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Abstract

An integral part of modeling the global view of network
security is constructing attack graphs. In practice, attack
graphs are produced manually by Red Teams. Construction
by hand, however, is tedious, error-prone, and impractical
for attack graphs larger than a hundred nodes. In this paper
we present an automated technique for generating and an-
alyzing attack graphs. We base our technique on symbolic
model checking [4] algorithms, letting us construct attack
graphs automatically and efficiently. We also describe two
analyses to help decide which attacks would be most cost-
effective to guard against. We implemented our technique in
a tool suite and tested it on a small network example, which
includes models of a firewall and an intrusion detection sys-
tem.

1. Overview

As networks of hosts continue to grow in size and com-
plexity, evaluating their vulnerability to attack becomes in-
creasingly more important to automate. There are several
tools, such as COPS [10] and Renaud Deraison’s Nessus Se-
curity Scanner [9], that report vulnerabilities of individual
hosts. To evaluate the vulnerability of a network of hosts,
however, we also have to analyze the effects of interactions
of local vulnerabilities and find global vulnerabilities in-
troduced by the interconnections between hosts. A typical
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process for vulnerability analysis of a network proceeds as
follows. First, we determine vulnerabilities of individual
hosts using scanning tools, such as COPS and Nessus Scan-
ner. Using this local vulnerability information along with
other information about the network, such as connectivity
between hosts, we then produce attack graphs. Each path in
an attack graph is a series of exploits, which we call atomic
attacks, that leads to an undesirable state, e.g., a state where
an intruder has obtained administrative access to a critical
host. We can then perform further analyses, such as risk
analysis [21], reliability analysis [13], or shortest path anal-
ysis [23], on the attack graph to assess the overall vulnera-
bility of the network.

Constructing attack graphs is a crucial part of doing vul-
nerability analysis of a network of hosts. Construction by
hand, however, is tedious, error-prone, and impractical for
attack graphs larger than a hundred nodes. Automating the
process of constructing attack graphs also ensures that the
attack graphs are exhaustive and succinct. An attack graph
is exhaustive if it covers all possible attacks, and succinct
if it contains only those network states from which the in-
truder can reach his goal.

We follow these steps to produce and analyze attack
graphs:

1. Model the network.
‘We model the network as a finite state machine, where
state transitions correspond to atomic attacks launched
by the intruder. We also specify a desired security
property (e.g., an intruder should never obtain root ac-
cess to host A). The intruder’s goal generally corre-
sponds to violating this property.

2. Produce an attack graph.
Using the model from Step 1, our modified version
of the model checker NuSMV [16] automatically pro-
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Figure 1. Tool Suite

duces the attack graph. The graphs are rendered using
the GraphViz visualization package [1].

3. Analysis of attack graphs.

A raw attack graph is a low-level state transition dia-
gram. To allow the domain specialist to analyze it in
a meaningful way, we parse the graph and reconstruct
the original meanings of the state variables as they re-
late to the network intrusion domain. In Section 4 we
discuss two different analyses on attack graphs that
quantify the likelihood of intruder success.

Figure 1 shows the architecture of our tool suite. We do
not require or expect users of our tool suite to have model
checking expertise. Instead of using the input language of
the NuSMYV model checker, a user may describe the net-
work model and desired property in XML [S]. We built
a special-purpose compiler that takes an XML description
and translates it into the input language of NuSMV.

In the field of model checking, the use of fundamen-
tal data structures, such as Binary Decision Diagrams
(BDDs) [2], enabled significant advances in the size of the
systems that can be analyzed [3, 4]. More recently, model
checking researchers have developed a variety of reduc-
tion and abstraction techniques to handle even larger, pos-
sibly infinite state spaces. Since our techniques build upon
the underlying representation and algorithms used in model
checking, we are able to leverage the recent success in that
field. As model checkers handle larger state spaces, our
analysis can be applied to larger networks.

Our paper reports on the following contributions to ana-
lyzing vulnerabilities in networks:

e We exhibit an algorithm for automatic generation of
attack graphs. The algorithm generates exhaustive and
succinct attack graphs. We provide a tool, as a part of
a larger tool suite, that implements the algorithm.

e Through a small case study, we identify a level of
atomicity appropriate for describing a model of the

network and an intruder’s arsenal of atomic attacks.
The model is abstract enough to be understood by se-
curity domain experts, yet simple enough for our tool
to analyze efficiently.

e Qur network model includes intrusion detection com-
ponents and distinguishes between stealthy and de-
tectable attack variants. We are able to generate
“stealthy” attack subgraphs (i.e. subgraphs with at-
tacks that are not detected by the intrusion detection
components). Analysis of stealthy attack subgraphs re-
veals the best locations for placing additional intrusion
detection components.

e We describe two ways of analyzing attack graphs: an
algorithm for determining a minimal set of atomic at-
tacks whose prevention would guarantee that the in-
truder will fail, and a probabilistic reliability analy-
sis that determines the likelihood that the intruder will
succeed.

Paper organization. We give a detailed description of our
attack graph generation algorithm in Section 2. We describe
an intrusion detection case study in Section 3 and results of
attack graph analysis in Section 4. We discuss related work
in Section 5 and close with suggestions for future work in
Section 6.

