev->naxt = new op_list_list; .
* (prev->next) << os;
return *this;

Figure 2-13: op_seq, op_list and op_list_list
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class log_entry :public recoverable {
trans_id id;
bool zero;
|

publie:
log_entry(tzans_id&, bool) ;
bool epo::tox(log_on::ys le)
bool opo:nto«(t:ml_i.d& €)
bool opo:nto:>(loq_ontzy5 le)
bool epon:o:)(t:uu_i.dﬁ €)
log_entryé apo:ato:-(log_cntryﬂ ):
operator op_seq )
operator trans_id ()
operator bool ()

};

retuzra (id < le.id); }
retura (id < €); }
return (id > le.id); }
return (id > €); }

P N

neu:h op_coq(id, sero); )}
retuzrn id; )
return zere; }

o~ o~

log_eantry: :log_ontry(t:uu_id& t, bool =)

Pm’ () { id = &; zero m %; )
}

log_entryé log_entry:: operator= (log_entryé le)

pinning () { id = le.id; zero = le.zero; }
return *this;

}

boolean_t tid_oq( trans_idé tl, trans_idé t2)
{ return (tl == t2); }

boolean_t tid 1t ( trans_idé tl, trans_ids t2)
{ return (tl < t2); }

typedet log_entry* Rlog_entry;

#include *recov_sorted_slist.h"
recov sorted alistdeclare (t:m_id,tlog_cntry, tid_eq, tid_lt) H

mw_lo:t.d:di-titt:docl (t:m_.td, Plog_entry, tid_eq, tid_lf.) H

typedaf recov -o:tod_ali-t(tzuu_id,rlog_.ntry, tid_iq, tid_1t) log t;

cypedet mev_-o:tod_-li-t_itt: (trans_id,Plog_entry, tid_eq, tid_l¢) logitts;

recov .onod_aliluql-.nt (trans_id, Plog_eatry, tid_eq, tid _1e);

recov_sorted alistittrimpl (trans_id, Pleg_entry, tid_eq, tid_1t);

Figure 2-14: Counter’s Log Entry and Recoverable Sorted Association List

The add_.op_ec_log_wc:k routine identifies active transactions whose view of the counter might be changed by
looking through the query_log for queries ‘which are not currently serialized before the proposed operation. Each
query satisfying this condition is redone by the is_zero_wozrk function (we will look at this function later). If
the result of the query changes, the proposed operation must wait. If the proposed operation does not change any of
these queries, it may proceed.

Like add_op_to_log, the is_zexo routine, shown in Figure 2-17, uses a whea construct. It calls
is_zero_work 10 determine whether the state of the counter is known. If state of the counter is known, it obtains
a unique trans_id and inserts the state of the counter in the query_log.

The is_u:a__vérk routine, shown in Figure 2-22, determines whether the state of the counter is known, and if
so, whether or not the counter is zero. The state of the counter is determined with respect to is_zero_work’s
first argument, id. Idis the trans_idof the transaction requesting the query, if this query is being done for the



class atomic_counter : public subatomic {
nonnegative_int count;
log_ t °g_loq:
log_t query_log;

bool i.-_so:o_vo:k(e:m_idi, bools, cp_seq® = NULL);
void add_op_te_log(bosl);
bool .dd_op_ee_loq_vo:k(t:m_ids, bool);

publie:

ntc-.i.c_mne.:() A

void ina();

void dea();

bool is_sero )

void cosmit (trans_idé [ 3

~ wvoid abort (t:m_idﬁ t);

}i . :

ate-ic_co\mt-: T nte-ic_co\mtu: (9]

pinning () count = 0;
}

// Add increment cperation to log
void atomic_counter: :ine() { add_op_to_log(FALSE); }

// Add decrement operation to log :
void atomic_counter: :dec() { add_ep_co_].og (TROB); }

Figure 2-15: Atomic Counter Derived from Class Subatomic

first nme Itis the unique trans_id assigned to the query, iftbe‘quety is being redone.

Is_zero_work iterates over all op_log entries, separating them into 4 groups: ‘
1. Operations that are known to serialize before id and that are in id’s family (£amily_n1u.).

2. Operations that are commitied to the top level (committed_value).
3. Opmﬁonsthnmknowntosexialimgfmi¢

, 4. Operations that do not fit into any of the previous categories (othez_ops).

When is_zero_work is called by hdd_op_to_loq;wo:k to redo a query, the operation which is being
requested (new_op) is specified. Since add_op_to_log only redoes queries that are not committed with respect
to new_op’s parent wransaction, this operation is included in group 4, :

The operations in Group 4 are used to construct a counter_range that represeots the possible values of the
counter. If the low end of the nnge’isboundedbelowbyapositiveintcger.thevalueofthecoumerwiﬂbenon—m

for all possible orderings of the uncommitted transactions. Is_zero_wozk’s second argument, zexo, will be set.
"to FALSE in this case. Ifd:ehighendofthemngeisbo\mdedbyzem,thevalue of the counter will be zero for all
possible orderings. Zexo will be set to TRUE in this case. Is_zexo_work remums TRUE if the state of the

counter is known, FALSE otherwise. -

The operations in Group 1 will serialize immediately before the query. Let’s examine why this is true.
1s_zero_work will be called in two cases:
l.Acﬁenthasmquestedmmdememordecmmemandthequeryisbdngmdonetomake sure the
proposed operation does not change it.
2. A client has requested a query. v
In Case 1, since the query already has a unique trans_id, it is impossible for any uncommitted subtransactions of



void atomic_ counter: :add_op_to_log (bool to_dec) {
// Add (inc/dec) operation to op_log.
trans_id curreat_id = trans_id (CURRENT) ;
log_entry* entry = NULL;
\

when (add_op_to_log_wo:k(cu::.ue_id, tc_d.e)) {
trans_id new_id;
entry = new log_entry(new_id, to_dec);
op_log.insert (new_id, entry);
}
}

bool atomic_counter: :ad;d_op_to_log_no:k(tml_idi id,
) : bool to_d.e) {
log_entry** eantry;

logittr nﬂt_.nery(qu.ry__log) ;
op_seq this_op (id, to_dec);

// Look for queries that aren’t committed wrt. me.
for (entry = next_entry(); entry; eatry = next_entzy()) (
i€ () ((**entzy) < id)){
bool known, sero = TRUE;
// Oncommitted wrt. me. Redo the query and return FALSE if the proposed
// operation changas the result.
known = ic_s.:o_wo:k (t:uu_id('*.nt:y), zero, 5thi-_ap);
if (tknown || (zereo tm bool (**entry))) return TALSE;
}
}

return TRUE;

Figure 2-16: Counter’s Inc and Dec Auxiliary Operations

the query's parent transaction to serialize before the query. In Case 2, since is_zexo holds the short-term lock on
thecountzr.nonewopenﬁoncancomebetween(imxplandmequery,thus.weonlyhavetoworryabmn
uncommitted subtransactions of the query’s parent transaction that commit before we obtain a unique trans_id
for the query. Since the only way to start pested transactions in Avalon/C++ is to use the start or costart
statement, and both of these statements suspend the parent while there are active subtransactions, the fact that a
query is being requested implies that the transaction requesting the query does not bave any uncommitted
subtransactions.

bool atomic_counter: :is_zero ()>
{ bool zero = TRUK;
trans_id current_id = trans_id (CURRENT) ;

when (i-_so:o_-o:k(cuzmt_id, zero)) {
trans_id new_id;
q\ury_log.imort(nov_id, new log_eatry (new_id, zero));
return sero;
}
}

Figure 2-17: Counter’s Is_zero Operation

Since we know that the operations in Group 1 will serialize immediately before the query, we may use those
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operations to shift the range in the appropr direction wh:. & try to determine the value of the counter. This is
accomplished by passing family value t0 countex_.ange’s is_zerc and is_not_zero functions.
Since the minimum value of the counter is zero, if the net effect of the operations in Group 1 is to increment the
counter, we knPW that the counter is non-zero without even looking-at the range.

If we manage to sneak in and grab the short-term lock between the time a transaction commits and the time its
commit operation is called, there will be some operatioas in Group 2. The operations in this group are applied
directly to our copy of the committed value of the counter. This is the correct thing to do, since the commit
operation would have applied these operations directly to the committed value if we had waited a little while longer.

If we are redoing a query, there may be some operations in Group 3. These operations are ignored, since we can be
sure that they will oever become visible to the query.

Figure 2-18: Serialization Example

The range constructed by is_zero_work does not take full advantage of the ordering restrictions imposed on
trans_ids by the tree structure of transactions, i.e., it assumes a "'flat’’ universe which may be grouped into
families. For example, suppose A and B are different top-level transactions (see Figure 2-18). It is impossible for
b1 to be serialized between al and a2. More concurrency may be achieved by taking these ordering restrictions
imoaccountinallcmramerthanintbesingleaseofopemionsintlnquery’s family; this is left as an exercise
to the reader.

