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Abstract. Privacy policies in sectors as diverse as Web services, finance
and healthcare often place restrictions on the purposes for which a gov-
erned entity may use personal information. Thus, automated methods
for enforcing privacy policies require a semantics of purpose restrictions

to determine whether a governed agent used information for a purpose.
We provide such a semantics using a formalism based on planning. We
model planning using Partially Observable Markov Decision Processes
(POMDPs), which supports an explicit model of information. We argue
that information use is for a purpose if and only if the information is
used while planning to optimize the satisfaction of that purpose under
the POMDP model. We determine information use by simulating igno-
rance of the information prohibited by the purpose restriction, which we
relate to noninterference. We use this semantics to develop a sound audit
algorithm to automate the enforcement of purpose restrictions.

1 Introduction

Purpose is a key concept for privacy policies. Some policies limit the use of certain
information to an explicit list of purposes. The privacy policy of The Bank of
America states, “Employees are authorized to access Customer Information for
business purposes only.” [1]. The HIPAA Privacy Rule requires that healthcare
providers in the U.S. use protected health information about a patient with
that patient’s authorization or only for a fixed list of allowed purposes, such as
treatment and billing [2]. Other policies prohibit using certain information for
a purpose. For example, Yahoo!’s privacy policy states “Yahoo!’s practice on
Yahoo! Mail Classic is not to use the content of messages stored in your Yahoo!
Mail account for marketing purposes.” [3].

Each of these examples presents a constraint on the purposes for which the
organization may use information. We call these constraints purpose restrictions.
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Let us consider a purpose restriction in detail. As a simplification of the
Yahoo! example, consider an advertising network attempting to determine which
advertisement to show for marketing to a visitor of a website (such as an email
website). To improve its public image and to satisfy government regulations, the
network adopts a privacy policy containing a restriction prohibiting the use of
the visitor’s gender for the purpose of marketing.

The network has access to a database of information about potential visitors,
which includes their gender. Since some advertisements are more effective, on
average, for some demographics than others, using this information is in the
network’s interest. However, the purpose restriction prohibits the use of gender
for selecting advertisements since it is a form of marketing. Since tension exists
between selecting the most effective ad and obeying the purpose restriction,
internal compliance officers and government regulators should audit the network
to determine whether it has complied with the privacy policy.

However, the auditors may find manually auditing the network difficult and
error prone leading them to desire automated tools to aid them. Indeed, the dif-
ficulty of manually auditing purpose restrictions has led to commercial software
for this task (e.g., [4]). However, their approaches have been ad hoc.

Our goal is to place purpose restrictions governing information use on a for-
mal footing and to automate their enforcement. In the above example, intuitively,
the auditor must determine what information the network used while planning
which ads to show to a user. In general, determining whether the purpose re-
striction was obeyed involves determining facts about how the audited agent
(a person, organization, or computer system) planned its actions. In particular,
philosophical inquiry [5] and an empirical study [6] show that the behavior of
an audited agent is for a purpose when the agent chooses that behavior while
planning to satisfy the purpose. Our prior work has used a formal model of plan-
ning to automate the auditing of purpose restrictions that limit visible actions
to certain purposes [6].

We build upon that work to provide formal semantics and algorithms for
purpose restrictions limiting information uses, whose occurrence the auditor
cannot directly observe. For example, while the ad network is prohibited from
using the visitor’s gender, it may access the database to use other information
even if the database returns the gender as part of a larger record. Thus, our
model must elucidate whether the network used the gender component of the
accessed information.

To provide auditing algorithms, we need a formal model of planning. Fortu-
nately, research in artificial intelligence has provided a variety of formal models
of planning. To select an appropriate model for auditing, we examine the key fea-
tures of our motivating example of the ad network. First, it shows that purposes
are not just goals to be achieved since the purpose of marketing is quantitative:
marketing can be satisfied to varying degrees and more can always be done.
Second, the example shows that outcomes can be probabilistic since the network
does not know what ad will be best for each visitor but does have statistical
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information about various demographics. Lastly, the policy is governing the use
of information. Thus, our model needs an explicit model of information.

The first two features suggest using Markov Decision Processes (MDPs),
which we have successfully used in an auditing algorithm for purpose restrictions
on observable actions [6]. However, needing an explicit model of information
requires us to use an extension of MDPs, Partially Observable Markov Decision
Processes (POMDPs), which make the ability of the planning agent to observe
its environment and collect information explicit. We use a POMDP to model the
agent’s environment where the purpose in question defines the reward function
of the POMDP. The explicitness of observations (inputs) in the POMDP model
allows us to go beyond standard research on planning to provide a semantics of
information use by considering how the agent would plan if some observations
were conflated to ignore information of interest.

In more detail, we quotient the POMDP’s space of observations to express
information use. Intuitively, to use information is to see a distinction, and to
not use information corresponds to ignoring this distinction. Thus, we quotient
by an equivalence relation that treats two observations as indistinguishable if
they differ only by information whose use is prohibited by a purpose restriction.
For example, the ad network promising not to use gender should quotient its
observations by an equivalence relation that treats the genders as equivalent.
By conflating observations that differ only by gender, the network will ignore
gender, simulating ignorance of it. Such quotienting is defined for POMDPs since
observations probabilistically constrain the space of possible current states of the
agent’s environment, and quotienting just decreases the constraint’s accuracy.