2. Attack Graphs

First, we define formally attack graphs, the data structure
used to represent all possible attacks on a network.

Definition 1 An attack graph or AG is a tuple G =
(S,7,50,5s), where S is a set of states, 7 C S x S is
a transition relation, Sp C S is a set of initial states, and
S, C S is aset of success states.

Intuitively, S, denotes the set of states where the intruder
has achieved his goals. Unless stated otherwise, we assume
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Input:
S —set of states
R C S x S — transition relation
So C S - set of initial states

L: S — 24P _labeling of states with propositional formulas

P = AG(-unsafe) (a safety property)
Output:
attack graph Gp = (Sunsase, RP, S, SP)
Algorithm: GenerateAttackGraph(S, R, So, L, p)

(* Use model checking to find the set of states Sunsafe that

violate the safety property AG(—unsafe). *)
Sunsafe = modelCheck(S, R, Sy, L, D).

(* Restrict the transition relation R to states in the set Sunsafe *)

RP = RN (Sunaafe X Sunaafe)-

Sg = SO n Sunaafe-

SP = {8]8 € Sunsafe A unsafe € L(s)}.
return(Sunsose, RP, S5, SP).

Figure 2. Algorithm for Generating Attack Graphs

that the transition relation 7 is total. We define an execution

JSragment as a finite sequence of states 8s;...s,, such that
(8i,8i41) € 7 forall 0 < i < n. An execution fragment
with 8 9 € Sy is an execution, and an execution whose final
state is in S, is an attack, i.e., the execution corresponds to
a sequence of atomic attacks leading to the intruder’s goal
state.

2.1. Constructing Attack Graphs

Model checking is a technique for checking whether a
formal model M of a system satisfies a given property p.
If the property is false in the model, model checkers typi-
cally output a counter-example, or a sequence of transitions
ending with a violation of the property.

In the model checker NuSMYV, the model M is a finite la-
beled transition system and p is a property written in Com-
putation Tree Logic (CTL). In this paper, we consider only
safety properties, which in CTL have the form AGf (i.e.,
p = AGS, where f is a formula in propositional logic).
If the model M satisfies the property p, NuSMV reports
“true.” If M does not satisfy p, NuSMV produces a counter-
example. In our context M is a model of the network and
pis a safety property. A single counter-example shows an
attack that leads to a violation of the safety property.

Attack graphs depict ways in which an intruder can force
anetwork into an unsafe state. We can express the property
that an unsafe state cannot be reached as:

AG(—unsafe)

When this property is false, there are unsafe states that are

reachable from the initial state. The precise meaning of un-
safe depends on the network. For example, the property
given below might be used to say that the privilege level of
the adversary on the host with index 2 should always be less
than the root (administrative) privilege.

AG(network.adversary.privilege[2] < network.priv.root)

We briefly describe the algorithm for constructing attack
graphs for the property AG(—unsafe). The first step is to
determine the set of states S, that are reachable from the
initial state. Next, the algorithm computes the set of reach-
able states Syn,afe that have a path to an unsafe state. The
set of states Sunsafe i computed using an iterative algo-
rithm derived from a fix-point characterization of the AG
operator [4]. Let R be the transition relation of the model,
i.e., (s,8') € R if and only if there is a transition from
state s to 8. By restricting the domain and range of R
t0 Sunsefe We Obtain a transition relation RP that encap-
sulates the edges of the attack graph. Therefore, the attack
graph is (Sunsafe, RP, S5, S?), where Synsafe and RP rep-
resent the set of nodes and set of edges of the graph, re-
spectively; S5 = So N Sunsage is the set of initial states;
and S? = {s|s € Sunsase A unsafe € L(s)} is the set of
success states. This algorithm is given in Figure 2.

In symbolic model checkers, such as NuSMYV, the tran-
sition relation and sets of states are represented using
BDDs [2], a compact representation for boolean functions.
There are efficient BDD algorithms for all operations used
in our algorithm.
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2.2. Attack Graph Properties

We can show that an attack graph G generated by the al-
gorithm in Figure 2 is exhaustive (Lemma 1a) and succinct
(Lemma 1b). Whereas succinctness is a property about
states in an attack graph, Lemma Ic states a similar property
for transitions. Appendix A contains a proof of the lemma.

Lemma 1 (a) (Exhaustive) An execution e of the in-
put model (S,R,So,L) violates the property p =
AG(—unsafe) if and only if e is an attack in the attack graph
G= (Sunaafe, RP, Sg: Sf)

(b) (Succinct states) A state s of the input model
(S, R, So, L) is in the attack graph G if and only if there
is an attack in G that contains s.

(¢) (Succinct transitions) A transition ¢ = (s1,s2) of the
input model (S, R, Sp, L) is in the attack graph G if and
only if there is an attack in G that includes ¢.

