
A Methodology for Information Flow Experiments

Michael Carl Tschantz

mct@berkeley.edu

UC Berkeley

Amit Datta

amitdatta@cmu.edu

Carnegie Mellon University

Anupam Datta

danupam@cmu.edu

Carnegie Mellon University

Jeannette M. Wing

wing@microsoft.com

Microsoft Research

May 5, 2014

Abstract

Information flow analysis has largely ignored the setting where the analyst has neither control over
nor a complete model of the analyzed system. We formalize such limited information flow analyses
and study an instance of it: detecting the usage of data by websites. We prove that these problems
are ones of causal inference. Leveraging this connection, we push beyond traditional information flow
analysis to provide a systematic methodology based on experimental science and statistical analysis.
Our methodology allows us to systematize prior works in the area viewing them as instances of a general
approach. Our systematic study leads to practical advice for improving work on detecting data usage, a
previously unformalized area. We illustrate these concepts with a series of experiments collecting data
on the use of information by websites, which we statistically analyze.

1 Introduction

Web Data Usage Detection

Concerns about privacy have led to much interest in determining how third-party associates of first-party
websites use information they collect about the visitors to the first-party website. Mayer and Mitchell pro-
vide a recent presentation of research that tries to determine what information these third-parties collect [1].
Others have attempted to determine what these third-parties do with the information they collect [2–5].
We call this problem web data usage detection (WDUD).

The researchers involved in WDUD each propose and use various analyses to determine what information
is tracked and how it is used. They primarily design their analyses by intuition and do not formally present
or study their analyses. Thus, questions remain:

1. Are the analyses used correct?

2. Are they related to more formal prior work?

To answer these questions, we must start with a formal framework that can express the problem and
the analyses. In essence, each of these works is conducting an information flow analysis: the researchers
want to know when information flows to a third-party and where it goes from there. Thus, the natural
starting point for such a formalism is prior research on information flow analysis (IFA). However, despite
the great deal of research on IFA (see [6] for a survey), we know of no attempt to relate or inform WDUD
research with the models or techniques of IFA, even in an informal manner.

We believe this disconnect exists for an important reason: the traditional motivation for IFA, designing
secure programs, pushes it away from analyzing third-party systems as done in WDUD. Typically, the
analyst is seen as verifying that a system under his control protects information sensitive to the system.

1

Thus, the problems studied and analyses proposed tend to presume that the analyst has access to the
program running the system in question.

In WDUD, the analyzed system can be adversarial with the analyst aligned with a data subject whose
information is collected by the system. In this setting, the analyst has no access to the program running
the third-party service, little control over its inputs, and a limited view of its behavior. Thus, the analyst
does not have the information presupposed by traditional IFAs. To understand the WDUD problem as an
instance of IFA requires a fresh perspective on IFA.

Other Atypical IFA Problems

The implicit assumptions underlying much of IFA research also obscure its connection to other areas of
research.

For example, the cryptography community has much work on identifying illicit flows of files. Such work
has included watermarking [7, 8], in which a key that links to the identity of the person to whom the
publisher sold the copy is embedded in the work. Traitor tracing is the special case of determining who
illicitly provided cryptographic keys to enable decrypting data [9].

Closely related is the detection of plagiarism. One approach the publisher can use for this problem is
to employ a copyright trap: deliberately unusual (typically, false) information inserted into reference works
to detect copying. For example, a map might include a trap street that is purposely misplaced and/or
misnamed [10]. If another publisher mechanically copies the map, the inclusion of the trap street in the
copy will indicate the copying.

Organizations handling sensitive data are concerned about data misuse. For example, governments are
concerned with employees leaking classified documents to reporters or foreign spies. For ethical reasons
and to comply with regulations, such as the HIPAA Privacy Rule [11], healthcare providers limit the use
of personal health information. Thus, organizations have adopted a variety of methods to discourage the
misuse of such data by their employees [12,13]. For example, investigators have employed Barium meals, a
watermarking-like analysis [14]. To use a Barium meal, the investigators feed different versions of classified
information to each suspect leaker. While the investigators cannot see what each suspect does with this
information directly, they may be able to infer the identity of the leaker based upon newspaper accounts
of the leaked information. As another example, a company can distribute email lists to business partners
with varying fake addresses, or honeytokens [15] or with varying subsets of the data [16].

In essence, these works are all IFAs. In particular, the analyst, who is aligned with the copyright
holder or organization, would like to determine whether a system (typically a personal computer or person)
is enabling an illicit flow of information. However, those working on these problems have not typically
discussed them as such since they do not fit into the traditional IFA setting. In particular, the analyst has
little if any access or control over the analyzed system. Like with WDUD, the analyst must investigate an
uncontrolled black box. Indeed, we find that some of the intuitive approaches used in WDUD are related
to cryptographic measures used in piracy detection.

Goal

Our goal is to systematize the information flow problems and analyses common to these areas of research.
To do so, we identify the limited abilities of the analyst in these problems. as a form of analysis between the
extremes of white box program analysis and black box monitoring. We show that the ability of the analyst
to control some inputs during an investigation enables information flow experiments that manipulate the
system in question to discover its use of information without a white box model of the system. Our
framework provides a fresh perspective both on our diverse set of motivating applications and on IFA by
allowing us to elucidate and challenge approaches in these areas and in IFA.

The overarching contribution of this work is relating IFA in these nontraditional settings to experiments
designed to determine causation. To do so, we prove a connection between information flow and causality,

2

which allows us to reduce these problems to well understood empirical ones. In particular, it allows us to
use statistical analyses in the place of traditional methods of IFA, such as program analysis.

Overview

We start with a closer examination of our motivating applications of WDUD in Section 2. We focus on
WDUD as the least understood of the motivating problems.

We then discuss IFA in general and the limitations of traditional IFA in Section 3. We abstract over
particular problems to systematize a class of IFA that has gone unformalized. We shift IFA from its tradi-
tional context of program analysis using white box models of software to the new context of investigating
black box systems that hide much of their behavior and operate in uncontrolled environments. This work
systematizes the common but hitherto independent efforts of our motivating applications by unifying them
under one framework.

In particular, we formalize these problems in terms of a version of noninterference, the primary definition
of traditional IFA [17], giving the first systematic expression of the WDUD problem. We prove that sound
information flow detection is impossible in this setting (Theorem 1).

Motivated by the impossibility result, we look for an alternative statistical approach. Fortunately, IFA
is related to causality, a much studied concept for which statistical analyses already exist. In Section 4, we
prove that a system has interference from a high-level user H to low-level user L in the sense of IFA if and
only if inputs of H can have a causal effect on the outputs of L while the other inputs to the system remain
fixed (Theorem 3). This connection allows us to appeal to inductive methods employed in experimental
science to study IFA. Such methods provide precisely what we need in the face of our unsoundness results
to make high-assurance statistical claims about flows.

We leverage this observation to approach WDUD with information flow experiments. Section 5 discusses
how to conduct such experiments. While many of the issues discussed are well known to scientists, we must
adapt them to our setting. We show a correspondence between the features of WDUD and the requirements
of a scientific study (Table 1). We pay particular attention to general principles that should guide the design
of information flow experiments rather than attempting to provide a cookbook approach, which often leads
to misapplication [18].

Section 6 reviews significance testing as a systematic method of quantifying the degree of certainty
that an information flow experiment has observed interference. In particular, we focus on permutation
testing [19], a method of significance testing that we find particularly well suited to the setting of WDUD
in which we have little knowledge of the web tracker’s internal behavior.

Section 7 provides a systematic look at prior works in WDUD. We analyze each of them under the
unifying method of permutation testing. This unification allows us to compare and contrast their disparate,
and often ad hoc, methods. We find the strengths and weaknesses of their experimental designs. We also
empirically benchmark our interpretations of their approaches with our own WDUD study, which we believe
to be the first to come with an analysis of correctness (Section 7.5).

We end by discussing future work. We first provide practical suggestions, which are summarized in
Section 8, for conducting future WDUD studies in a systematic fashion. We then discuss directions for new
research that apply the connection between information flow and causality to other security problems.

Contributions

Our methodology is supported by a chain of contributions that follows the paper’s outline:

Section 3 a systematization of nontraditional IFA
Section 4 a proof of a connection between IFA and causality
Section 5 an experimental design leveraging this connection
Section 6 a statistical approach to analyzing experimental data
Section 7 a systematization prior studies under a unifying method

3

These contributions are each necessary for creating a chain of sound reasoning from intuition about vague
problems to rigorous quantified results in a formal model. This chain of reasoning provides a systematic,
unifying, view of these problems, which leads to a concrete methodology based on well studied scientific
methods. While the notion of experimental science is hardly new, our careful justification provides guidance
on the choices involved in actually conducting an information flow experiment.

Throughout this work, we present our own experiments to illustrate the abstract concepts we present.
These results may also be of independent interest to the reader. To keep the presentation clear, we focus
on only WDUD.

In addition to containing details of experiments and results, the appendices found at the end of this
document also contain formal models and the proof of each of our theorems.

The systematization of experimental approaches to security is becoming increasingly important as tech-
nology trends (e.g., Cloud and Web services) result in analysts having limited access to and control over
systems whose properties they are expected to study. This paper provides a useful starting point to-
wards such a systematization by providing a common model and a shared vocabulary of concepts that
ties together seemingly disparate areas of security and privacy by placing them in the context of causality,
experimentation, and statistical analysis.

Prior Work

Ruthruff, Elbaum, and Rothermel note the usefulness of experiments for program analysis [20]. Whereas
our work focuses on problems where traditional white box analyses are impossible, their work examines
experiments in the more traditional setting where the analyst has control over the system in question.
Furthermore, rather than provide an informal overview of how experiments can be used for program analysis,
we develop a formalism relating informal flow and causality, provide proofs, and present a statistical analysis.

While we could not find any prior articulation of this formal correspondence between informal flow and
causality (our Theorem 3), we are not the first to note such a connection. McLean [21] and Mowbray [22]
each proposed a definition of information flow that uses the lack of a causal connection to rule out security
violations even if there is a flow of information from the point of view of information theory. Sewell and
Vitek provide a “causal type system” for reasoning about information flows in a process calculus [23].
We differ from these works by showing an equivalence between a standard notion of information flow,
noninterference [17], and a standard notation of causality, Pearl’s [24], rather than using an ad hoc notion of
causality to adjust an information theoretic notion of information flow. Furthermore, Mowbray’s formalism
requires white box access to the system while McLean’s only considers temporal ordering as a source of
causal knowledge. More importantly, they use causality to handle problematic edge cases in their formalisms
whereas we reduce interference to causality so that we may apply standard methods from experimental
science to IFA, which we discuss in the next section.

In Section 2, we discuss prior works on WDUD and we show in Section 7 that our methodology can
formalize them. In Section 3 we discuss in detail prior work on IFA and why it is insufficient for our goal
of black box program analysis. We draw on works from experimental design and statistical analysis, whose
discussion we defer until the point of use.

2 Web Data Usage Detection

Users visiting websites provide vast amounts of information and yet have little understanding of how the
website might use the information. In particular, websites provide little information about how one provided
input might affect what the user sees on that page or others. A visitor might be unaware of and surprised
by the flows of information from one place to the next on the web and how these information flows impact
their treatment. (For a survey, see [1].)

A first step to understanding these flows is determining what information a website collects (e.g., [25]).
However, more difficult is detecting the usage of such data. That is, determining how the collected informa-
tion impacts the treatment of the visitor on that and affiliated sites. Researchers working on this problem

4

of web data usage detection (WDUD), must infer from interactions over the Internet the unseen flows of
information within and between web servers.

Wills and Tatar studied how Google selects ads based on information provided by the website visitor
via first-party websites [3]. The authors draw conclusions about Google’s information use in two ways.
First, they observed Google showing them (posing as normal website visitors) ads that included sensitive
information they provided to Google by interacting with a website that uses a Google service, such as Ad
Sense. Second, when posing as two different users with different interests, they observed Google showing
them ads differing in ways related to the differing interests.

Guha et al. study a similar problem using a more statistical approach [2]. Like Wills and Tatar, they
would pose as various visitors with different characteristics. To test whether some change between two user
profiles resulted in a change in Google’s ads, they would pose as the first profile twice and as the second
profile once. By using the same profile twice, they could calculate the baseline amount of noise or “ad
churn” in the ads independent of the change. If the change between the first and second profile is larger
than this baseline, they then conclude that the change between profiles caused the increased difference in
the ads. Balebako et al. adopt the methodology of Guha et al. to study the effectiveness of web privacy
tools [4].

While Wills and Tatar look at the differences between ads to determine whether they have anything
to do with sensitive information, Guha et al. do not attempt to interpret the ads to see what could have
caused the change. (They did look at the ads while validating their analysis.) While the analysis of Wills
and Tatar leads to a better understanding of how the website is using the information, the analysis of Guha
et al. can find changes that people are apt to miss since the relationship between the changes in input and
output are not immediately clear or because they take a larger sampling to notice than is possible with
manual inspection. For example, they find that a profile purportedly of a homosexual male gets a large
increase in nursing school ads, which may have been missed by the Wills and Tatar’s method since there is
no clear connection between the change in the profile to the change in the ads. As Guha et al. point out,
this lack of connection makes this discovery more important since the website visitor would also be unlikely
to realize that responding to the nursing ad could leak sensitive information to the nursing program.

Recently, Sweeney conducted an information flow experiment in which she examined the flow of infor-
mation from a search field to ads shown along side the search results [5]. She found that searching for
characteristically black names yielded more ads for InstantCheckmate featuring the word “arrested” than
searching for characteristically white names. She found this result on both the websites of Google and of
Reuters. Unlike the preceding studies, she used a statistical test, the χ2 test, to analyze her results and
found them to be significant.

After introducing the machinery necessary to so do, we will systematically analyze each of these infor-
mation flow experiments in Section 7. We will examine each of them in relation to the permutation test,
which will allow us to discuss their strengths and make suggestions for improvements.

3 Information Flow Analysis

In this section, we discuss prior work on information flow analysis starting with noninterference, a formal-
ization of information flows. We next discuss the analyses used in prior work to determine whether a flow
of information exists. We present them systematically by the capabilities they require of the analyst. We
end by discussing the capabilities of the analyst in our motivating applications, how prior analyses are
inappropriate given these capabilities, and the inherent limitations of these capabilities.

3.1 Noninterference

Goguen and Meseguer introduced noninterference to formalize when a sensitive input to a system with
multiple users is protected from untrusted users of that system [17]. Intuitively, noninterference requires
that the system behaves identically from the perspective of untrusted users regardless of any sensitive inputs
to the system.

5

As did they, we will define noninterference in terms of a synchronous finite-state Moore machine. The
inputs that the system accepts are tuples where each component represents the input received on a different
input channel. Similarly, our outputs are tuples representing the output sent on each output channel. For
simplicity, we will assume that the machine has only two input channels and two output channels, but all
results generalize to any finite number of channels.

We partition the four channels into H and L with each containing one input and one output channel.
Typically, H corresponds to all channels to and from high-level users, and L to all channels to or from
low-level users. The high-level information might be private or sensitive information that should not be
mixed with public information, denoted by L. In the area of taint analysis, the roles are reversed in that the
tainted information is untrusted and should not be mixed with trusted information on the trusted channel.
However, either way, the goal is the same: keep information on the input channel of H from reaching the
output channel of L.

We will often have a single user using channels of both sets since we are concerned with not only to
whom information flows but also under what contexts. To this end, we interpret channel rather broadly
to include virtual channels created by multiplexing, such as a field of an HTML form or the ad container
of a web page. We also allow for each channel’s input/output to be a null message indicating no new
input/output.

A system q consumes a sequence ~ı of input pairs where each pair contains an input for the high and
the low input channels. We write q(~ı) for the output sequence ~o that q would produce upon receiving ~ı as
input where output sequences are defined as a sequence of pairs of high and low outputs.

For an input sequence~ı, let ⌊~ı↓L⌋ denote the sequence of low-level inputs that results from removing the
high-level inputs from each pair of ~ı. That is, it “purges” all high-level inputs. We define ⌊~o↓L⌋ similarly
for output sequences.

Definition 1 (Noninterference). A system q has noninterference from L to H iff for all input sequences ~ı1
and ~ı2,

⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ implies ⌊q(~ı1)↓L⌋ = ⌊q(~ı2)↓L⌋

Intuitively, if inputs only differ in high-level inputs, then the system will provide the same low-level
outputs.

To handle systems with probabilistic transitions, we will employ a probabilistic version of noninterference
similar to the previously defined probabilistic nondeduciblity on strategies [26]. To define it, we let Q(~ı)
denote a probability distribution over output sequences given the input ~ı, a concept that can be made
formal given the probabilistic transitions of the machine [26]. We define ⌊Q(~ı)↓L⌋ to be the distribution µ

over sequences ~ℓ of low-level outputs such that µ(~ℓ) =
∑

~o s.t. ⌊~o↓L⌋=~ℓ Q(~ı)(~o).

Definition 2 (Probabilistic Noninterference). A system Q has probabilistic noninterference from L to H
iff for all input sequences ~ı1 and ~ı2,

⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ implies ⌊Q(~ı1)↓L⌋ = ⌊Q(~ı2)↓L⌋

3.2 Analysis

Information flow analysis (IFA) is a set of techniques to determine whether a system has noninterference
(or similar properties) for interesting sets H and L. Proving (non)interference by brute force is difficult
for systems with many possible inputs especially when the system, its inputs, or its outputs are out of the
control or view of the analyst. Thus, analysts must employ strategic analyses specialized to his capabilities.