We use our quotienting operation to provide two different definitions of what
it means for an agent to obey a purpose restriction involving information use. The
first requires that the agent uses the quotiented POMDP to select its behavior.
We call this definition cognitive since it refers to the agent’s cognitive process
of selecting behavior. Since the auditor cannot examine the agent’s cognitive
processes and might only care about their external consequences, we offer a
second weaker definition that depends upon the agent’s observable behavior.
The behaviorist definition only requires that the agent’s behaviors be consistent
with using the quotiented POMDP. It does not depend upon whether the agent
actually used that POMDP or a different process to select its behavior.

We use the behaviorist definition as the basis of an auditing algorithm that
compares the behaviors of an agent to each of the behaviors that is acceptable
under our notion of simulated ignorance. Despite comparing to multiple behav-
iors, our algorithm only needs to optimize the quotiented POMDP once. For the
behaviorist definition, we prove that the algorithm is sound (Theorem 1) and is
complete when the POMDP can be optimized exactly (Theorem 2).

To show that our semantics is strong enough, we compare it to noninterfer-
ence, a prior formalization of information use for automata [7]. This definition
examines how an input to an automaton affects the automaton’s output. Our
approach is similar but uses POMDPs instead of automata. We relate the two
models by defining how an automaton can implement a strategy for a quotiented
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POMDP, which allows us to prove that the cognitive definition implies a form
of noninterference (Theorem 3). On the other hand, we show that an agent can
obey the behaviorist definition while still exhibiting interference. However, inter-
estingly, such interference cannot further the restricted purpose showing that the
behaviorist definition is strong enough to prevent interference for that purpose.

Since an action’s purpose can depend upon how it fits into a chain of actions,
we focus on post-hoc auditing. Nevertheless, other enforcement mechanisms can
employ our semantics. Despite focusing on privacy policies, our semantics and
algorithm may aid the enforcement of other policies restricting the use of infor-
mation to only certain purposes, such as those governing intellectual property.

Contributions and Outline. We start by reviewing related work and POMDPs
(Sections 2 and 3). Our first contribution is definitional: we use our quotienting
characterization of information use to provide both the cognitive and behav-
iorist definitions of complying with a purpose restriction on information use
(Section 4). Our second contribution is our auditing algorithm accompanied by
theorems of soundness and a qualified form of completeness (Section 5). Our fi-
nal contribution is relating our formalization to noninterference with a theorem
showing that the cognitive definition implies noninterference (Sections 6). We
end with conclusions (Sections 7). All proofs are in a related technical report [8].

2 Prior Work

Information Flow Analysis. Research on information flow analysis led to
noninterference [7], a formalization of information flow, or use. However, prior
methods of detecting noninterference have typically required access to the pro-
gram running the system in question. These analyses either used the program
for directly analyzing its code (see [9] for a survey), for running an instrumented
version of the system (e.g., [10–13]), or for simulating multiple executions of the
system (e.g., [14–16]). Traditionally, the requirement of access to the program
has not been problematic since the analysis has been motivated as a tool for
software engineers securing a program that they have designed.

However, in our setting of enforcing purpose restrictions, such access is not
always possible since the analyzed system can be a person who could be adver-
sarial and whose behavior the auditor can only observe. On the other hand, the
auditor has information about the purposes that the system should be pursuing.
Since the system is a purpose-driven agent, the auditor can understand its be-
havior in terms of a POMDP model of its environment. Thus, while prior work
provides a definition of information use, it does not provide appropriate models
or methods for determining whether it occurs in our setting.

Enforcing Purpose Restrictions. Most prior work on using formal methods
for enforcing purpose restrictions has focused on when observable actions achieve
a purpose [17–24]. That is, they define an action as being for a purpose if that
action (possibly as part of a chain of actions) results in that purpose being
achieved. Our work differs from these works in two ways.
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First, we define an action as being for a purpose when that action is part
of a plan for maximizing the satisfaction of that purpose. Our definition differs
by treating purposes as rewards that can be satisfied to varying degrees and by
focusing on the plans rather than outcomes, which allows an action to be for a
purpose even if it probabilistically fails to improve it. The semantics of purpose
we use follows from informal philosophical inquiry [5] and our prior work using
Markov Decision Processes to formalize purpose restrictions for actions [6]. Ja-
fari et al. offer an alternative view of planning and purposes in which a purpose
is high-level action related to low-level actions by a plan [25]. Our views are com-
plementary in that theirs picks up where ours leaves off: Our model of planning
can justify the plans that their model accepts as given while their model allows
for reasoning about the relationships among purposes with a logic.