3. An Intrusion Detection Example

Consider the example network shown in Figure 3. There
are two target hosts, ip1 and ip2, and a firewall separat-
ing them from the rest of the Internet. As shown, each
host is running two of three possible services (ftp, sshd,
a database). An intrusion detection system (IDS) watches
the network traffic between the target hosts and the out-
side world. There are four possible atomic attacks, iden-
tified numerically as follows: (0) sshd buffer overflow, (1)
ftp .rhosts, (2) remote login, and (3) local buffer overfiow
(an explanation of each attack follows). If an atomic attack
is detectable, the intrusion detection system will trigger an
alarm; if an attack is stealthy, the IDS misses it. The fip
.rhosts attack needs to find the target host with two vul-
nerabilities: a writable home directory and an executable
command shell assigned to the ftp user name. The local
buffer overflow exploits a vulnerable version of the xterm
executable.

The intruder launches his attack starting from a single
computer, ¢p,, which lies outside the firewall. His eventual
goal is to disrupt the functioning of the database. For that,
the intruder needs root access on the database host ips.

We construct a finite state model of the network so that
cach state transition corresponds to a single atomic attack by
the intruder. A state in the model represents the state of the
system between atomic attacks. A typical transition from
state s; to state s corresponds to an atomic attack whose
preconditions are satisfied in s, and whose postconditions
hold in state so. An artack is a sequence of state transitions
culminating in the intruder achieving his goal. The entire
attack graph is thus a representation of all the ways the in-
truder can succeed.

3.1. Finite State Model

The network. We model a network as a set of facts, each
represented as a relational predicate. The state of the net-
work specifies services, host vulnerabilities, connectivity
between hosts, and a remote login trust relation. Follow-
ing Ritchey and Ammann [20], connectivity is expressed
as a ternary relation R C Host x Host x Port, where
R(h1, he,p) means that host hy is reachable from host h;
on port p. Note that the connectivity relation incorpo-
rates firewalls and other elements that restrict the ability
of one host to connect to another. Slightly abusing nota-
tion, we say R(hi, hy) when there is a network route from
h1 to he. Similarly, we model trust as a binary relation
Tr C Host x Host, where Tr(h, ha) indicates that a user
may log in from host ks to host h; without authentication
(i.e., host hy “trusts” host hs).

Initially, there is no trust between any of the hosts; the
trust relation T'r is empty. The connectivity relation R is
shown in the following table. An entry in the table corre-
sponds to a pair of hosts (hy, hg). Each entry is a triple of
boolean values. The first value is ‘y’ if hy and h, are con-
nected by a physical link, the second value is ‘y’ if h; can
connect to ha on the ftp port, and the third value is ‘y’ if h;
can connect to ho on the sshd port.

R [ ipa [ i; [ ipa |
[ipa T v [ vy [ vvn |
im ||y | vy | vyn
ipa || vom | vy ¥,y

The intruder. The intruder has a store of knowledge about
the target network and its users. This knowledge includes
host addresses, known vulnerabilities, information about
running services, etc. The function plvis: Hosts — {none,
user, root} gives the level of privilege that intruder A has
on each host. There is a total order on the privilege levels:
none < user < root. Initially, the intruder has root access
on his own machine ip,, but no access to the other hosts.

Intrusion detection system. Atomic attacks are classified
as being either detectable or stealthy with respect to the In-
trusion Detection System (IDS). If an attack is detectable,
it will trigger an alarm when executed on a host or network
segment monitored by the IDS. If an attack is stealthy, the
IDS does not see it.

We specify the IDS with a function ids: Host x Host
X Attack — {d, s,b}, where ids(hy, hs,a) = d if attack
a is detectable when executed with source host h; and
target host ha; ids(hi,he,a) = s if attack a is stealthy
when executed with source host h; and target host hsg;
and ids(h,,hg,a) = b if attack a has both detectable and
stealthy strains, and success in detecting the attack depends
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Figure 3. Example Network

on which strain is used. When h; and h, refer to the same
host, ids(hy, ha, a) specifies the intrusion detection system
component (if any) located on that host. When h, and h,
refer to different hosts, ids(hy, ha, a) specifies the intrusion
detection system component (if any) monitoring the net-
work path between h; and h,.

In addition, a global boolean variable specifies whether
the IDS alarm has been triggered by any previously exe-
cuted atomic attack.

In our example, the paths between (ip,,ip;) and be-
tween (ip,,ip2) are monitored by a single network-based
IDS. The path between (ip;,ip2) is not monitored. There
are no host-based intrusion detection components.

Atomic Attacks. We model four atomic attacks:

1. sshd buffer overflow: This remote-to-root attack im-
mediately gives a remote user a root shell on the target
machine. It has detectable and stealthy variants.

2. fip .rhosts: Using an ftp vulnerability, the intruder cre-
ates an .rhosts file in the ftp home directory, creating
a remote login trust relationship between his machine
and the target machine. This attack is stealthy.

3. remote login: Using an existing remote login trust re-
lationship between two machines, the intruder logs in
from one machine to another, getting a user shell with-
out supplying a password. This operation is usually a
legitimate action performed by regular users, but from
the intruder’s point of view, it is an atomic attack. This
attack is detectable.