IFA grew out of the demand to build military computers respecting mandatory access controls (MAC).
Thus, much of the work in the area presumes that the analyst has a degree of control over the production
of the analyzed system. Examples include analyses employing type systems [6, 27], model checking of
code [28], or dynamic approaches that instrument the code running the system to track values carrying
sensitive information (e.g., [29–32]).

6

black box

exercise control over inputs?

experimenting monitoring

none

testing

white box

analysis

analyze model of internal behavior?

total

yes

partial

no

Figure 1: Taxonomy of analyses

The above methods are inappropriate for WDUD since they require white box access to the program.
That is, the analyst must be able to study and/or modify the code. In our applications, the analyst must
treat the program as a black box. That is, the analyst can only study the I/O behavior of the program and
not its internal structure. Black box analyses vary based on how much access they require to the system
in question. Figure 1 shows a taxonomy of analyses.

Numerous black box analyses for detecting information flows exist that operate by running the program
multiple times with varying inputs to detect changes in output that imply interference [33–37]. However,
these black box analyses continue to require access to the internal structure of the program even if they
do not analyze that structure. For example, the analysis of Yumerefendi et al. requires the binary of a
program to copy it into a virtual machine for producing I/O traces [33]. In theory, such black box analyses
could be modified to not require any access to code by completely controlling the environment in which the
program executes. To do so, the analyst would run a single copy of the program and reset its environment
to simulate having multiple copies of the system. We call this form of black box analysis, with total control
over the system, testing as it is the setting typical to software testing and testing notions of equivalence
(e.g., [38, 39]).

Testing will not work for our applications. For example, in the application of WDUD, the analyst cannot
run the program multiple times since the analyst has only limited interactions with the program over a
network. Thus, it cannot force the program into the same initial environment to reset it. Furthermore,
unlike a program, Google’s ad system is stateful and, thus, modifying its environment alone would be
insufficient to reset it. In this setting, the analyst must analyze the system as it runs, not a program whose
environment the analyst can change at will.

At the opposite extreme of black box analysis is monitoring, which passively observes the execution of
a system. While some monitors are too powerful by being able to observe the internal state of the running
system (e.g. [40]), others match our needs in that the analyst only has access to a subset of the program’s
outputs (e.g., [41]). However, all monitors are too weak since they cannot provide inputs to the system as
our application analysts can. We need a form of black box analysis between the extremes of testing and
monitoring.

Thus, we find that no prior work on IFA that corresponds to the capabilities of the analyst in WDUD
or other motivating applications.

3.3 Information Flow Experiments

Unlike the primary motivation of traditional IFA, developing programs with MAC, our motivating examples
involve situations in which the analyst and the system in question are not aligned. Thus, the information
available to the analyst is much more limited than in the traditional security setting. In particular, the
analyst

1. has no model of or access to the program running the system,

7

2. cannot observe or directly control the internal states of the system,

3. has limited control over and knowledge of the environment of the system,

4. can observe a subset of the system’s outputs, and

5. has control over a subset of the inputs to the system.

We will call performing IFA in this setting experimenting. Experiments may be viewed as an interactive
extension of a limited form of execution monitoring that allows for analyst inputs but limits the analyst to
only observing a subset of system I/O.

Prior work shows that no monitor can detect information flows [40,42,43]. We argue that experiments,
with the additional ability to control some inputs to the system, do not improve upon this situation. In
particular, we prove that no non-degenerate analysis can be sound for interference or for noninterference,
even on deterministic systems.

Before presenting the formal theorems, let us intuit why checking for interference would be difficult in
this setting. To start, let us examine the difficulties in producing a sound (no false positives) method for
determining that Google has interference. That is, we would like a method that upon returning a positive
result implies that Google did in fact use some high-level information to select some low-level output. For
example, the high-level information could be a search query to Google and the low-level outputs could be
the ads that Google shows at some later point.

Note that first two limitations above forces the analyst to determine interference by examining only
the inputs and outputs to the system. Since this prohibits white box analysis, to conclude interference,
she would need to observe input sequences ~ı1 and ~ı2 such that ⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ but ⌊q(~ı1)↓L⌋ 6= ⌊q(~ı2)↓L⌋
where q is the system and L is the set of low-level inputs (recall Definition 1).

However, the third limitation prevents the analyst from observing all the inputs to determine that
⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ unless L includes only inputs that the analyst can observe. Since every input must be
either low-level or high-level and only the user’s gender is high-level, the low-level inputs include many
inputs that the analyst cannot observe such as inputs from advertisers to Google. (Furthermore, ideally,
the analyst would have control over the inputs to ensure that they are equal instead of merely hoping that
equality occurs.)

To eliminate the unobservable low-level inputs, the analyst must shrink the set of low-level inputs. One
means of achieving this goal is to consider more inputs high-level. However, if the inputs converted to
be high-level are already known to determine the ads shown (such as inputs from advertisers), then the
analysis would be of little interest. Another means would be to eliminate the inputs from Google, but the
analyst does not have such control over Google. However, the analyst does have control over which system
she studies. Rather than study Google in isolation, she could study the composite system of Google and the
advertisers operating in parallel. By doing so, she converts the unobserved low-level inputs to Google from
the advertisers into internal messages of the composite system, which are irrelevant to whether interference
occurs.

In some sense we have converted the problem from one of experimenting proper to one more akin to
testing the composite system. However, even with this conversion, the analyst still does not have total
control over the system in question (i.e., the composite one) since the analyst still cannot alter the internal
structures of the system. In particular, by the second limitation, the analyst cannot reset the system as
analysts commonly do while testing the system’s behavior on various input sequences. Thus, the analyst
in our setting cannot actually run two input sequences since doing so changes the internal initial state of
the second run; we are not truly in a testing situation. Furthermore, this limitation results in unsoundness
even for the composite system as we show below.

To prove this unsoundness of black box analyses for interference, we consider an arbitrary system q for
which an analysis returns a positive result indicating interference. In our setting, the analysis must base
its decision solely upon its interactions with the system. Thus, it will return the same positive result for
a system qN that always produces the same outputs as q did irrespective of its inputs. Since qN always
produces these outputs, it has noninterference making the positive result false.

8

Theorem 1. Any black box analysis that ever returns a positive result from interference for H to L is
unsound for interference from H to L.

The argument for noninterference is symmetric, but requires that interference is possible given the
system’s input and output space. That is, the system must have at least two high inputs and two low
outputs.

Theorem 2. Any black box analysis that ever returns a positive result for noninterference from H to L is
unsound for noninterference from H to L if H has two inputs and L has two outputs.

Note that these theorems hold even if the analyst can observe every input in H and L making the above
shift of focus to the composite system of Google operating in its environment unsuccessful. However, as
we will later see, we can probabilistically handle the lack of total internal control of the composite system
using statistical techniques. Since we can never be sure whether we have started a particular sequence of
inputs from the same initial state as another sequence, we use many instances of each sequence instead of
one for each. Intuitively, if the outputs for one group of inputs are consistently different from outputs for
the other group of inputs, then it is likely that the difference is introduced by the difference between the
groups instead from the initial states differing. We formalize this idea to present a probabilistically sound
method of detecting interference. We leave detecting noninterference to future work.

4 Causality

In this section, we discuss a formal notion of causality motivated by the studies of the natural sciences. We
then prove that noninterference corresponds to a lack of an effect. This result allows us to repose WDUD
as a problem of statistical inference from experimental data using causal reasoning.

4.1 Background

Let us start with a simple example. A scientist might like to determine whether a Drug X causes an effect
on mouse mortality. More formally, she is interested in whether the value of the experimental factor X,
recording whether the mouse gets Drug X, causes an effect to a response variable Y , a measure of mouse
mortality, holding all other factors (possible causes) constant.

Pearl [24] provides a formalization of effect using structural equation models (SEMs), a formalism widely
used in the sciences (e.g., [44]). A probabilistic SEM M = 〈Ven,Vex, E ,P〉 includes a set of variables
partitioned into endogenous (or dependent) variables Ven and exogenous (or independent) variables Vex.

M also includes in E , for each endogenous variable V , a structural equation V := FV (~V) where ~V is a
list of other variables not equal to V and FV is a possibly randomized function. A structural equation
is directional like variable assignments in programming languages. Each exogenous variable is defined by
a probability distribution given by P. Thus, every variable is a random variable defined in terms of a
probability distribution or a function of them.

Let M be an SEM, X be an endogenous variable of M , and x be a value that X can take on. Pearl
defines the sub-model M [X:=x] to be the SEM that results from replacing the equation X := FX(~V) in
E with the equation X := x. The sub-model M [X:=x] shows the effect of setting X to x. Let Y be an
endogenous variable called the response variable. We define effect in a manner similar to Pearl [24].

Definition 3 (Effect). The experimental factor X has an effect on Y given Z := z iff there exists x1

and x2 such that the probability distribution of Y in M [X:=x1][Z:=z] is not equal to its distribution in
M [X:=x2][Z:=z].

Intuitively, there is an effect if FY (x1, ~V) 6= FY (x2, ~V) where ~V are the random variables other than X.

9

advertiserGoogle

composite system

high

low

experimenter

high

low

advertiserGoogle

composite system

experimenter

high

low

Figure 2: The left shows a flow of information within Google proper that implies interference. The right
shows a flow of information that implies interference for the composite system consisting of Google and the
advertiser but not for Google considered in isolation.

4.2 The Relationship of Interference and Causality

Intuitively, interference is an effect from a high-level input to a low-level output. Noninterference corre-
sponds to lack of an effect, which Pearl calls causal irrelevance [24].

We can make the connection between interference and causality formal by providing a conversion from
a probabilistic system to an SEM. Given a system model Q, we define a SEM MQ. For each time t, MQ

contains the endogenous variables Vhi,t and Vli,t for the high and low input, and Vlo,t for the low output at
the time t. The behavior of Q provides functions Flo,t defining the low output at time t in terms of the
previous and current inputs, which can be saved to a variable representing state. (Details may be found in
Appendix D.)

To state the theorem, we use ~V t
lo to denote a vector of low-output response variables ranging in time

from 1 to t and ~V t
i to represent a similar vector of input factors combining Vhi,t and Vli,t.

Theorem 3. Q has probabilistic interference iff there exists low inputs ℓ of length t such that ~V t
hi has an

effect on ~V t
lo given V t

li := ℓ.

Notice that Theorem 3 requires that the low-level inputs to the system in question be fixed to a set value
ℓ. Thus, the experimenter must ensure that the entire sequence of low-level inputs is equal to ℓ, recalling
the issue of having a lack of total control over inputs discussed in Section 3.3. As discussed, our solution is
to consider the system operating in its environment allowing us to include these inputs as internal to the
composite system.

In the case of studying Google, the impact of considering this composite system, rather than Google
proper, is that finding an effect for Google while experimenting with Google might not imply interference
within Google proper, but rather interference in the composite system. An example of such interference
would be Google passing a high-level input to an advertiser that alters its low-level inputs to Google resulting
in a change in Google’s output to the experimenter (Figure 2). That Google operating in its environment
can have interference while Google considered in isolation does not is related to noninterference not being
preserved under composition (e.g., [42]).

5 Experimentation

To understand the role of experimentation in determining causal relations, we start by returning to the
mouse study and continuing it in a manner suggested by an epidemiology methods paper [45]. We then
discuss the design of experiments in general. Section 5.3 applies these general principles to information flow
experiments to justify a particular methodology. In particular, we present a correspondence between well
known features of experimental science to less familiar features of information flow experiments, which we
summarize in Table 1. Lastly, we comment on a few secondary concerns.

10

5.1 Example

The scientist would like to learn whether for some mouse k there is an effect of Drug X on the mouse’s ability
to survive for a week. That is, whether there exists some conditions ~zk such that Fk(0, ~zk, ~Uk) 6= Fk(1, ~zk, ~Uk)
where we use Xk = 1 to denote the mouse k getting treated with Drug X and Xk = 0 for not getting treated,
and where the range of Fk is 1 for dying and 0 for living a week. For simplicity, let us assume that Fk is
deterministic given Xk, and that it does not depend upon ~Zk and ~Uk (which we drop).

Even with these simplifications, the scientist’s task is difficult. If Fk were known to the scientist, she
could compare its calculated value at 0 and 1, which is similar to white box program analysis. However,
Fk is unknown and the scientist can only observe its output once: either Fk(0) or Fk(1) since each mouse
can only be treated or not.

If the scientist could get two mice k and j such that Fk = Fj , then she could check whether Fk(0) 6= Fj(1).
If so, she can infer an effect of Xk to Yk and Xj to Yj . Requiring that Fk = Fj does not require the mice to
be identical, just that they react in the same manner to Drug X as far as living for a week is concerned. In
fact, there are only four functions Fk and Fj could be: the constant 0 function (always live), the constant
1 function (always die), the identity function (die iff treated), and the “negation” function 1 −X (live iff
treated).

To leverage this observation, the scientist gets a large number of mice and splits them randomly into
two groups of equal size. She then gives only the mice in the first group, the experimental group, Drug X
and treats the mice in the second group, the control group, otherwise identically. To make the example
extreme, suppose she then observes that every mouse treated died and every mouse not treated lived. These
results could be explained by the experimental group consisting solely of mice that are characterized by the
constant 1 function (always die) and all the mice in the control group being characterized by the constant
0 function (always live). However, to randomly assign mice in such a fashion is extremely unlikely even
if the population of mice consist of only those functions in a 50%/50% split. Rather, such results suggest
that at least one mouse (and probably almost all) are characterized by the identity function since such a
population makes the result much more likely. Thus, the scientist concludes that there exists at least one
mouse k such that Xk has an effect on Yk.

5.2 Experimental Design

This reasoning can be extended to the case where Xk and Fk take on more than two values and Fk depends
upon ~Zk and ~Uk in a randomized fashion. In general, the scientist takes a sample of experimental units
(e.g., mice), the number of which is the sample size. She also prepares a vector ~x with a length equal
to the sample that hold values, called treatments, that each Xk can take on. She randomly assigns each
experimental unit k to an index ik of ~x so that no unit is assigned the same index. For each k, she then
sets Xk to be value at the ikth slot of ~x. Units assigned the same treatment are called a group.

The defining feature of an experiment is that the experimental units are randomly assigned their treat-
ment groups. Proper randomization over larger sample sizes makes negligible the probability that the
groups vary in a systematic manner in terms of the noise factors Fk, ~Zk, and ~Uk before the application of
treatments. This key property, exchangeability, allowed the scientist to reject as unlikely the explanation
that all the mice in the experimental group were of the always-die type and all the mice of the control group
were of the always-live group [45].

However, randomization and a large sample are not sufficient to ensure valid conclusions. The scientist
must also ensure that no systematic differences are introduced to the groups after the application of the
treatment. For example, in addition to giving the mice in the experimental treatment group Drug X, the
scientist also handled them more (to give them the drug), then any effects detected by the experiment could
have resulted from the handling rather than the drug.

Under such conditions, the units will remain exchangeable under the null hypothesis that the treatment
has no effect. Thus, any difference in response that consistently shows up in one group but not another
can only be explained by chance under the null hypothesis. If given the sample size, this chance is small,

11

then the scientist can reject the null hypothesis as very unlikely, providing probabilistic evidence of causal
relationship, which we make precise in Section 6.

Much of experimental design focuses on increasing the odds of finding an effect if one exists or on making
such findings generalize to larger populations of units (see, e.g., [46]). However, due to reasons of space, we
limited our discussion to only issues of soundness, which we summarize as:

1. start with exchangeable units,

2. randomly assign them treatments and introduce no other systematic differences, and

3. use a large sample to make “unlucky” assignments rare.

5.3 Information Flow Experiments

To understand these issues in the context of information flow experiments, we consider how they apply to
WDUD experiments. At a high level, the fourth-party tracker would like to determine how a third-party
web service uses information from or about visitors for selecting ads on first-party websites [2–4]. To model
this problem as an experiment, we treat the information of interest as the factor Xk that we will vary by
applying treatments. We treat the ads received as the response variable Yk. The additional factors ~Zk and
~Uk that we will attempt to hold constant or randomize over includes the behavior of other users, advertisers,
and other websites.

Mapping these goals to experimental science centers around deciding what counts as an experimental
unit during the course of an information flow experiment. One obvious answer for WDUD is Google, the
subject of our studies and the entity that processes the information of concern. However, under this view, we
have only a single system in question. (While Google uses more than one server, they are interconnected.
For this reason, and simplicity, we treat Google as a single monolithic entity.) Since we need at least
two experimental units to compare across, we must separate our interactions with Google into multiple
experimental units.

At the opposite extreme, we could count each input/output interaction with Google as a separate
experimental unit, which gives each time step t its own unit. In WDUD, this could be viewed as treating
each ad sent from Google in response to some request as a separate unit.

However, recall that one of the major goals of WDUD is to determine the nature of Google’s behavioral
tracking of people. This suggests that interactions with Google at the granularity of people could be an
appropriate experimental unit. However, since we desire automated studies, we substitute separate browser
instances for actual people. In particular, we can use multiple browser instances with separate caches and
cookies to simulate multiple users interacting with the web tracker. We can apply treatments to browsers by
having them controlled by different scripts that automate different behaviors. Table 1 shows an overview of
the relationship between experimentation for the experimental sciences and for IFA in general and WDUD
in particular under this view.