Second, we consider information use. While the aforementioned works address
restrictions on information access, they do not have a model of information use,
such as noninterference [7]. In particular, we extend our prior work [6] to model
how the agent uses information while selecting actions with a POMDP. We
show that if the agent does not use the information under our model, then
noninterference holds. While Martinelli et al. have used POMDPs for enforcing
quantitative access controls, we differ by using POMDPs to model information
use itself instead of for modeling policies governing information use treated as
observable actions [26]. Hayati and Abadi provide a type system for tracking
information flow in programs with purpose restrictions in mind [27]. However,
their work presupposes that the programmer can determine the purpose of a
function and provides no formal guidance for making this determination.

Minimal disclosure requires that the amount of information granted should
be as little as possible while still achieving the purpose behind the grant. This
differs from purpose restrictions, which do not require the amount of information
used to be minimal and often involve purposes that are never fully achieved (e.g.,
more marketing is always possible). Thus, unlike works on minimal disclosure [28,
29], we model purposes as being satisfied to varying degrees. Furthermore, we
model probabilistic failures of the agent’s plan, which allows us to identify when
information use is for a purpose despite not increasing the purpose’s satisfaction.

Planning. Since our formal definition is in terms of planning, automating au-
diting depends upon automated plan recognition [30]. We build upon works
that use models of planning to recognize plans (e.g., [31–34]). The most related
work has provided methods of determining when a sequence of actions are for a
purpose (or “goal” in their nomenclature) given a POMDP model of the envi-
ronment [34]. Our algorithm for auditing is similar to their algorithm. However,
whereas their algorithm attempts to determine the probability that a sequence
of actions are for a purpose, we are concerned with whether a use of information
could be for a purpose. Thus, we must first develop a formalism for information
use. We must also concern ourselves with the soundness of our algorithm rather
than its accuracy in terms of a predicted probability. Additionally, we use tradi-
tional POMDPs to model purposes that are never fully satisfied instead of the
goal POMDPs used in their work.
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3 Modeling Purpose-Driven Agents

We review the Partially Observable Markov Decision Process (POMDP) model
and then show how to model the above motivating example as one. We start with
an agent, such as a person, organization, or artificially intelligent computer, that
attempts to maximize the satisfaction of a purpose. The agent uses a POMDP
to plan its actions. The POMDP models the agent’s environment and how its
actions affects the environment’s state and the satisfaction of the purpose. The
agent selects a plan that optimizes the expected total discounted reward (de-
gree of purpose satisfaction) under the POMDP. This plan corresponds to the
program running the audited system.

POMDPs. To define POMDPs, let Dist(X) denote the space of all distributions
over the set X and let R be the set of real numbers. A POMDP is a tuple
〈Q,A, τ, ρ,O, ν, γ〉 where

– Q is a finite state space representing the states of the agent’s environment;
– A, a finite set of actions;
– τ : Q×A → Dist(Q), a transition function from a state and an action to a

distribution over states representing the possible outcomes of the action;
– ρ : Q×A → R, a reward function measuring the immediate impact on the

satisfaction of the purpose when the agent takes the given action in the given
state;

– O, a finite observation space containing any observations the agent may
perceive while performing actions;

– ν : A ×Q → Dist(O), a distribution over observations given an action and
the state resulting from performing that action; and

– γ, a discount factor such that 0 ≤ γ < 1.

We say that a POMDP models a purpose if ρ measures the degree to which
the purpose is satisfied. To select actions for that purpose, the agent should
select those that maximizes its expected total discounted reward, E

[
∑∞

i=0
γiui

]

where i represents time and ui, the reward from the agent’s ith action.
This goal is complicated by the agent not knowing a priori which of the

possible states of the POMDP is the current state of its environment. Rather
it holds beliefs about which state is the current state. In particular, the agent
assigns a probability to each state q according to how likely the agent believes
that the current state is the state q. A belief state β captures these beliefs as a
distribution over states of Q (i.e., β ∈ Dist(Q)). An agent updates its belief state
as it performs actions and makes observations. When an agent takes the action
a and makes the observation o starting with the beliefs β, the agent develops
the new beliefs β′ where β′(q′) is the probability that q′ is the next state.

We define upm(β, a, o) to equal the updated beliefs β′. β′ assigns to the state
q′ the probability β′(q′) = Pr[Q′=q′|O=o,A=a,B=β] where Q′ is a random
variable over next states, B=β identifies the agent’s current belief state as β,
A=a identifies the agent’s current action as a, and O=o identifies the observation
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the agent makes while performing action a as o. We may reduce upm(β, a, o) to
the following formula in terms of the POMDP model:

upm(β, a, o)(q′) =
ν(a, q′)(o)

∑

q∈Q
β(q) ∗ τ(q, a)(q′)

∑

q′∈Q
ν(a, q′)(o)

∑

q∈Q
β(q) ∗ τ(q, a)(q′)

To maximize its expected total discounted reward, the agent does not need
to track its history of actions and observations independently of its beliefs as
such beliefs are a sufficient statistic. Thus, the agent need only consider for each
possible belief β it can have, what action it would perform. That is, the agent
can plan by selecting a strategy : a function from the space of beliefs Dist(Q) to
the space of actions A. (We use the word “strategy” instead of the more common
“policy” to avoid confusion with privacy policies.)