4. local buffer overflow: If the intruder has acquired a
user shell on the target machine, the next step is to
exploit a buffer overflow vulnerability on a setuid
root file to gain root access. The intruder may trans-
fer the necessary binary code via ftp (or scp) or create
it locally using an editor such as vi. This attack is
stealthy.
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Each atomic attack is a rule that describes how the in-
truder can change the network or add to his knowledge
about it. A specification of an atomic attack has four com-
ponents: intruder preconditions, network preconditions, in-
truder effects, and network effects. The intruder precondi-
tions component lists the intruder’s capabilities and knowl-
edge required to launch the atomic attack. The network pre-
conditions component lists the facts about the network that
must hold before launching the atomic attack. Finally, the
intruder and network effects components list the attack’s ef-
fects on the intruder and on the network state, respectively.
For example, the sshd buffer overflow attack is specified as
follows:

attack sshd-buffer-overflow is
intruder preconditions
(* User-level privileges on host S *)
plvl4(S) > user
No root-level privileges on host T *)
plola(T) < root
network preconditions
(* Host T is running sshd *)
sshp
(* Host T is reachable from S on port sp *)
R(S,T,sp)
intruder effects
(* Root-level privileges on host T *)
plvla(T) :=root
network effects
(* Host T is not running sshd *)
—sshr
end

3.2. NuSMYV Encoding

It is necessary to ensure that the model checker consid-
ers all atomic attacks in each state, so that the resulting at-
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Figure 4. Attack Graph

tack graph enumerates all possible attacks. So the model
checker must choose attacks nondeterministically, subject
to preconditions being fulfilled. We also allow nondeter-
ministic choices for the source host and the target host of
each atomic attack. The NuSMV encoding of the model
contains nondeterministically assigned state variables that

specify:

e which attack (concretely, an attack number) will be
tried next,

e the source host from which the atomic attack will be
initiated,

o the target host of the atomic attack, and

e whether the next attack is detectable or stealthy with
respect t0 a given intrusion detection system. This
variable is set deterministically when the next attack
is known to be detectable or stealthy. When the next
attack has both detectable and stealthy strains, the vari-
able is set nondeterministically.

In an effort to reduce the state space of the model, the
NuSMYV encoding restricts the legal states to those where
the attack number, source, and target variables correspond
to an enabled attack. In addition, when a variable’s value
is irrelevant in a particular context, we deterministically set
the variable to a fixed value in that context. As an example,
when the next attack is local to one host, we force the value
of the variable designating the source host of the attack to
be the same as the target host of the attack.

3.3. Experimental Results: Attack Graphs

Recall that the goal of our intruder is to obtain access
to the database service running on host ip,. For that, the
intruder needs to get root access on ip2 without triggering
an IDS alarm. Thus, the property we want to violate (in
order to get the attack graph) is that either an intruder never
gets root privilege on host ipo or he is detected by the IDS:

AG(network.adversary.privilege[2] < network.priv.root
| network.detected)

Figure 4 shows the attack graph produced by NuSMYV for
this property. Each node is labeled by an attack id number
(see table below), which corresponds to the atomic attack 1o
be attempted next; a flag S/D indicating whether the attack
is stealthy or detectable by the intrusion detection system;
and the numbers of the source and target hosts. The follow-
ing tables show attack and host numbers.

[ no. | attack | ‘
m host
0 | sshd buffer overflow F
1 | fip .rhosts *Pa
. 1 |i;m
2 | remote login 2 |
3 | local buffer overflow P2

Any path in the graph from a root node to a leaf node shows
a sequence of atomic attacks that the intruder can employ to
achieve his goal while remaining undetected. For instance,
the path highlighted by double-boxed nodes consists of the
following sequence of four atomic attacks: overflow sshd
buffer on host 1, overwrite .rhosts file on host 2 to establish
rsh trust between hosts 1 and 2, log in using rsh from host
1 to host 2, and finally, overflow a local buffer on host 2 to
obtain root privileges.
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3.4. Performance Observations

We conducted the experiments on a Pentium
IT/1Ghz/1GB RAM running RedHat Linux 7.0.

The NuSMYV encoding of the simple network in Figure 3
has 91 bits of state (i.e., potentially 2%1 states), but only 101
states are reachable. The tool automatically found an ap-
propriate BDD variable ordering under which the run time
of the tool on this example is about 5 seconds.

To gauge how the run time depends on the scale of the
model, we enlarged the example with two additional hosts,
four additional atomic attacks, several new vulnerabilities,
and flexible firewall configurations. The enlarged model has
229 bits of state and 6190 reachable states. The attack graph
has 5948 nodes and 68364 edges. NuSMYV took 2 hours
to construct the attack graph for this model; however, the
model checking part took only 5 minutes. The performance
bottleneck is inside our graph generation procedure, and we
are working on performance enhancements.

4. Analysis of Attack Graphs

Once we have an attack graph generated for a specific
network with respect to a given safety property, the user
may wish to probe it for further analysis. For example, an
analyst may be faced with a choice of deploying either ad-
ditional network attack detection tools or prevention tech-
niques. Which would be more cost-effective to deploy? In
doing the minimization analysis described in Sections 4.1
through 4.3, the analyst can determine a minimal set of
atomic attacks that must be prevented to guarantee that the
intruder cannot achieve his goal. In doing the reliability
analysis described in Section 4.4, the analyst can determine
the likelihood that an intruder will succeed or the likelihood
that the IDS will detect his attack activity.