2.3.2. Counter’s Commit and Abort

The commit operation, shown in Figure 2-21, removes unneeded records from op_log and query_log. It
updates the value of the counter by going through op_log in serialization order and applying all operations whose
trans_ids are commitied with respect to the committing transaction to the counter value. These operations are
then removed from op_log. All queries which satisfy this condition are removed from query_log. We need 0
use the < operator, rather than the descendant operation, because we cannot assume anything about the order in
which commit operations are executed. Suppose A and B are transactions (see Figure 2-19) and the committed value

inc dec

Figure 2-19: Order is Important

before either transaction commits is 0. Suppose A does 1 inc and B does 1 dec. If A commits, followed by B. the
counter’s committed value after A's commit operation is executed should be 1; then after B commits, the counter’s
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value changes to 0. However, if we were to execute B’s commit operation before A’s, then B would leave the value
of the counter unchanged (a dec has no effect on the counter if its value is 0 already), and A would change ittoa
final value of 1, which is wrong. By using <, the commit operation makes sure it installs all changes of

wransactions that have commitied with respect to the committing transaction, not just its descendants.
S .

inc| |inc| (a1l

dec

Figure 2-20: .Abon Example

Unlike the commit operation, the aboxt operation, shown in Figure 2-21, only removes operations whose
trans_ids are descendants of the aborting transaction from cp_log and query_log. It would be incorrect to
delete operations done on behalf of a transaction which is not a descendant of the aborting transaction, even if the
trans_ids associated with those operations are committed with respect 10 the aborted transaction. For example,
suppose A is a top level transaction that has executed some operations before starting a nested transaction. al (see
Figure 2-20.) If a1 aborts, only operations that were executed on al’s behalf should be removed from the logs.
Although the operations executed on A’s behalf before al started are committed with respect to al, it would be
incorrect to remove them from the logs, since A might commit. '
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void atomic_counter: :commit (trans_idé t)
{ 1og_.nf.zy'* entry;

when (TRUE) {
\

logittr act_ontry(op_log) ; :
for (entry = next_entry(); entry; entry = n.xt_qnt:y()) {
if ((**entry) < ¢) {
© pioning () {
count += (bool (**antzxy) ? -1 : 1);
op_log.remove (tma_id('*ontry) )i
~ dalete Tentrxy;
} : .
} "
} B
}
t ‘ ,
logittr nc:t_on:ry(q\ury_log) H .
for (entry = next_entry(}; entry; entry = n.xt_onr.q()){
if ((*ventry) < €){ o
pinning () {
query_log.remove (t:m_id.('*oatzy) VH
delete *entry; '

Y

~ wvoid nte-i.c_emmto:::abort (t:m_id& (3]
{ log_entry** entry; :

when (TRUR) {

logiter u.zt_ontry(ep__log);
for (entry = next_eatry(); eatry; entry = next_eatsy()) {
if (descendant (tml_id("cutry) , &) {
pinniag () {
op_log.:-ovo(um_id("ontty) ):
dalete *entry;
}
}
}
}
{
logittr next_entry (query_log);
for (entry = next_eatry(); antry; entry = n.:t_cntzy()) {
if (descendant (trans_id(**entzy), e)) {
pinning () { : .
query _log. M(eml_id('*utq) );
delete *entry;

Figure 2-21: Counter’s Commit and Abort Operations
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bool atomic_counter: :a.-_z.:o_wo:k(t:n-_id& id, bool& zero, op_seq* no-_ep)(
log_ont:y*' entry; )
logittr n.xt_onery(op_log);

nonnoq.tivo_int cc-.ittod_valuo (count) ;

int family value = 0;

ap_lict_u.ae other_ops;

for (entry = next_entry(); entry; entzy = naxt_entry(}){
if ((*wentry) < id){
if (both (tzm_id("ontzy), id) ) {
// A mamber of this family.
family_value += (bool (**entry) ? -1 : 1);
jelse if (descendant (ttm_id('*.ntzy), id)){
// A member of this family.
fuily_v.lm = (bool(".ntry) 2 =1 :1);
}else{ '
1/ :olntivoly—ce-ittod put not a member of this family
if (:m-_id(*'ontry) .done() ) {
co-ie:od_vnluo Ll (bool("ont:y) ? <1 : 1);
}else other ops << op_seq (*"entry);
}
else{
// Ignore oparations that are known to serialize after this quer¥. .. . '~
if (1 ((*%entry) > id)) (
other_ops << op_seq (*nentzy);
}
}
}

// Add the new operation if it was specified.
if (new_op = NULL) othezr_ops << *new_op;

// Do this family’'s operations guarantee a non-xero value?
if (family_value > 0){

seroc = TALSE;

return TRUE;
}

// The range without the query’s family.
counter_range unc_range (:Lnt.(ce—ictod_valu), other_ops);

// Can we tell whether or not the counter is zero? ’

ig (une__znng..i.__not_s.tc(!nlily_vd\lo) il nnc_:-ng..i-_:o:o (tuily_vdu))(_
zezro = unc_:ug..i-_:m (tnily_vnu.) 2
return TRUE;

}

zero = FALSE;
return FALSE;

Figure 2-22: Counter’s Is_zero_work Operation
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3. Reference Manual

3.1. Lexical Considerations

Avalon nonterminals are in roman face. C++ nonterminals are in italics. as in Section 14 of the C++ Reference
Manual in [14]. Keywords are in bold typeface. C++ extended BNF is used. E.g., symbolop' means an optional
symbol. A C++ nonterminal followed by *:..."" denotes an extension to that nonterminal.

The extended set of keywords is as follows:

costart pinning stable transaction when
except process start undo whenswitch
leave server toplevel variant

3.2. Servers

aggr: ...
server

decl-specifier: ...
server-specifier

server-specifier:
class-specifier

sc-specifier: ...
stable

An Avalon server object is an instance of a servez definition. A server definition, like a C+~+ class definition,
encapsulates a set of objects, and exports to clients a set of operations that manipulate the objects and a set of
operations that create and destroy instances of servers. A client invokes an operation on a server by calling a
member function of a server object. Creating a Dew instance of a Server causes a Dew server process to be started.
When a server object is deleted, the server is killed. '

3.2.1. Defining Servers
A server definition contains the following parts:

o Data declarations: Data declared to be stable in the server are restored following a failure. To be
restored properly, stable data must be derived from ope of Avalon's three base classes (Section 3.3
recoverable, atomic Or subatomic. All data must be implemented to coatral concurrent
access.

e A mandatory main. The main member function is executed as a background process when the server
is started. This function can be used to provide code which peeds to be run independently of the
server’s other operations. A printer server, for example, could use main for the code to run the printer.
Main must exist, even if empty, because Avalon uses the existence of a main implementation to
determine that the current compilation is for a server, rather than just for a client.

o An optional zecovez operation, which is executed whenever the server is restarted after a failure.

o Exported (and possibly internal) operations: ’I'bc exported qpcmtions provide_ the clients the only means
of accessing the server’s data. Communication between clients and servers 1s through (hidden) remote
procedure call with call-by-value transmission of data.

. ¢ A nonempty set of construclors: A server's constructor defines the parameters that a client must use
when creating a new server and provides code 10 execute when the server is started. In contrast to



constuctors for classes, a server’s constructor must also specify to the run-time system the parameters
peeded to start the server process; these parameters are specified in the declaration in a way similar to
passing parameters t0 the constructor of a class’s parent (see example below). When .a client calls a

server’s constructor, the specified parameers are passed to the routines that start the server.!
i
Example
Below is a simple server declaration:
sexrver simple {

stable atomic_int val; // Protected atomic integer
publis:

simple(x_stzing P, x_string B) (p,n); // Constructer

int get(); // An exported operation

void set(int i); // Another exported operation
void recover(); // Called upon server recovery
void main(); // Background procass

}i.
The parameters to the right of the colon in the constructor are passed to the rup-time routines that start the server.
The ﬁmPamneteristhenmxeofanexecmable file; if the fnllpamnameisnotgiven.theuser'spatbiSused. The
second parameter is the name of 2 node on which to start the server; If the value "localhost” or NULL is given, local
machine is used; otherwise an x_string argument such as "wing.avalon.cs.cmu.edu” can be given to start the server
on some remote machine.

3.2.2. Using Servers ‘
FornnAvalonpmgnmtomakeuseofaserveritmustﬁxstobuinamfemtominsmmeoftheappropriac
server. As:bownbelowtheclientmayeithercleaeanewserverobjea.mxﬁngunev_rserverpmss:

(1) printservesr® p = new pziae-.mr(...); // Start a new printserver
(2) printsexver q [T ’

or it may, with the Avalon library locate_server function (see end of Section 4.3), obtain a reference t0 an

e:dsdngservcrobjectxepmenﬁnsnnmningsewerpmz v
(3) printserver® p ® (printsezvesr®) &locate_server(. ..); // Locate an existing printserver

Calls to server_root functions and server construciors should not be used as initializers for global or static
variables since the rup-time system may be incompletely initialized at the time those variables are initialized.

Onceaserverinsumeisfound,openﬁonsminvokedonmeobjeaaforanyC#object:
p->spool ("myfile.txt®); // Inveke an oparation.

or .
q.spool ("myfile.txt");

Sineeserverobjectsmreallyjustc-t-c-objectswithspecialopemions.theyanbemapipulawdinthesamemanw
as other C++ objects. In particular, muobjectsmdmfamtomunbepassedspMemstomd
returned as values from functions.

3.3. Base Classes

There are three base Avalon classes: recoverable, atomic, and subatomic. Users define their own
recoverable types by deriving from recoverable. They define their own atomic types by deriving from atomic
orsubatonic,andmmponsibleforensuﬁngthatthetypstheydeﬁnemindwdaomic. If a type is not
amnictbenmnsacﬁonsthauseobpctsofthntypemnotgmnmedwbenonﬁc. We expect most users 0

‘UnlikznomnlCwuuge.themmppmnmnmmuinhmmmbyhcmmmmummd:ﬁﬁm
Thiainformuionisunfnlmlywhdi:mnitmmuppeuhapha viﬁbbwﬂscﬁeﬁ.ud:-dnmducm .
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derive from class atomic, and more experienced (and demanding) users to derive from subatomic, especially if
more control over the object’s syni:hmnization and recovery is desired. We refer the reader to Chapter 5, in
particular Section 5.2, for correct usage of base classes, and [16] for a more formal description of their interfaces.

33.1. Class Recoverable
Class Definition
class recoverable {
public:
virtual void pin(int size);
virtual void umpin(int size),

“

Operations

void pin(int size) . '
ensures Subsequent changes to the object will not be recorded to stable storage until a later matching
unpin operation. Multiple pins (and their matching unpins) by the same transaction to the
same object have no effect. If the object is already pinned by a transaction different from the
calling transaction, a run-time error is signaled.
void unpin(int size) v
modifies The value of the object in stable storage. .
requires The calling ransaction is currently pinning the object. _ .
ensures If there is exactly one outstanding pin operation, the modifications to the object are logged t0
stable storage. )
The pin and unpin operations, which should be called in pairs, are used to notify the run-time system that a
modification to an object is to be made. In most cases, the integer argument to pin and unpin should be the size of
the object being pinned. After a crash, a recoverable object will be restored to a previous state in which it was not
pinned. The pin and unpin operations are usually not called explicitly by programmers; instead, Avalon/C++
provides a special control stucture, the pinning block (Section 3.4.7), both for syntactic convenience and as 2
safety measure. .