The goal of the agent is find the optimal strategy. By the Bellman equa-
tion [35], the expected value of a belief state β under a strategy σ is

Vm(σ, β) = Rm(β, σ(β)) + γ
∑

o∈O

Nm(β, σ(β))(o) ∗ Vm(σ, upm(β, σ(β), o)) (1)

where Rm and Nm are ρ and ν raised to work over beliefs: Rm(β, a) =
∑

q∈Q
β(q)∗

ρ(q, a) and Nm(β, a)(o) =
∑

q,q′∈Q
β(q) ∗ τ(q, a)(q′) ∗ ν(a, q′)(o). A strategy σ

is optimal if it maximizes Vm for all belief states, that is, if for all β, Vm(σ, β)
is equal to V ∗

m(β) = maxσ′ Vm(σ′, β). Prior work has provided algorithms for
finding optimal strategies by reducing the problem to one of finding an optimal
strategy for a related Markov Decision Process (MDP) that uses these belief
states as its state space (e.g., [36]). (For a survey, see [37].)

Example. We can formalize the motivating example provided in Section 1 as a
POMDP mex. Here, we provide an overview that is sufficient for understanding
the rest of the paper; [8] provides additional details.

For simplicity, we assume that the only information relevant to advertising
is the gender of the visitor. Thus, the state space Q is determined by three
factors: the visitor’s gender, the gender (if any) recorded in the database, and
what advertisement (if any) the network has shown to the visitor.

Also for simplicity, we assume that the network is choosing among three
advertisements. We use the action space A = {lookup, ad1, ad2, ad3}. The actions
ad1, ad2, and ad3 correspond to the network showing the visitor one of the
three possible advertisements while lookup corresponds to the network looking
up information on the visitor. We presume ad1 is the best for females and the
worst for males, ad3 is the best for males and the worst for females, and ad2
strikes a middle ground. In particular, we use ρ(q, ad1) = 9 for a state q in which
the visitor is a female and has not yet seen an ad. The reward 9 could refer to
a measure of the click through rate or the average preference assigned to the ad
by females during market research. If the visitor were instead a male, the reward
would be 3. For ad3, the rewards are reversed with 3 for females and 9 for males.
For ad2, the reward is 7 for both genders. The action lookup or showing a second
ad produces reward of zero. We use a discounting factor of γ = 0.9.
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The function τ shows how actions change the environment’s state while ν
shows how observations accompany these actions. τ enforces that showing an ad
changes the state into one in which showing a second ad produces no further
rewards. It also specifies that performing lookup does not change the state of the
environment. On the other hand, ν shows that lookup can change the state of the
agent’s knowledge. In particular, it shows that performing lookup produces an
observation 〈d, α〉. The observation reveals that the database holds data d about
the visitor’s gender and α about what if any ad the visitor has seen. Thus, the
observation space is O = {f,m,⊥} × {ad1, ad2, ad3,∅} with f for the database
showing a female, m for a male, ⊥ for no gender entry, adi for the visitor having
seen adi, and ∅ for the visitor having not seen an ad.

How the network will behave depends upon the network’s initial beliefs βex1.
We presume that the network believes its database’s entries to be correct, that it
has not shown an advertisement to the visitor yet, and that visitors are equally
likely to be female or male. Under these assumptions, the optimal plan for the
network is to first check whether the database contains information about the
visitor. If the database records that the visitor is a female, then the network
shows her ad1. If it records a male, the network shows ad3. If the database does
not contain the visitor’s gender (holds ⊥), then the network shows ad2. The
optimal plan is not constrained as to what the agent does after showing the
advertisement as it does not affect the reward. (In [8], we discuss using the idea
of non-redundancy to eliminate this artifact.)

This optimal plan characterizes the form of the set of optimal strategies. The
set contains multiple optimal strategies since the network is unconstrained in
the actions it performs after showing the advertisement. The optimal strategies
must also specify how the network would behave under other possible beliefs it
could have had. For example, if the network believed that all visitors are females
regardless of what its database records, then it would always show ad1 without
first checking its database.

Intuitively, using any of these optimal strategies would violate the privacy
policy prohibiting using gender for marketing. The reason is that the network
selected which advertisement to show using the database’s information about
the visitor’s gender.

We expect the network constrained to obeying the policy will show ad2 to
all visitors (presuming approximately equal numbers of female and male visi-
tors). Our reasoning is that the network must plan as though it does not know
and cannot learn the visitor’s gender. In this state of simulated ignorance, the
best plan the network can select is the middle ground of ad2. The next section
formalizes this planning under simulated ignorance.

4 Constraining POMDPs for Information Use

We now provide a formal characterization of how an agent pursuing a purpose
should behave when prohibited from using a class of information. Recall the
intuition that using information is using a distinction and that not using it cor-
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responds to ignoring the distinction. We use this idea to model sensitive infor-
mation with an equivalence relation ≡. We set o1 ≡ o2 for any two observations
o1 and o2 that differ only by sensitive information.