4.1. Minimization Analysis

Given a fixed set of atomic attacks, not all of them may
be available to the intruder. Can we find a minimal set of
atomic attacks that we should prevent so that the intruder
fails to achieve his goal? To answer this question, we mod-
ify the model slightly, making only a subset of atomic at-
tacks available to the intruder. For simplicity, we nondeter-
ministically decide which subset to consider initially, before
any attack begins; once the choice is made, the subset of
available atomic attacks remains constant during any given
attack. We ran the model checker on the modified model
with the invariant property that says the intruder never gets
root privilege on host ips:

AG(retwork.adversary.privilege[2] < network.priv.root)

The post-processor marked the states where the intruder has
been detected by the IDS. The result is shown in Figure 5.
The white rectangles indicate states where the attacker had
not yet been detected by the intrusion detection system. The
black rectangles are states where the intrusion detection sys-
tem has sounded the alarm. Thus, white leaf nodes are desir-
able for the attacker in that the objective is achieved without
detection. Black leaf nodes are less desirable—the attacker
achieves his objective, but the alarm goes off.

The resolution of which atomic attacks are available to
the intruder happens in the circular nodes near the root of
the graph. The first transition out of the root (initial) state
picks the subset of attacks that the intruder will use. Each
child of the root node is itself the root of a disjoint subgraph
where the subset of atomic attacks chosen for that child is
used. Note that the number of such subgraphs descending
from the root node corresponds to the number of subsets of
atomic attacks with which the intruder can be successful—
the model checker determines that for any other possible
subset, there is no possible successful sequence of atomic
attacks.

The root of the graph in Figure 5 has two subgraphs, cor-
responding to two subsets of atomic attacks that will allow
the intruder to succeed. In the left subgraph the sshd buffer
overflow attack is not available to the intruder; it can read-
ily be seen that the intruder can still succeed, but cannot do
so while remaining undetected by the IDS. In the right sub-
graph, all attacks are available. Thus, the entire attack graph
implies that all atomic attacks other than the sshd attack are
indispensable: the intruder cannot succeed without them.
The analyst can use this information to guide decisions on
which network defenses can be profitably upgraded.

The white cluster in the middle of the figure is isomor-
phic to the scenario graph presented in Figure 4; it shows the
ways in which the intruder can achieve his objective with-
out detection (i.e., all paths by which the intruder reaches a
white leaf in the graph).

Checking every possible subset of attacks is exponential
in the number of attacks. In the next subsection, we show
that finding the minimum set of atomic attacks which must
be removed to thwart the intruder is in fact NP-complete.
Then in the following subsection we also show how a mini-
mal set can be found in polynomial-time.

4.2. Minimum and Minimal Critical Attack Sets

Assume that we have produced an attack graph corre-
sponding to the following safety property:

AG(—unsafe)

Let A be the set of attacks. Let G = (S, E, 89, L) be the
attack graph, where S is the set of states, E C S x S is the
setof edges, so € S is the initial state, and L : E — AU{e}
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Figure 5. Attack Graph Analysis

is a labeling function where L(e) = a if anedge e = (s —
8') corresponds to an attack a, otherwise L{e) = €. Given
a state s € S, a set of attacks C is critical with respect
to s if and only if the intruder cannot reach his goal from
s when the attacks in C' are removed from his arsenal A.
Equivalently, C' is critical with respect to s if and only if
every path from s to an unsafe state has at least one edge
labeled with an attack a € C.

A critical set corresponding to a state s is minimal (de-
noted A(s)) if no subset of A(s) is critical with respect
to s. A critical set corresponding to a state s is minimum
(denoted M (s)) if there is no critical set M’(s) such that
|M'(8)] < |M(s)|. In general, there can be multiple mini-
mum and multiple minimal critical sets corresponding to a
state s. Of course, all minimum critical sets must be of the
same size.

Given an attack graph G = (S, E, 3o, L), consider the
problem of finding a minimum critical set of attacks M (sp).
We will call this problem the Minimum Critical Set of At-
tacks (MCSA) problem. We prove that the decision version
of MCSA is NP-complete.

Lemma 2 Assume that we are given an attack graph G =
(S, E, 89, L) and an integer k. The problem of determining
whether there is a critical set C(sp) such that |C(se)] < k
is NP-complete.

Proof Sketch: First, we prove that the problem is in NP.
Guess a set C C A with size < k. We need to check that
C is a critical set of attacks. This can be accomplished in
polynomial time using the procedure isCritical (G, C) de-
scribed below. Therefore, the problem is in NP,

To prove that the problem is NP-hard, we give a reduc-
tion from the minimum cover problem [11, Page 222]. See
Appendix B for the remaining details of the proof. O

4.3. Computing Minimal Critical Sets

Consider now the problem of finding a minimal critical
set A(sp) corresponding to the initial state so. We give an
algorithm for computing A(sp) that runs in time O(mn),
where m = |S| + |E| is the size of the attack graph G
and n = |A] is the number of attacks. First, we describe

a procedure isCritical (G, C), which determines whether a
set C C A is a critical set corresponding to the initial state
sp. This procedure runs in O(m) time. We simply delete
all edges from G that are labeled with an action from the set
C. After that, if an unsafe state is still reachable from the
initial state sg, then C is not a critical set (because there is a
path from sy to an unsafe state which does not use an attack
from the set C). This step can be performed in O(m) time
using standard graph algorithms {6]. The algorithm starts
with A as the empty set. At each step of the algorithm we
perform the following procedure:

if isCritical(G,C) returns true, the algorithm
stops and returns A, Otherwise, pickaa € A\ C
and add it to the set C.