3.3.2. Class Atomic
Atomic is a subclass of recoverable, specialized to provide two-phase read/write locking and automatic
recovery. Objects derived from class atomic should be thought of as containing long-term locks, used to ensure
serializability. Each transaction obtains read (write) locks on all objects it accesses (modifies); locks are held undl
the transaction commits or aborts. :
Class Definition

class atomic: public recoverable {

publie:

// pin and unpin are inberited from recoverablae.

virtual void read_lock():

virtual void write_lock();
}

Operations
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void read_lock()
when  No transaction other than the calling transaction has a write lock on the object.
ensures If the calling transaction already has a read lock on the object. there is no effect: otherwise, it
obtains a read lock on the object. Many transactions may simultaneously hold read locks on
\ the same object. ’

void write_lock()
when  No transaction other than the calling transaction has a read or write lock on the object.
ensures If the calling transaction already has a write lock on the object, there is no effect; otherwise it
: obtains a write lock on the object, preventing other transactions from gaining any kind of
lock on it.
Read_lock and write_lock suspend the calling transaction until the requested lock can be granted (i.e., when
the when condition bolds); this may involve waiting for other transactions to complete and release their locks.

The run-time system guarantees that for nested transactions, the following rules are obeyed in obtaining read and
write locks: ‘ .

o A child can get a read lock if all transactions bolding write locks are ancestors.

o A child can get a write lock if all transactions holding read or write locks are ancestors.

o When a child commits, locks are inherited by pareats.

o When a child aborts, locks are discarded. ‘ .
The run-time System guarantees transaction-consistency of atomic objects, by performing special abort processing
that *‘undoes’" the effects of aborted transactions, including those aborted by crashes. Thus, implementors of atomic
types derived from atomic need not provide explicit commit or abort operations. Finally, persistence is
“‘inherited’’ from class recoverable: its pin and unpin operations should be used in the same way as
described in Section 3.3.1. v

3.3.3. Class Subatomic

Like atomic, subatomic provides the means for objects of its derived classes to ensure atomicity. While

atomic provides a quick and convenient way to define new atomic objects, subatomi.c provides primitives to

give programmers more detailed control over their objects’ synchronization and recovery mechanisms. This control

can be used to exploit type-specific properties of objects to permit higher levels of concurrency and more efficient
recovery. A subatomic object must synchronize concurrent accesses at two levels: short-term synchronization to

ensure that concurrently invoked operations are executed in muwal exclusion, and long-term synchronization to
ensure that the effects of transactions are serializable. For shon-term synchronization, each object derived from
class subatomic should be thought of as containing a short-term lock, much like a monitor lock.

Class Definition

class subatomic: public recoverable {
protected:
void seize();
wvoid release();
void pause();
publie:
// pin and unpin are public, by inbheritance from recoverable.

wvirtual void commit(trans_id& td);
virtual void abort(trans_ud& tid),
}
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Operations

void seize()
when  No transaction holds the short-term lock on the object.
ensures The calling transaction obtains the short-term lock on the object.

void release() '
requires The calling wansaction holds the short-term lock.
ensures The calling transaction relinquishes the short-term lock.

void pause()
requires The calling wransaction holds the short-term lock.
ensures The calling transaction releases the lock, waits for some duration, and reacquires the lock
before rewumning. .
The above operations ensure that only one transaction may hold the short-term lock at a time, thus allowing type
implementors to ensure that wransactions have mutually exclusive access to subatomic objects. These operations are
protected members of the subatomic class: They are not provided to clients of derived classes, since it would not
be useful for clients to call them. Like pin and unpin, the above operations are usually not called explicitly;
instead, Avalon/C++ provides special control structures, the when and whenswitch statements (Section 3.4.8),
which automatically seize, release, and pause on the short-term lock. :

" Since commit and abort are C++ virtual operations, classes derived from subatomic are allowed (and indeed,
expected) to reimplement these operations. They each take a reference to a wransaction identifier as an argument.
(See the Avalon class trans_id of Section 4.1.2.) The typical effects of these operations are specified as follows:
void commit(trans_id& tid) .
requires The transaction tid has committed. .
ensures Nop-idempotent undo information stored for transactions that have committed with respect
to tid is discarded.
void abort(trans_id& tid)
requires The transaction tid has aborted. :
ensures The effects of every transaction that has committed with respect to tid are undooe.
Commit operations are called for only transactions that commit at the top-level. Wheoever a top-level transaction
commits (aborts), the Avalon run-time system calls the commit (abort) operation of all subatomic objects
accessed by that transaction or its descendants. Abort operations are also called when nesied transactions abort.
When commit or abort is called by the system. the most specific implementation for the object will be called.
Thus, subatomic allows type-specific commit and abort processing, which is useful and often necessary in
implementing user-defined atomic types efficiently. Notice that users peed not call commit and abort explicitly;
the system automatically calls them when appropriate.

3.4. Control Structures

3.4.1. Start

statement: ...
start trans-body
trans-body:
rans-tag statement except-clause o

tag:
toplevel
transaction
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Sequential transactions are created by means of 2 start staement. The toplevel qualifier causes the body of
the start statement to execute as a Dew top-level (root) (ransaction. The transaction qualifier causes the
body to execute as a subtransaction of the current transaction, if there is one: otherwise, it too begins a new top-level
transaction. Whén the body terminates, the transaction eitber commits or abors. Normal completion of the body
results in a commit of the transaction. Control flow stalements (veturn, leave, break, and continue) that
transfer control outside the scope of the transaction normally commit it, unless they state otherwise via an undo
qualifier (Sections 3.4.4, 3.43,3.4.5). The undo leave statement can be used to pass an abort code that can be
used as a switch value in an except clause (Section 3.4.6). Goto statements that transfer control outside a
transaction are currently not supported. Future versions of Avalon will probibit such transfers at compile-time;
presently, the result of such a statement is undefined.

3.4.2. Costart

statement: ... :
costart | coarms }

coarms:
coarm COoarms opt

coarm:

trans-body

Concurrent transactions and processes are created by means of the costart statement. The process executing the
costact is suspended; it resumes afier the costasrt is finished. Execution of the costart consists of
executing all the coarms concurrently. No guarantee is made about order of execution, or of initialization. Each
coarm runs as a separate (lighteight) process. The toplevel or transaction qualifier indicates whether the
coarm is a top-level transaction or subtransaction. ‘

A coarm may terminate without terminating the entire costart either by normal completion of its body, or by
executing a leave statement (Section 3.4.3). A coarm may also \erminate by transferring control outside the
costart staiement. If an outside transfer occurs, the following steps take place:
1.Allconniningswememsaretenninuedtothe outermost level of the coarm, at which point the coarm
becomes the controlling coarm. ‘

2. Every other active coarm is terminated (and aborts if declared as a transaction). The cootrolling coarm
is suspended until all other coarms terminate.

3. The controlling coarm commits or aborts.

4. The entire costart terminates. Control flow continues outside the costart staiement.

3.4.3. Leave

statement: ...
leave; _
undo (apression)oﬂ leave;

Executing 2 leave statement terminates the (innermost) transaction that the leave occurs in. By itself, leave
commits the transaction, but with the undo qualifier, it aborts it An unqualified leave statement must occur
textually within the scope ofamnsaction.oraoompile-ﬁmeemrmstms. An undo leave statement need not
occurwithinthetexmlscopeofauansacﬁon,bmititmnstoccmwiminthedywnicscopeofone.oramn-u’mc
error will occur. The optional integer expression in an undo leave statement can be used to pass a value that can
be used in the except clause of the aborted transaction (see section 3.4.6.) The value of the expression must be
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greater than zero, but less than or equal to the constant Avuou_sxs_uszn_mu_mz, or a run-time error
will result. If the expression can be evaluated at compile-time, this restriction will be enforced then.

3.4.4. Return

statement. ...
xr ressi
undoop' €L UIN expression

The return statement terminates execution of the containing operation. If no undo qualifier is present, then all
containing transactions (if any) terminated by this statement are committed. If the undo qualifier is present, then all
terminated transactions are aborted. When a return statement in a coarm causes control to leave the costart
statement. active sibling coarms are aborted. The undo qualifier can only be used within the lexical scope of a
transaction, or a compile-time error will result. :

3.4.5. Break and Continue

statement: ...

undo__ break

undo opt continue;
Terminating a cycle of a loop (while, do, for), or a switch statement may also terminate one Or more
transactions within the loop or switch. If no undo qualifier is present, then all these terminated transactions (if any)
are committed. If the undo qualifier is present, then all of the terminated transactions are aborted. When a break
or continue in a coarm causes control to leave the costart statement, active sibling coarms are aborted. The
undo qualifier can only be used within the lexical scope of a transaction, or a co:npile;time error will result.

3.4.6. Except Clauses
except-clause: .
' except (idenn:ﬁer)m statement

An except clause, which may be appended to a transaction body, is used to handle different cases of an aborting
transaction. Afier a transaction aborts, it allows some case-specific action to be taken. The starement in the clause
is expected to be one or more case statements. If the transaction was aborted as a result of an undo (expression)
leave statement, then the value of the integer expression (called the abort code) is used to determine which of the
cases in statement are executed, just as in a switch statement. The Avalon run-time system may abort the
u-ansactionforavaxietyofotherreasom;inthiscase.theaboncodewillbeanimegergreatertben
AVALON_SYS_USER_ABORT_ MAX. If the optional identifier is present, then an integer variable of that name will -
be defined to have the value of the abort code within the scope of the except clause. The routine
avalon_abort_code_to_string may be used to translate system abort codes to strings describing the reason
for the abort: ' ‘
char* avalon_abort_code_to_string(int ac)
ensures The returned string describes the reason for an underlying system-induced abort according to
the integer abort code ac. :

2Currently equal to Q%1
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3.4.7. Pinning

statemens: ...
pinning (expression OP') statement
; ;

The pinning statement indicates that statemen may modify expression. Statement should not contain a server call
or anything else that could cause an abort. An abort inside a pinning statement will cause deadlock. Expression
must evaluate to be the address of a recoverable object (Section 3.3.1); if it is not provided, this will be used. All
modifications to recoverabie objects should be done within pinning statements. If a recoverable object is not
*‘pinned”’ in memory while it is being modified, it may cease to be recoverable and may have other serious
consequences on the run-time system. If the object to be pinned is of variable size, then explicit calls to pin and
unpin are necessary; the pinning statement cannot be used.