From ≡ and a POMDP m, we construct a POMDP m/≡ that ignores the
prohibited information. For each equivalence class of ≡, m/≡ will conflate its
members by treating every observation in it as indistinguishable from one an-
other. To ignore these distinctions, on observing o, the agent updates its belief
state as though it has seen some element of ≡[o] but is unsure of which one
where ≡[o] is the equivalence class that holds the observation o.

To make this formal, we define a quotient POMDP m/≡ that uses a quo-
tiented space of observations. Let O/≡ be the set of equivalence classes of O
under ≡. Let ν/≡ give the probability of seeing any observation of an equiva-
lence class: ν/≡(a, q′)(O) =

∑

o∈O ν(a, q′)(o) where O is an equivalence class in
O/≡. Given m = 〈Q,A, τ, ρ,O, ν, γ〉, let m/≡ be 〈Q,A, τ, ρ,O/≡, ν/≡, γ〉.

Proposition 1. For all POMDPs m and equivalences ≡, m/≡ is a POMDP.

Example. Returning to the example POMDP of Section 3, the policy govern-
ing the network states that the network will not use the database’s entry about
the visitor’s gender for determining the advertisement to show the visitor. The
auditor must decide how to formally model this restriction. One way would be
to define ≡ex such that for all g and g′ in {f,m,⊥}, and α in {ad1, ad2, ad3,∅},
〈g, α〉 ≡ex 〈g

′, α〉, conflating the gender for all observations. Under this require-
ment, mex/≡ex will be such that the optimal strategy will be determined solely
by the network’s initial beliefs and performing the action lookup will be of no
benefit. Any optimal strategy for mex/≡ex will call for performing ad2 from the
initial beliefs βex1 discussed above.

Alternatively, the auditor might conclude that the policy only forces the
network to ignore whether the database records the visitor as a female or male
and not whether the database contains this information. In this case, the auditor
would use a different equivalence ≡′

ex such that 〈f, α〉 ≡′
ex 〈m, α〉 but 〈f, α〉 6≡′

ex

〈⊥, α〉 6≡′
ex 〈m, α〉 for all α. Under the initial beliefs βex1, the network would

behave identically under ≡ex and ≡′
ex. However, if the network’s beliefs were

such that it is much more likely to not know a female’s gender than a male’s,
then it might choose to show ad1 instead of ad2 in the case of observing 〈⊥,∅〉.

The next proposition proves that we constructed the POMDP m/≡ so that
beliefs are updated as if the agent only learns that some element of an equivalence
class of observations was observed but not which one. That is, we prove that the
updated belief upm/≡(β, a,≡[o])(q′) is equal to the probability that the next
environmental state is q′ given the distribution β over possible last states, that
the last action was a, and that the observation was a member of ≡[o]. Recall
that Q′ is a random variable over the next state while O, A, and B identify the
last observation, action, and belief state, respectively.

Proposition 2. For all POMDPs m, equivalences ≡, beliefs β, actions a, obser-
vations o, and states q′, upm/≡(β, a,≡[o])(q′) = Pr[Q′=q′ | O ∈ ≡[o],A=a,B=β].
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Propositions 1 and 2 show that m/≡ is a POMDP that ignores the distinc-
tions among observations that only differ by sensitive information. They justify
the following definition, which explains how a purpose-driven agent should act
when prohibited from using certain information. They show that it correctly
prevents the use of the prohibited information. The definition’s appeal to opti-
mizing a POMDP is justified by our prior work showing that an action is for a
purpose when that action is selected as part of a plan optimizing the satisfac-
tion of that purpose [6]. We extend this result to information by concluding that
information used to select an action is used for that action’s purpose.

Definition 1 (Cognitive). An agent obeys the purpose restriction to perform
actions for the purpose modeled by the POMDP m without using the information
modeled by ≡ iff the agent selects an strategy by optimizing m/≡.

We call the above definition cognitive since it refers to the strategy selected by
the agent as part of a cognitive process that the auditor cannot measure. Rather,
the auditor can only view the agent’s external behavior and visible aspects of
the environment. That is, the auditor can only view the agent’s actions and
observations, which we refer to collectively as the agent’s execution.

We can formalize the agent’s execution using a function exe. Even when the
agent uses the POMDP m/≡ with observation space O/≡ to select a strategy,
the actual observations the agent makes lie in O, complicating exe. We recur-
sively define exe(m,≡, σ, β1,o) to be the agent’s execution that arises from it
employing a strategy σ observing a sequence of observations o = [o1, . . . on] in
O∗ starting with beliefs β1 for a POMDP m/≡. For the empty sequence [] of ob-
servations, exe(m,≡, σ, β, []) = [σ(β)] since the agent can only make one action
before needing to wait for the next observation and updating its beliefs. For non-
empty sequences o:o, it is equal to σ(β):o:exe(m,≡, σ, upm/≡(β, σ(β),≡[o]),o)
where x:y denotes prepending element x to the sequence y.