5.4 Limitations, Extensions, and Secondary Concerns

We have not mentioned a few issues heavily emphasized in the design of experiments and statistics. We
consider them here to emphasize that they are not required for determining interference.

Random Sampling

Acquiring units by randomly sampling from a more general population will, with high likelihood, provide a
representative sample, which allows findings of effects to generalize to the population as a whole. Random
sampling is not needed if one just wants to prove the existence of an effect and not that the effect is
widespread [47]. While results need not be general to show that Google tracks some behavior, showing that
Google often does is more interesting. Thus, one may choose to run units at randomly selected times or
locations for more general results.

12

Experimental Science Information Flow WDUD

natural process system in question Google in its environment

population of units subset of interactions browser instances

factors input channels visitor behavior

treatments controlled inputs behavior profiles

noise factors uncontrolled channels other users, advertisers

response variables observed output channels sequences of ads

effect interference use of data

Table 1: Experimental Science, IFA, and WDUD Compared

Producing a representative sample could be abnormally difficult in our setting due to the possibility
that Google alters its behavior in response to the atypical patterns of access exhibited by our experiments.
For example, Google could purposely make the reverse engineering its of system difficult by showing special
behavior towards users that it suspects to be automated or probing. Such atypical reactions from Google
would not invalidate our conclusion that a flow information exists, but it mean that Google does not
typically exhibit a flow.

Cross-unit Effects

Many experimental designs emphasize the stable unit-treatment value assumption, which requires that giv-
ing or withholding a treatment from one unit will not have an effect upon the other units [48]. Using
experimental units that could plausibly satisfy this assumption is emphasized since it allows for a much
wider ranger of statistical techniques. However, it is not required for the permutation test of whether an
effect exists [49], which we discuss next.

The fact that determining the existence of an effect does not require a lack of interactions between units
is key to our ability to do WDUD studies. Any choice of unit other than all of Google, which leads to
a sample size of one, will possibly exhibit cross-unit effects by virtue of being multiplexed onto a single
system. Indeed, we found cross unit effects both at the level of ads and at the level of browsers.

Experiment 1. To check for cross-unit effects, we studied whether multiple browser instances running in
parallel affect one another. Specifically, we compared the ads collected from a browser instance running
alone to the ads collected by an instance running with seven additional browser instances each collecting
ads from the same page.

A primary browser instance would first establish an interest in cars by visiting car-related websites.
We selected car-related sites by collecting, before the experiment, the top 10 websites returned by Google
when queried with the search terms “BMW buy”, “Audi purchase”, “new cars”, “local car dealers”, “autos
and vehicles”, “cadillac prices”, and “best limousines”. After manifesting this interest in cars, the instance
would collect text ads served by Google on the International Homepage of Times of India.1 We attempted
to reload the collection page 10 times, but occasionally it would time out. Each successful reload would
have 5 text ads, yielding as many as 50 ads.

Our experiment repeated this round of interest manifestation and ad collection 10 times using a new
primary browser instance during each round. We randomly selected 5 of the rounds to also include seven
additional browsers. When the additional browsers were present, three of them performed the same actions
as the primary one. The other four would wait doing nothing instead of visiting the car-related websites
and then went on to collecting ads after waiting. All instances would start collecting ads at the same time.

1http://timesofindia.indiatimes.com/international-home

13

The experiment showed that the primary browsers ran in isolation would receive a more diverse set of
ads than those running in parallel with other browsers. We repeated the experiment four times (twice using
20 rounds) and found this pattern each time:

Rounds Unique ads in isolation Unique ads in parallel

10 37 25

10 46 33

20 58 47

20 57 52

The presence of this pattern makes assuming an absence of cross-unit effects for browser instances tenuous
at best. While a statistical test could report whether the observed effect is significant (it is in one of the
subsequent experiments), doing so would inappropriately shift the burden of proof: if a scientist would like
to use a statistical analysis that requires an absence of cross-unit effects, then the onus is on him to justify
the absence.

This and all other experiments were carried out using Python bindings for Selenium WebDriver, which
is a browser automation framework. A test browser instance launched by Selenium uses a temporary folder
that can be accessed only by the process creating it. So, two browser instances launched by different
processes do not share cookies, cache, or other browsing data. All our tests were carried out with the
Firefox browser running in a 64-bit Ubuntu 12.04 VM on a server located in [redacted]. When observing
Google’s behavior, we first “opted-in” to receive interest-based Google Ads across the web on every test
instance. This placed a Doubleclick cookie on the browser instance. No ads were clicked in an automated
fashion throughout any experiment.

Independent, Identically Distributed Samples

I.i.d. samples allow for powerful statistical techniques, which in some cases allow for smaller sample sizes
or more detailed characterizations of a research finding. However, this assumption is difficult to justify in
our setting for the same reason that we cannot guarantee a lack of cross-unit interactions. Fortunately,
exchangeability, which can be seen as a weaker form of i.i.d., is sufficient for our purposes [45].

Controlling Conditions

Most experimental designs emphasize subjecting the units to conditions that are identical except for the
experimental treatment. The maxim goes control what you can; randomize what you can’t, but for our
purposes it should read randomize what you want; control what you can’t randomize since relieved of
the burden of creating i.i.d. samples, one need only control those aspects of the experiment that cannot
be randomized. However, ensuring that every experimental unit is subjected to approximately the same
environment will typically produce less noisy results allowing one to reduce the sample size and make more
definitive statements.

If one were interested in determining whether Google proper (not Google composed with its environ-
ment) had interference, then controlling conditions would take on a new significance. In particular, the
experimenter would have to control the low-level inputs from advertisers that could depend upon the high-
level inputs to avoid confounding.

While some points in this section may seem pedantic, or even rudimentary, we will see in Section 7 that
they are subtle enough to have led to real studies with poor statistical properties. We now turn to making
these properties precise.

14

6 Statistical Analysis

After designing and running an experiment, scientists must analyze the data collected. In particular, they
must quantify the probability that the collected responses could have occurred by chance through an unlucky
random assignment of units to treatments. In this section, we reduce such quantification for information
flow experiments to well known methods from statistics (Corollary 1). We then discuss a particular method,
permutation testing, that is well suited for our setting of analyzing a complex black box system. In the next
section, we show that the test is general enough to formalize each of the prior WDUD studies.

A common approach to quantifying experimental results is by significance testing [50]. The possibility
of an unlucky assignment of units is formalized as a null hypothesis that states that the groups differ by
chance. A statistical test of the data provides a p-value, the probability of seeing results at least as extreme
as the observed data under the assumption that the null hypothesis is true. A small p-value implies that the
data is unlikely under the null hypothesis. Typically, scientists are comfortable rejecting the null hypothesis
if the p-value is below a threshold of 0.05 or 0.01 depending on field. Rejecting the null hypothesis makes
the alternative hypotheses more plausible.

In our case, the null hypothesis is that the system in question has noninterference and the alternative
of interest is the system has interference. A combination of Theorem 3 and the experimental design of
Section 5.3 allows us to use the large class of statistical tests for independence of random variables to test
for interference.

Corollary 1. A test for independence of two random variables in science is a test of noninterference for
information flow experiments.

Since, as we discussed in Section 3, IFA lacks methods of conducting these studies, Corollary 1 fills an
important gap.

However, some tests of independence require difficult-to-justify assumptions about the system in ques-
tion. For example, the most common statistical tests are parametric tests that assume that the system in
question’s behavior is drawn from some known family of distributions with a small number of unknown
parameters. Our experimental results show that such a family of distributions would have to be complex.

Experiment 2. To understand how ads served by Google on a third-party website varies over time, we
simultaneously started two browser instances, and collected the ads served by Google on the Breaking News
page of ChicagoTribune.com.2 Each instance reloaded the web page 200 times, with a one minute interval
between successive reloads.

Figure 3 shows a temporal plot of the ads served for each of these instances. The plots suggest that each
instance received certain kinds of ads for a period of time, before being switched to receiving a different
kind. One explanation for this behavior is that Google associates users with various ad pools switching users
from pool to pool over time. While hierarchical families of parametric models could capture this behavior,
we are not comfortable making such an assumption and the resulting models would be more complex than
those typically used in parametric tests.

Our results do not mean that one could not reverse engineer enough of Google to find an appropriate
model. However, they suggest that such reserve engineering would be difficult. Furthermore, it runs against
the spirit of performing black box information flow analysis.

Thus, we focus on non-parametric tests, which do not require assuming a family of distributions and
instead treat the generating distribution as a black box. In particular, we will focus on permutation
tests (see e.g., [19]). Crucially, permutation tests (also known as randomization tests) allow cross-unit
interactions [49], which can occur in WDUD studies (Experiment 1).

At the core of a permutation test is a test statistic s, which is a function from the data, represented
as a vector of responses, to a number. The vector of responses ~y has one response for each experimental
unit. The vector must be ordered by the random indices ik used to assign each unit k a treatment from

2http://www.chicagotribune.com/news/local/breaking/

15

0 50 100 150 200
Reload #

0

10

20

30

40

A
d
 I
D

Instance 1

0 50 100 150 200
Reload #

0

10

20

30

40

A
d
 I
D

Instance 2

Figure 3: The x-axes ranges over unique ads ordered by the time at which the instance first observed it in
the experiment. The y-axis ranges over time measured in terms of page reloads.

16

the treatment vector ~x prepared during the experiment. Thus, the kth entry of ~y received the treatment
at the kth entry of ~x.

For example, an intuitive test statistic for an experiment with two treatment groups could use the first n
components of the data vector as the results of the experimental group and the remaining m as the results
for the control group where the groups have n and m units, respectively. A common test statistic over such
data is the mean of the first n responses less the mean of the last m responses. Intuitively, the higher the
value of the test statistic, the more different the responses of the two groups are and larger the evidence of
interference.

Since the scientist is allowed to pick any function s from response vectors to numbers for the test
statistic, the permutation test needs to gauge whether an observed data vector ~y produces a large value
with respect to s. To do so, it compares the value of s(~y) to the value of s(π(~y)) for every permutation π of
~y. Intuitively, this mixes the treatment groups together and compares the observed value of s to its value
for these arbitrary groupings. Every time s(~y) ≤ s(π(~y)) occurs, the test counts it as evidence that s(~y) is
not particularly large.

The significance of these comparisons is that under the null hypothesis of independence (noninterference),
the groups should have remained exchangeable after treatment and there is no reason to expect s(~y) to
differ in value from s(π(~y)). Thus, we would expect to see at least half of the comparisons succeed. Thus,
we call a permutation π such that s(~y) ≤ s(π(~y)) fails to hold a rejecting permutation since too many
rejecting permutations leads to rejecting the null hypothesis.

Formally, the value produced by a (one-tailed signed) permutation test given observed responses ~y and
a test statistic s is

pt(s, ~y) =
1

|~y|!

∑

π∈Π(|~y|)

I[s(~y) ≤ s(π(~y))] (1)

where I[·] returns 1 if its argument is true and 0 otherwise, |~y| is the length of ~y (i.e., the sample size), and
Π(|~y|) is the set of all permutations of |~y| elements, of which there are |~y|!.

Recall that under significance testing, a p-value is the probability of seeing results at least as extreme as
the observed data under the assumption that the null hypothesis is true. pt(s, ~y) is a (one-tailed) p-value
using s and ≤ to define at least as extreme as in the definition of p-value. To see this, note that each
permutation of data is equally likely under the null hypothesis H0 that the treatments have no effect since
the order of the responses is by treatment and otherwise random. Thus,

pt(s, ~y) =
∑

π∈Π(|~y|):s(~y)≤s(π(~y))

Pr[~Y = ~y |H0] (2)

matching the definition of a p-value. One could use other definitions of as extreme as by replacing the ≤
in (1) and (2) by ≥ or by comparing the absolute values of s(~y) and s(π(~y)) to check for extremism in both
directions (a two-tailed test).

Good discusses using sampling to make the computation of pt(s, ~y) tractable for large ~y [19]. Greenland
provides detailed justification of using permutation tests to infer causation [51].

We do not claim that permutation tests are the only suitable statistical tests. However, we find it
sufficient to characterize the prior WDUD works, which we do next.

7 Formalization of Prior Work

We examine the four WDUD studies that attempt to determine how Google uses the information it col-
lects [2–5]. We are able to systematically explain, extend, and compare the works by framing them as
permutation tests for analyzing the results of information flow experiments. Our framework makes clear
the reasoning employed by these works and identifies improvements to their experimental designs. To that
end, we make suggestions for conducting future studies throughout, which we summarize in Section 8.

17

However, we select and scrutinize these studies because they contain interesting and important results that
we would like to place into the context of IFA; not because we believe them to contain major flaws.

We organize our presentation by the type of test statistic used by each work. In the case of Sweeney’s
study [5], the test statistic is provided by her own statistical analysis. For the others, we select one that
naturally captures their informal reasoning. We discuss the study of Wills and Tatar twice since they
employ two very different styles of reasoning. We end with an empirical comparison of the test statistics
discussed. In addition to shedding light on foundations of these studies, this tour of prior work shows that
the permutation test is a general framework for reasoning about the statistical significance of information
flow experiments.

7.1 The χ
2 Test

We will start by considering a key finding in Sweeney’s study [5]: searching for a characteristically black
first name will produce a higher rate of Instant Checkmate ads including the word “arrest” than searching
for characteristically white first names. While much of Sweeney’s study consisted of finding appropriate
names to test and exploring the ramifications of these results, we will focus on the core finding of a flow of
information from the first name of the search query to the ads shown.

She made her finding by Googling for various names and checking the ads returned with the results
over the course of a month. For each Instant Checkmate ad returned, she recorded whether it contained
the word “arrest”. Consistent with our recommendation, she used a new browser instance each time she
Googled a name. Thus, we can view each browser instance as an experimental unit. Each unit received
the treatment of either a characteristically black or white name. She did not provide details of how she
allocated treatments to units. Thus, a methodological concern is that her allocation might not have been
properly randomized since Google’s behavior could be time dependent.

Given the long period of time over which she conducted her experiments, even larger temporal effects
may be present. (Indeed, the theoretical benefit from increasing sample size is often partly removed by the
increase in variation among units from a decreased ability to hold conditions constant across them [46].)
However, since we have no reason to suspect that changes in Google’s behavior would affect these results,
for analyzing her study, we will assume she randomized the treatments.

To model her work in terms of a SEM, we use the factor Xk to denote the race of the first name of
the kth instance. The response variable Yk can be modeled as taking on three values: 1 for an Instant
Checkmate ad with the word “arrest”, −1 for one without, and 0 for no Instant Checkmate ads. (She never
observed more than one Instant Checkmate ad for a search.)

Unlike the other studies we will consider, Sweeney already provided a statistical analysis of her results.
She used the χ2 test, a popular nonparametric statistic. A theoretical justification of the χ2 test is that
it asymptotically approaches a permutation test [18]. Thus, we can understand her test in terms of per-
mutation testing. With the size of her data, such approximations become not only accurate, but useful for
computational reasons. Nevertheless, we believe the permutations continue to provide the semantics behind
such approximations, especially considering that the justification of the χ2 test includes an assumption that
the experimental units are independent [52], which is unlikely as discussed in Section 5.3.

7.2 Counting

Consider the WDUD study of Wills and Tatar in which they pose as various visitors to first-party web-
sites [3]. They perform multiple experiments looking at different features of Google’s behavior. Here we
will discuss one of their approaches in detail; we discuss another in 7.4.

Consistent with our approach (Section 3), they use separate browser instances to simulate separate users,
which represent their experimental units. The treatments they apply to each instance corresponds to either
inducing some interest or not by searching for a word on a website. They had each instance participate
in multiple sessions that consisted of inducing the interest followed by visiting a different third-party web
page that serves Google ads. (Actually, to reduce resource use they induced more than one interest per

18

unit making their study multi-factorial in design. For simplicity, we will ignore this complication, but it
can be handled by our framework. See, e.g., [19].)

Formally, the factor of interest Xk is the search entry field. The response variables Yk are the ads seen
at the third-party website. Their test statistic is the percentage of sessions that included a non-contextual
ad containing a keyword associated with the treatment. To formalize their test statistic, let Wt be the set
of keywords they associated with interest t. Representing the data collected during a session as a list ℓ of
ad-context pairs, let hit(ℓ, t) be true iff there exists a pair 〈a, c〉 in ℓ such that the ad a contains a keyword
in Wt and c is not a context relative to t. (They determined context by hand.)

The data collected is a vector ~y of responses for each unit where each response is a list of sessions.
Let first n of them be those with the induced interest. Let prc compute the percentage of sessions with
a non-contextual ad among the responses within a range: prc(~y, a, b) = 100 ∗

∑b
k=a

∑|~y[k]|
j=1 hit(~y[k][j], t)/N

where N is the number of sessions in that range: N =
∑n

k=1 |~y[k]|. In their Figure 5, they plot prc(~y, 1, n)
and prc(~y, n+1, n+m) where n and m are the numbers of instances with and without the interest induced.

Whereas they reasoned informally by comparing these two numbers, we can provide rigorous statistics
based upon them by using a test statistic based on them. One such test statistic would be sprc(~y) =
prc(~y, 1, n)− prc(~y, n+1, n+m). If inducing the interest increases the number of ads shown about it, then
we would expect sprc(~y) to be larger than sprc(π(~y)) for permutations that mix the responses.