3.4.8. When

statement: ... '
when (expression) siatement
whenswitch (expression) statement

The when statement provides short-term synchronization for operations on this, which must be a subatomic
object (Section 3.3.3). After a short-term lock on this is obtained, expression is evaluated; if true, statement is
executed. If expression evaluates to false, execution pauses, temporarily relinquishing the lock, uptil it becomes
true. The short-term lock is released after statement is executed.

The when statement can also be used to provide operation consistency of implementations of operations of
subatomic objects. The operations done in 2 when statement are done atomically: either they all bappen or nooe of
them happen. If the implementation of 2 subatomic operation does all of its wotk in a when statement, operation
consistency is guaranteed. When's can be nested, but the use of more than one (non-nested) when statements in the
implementation of an operation (¢.8., tWo when’s in sequence) is strongly discouraged and will void this guarantee.

As its name suggests, the whenswitch satement is a combination of the when and switch statements.
Expression and statement arc bandled just as they would be in a switch statement, with one difference: the
default action is to pause execution until the value of expression equals the value of one of the cases. Since the
de£ault action is provided, it is illegal to include a default in statement.

3.5. Transmission of Data

Clients and servers communicate through remote procedure call. The arguments and return values of server member
functions are passed by value. The only exception is that reference arguments are passed by value-result, i.e., their
values are copied back to the client when the server function returns. Pointers 10 objects are not transmissible.
Objects of any other C++ or Avalon fundamental type are transmissible. An array, struct, of variant (Section 4.1.4)
is transmissible if and only if all its component types are transmissible. Unions cannot be transmitted, since their
actual type is not known at compile time. The chart in Figure 3-1 summarizes which types are transmissible and
which are not. Future releases of Avalon/C++ are likely to reduce the restrictions on transmissible types, and allow
pointer indirection in structures to be wransmitted (by copying) between server and client.

In most cases, users can rely on the Avalon/C++ compiler to determine automatically how to transmit a value as an
argument 10 a server function. In the cases where the compiler fails 10 recognize a type as transmissible. or when the
automatically generated transmission functions are inefficient, the user can define his or ber own transmission
functions as part of the class definition. Section 5.4.2 explains how this can be accomplished, and should be read on
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a need-to-know basis only.

Types Transmissible Non-Transmissible

- int. short int, long int, unsigned int,
C++ Fundamental char, float, double, enum, references pointers
Avalon/C++ Fundamental | bool, trans_id. x_string (character strings) :
servers, arrays, variants, unions, functions,
C++ Derived (1) classes (-), structs (-) classes (+), structs (+)
Avalon/C++ Derived recoverable, atomic, subatomic

Italics indicates that transmission of that type is not yet supported by the current implementation.
(1) Provided component types and inherited supertypes, if any, are transmissible.

(+) With union or bitfield component types.

(-) With no union or bitfield component types.

Figure 3-1: Transmissible and Non-Transmissible Types . )
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4. Library
4.1. Non-atomic Avalon/C++ Types and Type Generators

4.1.1. Bools '
Avalon defines a boolean type, bool, with exactly two values, TRUE aod FALSE, and the usual C++ operations on
booleans: !, &&, Il, =, !=, and =. ' '

4.1.2. Transaction Identifiers .

The Avalon run-time system guarantees that the serialization order of transactions is the order in which they
commit. The trans_id class defines operations on Avalon transaction identifiers to permit run-time testing of the
transaction serialization order. There is a trans_id server at each site which keeps track of all the trans_id’s at that
site and handles sending trans_id’s to other sites that need them. '

Class Definition

class trans_id (
public:

trans_id(int = UNIQUE);

~trans_id();

trans_id& opex:ato:=(trans_id& 1)

bool ope:ato:—-=(tmn5_id& t;

bool ope:ato:<(trans_id&. th

bool ope:ato:>(trans_id& th

bool done();

£riend bool both(trans_id& tl, trans_id& 2);

£riend bool descendant(trans_id& tl, trans_id& t2);
L
Operations
wans_id(), trans_id(UNIQUE)
ensures A dummy subtransaction is created and committed and the subtransaction’s identifiér is

returned to the calling transaction. Note that UNIQUE is the default argument to the trans_id
constructor. .

trans_id(CURRENT)
ensures Returns the trans_id of an operation’s calling transaction.

~trans_id()
ensures The trans_id is deleted.

trans_id& ope:ato:=(u'ans_id& t)
modifies this '
ensures this becomes identical to ¢.
bool ope rator==(trans_id& t) )
ensures (] ==t evaluates to TRUE if ¢] and ¢ are equivalent; FALSE, otherwise. Note that trans_id’s
created by different operations within the same transaction are not equivalent.

bool ope:ato:<(mns_id& t)
ensures If ¢/ <! evaluates to TRUE, then if both ¢J and ¢ commit to the top level, t] serializes before
i If the expression evaluates 10 FALSE, either ¢l serializes after ¢, or ¢t] and ¢ are
" incomparable.



bool ope:ato:>(trans__id& t) e T
ensures If I >t evaluates to TRUE, then if both ¢/ and ¢ commit to the top level, ¢/ serializes after ¢.
If the expression evaluates to FALSE, either ¢! serializes before f, or ¢/ and ¢ are
incomparable. e

bool done() i
: ensures Returns TROUE if this is committed to the top level; FALSE, otherwise. " .

bool both(trans_id& tl, trans_id& t2) . _ CEe
ensures Rctums TRUE if 1/ and ¢2 are committed to their least common ancestor; FALSE, otherwise.

bool descendant(trans_id& t1, trans_id& t2)
ensures Returns TROE if 1/ isa descendant of 12; FALSE, otherwise.

4.1.3. x_string: Transmissible Strings SR
Strings are normally declared in C++ in two subdy different ways: (1) as a fixed amay of chars, whose size is

known at compile time, and (2) as a char pointer, terminated by a ‘0, whose size is dynamic; its space is allocated at
run-time. Whereas strings as arrays of characters can be trivially transmitted (Section 3.5), strings as char pointers
cannot because pointers are not ransmissible. The built-in Avalon/C++ class, x_string, provides for
" uransmission of dynamically allocated strings. : o o :
Class Definition ‘
struct x_string {

x_string(:

x_string(x_string& )

x_string(char* c);

~x_string();

x_string& opc:ato:s(x_,sn-ing& s)

x_stingé operator=(char* c);

operator char*();

£riend ostream& opczatoz<<(osueam&. o, x_string& s);

£riend isteam& opczato.:>>(isueam& i, x_string& s);

£riend bool opc:ato::s(x_suing& s1, x_string& s2);
£riend bool opc:ato:!-(x_suing& sl, x_string& s2);
|5
Operations

x_string()
ensures Rewms an empty x_sting. .

x_suing (x_string& )
ensures Returns an x_string constructed from s.

x_string (char* ¢)
ensures Returns an x_string constructed from c.
~x_string 0 '
ensures The x_string is deleted.
x_stuingd operator= (x_string& s)
modifies this :
ensures this becomes equivalent to s.
x_string& operator= (char* ¢)
modifies this
ensures this becomes equivalent to c.

operator char*()
ensures Coerces an x_string into a character array.
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ostream& operator<< (ostreamé& 0. x_string& s)
modifies 0
ensures s is written to the output stream 0.

iszeam& operator>> (istream& i, x_sting& s)
modifies i. §
ensures s is read from the input sueam i

bool operator==(x string& s, x_string& s2)

ensures Returns TRUE if s1 and 52 contain the same characters in the same order, FALSE otherwise.
Equality is case-sensitive. .
bool operator!= (x_string& sl. x_string& s2) :
ensures Returns FALSE if 51 and s2 contain the same characters in the same order; TRUE otherwise.
Example -

server namelist {
publie:
add member (x_string member_name) ;

x__-:.:ing pick_:mdon_wbo: ()
}i:

main{) {
namelist nl;
chac* name = new char;

nl.add member ("Stewart™);
name = nl. pick_:andpn_n.nbo: ()
}

The coostructor from char* 10 x_string wil be automatically called in the case of calls to
nameList: :add_member. The coercion operator ~Wwill ransform the result value -of
namelList: :pick_:andom_mbe: into a char®.

4.1.4. Variants
aggr: .-
variant
decl-specifier: ...
variant-specifier
variant-specifier:
class-specifier

Avalon/C++ provides an aggregate data type generator, the variant, which is declared similarly to a structure or
class. An object of variant type can contain a value from a set of types. A variant differs from a standard C++
structure in that it can be only one of its possible subtypes at any given tme; it differs from the standard C++ union
type in that it is transmissible, i.e., can be seat as an argument to Or returned as a result from a server member
function.

A variant is a tagged, discriminated union and is made up of two parts, a tag and a value. The tag field specifies
which of the possible subtypes is stored in the value field, while the value field contains some instance of that
specified type.
Operations
A variant declaration of the form:

variant VT (T, Vyi..} T, vk
automatically defines the following operations:
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VT operator= (VTv)
modifies this . ‘
ensures Copies v into this. The operational effect is that this's tag field changes to be v's. and
this's value field is assigned v's, using the the assignment operator defined on v's type.
bool opexratox== (VT V) T o
ensures vl == v reums TRUE if v/ andvhavethesametag,andtheirvaluesmequal; FALSE,

otherwise. Two void instances of the same variant type are equal.
bool is_void O . .
ensures Returns TRUE if this has no value, and is of the special puil-valued void type; FALSE,
otherwise. The void type represents the staie of a variant instance prior to its first
assignment. ’ 2
and the following operations for each type T; and tag V;:
void set_V(T; val)
modifies this
‘ ensures Sets the tag of this to V;and its value to val.
T, value_V,0 R
ensures Retumns the value of this if its tag is V;; returns a run-time error otherwise.
bool is_V,0 ' .
: ensures Retumns TRUE if the tag of this is V;; FALSE, otherwise.
Restrictions : .
Vaﬁamsa:easpecialtypeofclass,andcan6nlybedeclarcdanddeﬁnedatthetoplevel.i.e.,variams’canmtbe
pested within declarations or definitions of other types, including variants. Variants cannot have member functions.
enum BT (FAIL, PASS);

variant grade {
char letter;

short percentage;
Pr pass_z£ail;
}; ‘ ,
In the above example, grade: : set_letter (char c) would be defined to set the tag of the variant instance %
char, and its value to ¢, bool grade::is_lettexr () returns TRUE if the tag of the variant instance is chaz,

and FALSE otherwise, and char grade: :value_letter () retums the char value of the instance if it

contains a char, and produces a run-ime error otberwise. Similar functions for parcentage and pass_£ail
are provided as well.