A single execution e can be consistent with both an optimal strategy form/≡
and a strategy that is not optimal for m/≡. Consider for example, the execution
e = [ad2] = exe(mex,≡ex, σ, βex, []) that arises from an optimal strategy σ for
mex/≡ex. This execution can also arise from the agent planning for a different
purpose, such as maximizing kickbacks for showing certain ads, provided that ad2
also just so happens to maximize that purpose. Since the auditor only observes
the execution e and not the cognitive process that selected the action ad2, the
auditor cannot know by which process the agent selected the ad. Thus, the
auditor cannot determine from an execution that an agent obeyed a purpose
restriction under Definition 1.

Some auditors may find this fundamental limitation immaterial since such
an agent’s actions are still consistent with an allowed strategy. Since the actual
reasons behind the agent selecting those actions do not affect the environment,
an auditor might not find concerning an agent doing the right actions for the
wrong reasons. To capture this more consequentialist view of compliance, we
provide a weaker definition that focuses on only the agent’s execution.
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Definition 2 (Behaviorist). An agent performing execution e obeys the pur-
pose restriction to perform actions for the purpose modeled by the POMDP m
and initial beliefs β1 without using the information modeled by the equivalence
relation ≡ given the observations o iff e = exe(m,≡, σ, β1,o) for some σ that is
an optimal strategy of m/≡.

5 Auditing Algorithm

Under the behaviorist definition, to determine whether an agent obeyed a pro-
hibition against using certain information for a purpose pursued by the agent,
the auditor can compare the agent’s behaviors to the appropriate strategies.
The auditor records the agent’s execution in a log ℓ that shows the actions and
observations of the agent. For example, databases for electronic medical records
log many of the actions and observations of healthcare providers. The auditor
may then compare the recorded behavior to that dictated by Definition 2, i.e.,
to the optimal strategies for the quotient POMDP modeling the purpose while
ignoring disallowed information.

Given our formal model, we can automate the comparison of the agent’s be-
havior to the allowable behavior. We use an algorithmAudit that takes as inputs
a POMDP m, an equivalence relation ≡, and a log ℓ = [a1, o1, a2, o2, . . . , an, on]
such that the audited agent is operating in the environment m under a pol-
icy prohibiting information as described by ≡ and took action ai followed by
observation oi for all i ≤ n. For simplicity, we assume that ℓ records all rele-
vant actions and observations. Audit returns whether the agent’s behavior, as
recorded in ℓ, is inconsistent with optimizing the POMDP m/≡.

Audit operates by first constructing the quotient POMDP m/≡ from m
and ≡. Next, similar to a prior algorithm [34], for each i, Audit checks whether
performing the recorded action ai in the current belief state βi is optimal under
m/≡. The algorithm constructs these belief states from the observations and
initial belief state β1. Due to the complexity of solving POMDPs [38], we use an
approximation algorithm to solve for the value of performing ai in βi (denoted
Q∗

m/≡(βi, ai)) and the optimal value V ∗
m/≡(βi). Unlike prior work, for soundness,

we require an approximation algorithm solvePOMDP that produces both lower
bounds V∗low and upper bounds V∗up on V ∗

m/≡(βi). Many such algorithms exist

(e.g., [39–42]). For each βi and ai in ℓ, Audit checks whether these bounds
show that Q∗

m/≡(βi, ai) is strictly less than V ∗
m/≡(βi). If so, then the action ai

is sub-optimal for βi and Audit returns true. Pseudo-code for Audit follows:

Audit(〈Q,A, τ, ρ,O, ν, γ〉,≡, β1, [a1, o1, a2, o2, . . . , an, on]):
01 m′ = 〈Q,A, τ, ρ,O/≡, ν/≡, γ〉
02 〈V∗low, V

∗
up〉 := solvePOMDP(m′)

03 for (i := 1; i ≤ n; i++):
04 if (Q∗up(V

∗
up, βi, ai) < V∗low(βi)):

05 return true
06 βi+1 := upm/≡(βi, ai,≡[oi]);
07 return false
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where Q∗up(V
∗
up, β, a) is a function that uses V∗up to return an upper bound on

Q∗
m/≡(β, a). Q

∗
up(V

∗
up, β, a) equals:

Rm(β, a) + γ
∑

O∈O/≡

Nm(β, a))(O) ∗ V∗up(upm′(β, σ(β), O))

Theorem 1 (Soundness). If Audit returns true, then the agent did not follow
an optimal strategy for m/≡, violating both Definitions 1 and 2.

Thus, if Audit returns true, either the agent optimized some other purpose,
used information it should not have, used a different POMDP model of its envi-
ronment, or failed to correctly optimize the POMDP. Each of these possibilities
should concern the auditor and is worthy of further investigation.

If the algorithm returns false, then the auditor cannot find the agent’s be-
havior inconsistent with an optimal strategy and should spend his time auditing
other agents. However, Audit is incomplete and such a finding does not mean
that the agent surely performed its actions for the purpose without using the
prohibited information. For the cognitive definition, incompleteness is unavoid-
able since the definition depends upon cognitive constructs that the auditor
cannot measure. For example, recall that the network could display the execu-
tion e = [ad2] either from performing the allowed optimization or by performing
some disallowed optimization that also results in the action ad2 being optimal.