A feature of their design is that their instances are long running with multiple sessions spanning a week.
While these long-running instances do not increase the sample size, collecting more data on each unit allows
for a more complete view of that unit allowing for the detection of subtle differences and more detailed test
statistics over multiple measurements [19]. Furthermore, it allows them to see behavior that Google might
not manifest over a short time period. Indeed, consistent with their own finding, we found that Google
would not update its listing of a person’s gender until over a day of interactions.

Experiment 3. We created two browser instances and randomly assigned one to visit the top 100 websites
for females as determined by Alexa, which takes approximately 5.5 hours. The other visited the top 100
sites for males. Before visiting each site, we checked the gender inferred by Google on its Ad Settings page,
which provides users with a summary of Google’s profile of them. The instances idled on each site for three
minutes. After visiting all 100 pages, they idled for two hours. They repeated this process until Google
inferred a gender. Google inferred the gender of both instances during the fifth round of training at 30
hours 19 minutes for the female and 30 hours 12 minutes for the male.

7.3 Cosine Similarity

Guha et al. present a methodology for performing WDUD [2], which is also followed by Balebako et al. [4].
Their methodology uses three browser instances. Two of them receive the same treatment and can be
thought of as controls. The third receives some experimental treatment. The treatments consist of having
them visit web pages, perform searches, and click on links. For each instance, after having them display
behavior dependent upon their treatment, they collect the ads Google serves them, which they compare
using a similarity metric. Based on experimental performance, they decided to use one that only looks
at the URL displayed in each ad. For each instance, they perform multiple page reloads and record the
number of page reloads for which each displayed URL appears. From these counts, they construct a vector
for each unit where the ith component of the vector contains the logarithm of the number of reloads during
which the ith ad appears. To compare runs, they compare the vectors resulting from the instances using
the cosine similarity of the vectors.

More formally, their similarity metric is sim(~v, ~w) = coss(ln∗(~v), ln∗(~w)) where ~v and ~w are vectors that
record the number of page reloads during which each displayed URL ad appears, ln∗ applies a logarithm
to each component of a vector, and coss computes the cosine similarity of two vectors. They conclude
that a flow of information is likely if sim(~vc1, ~vc2) is much larger than sim(~vc1, ~ve) where ~vc1 and ~vc2 are the
responses from the two control instances and ~ve is the response from the experimental instance.

Their intuition of comparing two control instances to get a baseline amount of noise in the system is a
good one. However, as we discuss in Section 5.3, browser instances make for good units, not individual ads.

19

Thus, their experiment only consists of 3 experimental units, too few to achieve reliable results. Indeed,
the p-value of a permutation test cannot be less than 1/3! ≈ 0.17 with just 3 units.

To generalize their method to larger sample sizes, we replace their metric sim with one that can compare
more than two vectors. One choice is to first aggregate together multiple URL-count vectors by computing
the average number of times each URL appeared across the aggregated units. Formally, let avg(~u) compute
the component-wise average of the vectors in ~u, a vector of vectors of URL counts. We can then define a
test statistic ssim(~y) = −sim(avg(~y1:n), avg(~yn+1:n+m)) where ~ya:b is the sub-vector consisting of the entries
a though b of ~y, the first n responses are from the experimental group, and the next m are those from
the control group. We use negation since our permutation test takes a metric of difference, not similarity.
Intuitively, the permutation test using the test statistic ssim will compare the between-group dis-similarity
to the dis-similarity of vectors that mix up the units by a permutation. In aggregate, the dis-similarity of
these mixed up vectors provide a view on the global dis-similarity inherit in the system.

7.4 Simulated Comparisons: Nonce Presence

During their study, Wills and Tatar observe Google serving the ad “LGBT for Obama” on thefreedictionary.

com, a site that is not about LGBT (lesbian, gay, bisexual, or transgendered) issues [3]. While they do not
conclude that Google necessarily selects ads based upon a sensitive interest in LGBT issues, they note this
behavior as suspicious. Their suspicion is based on using LGBT like a nonce by virtue of it being rare. That
is, LGBT serves to connect Google’s selection of a low-level ad to sensitive high-level information provided
by browsing LGBT-related sites that are otherwise unrelated to the ad.

Since only 3.4% of U.S. adults self-identify as LGBT [53], Google selecting LGBT ads without using
some information seems unlikely. However, assuming that, without tracking, Google would present ads in
proportion to the target population size, we would expect that 3.4% of ads that target a sexual orientation
would be LGBT targeting ads. Thus, if the LGBT related ad was only one of a large number of ads
targeting sexual orientation, then a conclusion of a flow of information could be a false positive.

To examine the quality of LGBT as a nonce, we searched 397, 361 ads that we collected during our
studies. Only 30 of them contained any of the words “gay”, “lgbt”, “lesbian”, or “queer”. With just
0.0075% of the ads in our sample containing these words, seeing one is a noteworthy event.

Another test of Wills and Tatar involved using LinkedIn and Pandora profiles with the location set to
New York City. The authors wanted to determine whether Google used the profile locations for selecting
advertisements. However, despite seeing numerous ads for NYC, the authors do not conclude that Google
uses the profile location since (1) NYC “is a popular location in general” and (2) they did “not have a
baseline for comparison” [54, page 9]. We found 2028 instances of “NYC” and “New York”, 0.5% of the
ads we sampled, despite our server not being located near NYC. Thus, seeing NYC related words is much
less noteworthy than LGBT related words.

Such reasoning might appear to have nothing to do with permutation tests. However, we can even view
it as a special case of the permutation test in which most of the test runs were not actually done explicitly.
Such a view does not strictly adhere to the assumptions needed to draw causal conclusions since it lacks
randomization. Nevertheless, it provides a conceptual basis for converting informal checks like the one
above into actual randomized experiments.

To see how, let the data vector ~y have the observed response with the nonce in it at its first position
and the observations that led the scientist to believe that the nonce is in fact rare fill every other slot.
Ideally, these observations would be from a randomized experiment, but the reasoning leads to an informal
assessment of a convenience sample, such as us looking at all the ads we collected. Let the test statistic
sn return 1 if the first component of a data vector contains the nonce n and 0 otherwise. It may seem
odd to choose a test statistic that ignores all but the first response, but since the test statistic will be
used in a permutation test, every response of yk will contribute to the overall p-value produced by being
shifted into the first position by permutations. The p-value produced by the permutation test will be
pt(sn, ~y) = count(~y, n)/|~y| where count(~y, n) counts up the number of responses of ~y that contains the
nonce n.

20

The above model also extends to nonces justified on theoretical grounds, such as those from a random
number generator. For example, if we take ~ym to be a vector of length m with the nonce only in its
first component, then limm→∞ pt(sn, ~ym) = limm→∞ 1/m = 0 showing that the p-value allows rejection
of the null hypothesis (acceptance of interference) with certainty given a perfect nonce. If we let ~ym,w

be a vector of length m with the n in the first component and w of the following components, then
limm→∞ pt(sn, ~ym,⌈p∗m⌉) and limm→∞ pt(sn, ~ym,⌊p∗m⌋) both equal p, capturing the idea that seeing a nonce
with probability p of occurring by chance (such as those produced by a random number generator) implies
that one can infer causation with a p-value of p.

The nonce analysis has appeared elsewhere. Both watermarks and trap streets, mentioned in the
introduction for copyright infringement detection, are nonces [7,8,10]. Sekar used a similar analysis to find
web application vulnerabilities in a black box fashion [55].

Nonces are typically thought of in terms of information flow, not physical causation, raising the question
of what using a nonce corresponds to in the natural sciences. In that setting, nonces correspond to an
experimental treatment and a response so extreme that the scientist dispenses with the control group.
For example, the scientists testing the ability of a bomb to destroy an island (such as during Operation
Crossroads), do not typically set aside a control island.

7.5 Comparison of Test Statistics

Given all the test statistics discussed, one might wonder how they compare. We will empirically compare
the tests in our motivating setting of WDUD. However, we caution that our experiment should not be
considered definitive since other WDUD problems may result in different results. We recommend that
each experiment is preceded by a pilot study to determine the best test(s) for the experiment’s needs. For
example, we have found pilot studies useful for selecting distinguishing keywords to search for in ads.

Experiment 4. Each run of the experiment involved ten simultaneous browser instances, each of which
represent an experimental unit. We used a sample size of ten due to the processing power and RAM
restrictions of our server. For each run, the script driving the experiment randomly assigns five of the
instances, the experimental group, to receive the treatment of manifesting an interest in cars. As in
Experiment 1, an instance manifests its interest by visiting the top 10 websites returned by Google when
queried with certain automobile-related terms: “BMW buy”, “Audi purchase”, “new cars”, “local car
dealers”, “autos and vehicles”, “cadillac prices”, and “best limousines”. The remaining five instances made
up our control group, which remained idle as the experimental group visited the car-related websites. Such
idling is needed to remove time as a factor ensuring that the only systematic difference between the two
groups was the treatment of visiting car-related websites.

As soon as the experimental group completed visiting the websites, all ten instances began collecting
text ads served by Google on the International Homepage of Times of India. As in Experiment 1, each
instance attempted to collect 50 text ads by reloading a page of five ads ten times, but page timeouts would
occasionally result in an instance getting fewer. We repeated this process for 20 runs with fresh instances
to collect 20 sets of data, each containing ads from each of ten instances.

Across all runs of the experiment, we collected 9832 ads with 281 being unique. Instances collected
between 40 and 50 ads with two outliers each collecting zero. Both outliers were in the 19th run and in the
experimental group. We analyzed the data with multiple test statistics. Table 2 summarizes the results
with the last row showing the number of statistically significant results under the traditional cutoff of 5%.
First, we used the permutation test with ssim, the extension of Guha et al.’s cosine similarity metric [2],
as the test statistic. Observe that there are 10! > 3 million different permutations for the ten instances.
However, since sim treats the response vector provided to it as two sets, intuitively, the experimental and
control groups, many permutations will produce the same value for ssim. To speed up the calculation, we
replaced comparing all permutations with comparing all partitions of the responses into equal sized sets
of 5, yielding only

(

10
5

)

= 252 comparisons. Since cosine similarity is a symmetric statistic, there can be
at most 126 unique values. Since at least one of these will be equal to the actual observed coss(~y), the

21

Table 2: p-values for the permutation tests

Data set ssim skw sprc χ2

1 0.007937 0.003968 0.222222 3.1815 × 10−33

2 0.007937 0.003968 1.000000 1.75166× 10−24

3 0.015873 0.019841 0.500000 7.33209× 10−13

4 0.007937 0.003968 0.083333 6.31635× 10−33

5 0.007937 0.099206 1.000000 4.15872× 10−07

6 0.007937 0.003968 0.500000 3.5201 × 10−31

7 0.007937 0.003968 0.222222 4.87536× 10−25

8 0.007937 0.003968 1.000000 2.93566× 10−30

9 0.007937 0.003968 1.000000 2.30865× 10−25

10 0.007937 0.003968 0.222222 2.73048× 10−26

11 0.460317 0.015873 0.500000 1.84605× 10−07

12 0.023810 0.023810 1.000000 8.78432× 10−13

13 0.007937 0.003968 1.000000 1.74223× 10−20

14 0.015873 0.003968 1.000000 3.3131 × 10−26

15 0.039683 0.011905 1.000000 2.16042× 10−17

16 0.007937 0.003968 0.500000 4.1491 × 10−29

17 0.031746 0.003968 1.000000 9.44887× 10−17

18 0.015873 0.007937 0.500000 3.42116× 10−15

19 0.007937 0.087302 1.000000 4.44136× 10−21

20 0.111111 0.003968 0.500000 3.17792× 10−27

Number < 5% 18 18 0 20

22

minimum possible p-value is 1/126 = 0.007937. Looking at the p-values from Table 2, we see that twelve
out of the twenty have the minimum possible p-value.

Second, we carried out the permutation test using sprc, the keyword-based statistic of Wills and Tatar [3],
as the test statistic. From our initial search terms, we created a set of keywords containing “bmw”, “audi”,
“car”, “vehicle”, “automobile”, “cadillac”, and “limo”, words whose presence we believe to be indicative of
an instance being in the experimental group. The statistic sprc counts the number of sessions that had an
ad with any of these keywords present. However, our instances did not participate in multiple sessions, as
Wills and Tatar’s did. Thus, directly applying sprc to our data, treating each response as a single session,
produces lackluster results. Since we had only five instances per group, the values of this statistic can only
take on 10 different values, making it a blunt instrument for distinguishing groups. Indeed, the p-values
were not conclusive with most of them being either 1.0 or 0.5. The choice of test statistic is an important
one.

To give the keyword approach a fair chance, we also tested an adapted one skw, which looks at the
number of ads that each instance received containing a keyword rather than the number of sessions. We
defined our statistic to be the the number of ads that contained any of the keywords amongst the first
half (intuitively, the experimental group) of the responses less the number in the second half (intuitively,
the control group). As with ssim, we have at most 252 unique comparisons to make. Thus, the minimum
possible p-value from our experiment is 1/252 = 0.003968. Most the p-values computed from our data
sets are at their minimum. Observe from Table 2 that the p-values obtained from skw are less than the
corresponding p-values from ssim. We believe this improvement is from the domain knowledge provided by
the keywords.

Lastly, we conducted the χ2 test on a 2×2 contingency table computed from the data from each round.
The type of treatment was represented in rows, while the presence or absence of keywords was represented
in the columns. Thus, the top-left entry in the table was the number of ads in ADt containing a keyword.
The p-values obtained from running the χ2 test on our data is shown in Table 2. While these results are
impressively low, they can be misleading given that the χ2 test assumes the independence of experimental
units [52].

For comparison purposes, we re-run the above experiment without having the experimental group man-
ifest any interests. That is, we compared two control groups against one another expecting to not find
statistically significant differences. We found that each of the statistics produced one statistically signifi-
cant result except for the χ2, which produced 12.

The wide range of tests might tempt one into running more than one test on data. However, running
multiple tests increases the chance of getting a low p-value for one of them by an unlucky randomization
of units rather from an effect. Thus, one cannot look just at the test that produced the lowest p-value.
Rather one must report them all or apply a correction for multiple tests such as those for the false discovery
rate [56].

8 Conclusions and Suggestions

We have identified a range of problems that can be approached systematically as information flow experi-
ments. This work provides a fresh perspective on these problems and on IFA, which has long been dominated
by white box program analysis. We have explained information flow experiments in terms of causality by
relating noninterference to the notion of effect. This observation allows us to apply in a rigorous manner
the methods and statistics of experimental science to problems of information flow. In particular, we have
recommended an experimental methodology and a statistical analysis, based on permutation testing, that is
well suited to our setting. This viewpoint has allowed us to systematically find the limitations and abilities
of information flow experiments in general and of specific studies individually.

In particular, we have examined the emerging area of WDUD and formalized studies in the area as
experiments in our framework. The value of this exercise is two fold. First, by placing these empirical
studies into our formal framework, we can closely study their reasoning using standard notions, such as

23

experimental units, and metrics of soundness, such as the p-value. In particular, we discuss whether the
implicit assumptions made by these works are reasonable and how to improve their analyses. Second, we
test the applicability of noninterference to real studies outside of its comfort zone of program analysis.

This process has allowed us to convert the abstract principles of experimental design and analysis into
concrete suggestions:

1. Use an appropriate statistical test. Attempting to shoehorn data into familiar statistics can result
in incurring requirements that cannot be met. A lack of cross unit effects, random samples, and
independent, identically distributed experimental units each enable additional statistical techniques,
but are difficult, if not impossible, to achieve in our setting. Fortunately, they are not required for
permutation testing.

2. Start with exchangeable units. The exchangeability of units is a requirement. We ran multiple browser
instances in parallel to obtain exchangeable units. While cross-unit effects were likely to have occurred,
we met the requirements of our chosen statistical analysis: permutation testing.

3. Randomly assign treatments to units. Randomization provides the justification needed for permutation
testing and for avoiding the more difficult conditions above.

4. Let the requirements of a statistical analysis guide data collection. For example, Wills and Tatar’s
intuitive analysis using New York City did not collect data enough for analysis (Section 7.4). The
right time to select an analysis is before the experiment since it can reveal the data that needs to be
collected.

5. Use domain knowledge gained during pilot studies to select a test statistic. Finding the correct key-
words to examine in ads allowed us to not only get results that were statistically significant, but also
intuitive.

6. Be selective. Finding websites that produced consistent results was difficult. For example, before
trying the Times of India, we used Fox News. Despite using Google for advertising, we could not find
any effects. Since we wanted to find an effect from Google, not Fox News, we were free to be selective
and should have moved on to another site earlier. The situation is different if you want to prove that
an effect is widespread, which requires random sampling [47].

While statistical analysis can be intimidating due to their complex requirements, selecting the correct
test is liberating by also identifying what conditions you need not worry about.

9 Future Directions

Demonstrating Noninterference

An analyst might wish to show that a system has noninterference. However, the permutation test requires
that the null hypothesis be that the system has noninterference. Thus, it can only provide a quantitative
measure of the evidence against noninterference. Conceptually, proving noninterference would require
looking at every test statistic under every input sequence. Since examining an infinite set of sequences is
impossible, using the scientific method to show that a system has noninterference would require building a
theory of the system’s operation and then proving noninterference in that theory.