4.2. Atomic Types :

Each C++ fundamental type, t, has a derived Avalon atomic type counterpart, atomic_t, where t currently can
be int, chaz, or float. There is also an Avalon atomic type for booleans, atomic_bool, and for
(dynamically-sized) Strings,. atomic string (Section 4.2.1). Each Avalon atomic type bas the same sets of

values and operations as its non-atomic counterpart. No atomic type is transmissible.

2.1. Atomic Strings _
The atomic_string class is intended to be used in a manner similar to a chaz*, as used to represent C+
strings. They should be used as components of atomic and subatomic objects to ensure their recoverability. An
atomic_stringcan be of arbitrary, varying length.
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Class Definition

class atomic_string {

public:
atomic_string();
atomic_string(const char* str);,
atomic_string(atomic_sturing& astr),

void operator=(const char* str);

void operator=(const atomic_string& astr);
operator char*();

£riend bool operator==(const atomic_string& astr, const char* str);
£riend bool operator==(const char* s, const atomic_string& astr);
friend ostream& ope:af,or<<(ostream& s, atomic_string& astr);

h
Operations

atomic_string()
ensures Creates and retums a new, empty atomic_string.

atomic_string(const char* str)

atomic_string(const atomic_string& astr) :
ensures Creates and returns a new atomic_string, initialized with the value of str (astr).

void operator=(const char* str)

void operator=(const atomic_string& astr)
modifies this ‘ : .
ensures Assigns str (astr) 10 an atomic_string, adjusting the amount of storage for the string if
pecessary.
operator char*()
ensures Coerces an atomic_string into a «standard” C string, char*, allowing atomic_strings to be
used in standard C routines. .
bool operator==const atomic_string& astr, const char* str)
bool operator==const char* str, const atomic_string& astr)
ensures Returns TRUE if astr and str_contain the same characters in the same order; FALSE,
otherwise. Equality is case-sensitive. '
ostream& operator<<(ostream& s, atomic_string& astr)
modifies s
ensures astr is written to the output stream s.
Restrictions
The chaz* retumed by the coercion operator must only be used as a const char®, i.e., the contents of the string
should not be changed. The remed char* is only valid until the next operation on an atomic_string. Thus,
multiple coercions may return different chax* addresses. ‘
Example
server foo (
stable atomic_string a_str;
}i

a str = “Helle";
if (a_str == "Ballo®) ...
ulstrcmp (a_str, "hello™);

a_stx is defined to be an atomic_string. When the server is started, a_str is created uninitialized. The first
statement assigns the value "Hello" to a_str. The second statement uses the equality operator. The last
statement shows a use of an atomic_string where a char* is expected; this use is only acceptable if the called
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" routine does not attempt to medify the contents of the chaz* generated by the coercion. See 5.2 for other usage
guidelines. :

4.3. Catalog Server .

The catalog server (9] is pant of the Avalon run-time system It maintains a mapping of server attributes to unique
server names, and services lookup requests. The current implementation of Avalon has exactly one catalog server
since it is expected to be used relatively infrequently; hence, we do not expect it to be a bottleneck. If experience
shows otherwise, however, we may decide to run one catalog server per node in future versions of Avalon.

When a server starts, it must check in its atributes. The required attributes (type name (TYPE), unique name
(ONIQUE_NAME), and node (NODE)), are automatically registered when the server starts. If more attributes are
desired, the server programmer can add them in the constructor code. For example, a printer server might add the
identity of the printer it is servicing. I

Example

printserver: :printserver (.. O
CatalogS.set_attribute (_uv-.lon_uy_c-.rvor_id, “PRINTER", “irea");

};

To avoid boot-strapping problems, Avalon ensures that all clients have a reference to the catalog server, which has a
fixed unique name, Catalogs. _avalon_my_cserver id is the unique id returned by the catalog server’s
check_in function. I

When a client wants to locate a server, the locate_server function (see section 4.4) calls the catalog operation
name with a list of atributes and returns an object representing the described server.
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Class Deﬁnition

server catlog {

public:
int check_in(atr_list alist);
void remove(int id);
void set_attributes(int id, attr_list new_alist); )
woid set_attribute(int id, x_string atribute, x_string new_value);
void remove_attribute(int id, x_sting attribute);
atr_list get_amibutes(im id);
x_string get_attribute(int id, x_string atribute);
int find(attr_list alist);
x_string namef(attr_list alist);
void main();

B

Operations

int check_in(attr_list alist)
modifies catalog server
ensures Creates a new entry in the catalog server with the attributes specified in alist and retums a
unique id to be later used to look at and modify the attributes of the pew entry.

void remove(int id)
modifies catalog server
ensures Deletes the entry of the server identified as id.

void set_attributes(int id, attr_list new_alist)
‘ modifies Attributes of id
ensures Replaces the armibuted list of the server entry id with the new list alist.

void set_artribute(int id, x_string attribute, x_string new_value)
modifies arrribuse’s value .
ensures Replaces the value of artribute with new_value for the server id in the catalog server.

void remove_attribute(int id, x_string attribute)
modifies Attributes of id.
ensures The set of atributes for id no longer contains astribute.

attr_list get_attributes(int id) _
ensures Rerurns a list of attributes for the serverid. -

x_string get_antribute(int id, x_string attribute)
ensures Returns the value associated with asrribute for the server id.

int find(anr_list alist)

ensures Returns the unique id of a server whose attributes match alist.
x_string pame(attr_list alist) .

ensures Returns the value of the unique name artribute of a server whose attributes match alist.
void main() .

ensures No effect.

4.4. server_root
The server_xoot class bandles starting, killing, and locating servers. All servers which use the catalog server
(this is the default) implicitly inherit from the server_root class.
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Class Definition

class server_root {
public: :
server_root (const char* commandLine,
const char*  hostiName, '
uint - o=l
bool autoRestart = TRUE),
void kill_server (bool no_restart = FALSE);
£riend server_root& locate_server (char* typename,
ar_list* atlist = NULL,
int retry = 5);
£riend server_root& get_server (char* uniqueServerName);

|3

Operations

server_root (const char* commandLine, constchar® hostName, u_int n = 1, bool autoRestart = TRUE)
ensures Stans and initializes a server on node hostName, using the executable file and arguments
given by commandLine, and allocating n (Camelot) chunks of recoverable storage.
autoRestart specifies wbether or not the server is to be automatically restarted when it is
killed. If a full path is not specified, the executable file is found on the user’s path, and
»|..J<local machine name>"’ is prepended to the path for remote servers. The server is
stanadonthclocalmachin:ifhostNameisNULLor"localhoa". - '

void kill_server (bool no_restart = FALSE)
modifies catalog server
ensures If no_restart is TRUE or the autoRestart argument to the server’s constructor was
rnsx,theserveriskilledanditsenuydelewdﬁomtheumlogsexvenocberwise.the
server is restarted. ' o

server_root& locate_server (char* typename, attr, list attrl=NULL, int retry = 5)
requires Each instance of a type of server supplies identifying atributes when it is started. _
ensures Retumns a reference to a server of type typename with artribute values that match those in
arerl, if such a server exists; retums NULL otherwise. For multiple instances of a particular
type of server, 2 specific instance may be selected by listing its unique auributes in arl.
locate_server will make retry attempts to contact the catalog server before giving up.
If retry is zero, locate_server will keep trying antil it finds the catalog server.

server_root&k get_server (char* unique_server_name) .
ensures Remmns a reference to a server object for the named server, for those cases where the unique
pame and location are fixed or otherwise known. This is useful for servers which do not use
the catalog server. :

Note that since locate_server is a generic function, the resulting reference must be coerced to the appropriate
type when received. ' :
Example

attr_list alist; : // = new attribute list |
alist.push ("PRINTER®, wiron®); // OMC printers are pamed after gems and ainerals

p:i.nt-.mz& ps = (p:int-o:v.:s) locate_server ("p:int-o:-v.é', alise);
if (&ps '= NOLL) -// check for NULL returnm value
ps .spool (£ilename);

This code obtains a reference to the printserver server object for the printer “iron.” If such a server exists, it
invokes the server’s spool operation.



47
5. Guidelines for Progfammers

5.1. Choosing Identifiers o

In most ways, Avalon hides the complexity of its underlying mechanisms. When choosing identifiers, however, it
must be remembered that Avalon is a preprocessor that generates code for the undertying system, Cametlot, which in
turn is built on top of Mach. Fortunately berween Mach, Camelot, Avalon, C++, and C, some valid identifiers
remain. :

' Here are some guidelines: _ _

1. Do not begin your identifiers with **_avalon'. Except for names documented in this report, all
identifiers inserted into the generated code by Avalon/C++ begin with this string.

2. Do not end your identifiers with *_¢". All Camelot types end with “_¢&"".

3. Do not end your struct names wi "_struct". Again, Camelot uses these.

4. Beware of uppercase identifiers. There are many constants (#define, enums, etc.) and macros
which use uppercase identifiers.

§.2. Using and Implementing Avalon Types

This section gives some guidelines for correct usage of the two Avalon built-in classes, recoverable and
atomic. (Rules for subatomic are forthcoming.) The rules outlined here do not represent the only correct
usage, but rather, a usage which is **guaranteed’’ to provide correct results. These rules, of course, do not address
standard programming practices such as **Do not free memory twice."” ’

There are three kinds of programmers: J

Client programmers. .
These people write programs which invoke operations on servers. Their job is to ensure that the
operations are called correctly. There is only one rule for client programmers to obey: All server
operation invocations must be made within a transaction. '

Type users/Server programmers. . ,
These people define servers, and use built-in or user-defined types. Their job is to declare,
construct, and invoke operations properly on instances of these types. ' ’

Type implementors:These peopie define new types. Avalon rypes, derived from built-in or other user-defined types.
_ Their job is to define and implement the member functions of the type such that, provided it is

used correctly, it will exhibit a desired behavior. Note that, when creating a new Avalon type

that uses another Avalon type, the programmer is both a type implementor (of the new type) and
atypcuser(oftheusedtype). ‘ ’

In the next four sections, we give rules for users of recoverable types, users of atomic types, implementors of
~ recoverable types, and finally, implementors of atomic types. -

5.2.1. Using a Recoverable Type
Allocation; All Avalon types arc allocated from recoverable memory (a special heap). This is accomplisbed
through an appropriate constructor provided by either the type implementor or generated by Avalon. Care must still
be taken, however, not to force allocation of an Avalon type from other than recoverable memory (such as the
stack). Thus: :
1. Do not declare variables or functions of an Avalon type. Instead, use references or pointers to Avalon
types. -
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2. Do not new an array of Avalon objects (e.g., new myatomic([10])>.