We start with an empty set and keep adding attacks until we
obtain a critical set. Notice that since A is a critical set, the
number of steps taken by the algorithm is at most n. Each
step takes O(m) time, so the the worst case running time
of the algorithm is O(mn). If attacks have costs associated
with them, then at each step we can pick an attack that has
the minimum cost, i.¢., pick an a € A\ C with the minimum
cost. This will bias the procedure to pick sets with lower
cost.

Next, we show how the procedure described above can
be carried out using model checking. Assume that the set
of attacks A is {a1,---,an}. We associate a boolean vari-
able z; with each attack a;. If attack a; is activated (the
intruder can use the attack), z; = 1, otherwise z; = 0. The
variable z; appears in the precondition corresponding to the
attack a;. Initially, all z;s are set to 0, representing that the
set C' is empty. Notice that if the model checker returns a
counter-example, then there is a path from the initial state
to an unsafe state. Recall that the specification is

AG(—unsafe)

Now in each step in the procedure, we pick an index i such
that z; = 0 and set z; = 1. We stop the first time the
model checker provides a counter-example. The set of at-
tacks whose corresponding variables are set to 1 represents
acritical set. The worst case complexity of this procedure is
the same as the one given before, but in practice symbolic
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model checkers, such as NuSMV, will perform efficiently.
Intuitively, we are using the model checker to implement
the procedure isCritical (G, C).

4.4, Probabilistic Reliability Analysis

When empirical information about the likelihood of cer-
tain events in the network is available, we can use well-
known graph algorithms to answer quantitative questions
about the attack graph. Suppose we know the probabilities
of some transitions in the scenario graph. After appropri-
ately annotating the attack graph with these probabilities,
we can interpret it as a Markov Decision Process (see [12]
for details).

The standard MDP value iteration algorithm [19} com-
putes the optimal policy for selecting actions in an MDP
that results in maximum benefit (or minimum cost) for the
decision maker. Value iteration can compute the worst case
probability of intruder success in an attack graph as fol-
lows. We assign all nodes where the intruder’s goal has been
achieved the benefit value of 1, and all other nodes the ben-
efit value of 0. Then we run the value iteration algorithm.
The algorithm finds the optimal attack selection policy for
the intruder and assigns the expected benefit value resulting
from that policy to each state in the scenario graph. The
expected value is a fraction of 1, and it is equivalent to the
probability of getting to the goal state from that node, as-
suming the intruder always follows the optimal policy.

We implemented the value iteration algorithm in an at-
tack graph post-processor (“Reliability Analyzer” of Fig-
ure 1) and ran it on a slightly modified version of our ex-
ample. In the modified example each attack has both de-
tectable and stealthy variants. We assumed that for a typical
network, a certain percentage of attempted intrusions is per-
formed by sophisticated attackers who keep on top of latest
IDS technology and use stealthy attack variants. We arbi-
trarily assigned probabilities of detecting each atomic attack
as follows: 0.8 for sshd buffer overflow, 0.5 for ftp .rhosts,
0.95 for the remote login, and 0.2 for local buffer overflow.
The intruder’s goal is to get root access at host ip; while re-
maining undetected. Accordingly, the states where this goal
has been achieved were assigned benefit value 1.

In this setup, the computed probability of intruder suc-
cess is 0.2, and his best strategy is to attempt sshd buffer
overflow on host ip;, and then conduct the rest of the attack
from that host. The only possibility of detection is the sshd
buffer overflow attack itself, since the IDS does not see the
activity between hosts ip; and ips.

The system administrator can use this technique to eval-
uate effectiveness of various security fixes. For instance,
installing an additional IDS component to monitor the net-
work traffic between hosts ép; and ip2 reduces the probabil-
ity of the intruder remaining undetected to 0.025; installing

a host-based IDS on host ip2 reduces the probability to 0.16.
Other things being equal, this is an indication that the for-
mer remedy is more effective.

5. Related Work

The work by Phillips and Swiler [18] is the closest to
ours. They propose the concept of attack graphs that is
similar to the one described here. However, they take an
“attack-centric” view of the system. Since we work with a
general modeling language, we can express in our model
both seemingly benign system events (such as failure of
a link) and malicious events (such as attacks). Therefore,
our attack graphs are more general than the one proposed
by Phillips and Swiler. Recently, Swiler et al. describe a
tool [23] for generating attack graphs based on their previ-
ous work. Their tool constructs the attack graph by forward
exploration starting from the initial state. A symbolic model
checker (like NuSMV) works backward from the goal state
to construct the attack graph. A major advantage of the
backward algorithm is that vulnerabilities that are not rel-
evant to the safety property (or the goal of the intruder)
are never explored. Our approach can result in significant
savings in space. (Swiler et al. refer to the advantages of
the backward search in their paper [23].) More generally,
the advantage of using model checking instead of forward
search is that the technique can be expanded to include live-
ness properties, which can model service guarantees in the
face of malicious activity.