Other Notions of Information Flow and Causation

We examined only one information flow property, a probabilistic noninterference, and one notion of causality,
effect. Exploring the many alternatives could tighten the connection between the two fields and further
organize each. We believe the interplay between these two fields can be rich with each benefiting from the
other’s perspective and techniques.

24

Monitoring and Observational Studies

Passive monitoring in IFA corresponds to observational studies. A wide range of work deals with the cases
under which one can infer causation from a correlation learned from an observational study (see, e.g., [24]).
Future work can import these results to IFA showing how monitoring could be useful in some cases despite
its inherit unsoundness [40,42,43].

For example, author de-anonymization (e.g., [57, 58]), detecting cheating (e.g. [59]), and detecting pla-
giarism of a third-party’s work (e.g., [60]) all correspond to monitoring since the analyst does not control
the sensitive messages (e.g., an anonymous posting). However, in practice, authors are de-anonymized using
comparisons. We conjecture that such analyses could be shown sound under similar assumptions as those
used for observational studies.

Related Experiments

Problems outside of IFA are also instances of investigations. For example, Google ran a nonce-like experi-
ment to determine whether Bing’s search results were mimicking Google’s [61]. Thus, rather than tracking
information flows, Google’s experiment involved tracking flows of behavior. In particular, their nonce in-
volved Google returning unusual search results. Google then observed Bing mimicking this behavior after
Bing observed users clicking on the unusual results in Internet Explorer.

Bowen et al. conduct access-control experiments by monitoring decoy files that attract adversaries into
accessing them [62]. Another problem is provenance, tracking the handling of data [63], which is an extended
form of IFA in which the analyst needs to know not just the source of the data, but also the step-by-step
flow and handling of the data in a network. Comparing and combining experiments from these fields with
our own approach would provide a more comprehensive approach to data governance.

In general, information flow experiments allow an analyst to exercise oversight and detect transgressions
by an entity not controlled by the analyst and unwilling to provide the analyst complete access to the system.
We see this setting becoming ever more common: data lives in the cloud, jobs are outsourced, products
licensed, and services replace infrastructure. In each of these cases, a party has ceded control of a resource
for efficiency. Nevertheless, each party must ensure that the other abides by their agreement while having
only limited access to the other. Thus, we envision experimentation, as opposed to white box verification,
playing an increasing role in computer security and society in general.

Acknowledgments

We thank Divya Sharma and Arunesh Sinha for many helpful comments on this work.

25

Appendix

A System Formalism

For a finite set, let ∆(X) be the set of distributions over X. Let δ(x) be the degenerate distribution assigning probability 1 to
x. Let [] be the empty list. Let ~ı·i be the list created by appending i to ~ı, and let i·~ı be the list created by prepending i to ~ı.

Let a probabilistic Moore Machine be Q = 〈S, s0, I,O, τ, σ〉 where S is a finite set of states, s0 is the initial state, I is
a finite input set, O is a finite output set, τ : S × I → ∆(S) is the state transition function, and σ : S → O is the output
function.

Let Q(s,~ı)(~o,~s) be the probability of the seeing the trace ~s[1], ~o[1],~ı[1], ~s[2], ~o[2],~ı[2], . . . , ~s[k], ~o[k],~ı[k], ~s[k + 1], ~o[k + 1]:

Q(s, [])([σ(s)], [s]) = 1 (3)

Q(s, i·~ı)(σ(s)·~o, s·~s) =
∑

s′

τ(s, i)(s′) ∗Q(s′,~ı)(~o,~s) (4)

Q(s,~ı)(~o,~s) = 0 otherwise (5)

We take the distribution Q(~ı) over outputs to such that Q(~ı)(~o) =
∑

~s Q(s0,~ı)(~o,~s).
The following lemma provides a closed form for Q(s,~ı), which will become useful later.

Lemma 1. For all Q, s, and ~ı, ~o, and ~s of equal lengths k ≥ 0, k + 1, and k + 1, respectively,

Q(s,~ı)(~o,~s) = δ(s)(~s[1]) ∗ δ(σ(~s[1]))(~o[1]) ∗
k
∏

κ=1

τ(~s[κ],~ı[κ])(~s[κ+ 1]) ∗ δ(σ(~s[κ+ 1]))(~o[κ+ 1]) (6)

Proof. Proof by induction. Base Case: k = 0. Q(s, [])([σ(s)], [s]) = δ(s)(~s[1]) ∗ δ(σ(~s[1]))(~o[1]), which is 1 if ~s[1] = s and
σ(~s[1]) = ~o[1] and 0 otherwise as needed.

Inductive Case: k > 0.

Q(s, i·~ı)(o·~o, s′·~s) (7)

= δ(s)(s′) ∗ δ(σ(s))(o) ∗
∑

s′′

τ(s, i)(s′′) ∗Q(s′′,~ı)(~o,~s) (8)

= δ(s)(s′) ∗ δ(σ(s))(o) ∗
∑

s′′

τ(s, i)(s′′) ∗ δ(s′′)(~s[1]) ∗ δ(σ(~s[1]))(~o[1]) ∗
k−1
∏

κ=1

τ(~s[κ],~ı[κ])(~s[κ+ 1]) ∗ δ(σ(~s[κ+ 1]))(~o[κ+ 1]) (9)

= δ(s)(s′) ∗ δ(σ(s))(o) ∗ τ(s, i)(~s[1]) ∗ δ(~s[1])(~s[1]) ∗ δ(σ(~s[1]))(~o[1]) ∗
k−1
∏

κ=1

τ(~s[κ],~ı[κ])(~s[κ+ 1]) ∗ δ(σ(~s[κ+ 1]))(~o[κ+ 1]) (10)

= δ(s)(s′) ∗ δ(σ(s))(o) ∗ τ(s, i)(~s[1]) ∗ δ(σ(~s[1]))(~o[1]) ∗
k−1
∏

κ=1

τ(~s[κ],~ı[κ])(~s[κ+ 1]) ∗ δ(σ(~s[κ+ 1]))(~o[κ+ 1]) (11)

=

δ(s)(s′) ∗ δ(σ(s))(o) ∗ τ(s, i)(s′·~s[1 + 1]) ∗ δ(σ(s′·~s[1 + 1]))(o·~o[1 + 1])

∗
k−1
∏

κ=1

τ(s′·~s[κ+ 1], i·~ı[κ+ 1])(s′·~s[κ+ 1 + 1]) ∗ δ(σ(s′·~s[κ+ 1 + 1]))(o·~o[κ+ 1 + 1])
(12)

=

δ(s)(s′·~s[1]) ∗ δ(σ(s′·~s[1]))(o·~o[1]) ∗ τ(s′·~s[1], i·~ı[1])(s′·~s[1 + 1]) ∗ δ(σ(s′·~s[1 + 1]))(o·~o[1 + 1])

∗
k−1
∏

κ=1

τ(s′·~s[κ+ 1], i·~ı[κ+ 1])(s′·~s[κ+ 1 + 1]) ∗ δ(σ(s′·~s[κ+ 1 + 1]))(o·~o[κ+ 1 + 1])
(13)

=

δ(s)(s′·~s[1]) ∗ δ(σ(s′·~s[1]))(o·~o[1])

∗ τ(s′·~s[1], i·~ı[1])(s′·~s[1 + 1]) ∗ δ(σ(s′·~s[1 + 1]))(o·~o[1 + 1]) ∗
(k−1)+1

∏

κ=1+1

τ(s′·~s[κ], i·~ı[κ])(s′·~s[κ+1]) ∗ δ(σ(s′·~s[κ+1]))(o·~o[κ+1])

(14)

= δ(s)(s′·~s[1]) ∗ δ(σ(s′·~s[1]))(o·~o[1]) ∗
k
∏

κ=1

τ(s′·~s[κ], i·~ı[κ])(s′·~s[κ+ 1]) ∗ δ(σ(s′·~s[κ+ 1]))(o·~o[κ+ 1]) (15)

where (9) comes from the inductive hypothesis, (10) follows since δ(s′′)(~s[1]) will be 0 for all other values of s′′, (13) follows
since unless s′ = s, the value will be zero due the δ(s)(s′) term, (14) changes the indexing of the product so that (15) can roll
the two terms before the product into the product by starting the indexing from 1 instead of 1 + 1.

26

B Universal Unsoundness and Incompleteness Proofs

B.1 Theorem 1

The theorem states:

Any black box analysis that ever returns a positive result from interference for H to L is unsound for interference
from H to L.

Proof. Assume that analysis A can return a positive result for interference from interacting with a system. Then, there must
exist a system q+ = 〈S+, s0+, I+,O+, τ+, σ+〉 and ~ı+ such that the output q+(~ı+) leads to A returning a positive result. q+(~ı+) leads
to a trace [s1, o1, i1, s2, o2, i2, . . . , sk, ok, ik, sk+1, ok+1] where s1 = s0+, oj = σ+(sj), ij =~ı+[j], sj = τ(sj−1, ij−1), and |~ı+| = k.

Let qN be a system that has noninterference but behaves like q+ on ~ı+. That is, let qN be 〈SN, s0N, I+,O+, τN, σN〉 where

• SN = {sN1 , . . . , s
N
k , s

N
k+1},

• s0N = sN1 ,

• τN(s
N
j , i) = sNj+1 for all j ≤ k and τN(s

N
k+1, i) = sNk+1 for all i, and

• σN(s
N
j) = oj for all j ≤ k + 1.

Since the behavior of qN does not depend upon any inputs, it has noninterference. However, by construction, qN(~ı+) = q+(~ı+).
Thus, A cannot tell them apart even with the ability to observe every input and output to the system. Thus, it must produce
an unsound positive result for interference on qN.

B.2 Theorem 2

The theorem states:

Any black box analysis that ever returns a positive result for noninterference from H to L is unsound for nonin-
terference from H to L if H has two inputs and L has two outputs.

Proof. Assume that A can return a positive result from interacting with a system. Then, there must exist a system q- and ~ı-
such that the output q-(~ı-) lead A to return positive for noninterference. Let the trace of q- on ~ı- be [s1, o1, i1, s2, o2, . . .].

Let qI be a system that has interference but behaves like q- on ~ı-. That is, qI be 〈SI, s0I, I-,O-, τI, σI〉 where

• SI = S- ∪ {s00, s01};

• s0I = s00;

• τI(s, i) = τ-(s, i) for all i and s in S-, τI(s00,~ı-[1]) = τ(s0,~ı-[1]), τI(s00, i) = s01 for all i 6=~ı-[1], and τI(s01, i) = s01 for all
i;

• σI(s) = σ-(s) for all s other than s01 and σI(s01) = o01 where o01 6= o2 = σ-(s2).

Note that since |O| ≥ 2, such an o01 exists, and since |I| ≥ 2, an i 6=~ı-[1] exists making s01 reachable.
The behavior of qI at the state s01 versus s1 shows that it has interference when we consider an input i such that i 6=~ı-[1]

and i differs from ~ı-[1] by just high-level information. However, by construction, qI(~ı-) = q-(~ı-). Thus, A cannot tell them
apart even with the ability to observe every input and output to the system. Thus, it must produce an unsound result for qI
having noninterference.

C Background: Causality

In this section, we review Pearl’s formalism of causality [64]. In particular, we use notation and results found in Chapters 1
and 7 of [64].

Background on Probability

Recall that for any two propositions A1 and A2, P(A1∧A2) = P(A2 |A1)∗P(A1) if P(A1) > 0. If P(A1) = 0, then P(A2 |A1)
is not defined. We adopt the convention that the product of a undefined term by zero will be zero (which is similar to [65]).
Under this convention, P(A1 ∧A2) = P(A2 |A1) ∗P(A1) holds in general. Under this convention, the chain rule of probability
iterates the above equation:

P(∧J
j=1Aj) =

J
∏

j=1

P(Aj | ∧
j−1
k=1Ak) (16)

27

SEMs

Recall that a probabilistic SEM M is a tuple 〈Ven,Vex, E ,P〉 where Ven is the endogenous variables, Vex is the exogenous
variables, E provides a structural equation for each endogenous variable V , and P is a probability distribution.

To define E in more detail, let the space of functions FV be (possibly randomized) functions from the ranges of a subset of
the variables other than V to the range of V . E maps a variable V in Ven to a function in FV . If V is mapped to a function FV

that does not include the range of the variable V ′, then V does not have a direct dependence upon V ′. We write V := FV (~V)

where ~V is a list of other variables not equal to V if E maps V to a function FV that directly depends upon the variables ~V .
Let par(V) denote the variables ~V , called the parents of V . Let par(V) be the empty set for exogenous variables V .

To define P in more detail, let P map each exogenous variable V to a probability distribution PV over the range of V .
Note that exogenous variables are assumed to be independent and, thus, these marginal distributions suffice for explaining
their behavior.

We call a SEM recursive if the graph of variables created by including a directed edge from every parent to every child
variable (node) is acyclic. We will limit our discuss to recursive SEMs. We will implicitly order their variables by the topology
created by this graph.

Assigning Probabilities: Factorization

We can use the topological ordering on the variables to extend to P to assign probabilities to assignments of values to variables.
To do so, we define some notation. For a vector ~V , we use ~V [j] to denote its jth component. We take ~V = ~v be shorthand for
∧t

j=1
~V [j] = ~v[j] where ~V is a vector of length t holding variables. Similarly, let ~V j:k = ~v be shorthand for

∧k
t=j

~V [t] = ~v[t].
We use par(V) = ~w as sort hand for

∧

Wj∈par(V) Wj = ~w[j] where there is some implicit ordering on variables associating the

jth element of par(V) to the jth component of ~w.
We start by assigning a probability to a variable given its parents in the SEM M . For exogenous variables V , let

PM (V = v | par(V) = ~v) be PV (v). (Recall that par(V) is the empty set for exogenous variables. Thus, the vector ~v of values
is empty as well.) For endogenous variables V defined by a deterministic function fV , let PM (V = v | par(V) = ~v) be 1 if
v = fV (~v) and be 0 otherwise. For randomized functions FV , let PM (V = v | par(V) = ~v) be the probability that v = FV (~v).

For a vector of all the variables ~V and a vector of values ~v they can take on, we determine PM (~V=~v) using a factorization
created by the chain rule:

PM (~V=~v) =

|~V |
∏

j=1

PM (~V [j]=~v[j] | ~V 1:j−1 = ~v1:j−1) (17)

=

|~V |
∏

j=1

PM (~V [j]=~v[j] | par(~V [j]) = ~v
par(~V [j])) (18)

where j ranges over ~V in a manner that respects the variables’ topology, ~v
par(~V [j]) is ~v restricted to just these components

corresponding to elements of par(~V [j]), and we take par(V) to be the empty set for exogenous variables V . (18) follows since
~V 1:j−1 = ~v1:j−1 includes all the parents of ~V [j] by using the topological ordering and ~V [j] is independent of its non-parents
given its parents.

For ~W = ~w involving a subset of the variables, we use the following:

PM (~W=~w) =
∑

~u

PM (~W = ~w, ~U = ~u) =
∑

~u

|~V |
∏

j=1

PM (~V [j]=~v[j] | par(~V [j]) = v(~w, ~u)
par(~V [j])) (19)

where ~U are the remaining variables, ~V is a vector consisting of the components of ~W and ~U put into order, and v(~w, ~u) is
the vector ~v that results from combining the components of ~w and ~u in order.

Sub-Models and Truncated Factorization

Recall that for an SEM M , endogenous variable X, and value x that X can take on, the sub-model M [X:=x] is the SEM

that results from replacing the equation X := FX(~V) in E with the equation X := x. That is, for M = 〈Ven,Vex, E ,P〉,
M [X:=x] = 〈Ven,Vex, E [X := x],P〉 where E [X := x](X) = λ.x (the function that takes no arguments and always returns x)
and E [X := x](V) = E(V) for V 6= X.

28

PM and PM [X:=x] are related by truncated factorization. To define it, let X be the kth variable in the topological order.
For ~V=~v that assigns X the value x (i.e., ~v[k] = x),

PM [X:=x](~V=~v) =

|~V |
∏

j=1

PM [X:=x](~V [j]=~v[j] | par(~V [j]) = ~v
par(~V [j])) =

|~V |
∏

j=1:j 6=k

PM (~V [j]=v(~w, ~u)[j] | par(~V [j]) = ~v
par(~V [j]))

(20)

where the produce in (20) skips X, the kth variable. For ~V=~v that assigns X a value other than x, PM [X:=x](~V=~v) is 0. The
above extends to subsets of all variables as in (19).

Henceforth, for readability, we adopt Pearl’s do notation. We will drop the M from PM when M is clear from context.

We will denote PM [X:=x](~V=~v) as P(~V=~v | do(X:=x)). We take do(~X := ~x) be shorthand for
∧| ~X|

j=1 do(
~X[j] := ~x[j]). We

understand P(~V=~v | do(~X:=~x)) to be iterative application of taking a sub-model with

P(~V=~v | do(~X:=~x)) =

|~V |
∏

j=1:j /∈K

P(~V [j]=~v[j] | par(~V [j]) = ~v
par(~V [j])) (21)

where K is the set containing the indexes of the variables in ~X.
Pearl presents two useful properties [64, pg 24]. The first allows converting normal conditional statements to do statements

when conditioning upon all of a variable’s parents. The second allows for dropping irreverent do statements when conditioning
upon all of a variable’s parents.

Lemma 2 (Pearl’s Property 1).
P(Y=y | par(Y)=~x) = P(Y=y | do(par(Y):=~x))

Lemma 3 (Pearl’s Property 2).