For the behaviorist definition, incompleteness results since a better approxi-
mation might actually show that Q∗

m/≡(βi, ai) < V ∗
m/≡(βi) for some i. In prin-

ciple this source is avoidable by using an exact POMDP solver instead of an
approximate one. However, the exact solution to some POMDPs is undecid-
able [43]. Nevertheless, we can prove that this inability is the only source of
incompleteness.

Theorem 2 (Qualified Completeness). If Audit using an oracle to exactly
solve POMDPs returns false, then the agent obeyed the purpose restriction ac-
cording to the behaviorist definition (Definition 2).

Other Purpose Restrictions. Audit is specialized for determining whether
or not the audited agent performed its actions for a purpose without using
some prohibited information. While such a question is relevant to an internal
compliance officer auditing employees, it does not correspond to the purpose
restrictions found in outward-facing privacy policies.

One type of restriction found in such policies is the not-for restriction pro-
hibiting information from being used for a purpose. For example, Yahoo! promised
to not use contents of emails for marketing. This restriction is similar to the con-
dition checked by Audit, but is weaker in that audited agent may obey it either
(1) by performing actions for that purpose without using that information (which
Audit checks) or (2) by not performing actions for that purpose.

A second type is the only-for restriction, which limits the agent to using
a class of information only for a purpose. For example, HIPAA requires that
medical records are used only for certain purposes such as treatment. It is also
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weak in that the agent can obey it either (1) by performing actions for the
purpose (which Audit checks using equality for ≡ to allow the agent to use the
information) or (2) by not using the information in question while performing
actions for some other purpose.

For both of these types, our algorithm can handle the first option (1) for
compliance. However, for both these types, the second option (2) for compliance
involves an open-ended space of possible alternative purposes that could have
motivated the agent’s actions. In some cases (e.g., healthcare), this space may
be small enough to check each alternative (e.g., treatment, billing, research,
training) with Audit. In other cases, the auditor might have the authority to
compel the agent to explain what its purpose was. In either of these cases, the
auditor could use Audit to explore these alternative purposes.

Modeling. Audit requires a POMDP that models how various actions affect
the purpose in question. Future work could ease the process of model construc-
tion using techniques from reinforcement learning, such as SARSA [44], that
automatically construct models from observing the behavior of multiple agents.

In some cases, the auditor might be able to compel the agent to provide the
POMDP used. In this case, Audit would check whether the agent’s story is
consistent with its actions.

6 Relationship with Noninterference

We have provided a definition of information use in terms of a POMDP. Prior
work provides the noninterference definition of information use for automata [7].
In this section, we show that our definition implies a form of noninterference. In
particular, we show that agents using strategies optimizing m/≡ has noninter-
ference for ≡, which suggests that our definition is sufficiently strong to rule out
information use. We start by reviewing automata and noninterference.

Automaton Model of Systems. The agent using the POMDP to select a
strategy can implement that strategy as a control system or controller (e.g., [45]).
We follow Goguen and Meseguer’s work and model systems as deterministic au-
tomata [7]. However, since we do not analyze the internal structure of systems
(it is unavailable to the auditor), our approach can be applied to other models.
We limit our discussion to deterministic systems since there are many competing
generalizations of noninterference to the nondeterministic setting (e.g., [46–48]),
but the main competitors collapse into standard noninterference in the deter-
ministic case [49].

A system automaton s = 〈t, r〉 consists of a labeled transition system (LTS) t
and a current state r. An LTS t = 〈R,O,A, next, act〉 describes the automaton’s
behavior where R is a set of states; O, a set of observations (inputs); A, a set of
actions (outputs); next : R×O → R is a transition function; and act : R → A
is a function identifying the action that the automation selects given its current
state. The current state r ∈ R changes as the system makes observations and
takes actions.
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As with POMDPs, an execution of a system s modeled as an automaton
corresponds to an interleaving of observations from the environment and ac-
tions taken by the system. Let exe(s,o) denote the execution of s on a se-
quence o of observations. As for POMDPs, we define exe for systems recursively:
exe(〈t, r〉, []) = [act(r)] and exe(〈t, r〉, o:o) = act(r):o:exe(〈r, next(r, o)〉,o) where
t = 〈R,O,A, next, act〉.

Noninterference. Recall that we set o1 ≡ o2 for any two observations o1 and
o2 that differ only by sensitive information. To not use the sensitive information,
the system s should treat such related observations identically.

To formalize this notion, we raise ≡ to work over sequences of observations
and actions (i.e., executions and sequences of observations). For such sequences
x and y in (O ∪A)∗, x ≡ y iff they are of the same length and for each pair of
elements x and y at the same position in x and y, respectively, x ≡ y where ≡
is treated as equality when comparing actions.

Definition 3. A system s has noninterference for ≡ iff for all observation se-
quences o1 and o2 in O∗, o1 ≡ o2 implies that exe(s,o1) ≡ exe(s,o2).