3. Do not coerce 2 non-Avalon type to an Avalon type either explicitly, €.8.,

str = (atemic_string) “string";

or implicitly, €.8- _ :
atomic_string: :atomic_string (char* istz) (...} // comstructor taking a char* .:gd-inf.
void afunction (atomic_stringé s) (...} // function expecting an Avalon type
afunction ("string®); // BAD code! ' : .

The trouble bere is that C++ interprets a copstructor of one argument as a coercion from the
argument’s type to the class type. In the example, C++ converts the char® "string" to an
atomic_string reference by creating a temporary variable on the stack of type
atonic__string. ] ‘

Use: All usage of an Avalon type should be through member functions provided by the type. 5

5.2.2. Using an Atomic Type
Constructing Atomic Objects: When constructing an atomic object it is important that the creating transaction has

- exclusive access to the location which will hold the new object. Thus:

class myatomic : public ateaic {
ate-.i.e_i.at' i;

;;;d newint (int);
1 Y
void myatomic: :newint (int n) {
(*this) .v:ito_lock() H
pinning () i = new atomic_int (n);
) . .
Before creating the new atomic_int, the function obtains exclusive access to the variable (i) which will hoid the

address of the object.

Destroying Atomic Objects: Similarly, when destroying an atomic object, the transaction must have exclusive
access to all pointers to the object. e
class mystomic : public atomic {
atomic_int* i;
;;;d dealeteint();
}:

void -y-to-ie::dnloeoint() {
‘(wthis) .':ito_loek() ;
delete i; .
pinning () i = 0;

}

5.2.3. Implementing Recoverable Types

Constructors and Destructors: Storage for all Avalon types must be allocated from recoverable memory. Avalon
takes care of storage allocation and deallocation for types with constructors which do not make assignments t0
this. See the section Assignment to This for special rules conceming the proper use of such assignments.

Any initializations made 10 the object within  onstructor must be within 2 pinning block or pin and unpin
statements (see the section below on Modifications). '

3This restriction should be temporary.
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Contents: Avalon types may be constructed from only the following types:
1. In-line basetypes such as int, char, bool, etc.,

2. In-line Avalon types,
3. Pointers to Avalon types.
4. In-line arrays and structs of the preceding types.

All fields must be either private or protected

Modifications: All modifications must be (dynamically) within a pinning block or a pin/unpin pair. There
must be 2 matching unpin called for each pin and unpin may not be called without a prior call to0 a matching
pin.

Coercions: Care should be taken against providing the user with a pointer directly into recoverable memory. All
changes to a recoverable object should occur within only the object’s member functions. For example, an
atomic_string may bave an operator char* function. This function should malloc volatile memory to
hold the string rather than return a pointer to the array in recoverable memory. Otherwise, the user could modify it
outside a pinning block with undefined results. Ideally, C++ would let you define an operator const
char*, but it does not.

Overriding Member Functions: If the type overrides the default pin and unpin operations, the Dew
implementations must ensure that, if pinning, or pin and unpin are properly called, all changes will be made
within calls to zecoverable: :pin and recoverable: :unpin.

Assignment to This (long section): C++ allows the programmer t0 manage the allocation of objects through special
code in its constructors, particularly assiguments to the variable this. Using assignments to this, the
programmer can, for example, implement variable-sized objects, and objects which are allocated from a programmer
maintained memory free store. When using an assignment to this, however, care must be taken not to interfere
with Avalon’s managing of the recoverable beap. g

In what follows, we will describe the requirements for
¢ A simple constructor which expliciy allocates its memory,

o Variable-sized objects, and

o Objects which may be either allocated by the constructor or pre-allocated (such as when the object is an
in-line part of a struct).

A simple constructor or destructor could look like this:
mytype: :mytype() {

int mysize = sizeof (mytype);
this = (mytype*) REC_MALLOC (mysize);

pinning() {
// Initialize the fialds of your type.
}
}

mycype: : -mytype() {
pinning () {
// Cleanup the fields of your type.
}

uc_nn(tn.);
this = 0;
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In the constructor:
o All execution paths must make an assignment to this.

o To allocate memory for the object you must use REC_MOC rather than new or malloc. If you
have reason to allocate another recoverable object, you may (and should) use new. For exampie:

this = (mytype*) new atomic_int;

« You must compute the size correctly (use sizeof (your_type) soyou include any spaée needed ﬁy
the type’s ancestors.) :

« No member functions (e.g. pin and unpin) may be called before the assignment to this.

In the destructor:
* REC_FREE (rather than delete or £ree) must be used to deallocate the memory.

e After deallocation, this must be assigned the value 0 so that the ancestor’s destructors will not be
called. o o

« No member functions may be called after the deallocation of this.

The most common use of an assignment to this is to implement variable-sized objet_:B‘.' - However, any
recoverable type for which sizeof (yourtype) may retum an incorrect value must either call the functions pin
and unpin with the correct size rather than use the pinning statement, or override these functions so that they
use the correct size, allowing pinning to work properly (as shown bere). .

void mytype::pin(int ignore_size) {
int size = (®this) .ohjoct_li:.;
recoverable: :pin(size);

} -

void mytype::unpin{int ignore_size) {
int size m (*this) .cbject_size;
recoverable: :unpin(size);

}

These functions ignore the incorrect size which the pinning statement uses when it calls pin and unpin and
instead, uses the real size of the object. This particular example assumes that the constructor stores the allocated
size in the field object_size. -

It is important to remember that, with C++, many uses of a type force the allocation of the object’s memory prior t0
calling its constructor. These uses include: (1) construction of a derived type, (2) allocation of an array of objects-of
this type, and (3) in-line use of the type in a struct. 1fa type which bandles its own allocation (assignment to this)
is 10 be used in these situations, the constructor must be writien such that: B

1. Memory is allocated only if this is 0 upon entering.

2 If this is not 0, an assignment to this is still executed The statement this = this; will
suffice. :

3. If memory is allocated, the function (*this) .on_heap is called after the assignment to this.
This tells the destructor that the memory was allocated and needs to be deallocated.

For exampie:

mytype: :mytype () {
if (this == 0) {
int mysize = sizeof (mytype) + <whatevereise>;
this = (mytype*) REC_MALLOC (mysize);
{(*chis) .on_h.ap() ;

“The last ficld of a struct is declared as an amay of size 1. ‘When_you construct an instance ofﬂ!type.hwem.yw&lc_mocu
much memory as needed for an array of the desired length (plus the initial fixed size ponionofd:mu:tmdinm). See [14] for
examples. ’
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else this = this;
pinning() {
//| Initialize the fields of your type-

}
}

The destructor would then deallocate the memory only if the constructor allocated it:

mytype: :mytype() { ’
pinning() {
// Cleanup the fields of your type.

}

if ((*this).get_heap bit() == TRUE) {
REC_FREE (this);
this = 0;
}
}

The functions on_heap and get_heap_bit are p\;otccmd member functions exported by class recoverable.
(Since these are used only in the rare instances in which programmers wish to pre-allocate objects, they are not
described with the other exported functions.) The function on_heap simply sets a bit in the object which is
checked by the function get_heap_bit (returning TRUE if it was set and FALSE otherwise).

5.2.4. Implementing an Atomic Type

Types derived from class atomic should follow the requirements outlined above. In addition, if the type is
expected to exhibit atomic behavior (serializability, transaction-consistency, and persistence), the guidelines in this
section should be followed. '

Contents: Pointer fields in the type should point only to types which are atomic (derived from atomic or
subatomic), or recoverable provided that concurrent access to a recoverable object is protected by an appropriate
lock on the containing atomic object.

Modifications: : .

1. read_lock on the object should be called by a member function prior to accessing any data in the

object. write_lock should be called prior to any modification to the data. Pointers to non-atomic
(recoverable) objects should be treated the same as in-line pon-atomic objects in that appropriate locks
should be obtained on the enclosing atomic object prior t0 invoking member functions on the object.
No locking is required when accessing atomic components (in-line or pointers) since the objects’
member functions should acquire the necessary locks.

2.If it is intended that a nop-in-line subcomponent of an object be protected through locks on the
containing object, the subcomponent should be derived from recoverable rather than atomic
(i.e., the object is persistent but relies on the caller for concurrency control).

Coercions: An atomic object should not be coerced to 2 gon-atomic type.

e ——————

Overriding Member Functions: If the type overrides the default read_lock and write lock operations, the

new implementations must ensure that, if the type user properly calls read_lock or write_lock, the
appropriate calls to atemic: : read_lock and atcmic: .write lock are made.
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5.3. Constructing an Avalon Program

53.1. Server Programs
A server program should be broken into files as follows:

<server>.h declares the server and includes any type definidons required by the server. ‘

<server>av  provides the implementation for cach of the server’s member functions .and any support
functions not declared or included in <server>.h. . :

<other>.{av,0}  provides the implementation for any functions declared in <server>b other than the server’s

member functions.

A server program should be linked with the following libraries in order:

-lmisc -lava -lgen -lcamlib -lswitches -ltermcap \
-lthreads -lcam ~lmach =-lm -lnode

§.3.2. Client Programs

A client program includes the <server>.h file for each server it uses. Avalon ensures that implementations for the
server's member functions are included. It is the responsibility of the programmer, however, t0 include the
implementations of any other functions declared in <server>.h and any files it includes. In general, a client program
must be linked with all of the .0 files for each server it uses except for <server>.o. The libraries needed by the
server should also be linked with the client program.