P(Y=y | do(par(Y):=~x), do(~Z:=~z)) = P(Y=y | do(par(Y):=~x))

D Interference and Causation

D.1 Model

Given a probabilistic Moore Machine Q, we define a SEM MQ of Q. Intuitively, it contains endogenous variables for each
input and output and exogenous variables for each user. The behavior of Q provides functions Flo,t defining the low output
at time t in terms of the previous and current inputs. In more detail, for each time t, we create the endogenous variables HIt,
HOt, LIt, and LOt for the high input and output, and low input and output, respectively, at the time t. We add exogenous
variables HUt and LUt that represents the behavior of high and low users of the system at time t.

For a indexed family of variables ~V , we use ~V t to denote the vector holding those with an index of t or less (in order).

That is, ~V t = ~v be shorthand for
∧t

j=1
~V [j] = ~v[j].

The following table shows how we define these variables and functions:

V par(V) FV

HUt+1 high user ∅ (exogenous) for all t ≥ 0

LUt+1 low user ∅ (exogenous) for all t ≥ 0

S0 initial state ∅ Fs,0() = δ(s0)

St+1 state {St,HIt, LIt} Fs,t+1(st, hit, lit)(s
′) = τ(st, 〈hit, lit)〉) for all t ≥ 0

HIt+1 high input {HUt+1, LUt+1,HO1, . . . ,HOt, LO1, . . . , LOt} Fhi,t+1(HUt+1, LUt+1, ~HO
t
, ~LO

t
) for all t ≥ 0

LIt+1 low input {HUt+1, LUt+1,HO1, . . . ,HOt, LO1, . . . , LOt} Fli,t+1(HUt+1, LUt+1, ~HO
t
, ~LO

t
) for all t ≥ 0

HOt high output {St} Fho,t(st) = δ(⌊σ(st)↓H⌋) for all t ≥ 0

LOt low input {St} Flo,t(st) = δ(⌊σ(st)↓L⌋) for all t ≥ 0

The form of P(V=v | par(V)) depends upon the type of variable that V is. Here are the options based on the above table:

29

V P(V=v | par(V))

HUt+1 P(HUt+1=hut+1) for all t ≥ 0

LUt+1 P(LUt+1=lut+1) for all t ≥ 0

S0 P(S0=s) = δ(s0)(s)

St+1 P(St+1 = st+1 |St=st,HIt=hit, LIt=lit) = τ(st, 〈hit, lit)〉)(st+1) for all t ≥ 0

HIt+1 P(HIt+1=hit+1 |HUt+1=hut+1, LUt+1=lut+1, ~HO
t
= ~ho, ~LO

t
=~lo) = Fhi,t+1(hut+1, lut+1, ~ho, ~lo)(hit+1) for all t ≥ 0

LIt+1 P(LIt+1=lit+1 |HUt+1=hut+1, LUt+1=lut+1, ~HO
t
= ~ho, ~LO

t
=~lo) = Fli,t+1(hut+1, lut+1, ~ho, ~lo)(lit+1) for all t ≥ 0

HOt P(HOt=hot |St=st) = δ(⌊σ(st)↓H⌋)(hot) for all t ≥ 0

LOt P(LOt=lot |St=st) = δ(⌊σ(st)↓L⌋)(lot) for all t ≥ 0

Let MQ consist of the variables and equations defined above plus an unknown probability distribution P.

D.2 Relation of Models

Let ~V j:k = ~v be shorthand for
∧k

t=j
~V [t] = ~v[t]. Let do(V := v) be Pearl’s do operation denoting an intervention fixing a

value, such as by applying a treatment to an experimental unit [64]. Let do(~V j:k := ~v) be short hand for
∧k

t=j do(
~V [t] := ~v[t]).

Let ~Oj:k = ~o be shorthand for ⌊HOj:k↓H⌋ = ⌊~o↓H⌋ ∧ ⌊LOj:k↓L⌋ = ⌊~o↓L⌋. Let ~Ij:k = ~ı be shorthand for ⌊HIj:k↓H⌋ =

⌊~ı↓H⌋ ∧ ⌊LIj:k↓L⌋ = ⌊~ı↓L⌋. We define do(~Oj:k := ~o) and do(~Ij:k :=~ı) similarly.
We define the equivalent of Q(s,~ı)(~s, ~o) for an SEM MQ as follows: let

fix
t(MQ)(s,~ı)(~s, ~o) = P(~St:t+k=~s ∧ ~Ot:t+k=~o | do(St:=s), do(~It:t+k−1:=~ı)) (22)

where ~ı, ~o, and ~s are of lengths k ≥ 0, k + 1, and k + 1, respectively. The time t ≥ 0 represents the time at which MQ starts
operating. Note that when k = 0, ~It:t+k−1 is ~It:t−1, which is an empty sequence, as is ~ı. Thus, do(~It:t+k−1:=~ı) is vacuously

true when k = 0. On the other hand, ~St:t+k is ~St:t = [~St], a sequence with a single component, which is compared to the
single component of ~s = [s1].

Lemma 4. For all Q, s, and t ≥ 0, and ~ı, ~o, and ~s of lengths k ≥ 0, k + 1, and k + 1, respectively,

fix
t(MQ)(s,~ı)(~s, ~o) = Q(s,~ı)(~o,~s)

Proof.

fix
t(MQ)(s,~ı)(~s, ~o) (23)

= P(~St:t+k=~s ∧ ~Ot:t+k=~o | do(St:=s), do(~It:t+k−1:=~ı)) (24)

= P(
k
∧

κ=0

~S[t+ κ]=~s[1 + κ] ∧ ~O[t+ κ]=~o[1 + κ] | do(St:=s), do(~It:t+k−1:=~ı)) (25)

=
k
∏

κ=0

P(~S[t+ κ]=~s[1 + κ] ∧ ~O[t+ κ]=~o[1 + κ] | ~St:t+κ−1=~s1:κ, ~Ot:t+κ−1=~o1:κ, do(St:=s), do(~It:t+k−1:=~ı)) (26)

=

k
∏

κ=0

P(~S[t+ κ]=~s[1 + κ] | ~St:t+κ−1=~s1:κ, ~Ot:t+κ−1=~o1:κ, do(St:=s), do(~It:t+k−1:=~ı))

∗P(~O[t+ κ]=~o[1 + κ] | ~S[t+ κ]=~s[1 + κ], ~St:t+κ−1=~s1:κ, ~Ot:t+κ−1=~o1:κ, do(St:=s), do(~It:t+k−1:=~ı))
(27)

where (25) expands ~St:t+k=~s ∧ ~Ot:t+k=~o into
∧k

κ=0
~S[t+ κ]=~s[1 + κ] ∧ ~O[t+ κ]=~o[1 + κ]. Since κ ranges from 0 to k while

we index the sequences ~s and ~o from 1 to k + 1, we add 1 to κ while indexing into ~s and ~o. Both (26) and (27) follow from

the chain rule of probability. Note that when κ is 0, the term ~St:t+κ−1=~s1:κ becomes ~St:t−1=~s1:0, which compares the empty
sequence to the empty sequence. This comparison is vacuously true as it should be since no state precedes the first state
~s[1 + κ] = ~s[1 + 0] = ~s[1] and, thus, the probability of this state should not be conditioned on a preceding state. The same
holds for the output ~o[1].

In (27), P(~S[t + κ]=~s[1 + κ] | ~St:t+κ−1=~s1:κ, ~Ot:t+κ−1=~o1:κ, do(St:=s), do(~It:t+k−1:=~ı)) is looking at the probability of
~S[t + κ]=~s[1 + κ] conditional upon every term on which ~S[t + κ] depends in the model MQ (i.e., all of the variables in

30

par(St+κ)). The same holds for the outputs ~O[t+ κ]. Thus, Pearl’s Property 1 [64, pg 24] applies to (27) and justifies (29) in
the following:

fix
t(MQ)(s,~ı)(~s, ~o) (28)

=

k
∏

κ=0

P(~S[t+ κ]:=~s[1 + κ] | do(~St:t+κ−1:=~s1:κ), do(~Ot:t+κ−1:=~o1:κ), do(St:=s), do(~It:t+k−1:=~ı))

∗P(~O[t+ κ]=~o[1 + κ] | do(~S[t+ κ]:=~s[1 + κ]), do(~St:t+κ−1:=~s1:κ), do(~Ot:t+κ−1:=~o1:κ), do(St:=s), do(~It:t+k−1:=~ı))

(29)

=

P(~S[t+ 0]:=~s[0 + 1] | do(~St:t+0−1:=~s1:0), do(~Ot:t+0−1:=~o1:0), do(St:=s), do(~It:t+k−1:=~ı))

∗P(~O[t+ 0]=~o[0 + 1] | do(~S[t+ 0]:=~s[0 + 1]), do(~St:t+0−1:=~s1:0), do(~Ot:t+0−1:=~o1:0), do(St:=s), do(~It:t+k−1:=~ı))

∗
k
∏

κ=1

P(~S[t+ κ]:=~s[1 + κ] | do(~St:t+κ−1:=~s1:κ), do(~Ot:t+κ−1:=~o1:κ), do(St:=s), do(~It:t+k−1:=~ı))

∗P(~O[t+ κ]=~o[1 + κ] | do(~S[t+ κ]:=~s[1 + κ]), do(~St:t+κ−1:=~s1:κ), do(~Ot:t+κ−1:=~o1:κ), do(St:=s), do(~It:t+k−1:=~ı))

(30)

=

P(~S[t]:=~s[1] | do(St:=s), do(~It:t+k−1:=~ı)) ∗ P(~O[t]=~o[1] | do(~S[t]:=~s[1]), do(St:=s), do(~It:t+k−1:=~ı))

∗
k
∏

κ=1

P(~S[t+ κ]:=~s[1 + κ] | do(~St:t+κ−1:=~s1:κ), do(~Ot:t+κ−1:=~o1:κ), do(St:=s), do(~It:t+k−1:=~ı))

∗P(~O[t+ κ]=~o[1 + κ] | do(~S[t+ κ]:=~s[1 + κ]), do(~St:t+κ−1:=~s1:κ), do(~Ot:t+κ−1:=~o1:κ), do(St:=s), do(~It:t+k−1:=~ı))

(31)

=

P(~S[t]:=~s[1] | do(St:=s), do(~It:t+k−1:=~ı)) ∗ P(~O[t]=~o[1] | do(~S[t]:=~s[1]))

∗
k
∏

κ=1

P(~S[t+ κ]:=~s[1 + κ] | do(~S[t+ κ− 1]:=~s[κ]), do(~I[t+ κ− 1]:=~ı[κ]))

∗P(~O[t+ κ]=~o[1 + κ] | do(~S[t+ κ]:=~s[1 + κ]))

(32)

= δ(s)(~s[1]) ∗ δ(σ(~s[1]))(~o[1]) ∗
k
∏

κ=1

τ(~s[κ],~ı[κ])(~s[1 + κ]) ∗ δ(σ(~s[1 + κ]))(~o[1 + κ]) (33)

= Q(s,~ı)(~o,~s) (34)

where (30) simply pulls out the case where κ = 0; (31) just removes terms that are vacuously true; (32) follows from Pearl’s
Property 2 [64, pg 24], which removes do terms that are not parents in MQ of the term whose probability we are computing;
(33) comes from how we construct the model MQ; and (34) comes from Lemma 1.

Lemma 5. For all Q, ~ı, and ~lo of lengths t and t+ 1, respectively, P(~LO
1:t+1

=~lo | do(~I1:t:=~ı)) = ⌊Q(~ı)↓L⌋(~lo).

Proof.

P(~LO
1:t+1

=~lo | do(~I1:t:=~ı)) =
∑

~o:⌊~o↓L⌋=~lo

P(~O1:t+1=~o | do(~I1:t:=~ı)) (35)

=
∑

~s∈St+1

∑

~o:⌊~o↓L⌋=~lo

P(~S1:t+1 = ~s ∧ ~O1:t+1=~o | do(~I1:t:=~ı)) (36)

=
∑

~s∈St+1

∑

~o:⌊~o↓L⌋=~lo

P(~S1:t+1 = ~s ∧ ~O1:t+1=~o | S0=s0, do(~I
1:t:=~ı)) (37)

=
∑

~s∈St+1

∑

~o:⌊~o↓L⌋=~lo

P(~S1:t+1 = ~s ∧ ~O1:t+1=~o | do(S0:=s0), do(~I
1:t:=~ı)) (38)

=
∑

~s∈St+1

∑

~o:⌊~o↓L⌋=~lo

Q(s0,~ı)(~o,~s) (39)

=
∑

~o:⌊~o↓L⌋=~lo

Q(~ı)(~o) (40)

= ⌊Q(~ı)↓L⌋(~lo) (41)

where (35) and (36) hold since output sequences and state sequences are mutually exclusive, (37) follows since S0 is known to
be s0, (38) follows from Pearl’s Property 1 [64, pg 24], and (39) follows from Lemma 4.

31

D.3 Proof of Theorem 3

Theorem 4. Q has probabilistic interference iff there exists low inputs ℓ of length t such that ~V t
hi has an effect on ~V t

lo given
V t
li := ℓ in MQ.

Proof. In the notation of this appendix, ~V t
hi is ~HI

1:t
and ~V t

lo is ~LO
1:t

. For consistency, we write ℓ as ~li.
Under this notation, we must show that (1) there exists input sequences ~ı1 and ~ı2 such that ⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ and

⌊Q(~ı1)↓L⌋ 6= ⌊Q(~ı2)↓L⌋ if and only if (2) there exists low inputs ~li of length t and high inputs ~hi1 and ~hi2 of length t such that

the probability distribution of ~LO
1:t

in MQ[~HI
1:t

:= ~hi1][~LI
1:t

:= ~li] is not equal to its distribution in MQ[~HI
1:t

:= ~hi2][~LI
1:t

:= ~li].

The distribution of ~LO
1:t

in MQ[~HI
1:t

:= ~hi][~LI
1:t

:= ~li] is given by P(~LO
1:t

=~lo | do(~HI
1:t

:=~hi), do(~LI
1:t

:=~li)) for various

values of ~lo. Thus, Condition (2) is equivalent to (3) there exists ~ı1 and ~ı2 of length t such that ⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ and there

exists ~lo such that P(~LO
1:t

=~lo | do(~I1:t:=~ı1)) 6= P(~LO
1:t

=~lo | do(~I1:t:=~ı2)).
By Pearl’s Property 1 [64, pg 24], Condition (3) is equivalent to (4) there exists ~ı1 and ~ı2 of length t such that ⌊~ı1↓L⌋ =

⌊~ı2↓L⌋ and there exists ~lo such that P(~LO
1:t

=~lo | do(~I1:t−1:=~ı1)) 6= P(~LO
1:t

=~lo | do(~I1:t−1:=~ı2)) since the output at time t
does not depend upon the input at time t in MQ.

By Lemma 5, P(~LO
1:t

=~lo | do(~I1:t−1:=~ı)) = ⌊Q(~ı)↓L⌋(~lo). Thus, Condition (4) is equivalent to (5) there exists input

sequences ~ı1, ~ı2, and ~lo such that ⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ and ⌊Q(~ı1)↓L⌋(~lo) 6= ⌊Q(~ı2)↓L⌋(~lo).
Condition (5) is equivalent to Condition (1). Thus, Conditions (1) and (2) are equivalent as needed.

E Proof of Corollary 1 Relating Independence Testing to Noninterference

We start by showing that testing independence is the same as testing equality.

Lemma 6. For a set C1, . . . , Cn of a mutually exclusive and exhaustive conditions, for each i, there exists a j such that
Pr[A |Ci] 6= Pr[A |Cj] iff there exists a k such that Pr[A |Ck] 6= Pr[A].

Proof. If Pr[A |Ci] 6= Pr[A |Cj], then either Pr[A |Ci] 6= Pr[A] or Pr[A |Cj] 6= Pr[A].
For the other direction, suppose Pr[A |Ck] 6= Pr[A]. By the chain rule, Pr[A] =

∑

h Pr[A |Ch] Pr[Ch]. For showing a
contradiction, suppose Pr[A |Ck] = Pr[A |Ch] for all h. Then,

Pr[A] =
∑

h

Pr[A |Ch] Pr[Ch] (42)

=
∑

h

Pr[A |Ck] Pr[Ch] (43)

= Pr[A |Ck]
∑

h

Pr[Ch] (44)

= Pr[A |Ck] (45)

which is a contradiction. Thus, there must exist some h such that Pr[A |Ck] 6= Pr[A |Ch].

The corollary states:

A test for independence of two random variables in science is a test of noninterference for information flow exper-
iments.

Proof. By Lemma 6, a test of independence is the same as a test of equality. A test of equality is the same as a test for
noninterference by Theorem 4.

F Proofs for Nonce Analysis

Proposition 1. For all ~y, pt(sn, ~y) = count(~y, n)/|~y|.

32

Proof.

pt(sn, ~y) =
1

|~y|!

∑

π∈Π(|~y|)

I[sn(~y) ≤ sn(π(~y))] (46)

=
1

|~y|!

∑

π∈Π(|~y|)

1 ≤ sn(π(~y))] (47)

=
1

|~y|!

∑

π∈Π(|~y|)

sn(π(~y)) (48)

=
1

|~y|!
count(~y, n) ∗ (|~y| − 1)! (49)

= count(~y, n)/|~y| (50)

where (49) is the number of permutations that puts a particular instance of the nonce into the first position times the number
of instances of the nonce.