Moreover, by using model checking we leverage all the
advanced techniques developed in that area. For example,
the cone of influence reduction [14] in model checking ab-
stracts away part of the system that is not relevant to the
specification. In our context, if there is a vulnerability that
is not relevant to a safety property, it will not be considered
during model checking. Finally, the attack graph analysis
suggested by Phillips and Swiler is different from the ones
presented in this paper. We plan to incorporate their analy-
sis into our tool suite.

Templeton and Levitt [24] propose a requires/provides
model for attacks. The model links atomic attacks into sce-
narios, with earlier atomic attacks supplying the prerequi-
sites for the later ones. Templeton and Levitt point out that
relating seemingly innocuous system behavior to known at-
tack scenarios can help discover new atomic attacks. How-
ever, they do not consider combining their attack scenarios
into attack graphs.

Dacier [8] proposes the concept of privilege graphs.
Each node in the privilege graph represents a set of priv-
ileges owned by the user; edges represent vulnerabilities.
Privilege graphs are then explored to construct attack state
graphs, which represents different ways in which an in-
truder can reach a certain goal, such as root access on a host.
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He also defines a metric, called the mean effort to failure or
METF, based on the attack state graphs. Orlato er al. de-
scribe an experimental evaluation of a framework based on
these ideas [17]. At the surface, our notion of attack graphs
seems similar to the one proposed by Dacier. However, as
is the case with Phillips and Swiler, Dacier takes an “attack-
centric” view of the world. As pointed out above, our attack
graphs are more general. From the experiments conducted
by Orlato et al. it appears that even for small examples
the space required to construct attack state graphs becomes
prohibitive. By basing our algorithm on model checking
we take advantage of advances in representing large state
spaces and can thus hope to represent large attack graphs.
We can perform the analytical analysis proposed by Dacier
on attack graphs constructed by our tool. We also plan to
conduct an experimental evaluation similar to the one per-
formed by Orlato et al.

Ritchey and Ammann [20] also use model checking for
vulnerability analysis of networks. They use the (unmodi-
fied) model checker SMV [22]. They can obtain only one
counter-example, i.¢., only one attack corresponding to an
unsafe state. In contrast, we modified the model checker
NuSMYV to produce attack graphs, representing all possi-
ble attacks. We also described post-facto analyses that can
be performed on these attack graphs. These analysis tech-
niques cannot be meaningfully performed on single attacks.

Graph-based data structures have also been used in net-
work intrusion detection systems, such as NetSTAT [25].
There are two major components in NetSTAT, a set of
probes placed at different points in the network and an an-
alyzer. The analyzer processes events generated by the
probes and generates alarms by consulting a network fact
base and a scenario database. The network fact base con-
tains information (such as connectivity) about the network
being monitored. The scenario database has a directed
graph representation of various atomic attacks. For exam-
ple, the graph corresponding to an IP spoofing attack shows
various steps that an intruder takes to mount that specific at-
tack. The authors state that “in the analysis process the most
critical operation is the generation of all possible instances
of an attack scenario with respect to a given target network.”
Therefore, we believe that our tool can help network intru-
sion detection systems, such as NetSTAT, in automatically
producing attack scenarios. We leave this as a future direc-
tion for research.

Cuppens and Ortalo [7] propose a declarative language
(LAMBDA) for specifying attacks in terms of pre- and post-
conditions. LAMBDA is a superset of the simple language
we used to model attacks in our work. The language is mod-
ular and hierarchical; higher-level attacks can be described
using lower-level attacks as components. LAMBDA also
includes intrusion detection elements. Attack specifications
includes information about the steps needed to detect the

attack and the steps needed to verify that the attack has al-
ready been carried out. We are studying the possibility of
converting our representation of attacks to LAMBDA.

6. Future Work

We have so far restricted our work to only safety (invari-
ant) properties. To exploit the full power of model check-
ing, we need a method of generating attack graphs for more
general classes of properties. For example, the following
liveness property states that a user will always be able to
access a server whenever he wants to.

AG(server.user.request — AF(server.user.acesss))

This property would not be true if the server can be dis-
abled using a denial-of-service attack. We plan to explore
generation of attack graphs for universally quantified frag-
ments of Computational Tree Logic and Linear Temporal
Logic.

To make our tool suite more usable by security experts
and system administrators, we see the value of building a
library of specifications of atomic attacks. Our hope is that
increasing this arsenal of specifications outpaces the growth
in the arsenal of known attacks. Furthermore, one reason
model checking has been so successful is that it discovers
unknown bugs in hardware circuits and protocols!. Analo-
gously, by using our tool suite based on the power of model
checking techniques, we can potentially discover new, un-
expected attacks, and hence identify new network vulnera-
bilities.