5.3.3. Example Templates
) w—m myServer.ls e

#include <avalon.h>

. #include <mytype.h>

// always fizst file included.
// defines types used by the server.

server myserver {
mytype =t;

publie:
mysezver (...) : (.23
-l_epl. (-..)7"

ms_op2 (.--)i
};
—— ERYILTVEr AV v «me myclient.a? —
#include <myserver.h> #include <xysarver.h>
int p:into_ueinty O (...}
-y-om:::-y-orvo: (...} {...}
mysarver: :-_opl (.- {... p:ivnto_ntinty() P |
{..-

] .
myserver: :ms_op2 (.. .) ..}

#include <aytype.h>

mytype: :mytypel. .

}

D G-
-Y‘YP‘“"_"PJ-(---) {-.-}
aytype: :mt_op2(...) (...}
= server.make ——
acc -0 myserver myserver.o mytype-© \

-imise -lava -lgen -lcamlib \
-lswitches -ltermcap -lthreads \
<lcam -lmach -lm ~-lnode '

- client.make —

ace -o myclient mycliemt.o mytyps.o \
-lnisc -lava -lgemn ~lcamlib \
-1switches -ltermcap -lthreads \
-icam -lmach -im -lnode

The file myserver.av provides only the implementations of the server’s member functions and the
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implementation of private_utility which is not defined in myserver .h and thus, will not be needed by the
client. The object file generated for myserver.av is linked in with the server program but not the client program.

The file mytype.av provides implementations of the other functions defined in myserver.h through the
#include <mytype.h>. Since the client includes this file, it also peeds to be linked with mytype.o.

Finally, both the client and the server need to be linked with the standard set of libraries needed by Avalon. For
complete examples, look at the servers, clients and makefiles in /afs/csfproject/avalon/src/avalon/binlsamples. See
also the acc man pages (Appendix II) for appropriate flags with which to call acc.

5.4. For Experts Only

5.4.1. Undo and Destructors _

When a transaction is aborted using an undo leave (return, break, continue) statement, control may
be transferred directly to the textual end of the transaction using the C longJjmp mechanism. This transfer of
control will exit one or more blocks in which automatic variables may have been initialized by a constructor. These
variables may be instances of a class that has a destructor, and, if so, this destructor would normally be called on
these variables before the block was exited. When a transaction is aborted, however, these variables will not have
destructors called for them. (Note that this is a problem shared with any use of the set jmp/longjmp mechanism
in C++.) Normally, the constructor and destructor of a class only modify the object they are invoked on. In this
case, this may not be a serious problem; the only result of not calling the destructor is that space on the free store is
gradually lost. However, some classes are written so that the constructor and destructor modify some external data
structures, and rely on the assumption that both the constructor and the destructor will be called for each object to
maintain the integrity of those data structures. These kinds of classes would interact badly with undo statements
that exit multiple blocks, and should probably be avoided. Future versions of Avalon/C++ may attempt to handle
this interaction more gracefully. ‘ :

§.4.2. User-Defined Transmission Functions

Before any class instance can be actually wransmitted to another process, it must be translated into a special. built-in
class called _ava_message. The _ava_message absuact representation is that of a queue. Objects are removed
from the queue in the same order in which they were inserted. '
Class Definition

class _ava_message {
_ava_message();
_ava_message& ope:ato:<<(_ava_message& msg);
_ava_message& ope:ato:«(_ava_msgﬁeld& msg);
_ava_message& ope:atoz>>(_ava_message& msg);

I
Operations

_ava_message()
ensures Creates and returns a new instance of an _ava_message.

_ava_message& ope:ato:<<(.ava_message& msg)

_ava_message& ope:ato:<<(_ava_msgﬁeld& msg)
ensures Appends msg to the end of an _ava_message.
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_ava_message& ope:ato:>>(__ava_message& msg) . .
ensures Extracts built-in base types from the message instance. Higher-order types are extracted
using the class’s _recompose function (see below) with the message instance as an argument.
To add user-defined transmission to a user-defined class, you must define two class member functions in order to be
able to ransmit a class instance:
operator _ava_message()
ensures Coerces a class instance into an _ava_message. It will typically need to call the transmission
functions on other types. For each class, _ava_message instances are constructed by calling
the class’s coercion operator. For each built-in fundamental type (int, chars, floats), a special
class, _ava_msgfield, with overioaded constructors, is provided. Since enumerations are
represented in C++ as integer constants, they should be treated as if they were of type int for
the purpose of transmission. '

void _recompose(_ava_message& msg)
modifies *this (Obscure, but true.) ,
ensures Constructs a new instance of the class and overwrites the old one with the new.

Figure 5-1 gives 2 sample of transmission functions for a simple class.

5.4.3. Processes
Support for processes has not yet been implemented and will not be soon.

A coarm of a costart statement can also be a regular process with no transaction semantics:

coarm. ...
process statement

We make no guarantees as 10 giving any meaningful semantics t0 processes that run concurrently with transaction
coarms, or processes that run within transactions.

5.4.4. Pragmas -
Support for pxragmas has not yet been implemented and will not be soon.

gma. -
Gpragmad pragma-list
pragma-list:.
prag .
prag , pragma-list.

prag:
identifier
identifer = value

A pragma is used to convey information to the combiler. Use of pragmas is an appropriate escape mechanism to
Camelot features. ‘

For example, Camelot provides two different kinds of logging, new-valuelold-value and new-value only and
mechanisms to support various commit protocols. Different combinations are useful depending on the expected
length of a transaction. Thus, we allow the user to specify via a pragma whether a newly started transaction will be
«:shomt”" or ‘‘long.” The standard defauit is **‘medium”* and the following combinations are defined for each value:

Short new-value only logging
blocking protocol, e.g., two-phase commit
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struct address {(

int number;
char streat[40];
char appt [8];
char city(20];
char state(3];
int zipcode;

}i

class personnel {
char name [40];
int ss_number;
float salary;
enum {WEEKLY, BROURLY,
address home_address;

MONTELY) payroll_type;

personnel (istream);

personnel (char® new_name,

operator _Aava message ();

void _reccmpose (_nvn_mu.ago&) H
};

// Definitions of constructors cmitted

personnel:: _avn_uo-ago() {
_ava_message msg = new _ava_una.g.();
int i;

// this->name
for (1 = 0; i < 40; i++)

rmeg << _-vu_-gtio].d(u_nu-bc:);

*msg << _ava_n-gtiold(la.lary);

*mag << _-v._-q!iold( (int) payroll_type);
"mgg << _ava_message (home_address);

return ("msg);
}

void pc:-om.l'_meqo-o(_ln_mlaqo& neg) {

// Foxr data entry
int new_sas, £float now_lnl, address no'_aﬂd);

*nsg << _.vn_ngtiold(nm[i] VH

// this->ss_numbaer

// this->salary

// this=>payroll_type
// this->home_address

int &;

for (i = 0; i < 40; i++) meg >> name([i]; // this->name

amsg >> ss_numbar; // this=>ss_number
mag >> salary; // this->salasy

{ int temp; msg >> temp; payroll_type = temp; )} // this->payroll type
home_address._recomposs (msq) ; // this->home_address

Figure 5-1: User-defined Transmission Functions -

Medium new-value/old-value logging
blocking protocol, e.g., two-phase commit
Long new-value/old-value logging
non-blocking commit protocol
Default The default value is ‘“Medium.”

Notice that the combination of new-value only logging and a non-blocking commit protocol is not permitted.

Other pragma values will be determined to incorporate other meaningful combinations, €.g., to indicate using a

“*highly optimized’* protocol for a local transaction.
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Restrictions : .
In general, pragmas arc only allowed at any place where the syntax rules allow a declaration. Currently, pragmas
are treated exactly as comments, and thus, can appear anywhere a comment can appear. No interpretation of pragma

values is currently done.
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The language this grammar defines is 2 strict superset of that presented in Section 14 of the Reference Manual in
|

(14].

1.1. Expressions

expression:
term
expression binary-operator expression
expression ? expression : expression
expression-list

expression-list:
expression
expression-list , expression

term:
primary-expression
unary-operator term
term ++
term -
sizeof expression
sizeof ( fype-name)
( type-name ) expression
simple-type-name ( expression-list )
new rype-name initializer ,,,
new ( rype-name )
delete expression
delete [ expression] expression

primary-expression:

s + identifier

constant

string

this

( expression )

primary-expression| expression ]
primary-expression ¢xpr¢ssion-listop, )
primary-expression . id
primary-expression -> id

id:
identifier
 operator-function-name
typedef-name :: identifier
. typedef-name :: operator-function-name
operator:

unary-operator
binary-operator
special-operator
free-store-operator
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Binary operators have precedence decreasing as indicated:

binary-operator: one of

t/%

assignment-operator

assignment-operator: oné of :
=+=-a=.=/=%="=&=lz>>=<<=

unary-operator: one of
‘ *r & -~ -

.

special-operator: one of
oo

free-store-operator: one of
new delete

pe-name:
decl-specifiers abstract-declarator

abstraci-declarator:

empty

» gbstraci-declarator

abstract-declarator ( argument-declamn‘on-list )
abstract-declarator CONSIant-exXpression oo, ]

simple-type-name:
typedef-name
char
short
int
long ,
_unsigned
£loat
double
void
typedef-name:
idenzifier

1.2. Declarations

declaration:
decl-:peciﬁersq” declarator-list, .
name-declaration
asm-declaration
pragma
name-declaration:
aggr identifier ;
enum identifier
agsgr:
class
struct



union
server
variant

asm-declaration:
asm( string ) ;

pragma:
@pragma@ pragma-list

pragma-list:
prag .
prag , pragma-list
prag:
identifier
identifer = value
decl-specifiers:
decl-specifier decl-specx:ﬁersop,
decl-specifier:
sc-specifier
type-specifier
fct-specifier
friend
typedef
server-specifier
variant-specifier
rype-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const .

sc-specifier:
auto
extern
register
static
stable
fct-specifier:
inline
overload
virtual
server-specifier:
class-specifier
variant-specifier:
class-specifi
elaborated-type-specifier:
key typedef-name
key identifier
key:
class
stxuct
union
enum
server
variant