Proposition 2. limm→∞ pt(sn, ~ym,⌈p∗m⌉) = p and limm→∞ pt(sn, ~ym,⌊p∗m⌋) = p.

Proof. Since both

lim
m→∞

pt(sn, ~ym,⌊p∗m⌋) = lim
m→∞

count(~ym,⌊p∗m⌋)

|~ym,⌊p∗m⌋|
(51)

= lim
m→∞

1 + ⌊p ∗m⌋

m
(52)

= lim
m→∞

1 + ⌊p ∗m⌋

m
(53)

≥ lim
m→∞

1 + p ∗m− 1

m
(54)

= lim
m→∞

p (55)

= p (56)

and

lim
m→∞

pt(sn, ~ym,⌊p∗m⌋) = lim
m→∞

count(~ym,⌊p∗m⌋)

|~ym,⌊p∗m⌋|
(57)

= lim
m→∞

1 + ⌊p ∗m⌋

m
(58)

= lim
m→∞

1 + ⌊p ∗m⌋

m
(59)

≤ lim
m→∞

1 + p ∗m+ 1

m
(60)

= lim
m→∞

p (61)

= p (62)

it must be the case that limm→∞ pt(sn, ~ym,⌊p∗m⌋) = p.
Since both

lim
m→∞

pt(sn, ~ym,⌈p∗m⌉) = lim
m→∞

count(~ym,⌈p∗m⌉)

|~ym,⌈p∗m⌉|
(63)

= lim
m→∞

1 + ⌈p ∗m⌉

m
(64)

= lim
m→∞

1 + ⌈p ∗m⌉

m
(65)

≤ lim
m→∞

1 + p ∗m+ 1

m
(66)

= lim
m→∞

p+
2

m
(67)

= p (68)

33

and

lim
m→∞

pt(sn, ~ym,⌈p∗m⌉) = lim
m→∞

count(~ym,⌈p∗m⌉)

|~ym,⌈p∗m⌉|
(69)

= lim
m→∞

1 + ⌈p ∗m⌉

m
(70)

= lim
m→∞

1 + ⌈p ∗m⌉

m
(71)

≥ lim
m→∞

1 + p ∗m− 1

m
(72)

= lim
m→∞

p (73)

= p (74)

it must be the case that limm→∞ pt(sn, ~ym,⌈p∗m⌉) = p

G Details of Experiments

All the experiments were carried out using Python bindings for Selenium WebDriver version 2.31 for the Firefox browser 25.0.
Experiments were carried out with a script in Python 2.7 running on one of two identical 64-bit Ubuntu 12.04 VM with 24GB
of RAM and 8 Intel Xeon E5540 CPUs. All network requests were made from behind a proxy server.

When observing Google’s behavior, we first “opted-in” to receive interest-based Google Ads across the web on every test
instance by visiting the Google Ad Settings page at https://www.google.com/settings/ads and clicking the Opt-in link.
This placed a Doubleclick cookie on the browser instance.

G.1 Experiment 1

A primary browser instance would first establish an interest in cars by visiting car-related websites.
The car-related sites selected by collecting the top 10 websites excluding images, news articles or ads returned by Google

when queried with the search terms “BMW buy”, “Audi purchase”, “new cars”, “local car dealers”, “autos and vehicles”,
“cadillac prices”, and “best limousines” are shown in Table 3. Note that the results from “local car dealers” has only 9 results
because the page local.yahoo.com/[redacted_location]/Automotive/Dealers/Used+Car+Dealers took a long time to load
and was manually removed from the training pages.

During the 10 rounds of ad collections, each round would attempt to reload the International Homepage of Times of India
(http://timesofindia.indiatimes.com/international-home) 10 times. Occasionally it would time out instead of reloading.
We set the page-load-timeout to be 60 seconds. We repeated the experiment four times (twice using 10 rounds and twice using
20 rounds) and found that the page would not always load completely resulting in fewer ads being collected. Details on the
number of ads collected by the primary browser instance in each round are shown in Table 4.

34

Table 3: For Experiments 1 and 4, the list of websites returned by Google upon searching with corresponding term. These
websites were used for creating the profile of an auto enthusiast.

“BMW buy” www.bmwusa.com/, www.autotrader.com/find/BMW-328i-cars-for-sale.jsp,
www.autotrader.com/find/used-BMW-cars-for-sale.jsp, www.bmw.com/, www.bmwmotorcycles.com/,
autos.aol.com/new-cars/, www.exchangeandmart.co.uk/used-cars-for-sale/bmw, en.wikipedia.org/wiki/BMW,
www.cars.com/bmw/, autos.aol.com/bmw/

“Audi purchase” www.audiusa.com/inventory/european-delivery, www.audiusa.com/help/leasing,
www.audiusa.com/myaudi/finance, www.audiusa.com/myaudi/offers-programs,
www.audiusa.com/inventory/certified-pre-owned, www.audisupplier.com/,
townhall-talk.edmunds.com/direct/view/.f1cc6d7, www.autotrader.com/find/Audi-A3-cars-for-sale.jsp,
en.wikipedia.org/wiki/Audi, jalopnik.com/5903083/why-audi-just-bought-ducati

“new cars” www.edmunds.com/new-cars/, www.edmunds.com/car-reviewsautos.yahoo.com/new-cars.html,
autos.yahoo.com/new-cars.html, www.kbb.com/new-cars/, www.autotrader.com/research/new-cars/,
www.autotrader.com/buy-a-new-car.jsp, www.cars.com/, autos.aol.com/new-cars/, www.newcars.com/,
www.motortrend.com/new_cars/

“local car dealers” www.edmunds.com/dealerships/, www.cars.com/dealers/search.action, www.cochran.com/,
www.autotrader.com/find/[redacted_location].jsp, www.baierl.com/,
www.kbb.com/car-dealers-and-inventory/,
www.enterprisecarsales.com/location/.../Enterprise_Car_Sales_[redacted_location],
autos.aol.com/new-cars, www.toyota.com/dealers/

“autos and vehicles” www.youtube.com/channel/HCLfhQGBROujg, www.youtube.com/channel/HCHXCPGmshRz4,
www.youtube.com/live/autos, en.wikipedia.org/wiki/Automobile,
www.veoh.com/list/videos/autos_and_vehicles, vidstatsx.com/most-popular-autos-vehicles-videos-today,
www.savevid.com/category/auto-vehicles, www.smbiz.com/sbrl003.html,
www.pinterest.com/hasaniqbal/autos-and-vehicles/, www.justluxe.com/lifestyle/car/articles-2.php

“cadillac prices” www.truecar.com/prices-new/cadillac/, www.motortrend.com/new_cars,
autos.msn.com/browse/Cadillac.aspx, www.nadaguides.com/Cars/Cadillac, autos.yahoo.com/new-cars.html,
www.gizmag.com/cadillac-elr-plug-in-hybrid-price/29389/,
www.autonews.com/article/20131011/RETAIL03/131019967/, www.cadillac.com/,
usnews.rankingsandreviews.com/cars-trucks/browse/cadillac,
www.automobilemag.com/car_prices/01/cadillac/

“best limousines” www.medialightbox.com/blog/.../the-10-best-limousines-in-the-world/,
www.bestlimousines.com/, www.celebritylimos[redacted_location].com/, www.tdflimo.com/,
www.limo.com/limo-[redacted_location]-limousines.php, www.[redacted_location]luxurylimoservice.com/,
www.angieslist.com/companylist/, www.forbes.com/2005/03/10/cx_dl_0310feat_bill05.html,
www.thebestlimousine.com/, www.youtube.com/watch?v=0iqi6jHviJ0

35

Table 4: For Experiment 1, the number of unique ads collected. I denotes the set of all ads collected from the primary browser
instance running in isolation, while P denotes the same collected from the primary browser instance running in parallel. This
table shows the number of ads collected in each round as well as the total number of ads and the number of unique ads in I
and P . The stars represent numbers from the instances running in isolation.

Data set #rounds ads (unique) collected by primary browser per round total (unique) in I total (unique) in P

1 10 *50(13), *50(13), 50(8), 50(10), *50(10), 250(37) 250(25)

50(12), *50(13), 50(11), 50(7), *50(17)

2 10 50(11), *50(14), 50(15), 50(11), 50(13), 250(46) 245(33)

*50(19), *50(13), *50(14), 45(11), *50(14)

3 20 *50(12), *50(12), 42(11), 50(14), *50(12), 490(58) 492(47)

50(11), 50(13), *50(18), *50(15), 50(15),

50(14), 50(9), 50(17), *50(17), 50(10),

*45(10), *50(12), 50(13), *50(16), *45(13)

4 20 50(10), 50(10), 50(15), *50(14), 50(10), 485(57) 495(52)

*50(17), 50(13), *40(11), 50(10), 50(16),

*50(14), *50(11), *50(14), 50(13), 45(11),

*50(14), *50(14), 50(12), *50(12), *45(16)

36

G.2 Experiment 2

This experiment suggested that Google associates users with various ad pools switching users from pool to pool over time.
Plotting the ads from both the instances together, as in Figure 4, we observe that for a period of time (between approximately
the 60th and 120th reload), both the instances appear to receive ads from the same pool. We also ran the same experiment
with different intervals between successive reloads. We tested intervals of 0s, 5s, 15s, 30s, 60s, and 120s, the ad-plots of which
are shown in Figure 5

50 100 150 200
Reload #

0

10

20

30

40

50

60

A
d
 I
D

Figure 4: For Experiment 2, the combined plot of ads from Instances 1 and 2

37

0 50 100 150 200
Reload #

0

10

20

30

40

50

60

A
d
 I
D

0 50 100 150 200
Reload #

0

10

20

30

40

A
d
 I
D

(a) interval = 0s (b) interval = 5s

0 50 100 150 200
Reload #

0

10

20

30

40

50

60

70

A
d
 I
D

0 50 100 150 200
Reload #

0

10

20

30

40

50
A
d
 I
D

(c) interval = 15s (d) interval = 30s

50 100 150 200
Reload #

0

10

20

30

40

50

60

A
d
 I
D

0 50 100 150 200
Reload #

0

10

20

30

40

50

A
d
 I
D

(e) interval = 60s (f) interval = 120s

Figure 5: For Experiment 2, plots of ads from Instances 1 and 2 in of the six experiments with varying time intervals between
reloads. Observe that the pooling behavior appears for the first time in 5(d), where the pool seems to switch somewhere
around the 80th reload. After that the number of these switches keep increasing in successive plots with the reload interval.

38

G.3 Experiment 3

We got the top 100 websites for females from
http://www.alexa.com/topsites/category/Top/Society/People/Women

and the top 100 sites for males from
http://www.alexa.com/topsites/category/Top/Society/People/Men

They are listed in Tables 5 and 6, respectively.
Google’s Ad Settings page (previously known as the Ad Preferences Manager) is located at

http://www.google.com/settings/ads

Table 5: For Experiment 3, the list of websites for creating female personas
shine.yahoo.com, sheknows.com, realsimple.com, cosmopolitan.com, shape.com, yourtango.com, glamour.com,
allwomenstalk.com, self.com, womansday.com, indusladies.com, sofeminine.co.uk, allure.com, cosmopolitan.co.

uk, redbookmag.com, bellaonline.com, chatelaine.com, womenshealth.gov, womensforum.com, more.com, blisstree.

com, memsaab.com, handbag.com, bitchmagazine.org, feministing.com, divine.ca, inthepowderroom.com, penmai.

com, bust.com, shoppinglifestyle.com, msmagazine.com, anewmode.com, bettyconfidential.com, ywbb.org/index.

shtml, worldoffemale.com, herdaily.com, lady.co.uk, worldpulse.com, sophisticatededge.com, baggagereclaim.co.

uk, pmsclan.com, girlfriendology.com, lemondrop.com, bcliving.ca, journeywoman.com, australianwomenonline.com,
women-on-the-road.com, magforwomen.com, nawbo.org, dressforsuccess.org, womenshistory.about.com, wavejourney.

com, secondwivescafe.com, unwomen.org, aauw.org, catalyst.org, truthaboutdeception.com, womensissues.about.

com, ncwit.org, dawnali.com/lovinmysistas, mookychick.co.uk, savvy-chick.net, rawa.org, emilyslist.org,
constantchatter.com, girlfriendsocial.com, womenzmag.com, ladieswholaunch.com, maitinepal.org, geniusbeauty.

com, thefword.org.uk, womensenews.org, rockytravel.net, femail.com.au, onewomanmarketing.com, un.org/womenwatch,
webgrrls.com, feminist.com, iwda.org.au, feminist.org, mrssurvival.com, gogirlfriend.com, nzgirl.co.nz, digital.
library.upenn.edu/women/, daisygreenmagazine.co.uk, now.org, womensnetwork.com.au, jwa.org, library.duke.edu/

rubenstein/, heartlessbitches.com, gogalavanting.com, redhatsociety.com, witi.com, womenslaw.org, wnba-books.org,
vday.org, everywoman.com, vivmag.com, womenonlyforums.com, teachertech.rice.edu

Table 6: For Experiment 3, the list of websites for creating male personas
askmen.com, complex.com, menshealth.com, esquire.com, gq.com, artofmanliness.com, thrillist.com, maxim.com,
mademan.com, uncrate.com, guyism.com, everyjoe.com, coolmaterial.com, spike.com, gearpatrol.com, goodmenproject.
com, fhm.com, bullz-eye.com, mensjournal.com, blessthisstuff.com, avoiceformen.com, primermagazine.com,
thesmokingjacket.com, acquiremag.com, tmrzoo.com, unfinishedman.com, thecoolist.com, werd.com, gunaxin.com,
ywbb.org/index.shtml, instash.com, giantlife.com, plunderguide.com, gearculture.com, hispotion.com, mensgear.

net, modernman.com, manofmany.com, brash.com, fearlessmen.com, dadsdivorce.com, savethemales.ca, tempe12.

com, justaguything.com, mkp.org, sharpformen.com, pinstripemag.com, thecampussocialite.com, fatherhood.org,
guylife.com, mankindunplugged.com, grind365.com, manukau.ac.nz, thegearpost.com, nextluxury.com, bonjourlife.

com, nomoremrniceguy.com, shavemagazine.com, nextcrave.com, toromagazine.com, ziprage.com, menstuff.org,
ncfm.org, angryharry.com, fact.on.ca, aspiringgentleman.com, fataldose.com, debonairmag.com, dailyxy.com,
citynetmagazine.com, male-initiation.net, faculty.washington.edu/eloftus/, losangeles.mkp.org, fancymaterial.

com, owenmarcus.com, manlyadventure.com, mensactivism.org, beast.com, thepopularman.com, menstoppingviolence.org,
doubleagent.com, guymanningham.com, contemporarymasculine.com, thecmg.org, rtinternational.org, justdetention.
org, maninstitute.com, uk.mkp.org, man-over-board.com, jaysongaddis.com, sospapa.net, dullmensclub.com, askmamu.
com, taoofbachelorhood.com, anger.org, dandyism.net, acfc.org, fathersforlife.org, singlesexschools.org,
frachelli.com

39

G.4 Experiment 4

As in Experiment 1, an instance manifests its interest by visiting the top 10 websites returned by Google when queried
with certain automobile-related terms: “BMW buy”, “Audi purchase”, “new cars”, “local car dealers”, “autos and vehicles”,
“cadillac prices”, and “best limousines”. Thus, they visited the same websites as in Experiment 1 (see Table 3).

Across all runs of the experiment, we collected 9832 ads with 281 being unique. Table 7 shows the number of ads collected
by each instance. Notice that both outliers were in the 19th run and in the experimental group.

Across all runs of the control-control experiment, we collected 9304 ads with 295 being unique. Table 8 shows the number
of ads collected by each instance. The p-values that the permutation tests yielded for the control-control experiment are
shown in Table 9. We can see that each of the statistics produced one statistically significant result except for the χ2, which
produced 12. This seems to indicate that the χ2-test is more prone to showing false-positives than the permutation tests.

Across all runs of the treatment-treatment experiment, we collected 9741 ads with 243 being unique. Table 10 shows the
number of ads collected by each instance. The p-values for the treatment-treatment experiments are shown in Table 11. Here
too, we would expect not to find statistically significant results. The χ2-test once again shows more false-positives than the
permutation tests. These numbers indicate that the pt(ssim) and pt(skw) are good indicators of statistical significance in our
setting.

Table 7: For Experiment 4, how the ads were distributed over the 10 different instances. T denotes the set of all ads collected
from the trained instances, while U denotes the same collected from the untrained instances. The number of ads collected by
each instance in {i1 . . . i10} is shown in the left half of the table. The right half of the table shows the total number of ads
and the number of unique ads in T and U .