Our definition corresponds to the form of noninterference enforced by most
type systems for information flow. (See [9] for a survey.) Unlike Goguen and
Meseguer’s definition, ours does not require the system’s behavior to remain
unchanged regardless of whether or not it receives sensitive information. Rather,
the system’s behavior may change upon receiving sensitive information, but this
change must be the same regardless of the value of the sensitive information.
(See [50] for a discussion.)

Relationship. We now characterize the relationship between our quotienting
definition of information use and noninterference. We do so by considering a con-
trol system s operating in an environment modeled by a POMDP m. We require
that s and m share the same sets of actions A and observations O. However, the
state spaces R of s and Q of m differ with R representing the internal states of
the system and Q representing the external states of the environment.

We relate systems and strategies by saying that a system s implements a
strategy σ form/≡ and beliefs β1 iff for all o inO∗, exe(s,o) = exe(m,≡, σ, β1,o).
We denote the set of such implementing systems as Imp(m,≡, σ, β1). This defini-
tion allows us to formalize the intuition that agents using strategies optimizing
m/≡ has noninterference for ≡. In fact, systems implementing any strategy for
m/≡ has noninterference since any such implementation respects ≡.

Theorem 3. For all systems q, POMDPs m, initial beliefs β1, strategies σ, and
equivalences ≡, if s is in Imp(m,≡, σ, β1), then s has noninterference for ≡.

Agents obeying a purpose restriction under the cognitive definition (Defini-
tion 1) will employ a system in Imp(m,≡, σ, β1). Thus, Theorem 3 shows that
the cognitive definition is sufficiently strong to rule out information use.
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Information Use for Other Purposes. The situation is subtler for the weaker
behaviorist definition (Definition 2) and the algorithm Audit based upon it.
Systems exist that will pass Audit and satisfy the behaviorist definition despite
having interference by using the protected information for some purpose other
than the restricted one. The key is that there could be more than one optimal
strategy for a POMDP and that the agent may use the choice among optimal
strategies to communicate information. The behavior of such a system will be
consistent with whichever optimal strategy it selects, satisfying the behavior-
ist definition and Audit. However, such a system will not actually implement
any strategy for the quotiented POMDP m/≡ since it distinguishes between
observations conflated by ≡.

For example, consider modifying the motivating example found in Section 3
in two ways to make the POMDP m′

ex. First, let ad2 come in two versions, ada2
and adb2, which are otherwise the same as the original ad2. Second, change the
POMDP so that the network must perform the action lookup before showing any
ads. The agent can optimize m′

ex/≡ by either using a strategy σa or σb. Under
σa, starting from the initial beliefs βex1 discussed above, the network will first
perform lookup and then show ada2 . Under σ

b, it will show adb2 after lookup.

The network’s ability to choose between σa and σb can result in interference.
In particular, the network might not implement either of them and instead delay
the choice between ada2 and adb2 until after the observation from lookup informs it
of the visitor’s gender. The network could then use ada2 for a female and adb2 for
a male. While such a system would use the information and have interference, it
obeys the behaviorist definition with its actions consistent with either σa or σb.

Since such systems use the prohibited information to choose between optimal
strategies, doing so does not actually increase its satisfaction of the purpose.
Thus, this information use is not intuitively for that purpose and the agent
must be motivated by some other purpose. Thus, the behaviorist definition does
not allow the agent to use the information for the purpose prohibited by the
restriction, but rather allows the agent to use the information for other purposes.

The auditor might want to prevent such interference since it violates the
cognitive definition. The modifications to the example illustrate two ways that
the auditor can do so if he has sufficient control over the agent’s environment.
The first is to ensure that only a single strategy is optimal. The second is to
make sure that the agent can avoid learning the protected information (such
as by performing the action lookup) and that learning it incurs a cost. When
learning information is optional and costly, the agent will only be able to learn
it if doing so increases its total reward, and not just to select among optimal
strategies that do not depend upon using that information. A third possible
modification is to require the agent to perform an action committing it to a
single strategy before it can learn the protected information.

In some cases an auditor can detect such information flows without modifying
the POMDP. For example, intuitively, we would expect the ad network to handle
more than one visitor. The auditor could compare the network’s behavior when
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given a female to that when given a male. A difference in treatment indicates that
the network is not consistently implementing either of the optimal strategies.

7 Conclusion

We use planning to create the first formal semantics for determining when in-
formation is used for a purpose. We have provided an auditing algorithm based
on our formalism. We have discussed applying our algorithm to the problem of
enforcing purpose restrictions found in privacy policies.

Our methods have applications beyond enforcing purpose restrictions. For
example, due to privacy concerns, much interest exists in determining how third-
party data collection agencies use the information they collect. (See [51] for a
survey.) Despite being a question of information flow, program analyses are inap-
plicable since the programs are unavailable, as in our setting. Unlike our setting,
these agencies typically do not subject themselves to purpose restrictions. Nev-
ertheless, their desire for profit implicitly restrains their behavior in a manner
similar to a purpose restriction. Thus, our semantics and algorithm provide a
starting point for investigating such agencies.
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