59



declarator-list:
init-declarator
init-declarator . declarator-list

init-declarator:
declarator im'tializerap‘

declarator:
dname
( declarator )
* const opt declarator
& const _, declarator
declarawr?largumem-declaration-li:t ),
declarator [ constans-expression ]

dname:
simple-dname
typedef-name :: simple-dname

simple-dname:
identifier
typedef-name
~ rypedef-name
operator-function-name
conversion-function-name

operator-function-name:
operatoz operaior

conversion-function-name:
operator fype

argumem-declaration-list:
arg-declaration-listyy, - ope

arg-declaration-list:
arg-declaration-list . argumeni-declaration
argumeni-déclaration
argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator
decl-specifiers abstract-declarator = expression
class-specifier: )
class-head | member-list opt }
class-head:
aggr identifier, opt
aggr identifier : public,, typedef-name
member-list: ,
member-declaration member-list”,
member-declaration:
decl-specifiers o, member-declarator initializer,,
function-definition ;
decl-specifiers oo, fct-declarator base-initializer ,p,
private:
protected:
public:

member-declarator:
declarator

idensifiery,, : constant-expression



initializer:

= expression

= { initializer-list }

= ‘{ initializer-list , }

( expression-list )
initializer-list:

expression

initializer-list , initializer-list

{ initializer-list }
enum-specifier:

enum idensifier ,p, { enum-list }

enum-list:
enumerator
enum-list . enumerator

enumerator:
identifier
identifier = constant-expression

1.3. Statements

compound-statement:
{ statemem-listop, }

statement-list:
statement
statement statement-list

statement:
declaration
compound-statement
expression, ;
i# ( expression ) statement
i# ( expression ) statement else statement
while ( expression ) siatement
do statement while ( expression )

£or ( statement expressiony,, ; EXpressionop ) statement

switch ( expression ) statement
case constant-expression : siatement
default : statement
undo opt break ;
undo__, continue;
goto identifier
identifier : statement
start trans-body
costart { coams }
leave;
undo (expression) opt leave;
undo _, return expression
pinning (expression w) statement
when (expression) statement
whenswitch (expression) statement
pragma
trans-body:
trans-tag siarement except-clause oo
trans-tag:
toplevel
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coarms:
coarm COAIMS oo

coarm:
trans-body
ptOC.S‘ statement
except-clause: :
except (identifier) oo statement

L4. External Definitions
program:
" external-definition
externai-definition program
external-definition:
function-definition
declaration
ﬂnaion-deﬁnitiou: B
decl-specifiers .5, fet-declarator base-initializer .5, fet-body
fct-declarator: ‘ o
declarator ( argument-declaration-list )
fe-body:
: compound-statement
base-initializer:
: member-initializer-list
member-initializer-list:
member-initializer .
member-initializer , member-initializer-list
member-initiglizer: -
identifier p ( argument-list )

1.5. Preprocessor

#define identifier token-string :
#degine identifier( identifier , ... , identifier ) token-string
#else
. #endif
#ig expression
#ifdef identifier
#ifndef identifier
#include “filename”
#include <filename>
#line constant "filename”
#$undef identifier
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NAME

acc — an Avalon/C++ compiler

SYNOPSIS

acc [ option ] ... file ...

DESCRIPTION

acc is an Avalon/C++ compiler. File names that end with

&, £+, b, b+, 2V
are taken to be Avalon/C++ source files. They are compiled, producing .o files, as in cc (1).

SR _aretakentobeas(l)someﬁles.

d. are ignored. i
File names that end with anything else are assumed to be object files or libraries and are handed
directly to cc. : v

acc uses cpp 0 pre-process the input, gvfron! 10 process the Avalon extensions to C++, cpp t0 pre-
process the avfront output, Jusrimisc/.c++/liblcfront to process the C++ extensions to C, cc to compile
the resulting C code, and Jusrimisc/.c++/lib/munch to find global variables with constructors and des-
tructors. acc defines the macros __STDC__, c_plusplus, and avalon when running cpp the first time,
_STDC__ and ¢_plusplus when running cpp the second time. C++ include files are normally taken
from Jusr/misc/.c++/include. '

There are several options which tell acc which programs to run aod where to put the output. These

optionsa'xeallpteﬁxedbyﬂ.

The following options tell acc to run 2 partial Avalon compile:

+aE  Only cpp is nun. The result is printed on szdout.

+aF Only cpp and avfront are run. The result is printed on stdous.

+aG  Only cpp. avfront, and cpp are run. The result is printed on stdout.

+aH  Only cpp, avfront, cpp, and ¢front are run. " The result is printed on stdout.

The following options tell acc to run all or part of a C++ compile:

+al Only cpp is nun. 'Ibemdtispﬁmedons:douz.‘lheavalonmacroisnotdeﬁned. This option
is equivalent to +aE +akK. o

+aJ  Ouly cpp and cfront are run. Thbe result is printed on stdout. The avalon macto is not defined.
| Thisopﬁonisequivalenttoﬂﬂ +ak. - .

+akK Allpassuexccptavﬁomandthesecondpasofcppmmn. Tbe avalon macro is not
defined. -

The following options tell acc to generate a list of all the macros defined in the C preprocessor:

+ad cpp is run to generate a list of defined macros. The macros __STDC__, c_plusplus, and
avalon are defined. The result is printed on stdowt.

+ad2  cpp. avfrons, and cpp are run. The second pass of cpp prints 2 list of defined macros on stdout.
+ae Like +ad except that the avalon macro is not defined. This option is equivalent to +aK +ad.
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The fpllowing options tell acc to generate a list of makefile dependencies:

'+aM  cpp is run to generate a list of makefile dependencies. The macros __STDC__, c_plusplus,
and avalon are defined. The result is printed on stdout. '

+aMM Like +aM except that only include files which are included with *#include file ' are men-
toned.
+aN  cpp is run to generate a list of makefile dependencies. The macros __STDC__ and c_plusplus

are defined. The avalon macro is not defined. The result is printed on stdout. This option is
equivalent to +aK +aM.

+aNN Like +aN except that only include files which are included with *#include file ' are mentioned.
This option is equivalent to +aK +aMM.

The following options tell acc various other things about how to do the compile:

+asuffix _
The +ad, +ad2, +ae, +aE, +aF, +aG, +aK, +aM, +aMM, +aN, +aNN and +aP options will
send the output for each file to 2 corresponding file with the suffix suffix, rather than to stdout.

+af Files are used in the preprocessor stage instead of pipes. This may improve performance on
machines that spend most of their time paging.

+ah  Lines beginning with #line or #number will be removed from the output produced with the
+ad, +ad2, +ae, +aE, +aF, +aG, +akK, +aM, +aMM, +aN, +aNN and +aP options. ‘

+ai The output of ¢front for each file is put in a file with the suffix ".c". These files are normally
deleted, but the +ai option keeps them around.

+aP  cpp and avplain are run. The result is printed on s:dout. avplain is a version of avfront that
parses but does not actually implement the Avalon extensions. It is useful only for maintainers
of avfront.

+aT  acc will print timing information.

+aV  acc will print all the details about what it is doing.

The following options are passed on in various forms to the programs that acc runs. This is not an
exhaustive list. Other options not listed in this man page are assumed 1o be avfront and cfront options
if they begin with *+’, cc options if they begin with ’~’, and files if they begin with anything else.
+d cfromt will generate code that is more suitable for debugging. Inline functions will not be
expanded. :
+n0Catsrv )
avfront will generate code which does not use the catalog servet.

+S Some run-time statistics for avfront and cfront will be printed on stderr.

+V avfront and cfront will accept old-style C declarations. Include files will be taken from
Jusr/eslinclude rather than Jusr/misc/.c++/include

=2Dname=value

=2Dname )
Name is defined for the second pass of the C preprocessor. If no value is given, name is
defined to be 1. :

-2ifile The second pass of cpp will process file as input, discarding the resulting output. file will be
found on the search path for include files.

=2Uname
The definition of name in the second pass of the C preprocessor is removed.

- - -y >
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~Dname=value
~Dname '
Name is defined for the first pass of the C preprocessor. If no value is given, name is defined
tobel. - ’

-ifile  Like The first pass of cpp will process file as input, discarding the resulting output. file will be
found on the search path for include files. _

~ldir dir is added to the search path for include files. Directories given in -I options are searched
before fusr/misc/.c++/finclude and the directories in the CPATH environment variable. This
option affects both passes of the C preprocessor. ' '

=Uname ‘
The definition of name in the first pass of the C preprocessor is removed.

-w avfront, cfront, and cc waming messages are not printed.

<some directory in SLPATH>/avagnu_cpp
The C preprocessor.

~aviront The Avalon preprocessor.

Jasr/misc/.c++/lib/cfront " | -
The C++ preprocessor.

/usrimisc/.c++/lib/munch . ,
Finds global variables with constructors and destructors.

K The C compiler.
L Output from cfront.

ctdt.c

Output from munch.

SEE ALSO

BUGS

ath 7

as (1), cc (1), Id (1), The Avalon Report

avfront sometimes prints names twice in its error messages. For example, "foo” might be printed as
~foofoo”. This behavior has been observed only when avfront was given incorrect code.

The error handling routines in avfront get confused easily, resulting in unintelligible errdr messages.
This problem may also cause avfront w crash.

The code generated by cfrons seems to be more likely to trigger bugs and overflow tables in the C com-

piler than normal C code. The code. generated by avfront is more likely to do these things to the C++
compiler than normal C++ code. : '

‘acMallnn Tindate 128/R7 3
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In order to get Avalon/C++, you wi'l need to have the following licenses:
1. Mach ‘

2. Camelot

3. ATAT C++
We should have licenses 1 and 2 on file. You will need to send a copy of the signature page for license’3
to the following address: ' :

Karen Kietzke

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

We would appreciate it if you would answer the following queétions to assist us in coming up with
reasonable default values. Please send electronic mail with your answers to "avalon@cs.cmu.edu”.
1. What directory do you use for your standard C++ include files?

2. Where are cfront (the C++ preprocessor) and munch (the program that looks for global
variables with constructors in .o files)?

3. What C compiler do you use?

Although Avalon/C++ is.diétributed for free, we (the Avalon project) request that you acknowledge us
when you refer to our work.

If you have any questions, send electronic mail to *avalon@cs.cmu.edu” or call Kéren Kietzke at
(412)268-7663.