Data set i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 Total(T) Unique(T) Total(U) Unique(U)

1 45 50 45 50 45 50 45 50 45 50 235 28 240 44

2 50 50 50 49 50 50 50 50 50 50 250 28 249 38

3 50 50 50 50 50 50 50 50 50 50 250 38 250 30

4 50 50 50 50 50 50 50 50 50 50 250 28 250 34

5 50 50 50 50 50 50 50 50 50 50 250 36 250 31

6 50 50 50 50 50 50 46 50 50 50 250 31 246 37

7 42 50 50 50 50 50 50 50 50 50 242 25 250 39

8 50 50 50 50 50 50 50 50 50 50 250 27 250 22

9 50 50 45 50 50 50 50 48 50 50 250 29 243 52

10 50 50 50 50 50 50 50 50 49 50 249 27 250 30

11 50 50 50 50 50 50 50 50 50 50 250 29 250 38

12 50 50 50 48 50 49 50 50 50 50 250 35 247 38

13 50 50 50 50 50 50 48 50 50 50 250 37 248 30

14 50 50 50 50 50 50 50 50 50 50 250 52 250 28

15 50 50 50 50 50 50 50 50 50 50 250 40 250 35

16 50 50 50 50 50 50 50 50 50 50 250 24 250 40

17 50 50 41 50 50 48 49 50 50 50 250 39 238 38

18 50 50 45 50 50 50 50 50 50 50 250 26 245 44

19 50 50 50 50 0 50 0 50 50 50 150 24 250 53

20 50 50 50 50 50 50 50 50 50 50 250 46 250 34

40

Table 8: For Experiment 4, how the ads were distributed over the 10 different instances in the control-control experiment.
5 out these 10 were randomly assigned to T , while the remaining to U . Observe that data-set 8 is an outlier because the
instances in that round returned much fewer ads.

Data set i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 Total(T) Unique(T) Total(U) Unique(U)

1 45 30 30 45 25 40 45 45 35 29 190 31 179 44

2 50 50 50 50 50 50 50 23 50 50 223 33 250 50

3 45 40 45 50 45 45 45 45 45 45 225 37 225 39

4 50 50 50 50 50 45 50 50 50 50 245 39 250 39

5 50 50 50 50 46 50 50 50 50 45 245 33 246 57

6 50 50 45 50 50 50 50 45 45 50 250 45 235 38

7 50 47 50 50 50 50 50 50 50 50 250 42 247 34

8 25 15 25 0 9 30 19 0 0 15 114 15 24 16

9 50 50 50 50 50 45 50 45 50 50 245 37 245 33

10 45 45 50 50 50 45 45 45 50 50 245 36 230 47

11 50 50 45 50 45 50 50 50 44 50 239 35 245 37

12 50 49 50 50 50 40 45 50 50 50 235 33 249 36

13 50 50 50 50 45 50 50 50 50 50 245 36 250 24

14 50 50 50 50 50 50 50 50 50 50 250 31 250 28

15 50 50 50 50 46 50 50 50 50 47 246 45 247 43

16 50 50 50 50 50 50 50 50 50 50 250 36 250 35

17 50 50 50 49 50 50 50 50 50 50 249 37 250 36

18 50 50 50 50 50 50 50 50 50 50 250 26 250 27

19 50 50 50 50 50 50 50 37 50 50 237 36 250 33

20 50 50 50 50 50 50 50 50 49 50 249 37 250 34

Table 9: For Experiment 4, p-values for the for control-control experiment. Note that the significant p-values are from data-set
8, which we showed in Table 8 to an outlier.
.

Data set ssim skw sprc χ2

1 0.373016 0.857143 0.777778 0.0690831

2 0.063492 0.293651 0.261905 0.0388589

3 0.603175 0.920635 0.777778 2.66915e− 05

4 0.436508 0.440476 0.500000 0.565445

5 0.071429 0.869048 1.000000 9.85584e− 05

6 0.309524 0.158730 0.500000 0.0139651

7 0.103175 0.527778 1.000000 0.947502

8 0.007937∗ 0.003968∗ 0.003968∗ 0.0701231

9 0.547619 0.134921 0.222222 0.0216323

10 0.119048 1.000000 1.000000 0.000856692

11 0.936508 0.234127 0.222222 0.0341701

12 0.285714 0.769841 0.222222 0.228014

13 0.761905 0.440476 0.896825 0.00237996

14 0.642857 0.408730 1.000000 0.415073

15 0.468254 0.738095 1.000000 0.164419

16 0.476190 0.095238 0.500000 0.000130842

17 0.984127 0.186508 0.500000 0.0254968

18 0.746032 0.440476 0.896825 0.464851

19 0.611111 0.420635 0.500000 0.0122963

20 0.071429 0.936508 0.777778 2.27046e− 05

Number < 5% 1 1 1 12

41

Table 10: For Experiment 4, how the ads were distributed over the 10 different instances in the treatment-treatment experiment.
5 out these 10 were randomly assigned to T , while the remaining to U .

Data set i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 Total(T) Unique(T) Total(U) Unique(U)

1 50 50 50 50 50 50 45 50 50 50 245 31 250 33

2 50 50 50 50 50 50 45 50 50 43 250 33 238 42

3 50 50 50 50 50 50 50 45 50 50 245 37 250 37

4 50 50 50 50 50 50 50 50 50 50 250 31 250 45

5 49 49 50 50 50 50 50 50 50 49 248 34 249 46

6 50 50 50 50 50 50 50 50 45 45 240 40 250 32

7 45 50 50 50 50 50 50 36 50 50 250 40 231 40

8 50 40 50 50 50 50 50 50 50 50 240 36 250 35

9 50 50 45 50 45 40 50 50 40 45 230 26 235 33

10 50 50 50 50 50 50 50 50 50 50 250 33 250 32

11 50 49 50 50 50 50 50 50 50 50 249 35 250 41

12 45 45 50 50 50 0 50 50 45 50 195 25 240 43

13 45 50 50 50 50 50 50 50 45 0 195 21 245 37

14 50 50 50 49 46 50 50 50 50 50 250 37 245 28

15 50 50 50 50 50 50 50 49 50 50 250 39 249 28

16 50 50 50 50 50 50 50 50 50 50 250 28 250 33

17 50 50 50 50 50 50 50 50 50 50 250 23 250 45

18 50 50 50 50 50 50 50 50 50 50 250 38 250 37

19 50 45 47 45 50 50 50 50 50 50 247 34 240 26

20 45 45 50 50 50 50 50 45 50 50 240 44 245 34

Table 11: For Experiment 4, p-values for the for treatment-treatment experiment

Data set ssim skw sprc χ2

1 0.634921 0.821429 1.000000 0.158018

2 0.722222 0.357143 1.000000 0.554021

3 0.134921 0.202381 1.000000 0.105753

4 0.492063 0.468254 1.000000 0.767482

5 0.103175 0.281746 1.000000 0.235403

6 0.952381 0.650794 1.000000 0.478123

7 0.515873 0.384921 1.000000 0.768996

8 0.547619 0.571429 1.000000 0.654094

9 0.492063 0.829365 1.000000 0.097828

10 0.523810 0.162698 1.000000 0.24844

11 0.198413 0.007937∗ 1.000000 1.2326e− 05

12 0.515873 0.781746 1.000000 0.471851

13 0.222222 0.734127 1.000000 0.51711

14 0.563492 0.825397 1.000000 0.00390297

15 0.103175 0.396825 1.000000 0.513125

16 0.674603 0.146825 0.500000 0.00960702

17 0.063492 0.880952 0.500000 0.00017787

18 0.325397 0.357143 1.000000 0.239513

19 0.119048 0.992063 1.000000 3.01973e− 10

20 0.476190 0.690476 1.000000 0.189638

Number < 5% 0 1 0 5

42

References

[1] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and technology,” in IEEE Symposium on Security and
Privacy, 2012, pp. 413–427.

[2] S. Guha, B. Cheng, and P. Francis, “Challenges in measuring online advertising systems,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, 2010, pp. 81–87.

[3] C. E. Wills and C. Tatar, “Understanding what they do with what they know,” in Proceedings of the 2012 ACM Workshop
on Privacy in the Electronic Society, 2012, pp. 13–18.

[4] R. Balebako, P. Leon, R. Shay, B. Ur, Y. Wang, and L. Cranor, “Measuring the effectiveness of privacy tools for limiting
behavioral advertising,” in Web 2.0 Security and Privacy Workshop, 2012.

[5] L. Sweeney, “Discrimination in online ad delivery,” Commun. ACM, vol. 56, no. 5, pp. 44–54, 2013.

[6] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on Selected Areas in Commu-
nications, vol. 21, no. 1, pp. 5–19, 2003.

[7] N. R. Wagner, “Fingerprinting,” in Proceedings of the 1983 IEEE Symposium on Security and Privacy, 1983, p. 18.

[8] M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia data-embedding and watermarking technologies,” Proceedings
of the IEEE, vol. 86, no. 6, pp. 1064–1087, 1998.

[9] B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” in Proceedings of the 14th Annual International Cryptology Conference
on Advances in Cryptology. Springer-Verlag, 1994, pp. 257–270.

[10] M. Monmonier and H. J. de Blij, How to Lie with Maps, 2nd ed. University of Chicago Press, 1996.

[11] Office for Civil Rights, “Summary of the HIPAA privacy rule,” OCR Privacy Brief, U.S. Department of Health and
Human Services, 2003.

[12] Symantec, “Symantec data loss prevention,” http://www.symantec.com/data-loss-prevention.

[13] RSA Labs, “RSA data loss prevention,” http://www.emc.com/security/rsa-data-loss-prevention.htm.

[14] P. Wright, Spycatcher: The Candid Autobiography of a Senior Intelligence Officer. Viking Adult, 1987.

[15] L. Spitzner, “Honeytokens: The other honeypot,” Symantec Connect Security article, 2010,
http://www.symantec.com/connect/articles/honeytokens-other-honeypot.

[16] P. Papadimitriou and H. Garcia-Molina, “Data leakage detection,” IEEE Trans. on Knowl. and Data Eng., vol. 23, no. 1,
pp. 51–63, 2011.

[17] J. A. Goguen and J. Meseguer, “Security policies and security models,” in Proceedings of the IEEE Symposium on Security
and Privacy, 1982, pp. 11–20.

[18] J. Ludbrook, “Analysis of 232 tables of frequencies: Matching test to experimental design,” International Journal of
Epidemiology, vol. 37, pp. 1430–1435, 2008.

[19] P. Good, Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer, 2005.

[20] J. R. Ruthruff, S. Elbaum, and G. Rothermel, “Experimental program analysis: A new program analysis paradigm,” in
Proceedings of the 2006 International Symposium on Software Testing and Analysis. ACM, 2006, pp. 49–60.

[21] J. McLean, “Security models and information flow,” in Proceedings of the IEEE Computer Society Symposium on Research
in Security and Privacy, 1990, pp. 180–187.

[22] M. Mowbray, “Causal security,” in Proceedings of the Computer Security Foundations Workshop, 1992, pp. 54–62.

[23] P. Sewell and J. Vitek, “Secure composition of untrusted code: wrappers and causality types,” in Computer Security
Foundations Workshop, 2000. CSFW-13. Proceedings. 13th IEEE, 2000, pp. 269–284.

[24] J. Pearl, Causality, 2nd ed. Cambridge University Press, 2009.

[25] B. Krishnamurthy, K. Naryshkin, and C. E. Wills, “Privacy leakage vs. protection measures: The growing disconnect,”
in Proceedings of the Web 2.0 Security and Privacy Workshop, 2011, pp. 1–10.

43

[26] J. W. Gray, III, “Toward a mathematical foundation for information flow security,” in Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy, 1991, pp. 21–34.

[27] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure flow analysis,” J. Comput. Secur., vol. 4, no. 2-3,
pp. 167–187, 1996.

[28] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by self-composition,” in CSFW ’04: Proceedings of
the 17th IEEE Computer Security Foundations Workshop, 2004, p. 100.

[29] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. I.
August, “RIFLE: An architectural framework for user-centric information-flow security,” in Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitecture, 2004, pp. 243–254.

[30] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic detection, analysis, and signature generation of
exploits on commodity software,” in Proceedings of the Network and Distributed System Security Symposium. The
Internet Society, 2005.

[31] V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar, “Provably correct runtime enforcement of non-interference
properties,” in Proceedings of the 8th International Conference on Information and Communications Security. Springer-
Verlag, 2006, pp. 332–351.

[32] S. McCamant and M. D. Ernst, “A simulation-based proof technique for dynamic information flow,” in Proceedings of
the 2007 Workshop on Programming Languages and Analysis for Security. ACM, 2007, pp. 41–46.

[33] A. R. Yumerefendi, B. Mickle, and L. P. Cox, “Tightlip: keeping applications from spilling the beans,” in Proceedings of
the 4th USENIX Conference on Networked Systems Design and Implementation, 2007, pp. 12–12.

[34] G. Le Guernic, “Information flow testing: The third path towards confidentiality guarantee,” in Annual Asian Computing
Science Conference, 2007.

[35] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and T. Kohno, “Privacy Oracle: A system for finding
application leaks with black box differential testing,” in ACM Conference on Computer and Communications Security,
P. Ning, P. F. Syverson, and S. Jha, Eds. ACM, 2008, pp. 279–288.

[36] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla, “Preventing information leaks through shadow executions,”
in Proceedings of the 2008 Annual Computer Security Applications Conference. IEEE Computer Society, 2008, pp. 322–
331.

[37] D. Devriese and F. Piessens, “Noninterference through secure multi-execution,” in Proceedings of the 2010 IEEE Sympo-
sium on Security and Privacy, 2010, pp. 109–124.

[38] R. de Nicola and M. C. B. Hennessy, “Testing equivalences for processes,” in Automata, Languages and Programming,
ser. Lecture Notes in Computer Science, J. Diaz, Ed. Springer Berlin Heidelberg, 1983, vol. 154, pp. 548–560.

[39] ——, “Testing equivalences for processes,” Theoretical Computer Science, pp. 83–133, 1984.

[40] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 1, pp. 30–50, 2000.

[41] D. Garg, L. Jia, and A. Datta, “Policy auditing over incomplete logs: theory, implementation and applications,” in
Proceedings of the 18th ACM Conference on Computer and Communications Security, 2011, pp. 151–162.

[42] J. McLean, “A general theory of composition for trace sets closed under selective interleaving functions,” in Proceedings
of the 1994 IEEE Symposium on Security and Privacy, 1994, p. 79.

[43] D. M. Volpano, “Safety versus secrecy,” in Proceedings of the 6th International Symposium on Static Analysis. Springer-
Verlag, 1999, pp. 303–311.

[44] R. H. Hoyle, Ed., Handbook of Structural Equation Modeling. The Guilford Press, 2012.

[45] S. Greenland and J. M. Robins, “Identifiability, exchangeability, and epidemiological confounding,” International Journal
of Epidemiology, vol. 15, no. 3, pp. 413–419, 1986.

[46] D. R. Cox and N. Reid, The Theory of the Design of Experiments. Chapman & Hall, 2000.

[47] A. S. Zieffler, J. R. Hairing, and J. D. Long, Comparing Groups: Randomization and Bootstrap Methods Using R. John
Wiley & Sons, 2011, ch. Chapter 6.

44

[48] D. B. Rubin, “Which ifs have causal answers?” Journal of the American Statistical Association, vol. 81, 1986, this author’s
use of the word interference is related but not identical to ours.

[49] P. R. Rosenbaum, “Interference between units in randomized experiments,” Journal of the American Statistical Associa-
tion, vol. 102, no. 477, pp. 191–200, 2007.

[50] R. A. Fisher, The Design of Experiments. Oliver & Boyd, 1935.

[51] S. Greenland, “The logic and philosophy of causal inference: A statistical perspective,” in Philosophy of Statistics, D. M.
Gabbay, P. S. Bandyopadhyay, M. R. Forster, P. Thagard, and J. Woods, Eds. Elsevier, 2011, pp. 813–830.

[52] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3rd ed. Springer, 2005.

[53] G. J. Gates and F. Newport, “3.5% of U.S. adults identify as LGBT: Inaugural Gallup finding based on more than 120, 000
interviews,” Gallup, Special Report, 2012.

[54] C. E. Wills and C. Tatar, “Understanding what they do with what they know,” Computer Science Department, Worcester
Polytechnic Institute, Tech. Rep. WPI-CS-TR-12-03, 2012.

[55] R. Sekar, “An efficient black-box technique for defeating web application attacks,” in NDSS. The Internet Society, 2009.

[56] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple
testing,” Journal of the Royal Statistical Society Series B, vol. 57, p. 289300, 1995.

[57] E. Stamatatos, “A survey of modern authorship attribution methods,” J. Am. Soc. Inf. Sci. Technol., vol. 60, no. 3, pp.
538–556, 2009.

[58] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov, E. C. R. Shin, and D. Song, “On the feasibility
of internet-scale author identification,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy, 2012, pp.
300–314.

[59] D. J. Palazzo, Y.-J. Lee, R. Warnakulasooriya, and D. E. Pritchard, “Patterns, correlates, and reduction of homework
copying,” Phys. Rev. ST Phys. Educ. Res., vol. 6, p. 010104, 2010.

[60] H. Maurer, F. Kappe, and B. Zaka, “Plagiarism – a survey,” Journal of Universal Computer Science, vol. 12, no. 8, p.
1050, 2006.

[61] D. Sullivan, “Bing: Why Googles wrong in its accusations,” Search Engine Land blog, 2011,
http://searchengineland.com/bing-why-googles-wrong-in-its-accusations-63279.

[62] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting inside attackers using decoy documents,” in
SecureComm, 2009, pp. 51–70.

[63] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A characterization of data provenance,” in Proceedings of
the 8th International Conference on Database Theory. Springer-Verlag, 2001, pp. 316–330.

[64] J. Pearl, Causality, 1st ed. Cambridge University Press, 2000.

[65] D. E. Knuth, “Two notes on notation,” Am. Math. Monthly, vol. 99, no. 5, pp. 403–422, 1992.

45