In principle, our technique is not limited to modeling at-
tacks only—the expressive power of model checkers lets us
model benign system activity as well. We believe that the
ability of modern model checkers to handle more complex
properties can be adapted to our tool. For example, “live-
ness” properties such as “a legitimate user’s transaction will
finish despite intruder interference” are easily specified in
temporal logic and checked by a model checker. Unlike in-
variants, such properties cannot be handled by simple reach-
ability analysis or other classical graph algorithms. Adapt-
ing the power of model checking to analyze such properties
opens a promising research direction in automated security
analysis.
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A. Exhaustive and Succinct Attack Graphs

Lemma 1: (a) (Exhaustive) An execution e of the
input model (S, R, Sy, L) violates the property p =
AG(—unsafe) if and only if e is an attack in the attack graph
G= (Sunaafe, RP, Sg, 55’)

(b) (Succinct states) A state s of the input model
(S, R, So, L) is in the attack graph G if and only if there
is an attack in G that contains s.

(c) (Succinct transitions) A transition ¢ = (s1, 82) of the
input model (S, R, Sp, L) is in the attack graph G if and
only if there is an attack in G that includes ¢.

Proof:

(a) (=) Let e = sptp...t,_15, be a (finite) execution
of the input model such that s,, is an unsafe state. To prove
that e is an attack in G, it is sufficient to show (1) sp € SE,
2)s, € SP,and 3)forall0 < k < n, s € S and
tr € RP.

Since unsafe holds at s,, and for all k there is a path from
sy 10 8y, in the input model, by definition every si along e
violates AG(—unsafe). Therefore, by construction, every
8y is in Syneefe and every &y is in RP. (1) and (2), and (3)
follow immediately.

(«<=) Suppose that e = spty . . .1, _18, is an attack in the
attack graph G. By construction, all states and transitions
of e are also states and transitions in the input model. Since
e is an attack, so € S§ and s, € SP. Therefore, 5o € Sp
and s, € S. So e is an execution of the input model, its first
state is an initial state of the model, and p is false in its final
state. It follows that e violates the property AG(—unsafe).

(b) (=) By construction of the algorithm in Figure 2, all
states generated for the attack graph are reachable from an
initial state, and all of them violate AG(—unsafe). There-
fore, for any such state s in the input model, there is a path
e; from an initial state to s, and there is a path e; from s to
an unsafe state.

The concatenation of e; and e; is an execution e of the
input model that violates AG(—unsafe). By Lemma la, e
is an attack in G. Since e contains s, the proof is complete.

(<=) If there is an attack in G that contains s, then triv-
ially sisin G.

(¢) (=) By lemma 1b, there is an attack e; =
oty ... 81 ...tm—1qm that contains state s; and an attack
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Figure 6. Attack graph corresponding to the
set cover problem.

€2 = Tolg...82...Un_1Ty that contains state s5. So the
following attack includes both states s; and s; and the tran-
sitiont: e = qotg ... 81882 ... Up_1Tp.
(=) If there is an attack in G that contains £, then triv-
ially £is in G.
g

B. NP-Completeness of MCSA

Given an attack graph G = (S, E, so, L), consider the
problem of finding a minimum critical set of attacks M (sg).
We will call this problem MCSA or the minimum critical set
of attacks problem. We prove that the decision version of
the problem is NP-complete.

Lemma 2: Assume that we are given an attack graph G =
(S, E, 80, L) and an integer k. The problem of determining
whether there is a critical set C(sg) such that |C(sg)| < k
is NP-complete.

Proof: First, we prove that the problem is in NP. Guess a
set C C A with size < k. We need to check that C is a
critical set of attacks.

This can be accomplished in polynomial time using the
procedure isCritical(G,C) described below. Therefore,
the problem is in NP,

Next, we prove that the problem is NP-hard. The reduc-
tion is from the minimum cover problem [11, Page 222]. In
the minimum cover problem one is given a collection C of
subsets of a finite set U and a positive integer k < |C|. The
problem is to determine whether C' contains a cover for U
of size k or less, i.e., a subset C' C C with |C’'| < k such
that every element of U belongs to at least one member of
C’. We construct an attack graph G¢ corresponding to the
collection C. The set of attacks A is equal to C. The attack
graph G¢ has an initial state so and a final state sy that is
unsafe. Let U = {uy,---u,} and ¢1,- -+, ¢y, be an enu-
meration of the collection C. For each collection ¢; where
i < m we have z new states s; 1, - -, 8;,.. There is an edge
from s to all the states sy,1,- - -, 81, corresponding to the
collection ¢;. There is an edge from s; ; t0 8341, ; for all
i<m-=1and1l < j < 2. From each state in the set
{Sm—-1,1,""",8m—1,2} there as edge to the unsafe state s;.
Label of the edge with tail s; ; is ¢; if u; € ¢;, otherwise
the label is €. Label of the edge with head 85,y ; is ¢y, if
u; € cm,, oOtherwise the label is €. It is easy to prove that
there is a critical set of attacks C such that |C| < k if and
only if there 1S a cover of size less than or equal to k. -

We give a short example to illustrate the reduction. Con-
sider aset U = {u1, ug, us}. Suppose that the collection C
consists of the following subsets:

a = {u,uz}
C2 = {Uz ’ Ua}
C3 = {u2}

Notice that there is a cover of size 2, i.e., ¢; and ¢z form
a cover. The attack graph corresponding to this problem is
shown in Figure 6. The set of attacks is {c1, ¢2,¢3}. The set
of attacks {c1, ¢z} is critical because every path from sg to
the unsafe state uses at least one edge with the label in the
set {Cl ,C2 } .
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