

Results of SEI Independent Research
and Development Projects

Christopher J. Alberts, Bill Anderson, Len Bass, Matthew Bass, Philip Boxer, Lisa Brownsword,
Sagar Chaki, Peter H. Feiler, Dave Fisher, Eileen C. Forrester, Suzanne M. Garcia, Aaron Greenhouse,
Jorgen Hansson, Jim Herbsleb, James Ivers, Peter Lee, Richard C. Linger, Thomas A. Longstaff,
Pratyusa K. Manadhata, B. Craig Meyers, D. Michael Phillips, Carol A. Sledge, James D. Smith II,
Kurt Wallnau, Gwendolyn H. Walton, Jeannette Wing, Noam Zeilberger

July 2007

TECHNICAL REPORT
CMU/SEI-2007-TR-006
ESC-TR-2007-006

SEI Director’s Office
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract ix

1 Introduction 1
1.1 Purpose of the SEI Independent Research and Development Program 1
1.2 Overview of IRAD Projects 2

2 Using Structural and Dynamic Modeling to Support Acquisition, Development, and
Sustainable Deployment of Software-Intensive Systems 3
2.1 Purpose 3
2.2 Background 3
2.3 Approaches 4
2.4 Collaborations 4
2.5 Evaluation Criteria 4
2.6 Results 5

2.6.1 Comparison of Perspectives 5
2.6.2 Comparison of Properties 5
2.6.3 Comparison Conclusions 6
2.6.4 Transition Challenges 7
2.6.5 Value Considerations 8

2.7 Publications and Presentations 9
2.8 Bibliography 10

3 Understanding Organizational Risk in Architectural Design 15
3.1 Purpose 15
3.2 Background 15
3.3 Approach 17
3.4 Collaborations 17
3.5 Evaluation criteria 17
3.6 Results 18

3.6.1 Qualitative Results 18
3.6.2 Quantitative Results 20

3.7 Summary of Results 21
3.8 References 21

4 Certified Binaries for Software Components 23
4.1 Purpose 23
4.2 Background 23

4.2.1 Related Work 24
4.3 Approach 25
4.4 Collaborations 28
4.5 Evaluation Criteria 28
4.6 Results 28
4.7 References 29

 SOFTWARE ENGINEERING INSTITUTE | i

5 Technology for Managing Data and Data Quality in Distributed Embedded Real-Time
Systems 33
5.1 Purpose 33
5.2 Background 34
5.3 Approach 35
5.4 Collaborations 35
5.5 Evaluations 36
5.6 Results 36
5.7 Publications and Presentations 38
5.8 Bibliography 38

6 Technology Foundations for Computational Evaluation of Software Security Attributes 41
6.1 Purpose 41
6.2 Background 41
6.3 Approach 42

6.3.1 The CSA Approach 42
6.3.2 Use of a Trusted Mechanism 43
6.3.3 Trusted Data Transmission 43
6.3.4 The Authentication Security Attribute 44
6.3.5 Other Security Attributes 45
6.3.6 A Miniature Illustration of CSA Using an FX System 46

6.4 Collaborations 47
6.5 Evaluation criteria 48
6.6 Results 48
6.7 Publications 48

7 Toward Interoperable Acquisition: The Example of Risk Management 49
7.1 Purpose 49
7.2 Background 49
7.3 Approach 50
7.4 Collaborations 51
7.5 Evaluation Criteria 51
7.6 Results 51
7.7 Publications 55
7.8 Summary 55
7.9 References 56

8 An Attack Surface Metric 57
8.1 Purpose 57
8.2 Approach 57

8.2.1 Attack Surface Definition 58
8.2.2 Attack Surface Measurement 59
8.2.3 Current Status 61

8.3 Related Work 61
8.4 Collaborations 62
8.5 Evaluation Criteria 62
8.6 Results 63
8.7 Publications and Presentations 63

8.7.1 Publications 63

ii | CMU/SEI-2007-TR-006

8.7.2 Presentations 63
8.8 References 63

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TR-006

List of Figures

Figure 2-1: Comparison of Modeling and Simulation Approaches 5

Figure 2-2: Property-Based Comparisons of Approaches 6

Figure 2-3: Analyst's Perspective on Value 8

Figure 2-4: User's Perspective on Value 8

Figure 3-1 Initial System Architecture 19

Figure 4-1: Architecture of Developed Framework 28

Figure 6-1: The CSA Approach 42

Figure 6-2: Requirements for Trusted Data Transmission 44

Figure 6-3: Requirements for Authentication Property 45

Figure 6-4: The Behavior Catalog Computed by the FX/MC Prototype 47

Figure 7-1: Concepts for Interoperable Acquisition 50

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2007-TR-006

List of Tables

Table 2-1: Transitionability of Modeling and Simulation Approaches Examined 7

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2007-TR-006

Abstract

Each year, the Software Engineering Institute (SEI) undertakes several independent research and
development (IRAD) projects. These projects serve to (1) support feasibility studies investigating
whether further work by the SEI would be of potential benefit and (2) support further exploratory
work to determine whether there is sufficient value in eventually funding the feasibility study
work as an SEI initiative. Projects are chosen based on their potential to mature and/or transition
software engineering practices, develop information that will help in deciding whether further
work is worth funding, and set new directions for SEI work. This report describes the IRAD pro-
jects that were conducted during fiscal year 2006 (October 2005 through September 2006).

 SOFTWARE ENGINEERING INSTITUTE | ix

x | CMU/SEI-2007-TR-006

1 Introduction

This document briefly describes the results of the independent research and development projects
conducted at the Carnegie Mellon® Software Engineering Institute (SEI) during the 2005–06 fis-
cal year.

1.1 PURPOSE OF THE SEI INDEPENDENT RESEARCH AND DEVELOPMENT

PROGRAM

SEI independent research and development (IRAD) funds are used in two ways: (1) to support
feasibility studies investigating whether further work by the SEI would be of potential benefit and
(2) to support further exploratory work to determine whether there is sufficient value in eventually
funding the feasibility study work as an SEI initiative. It is anticipated that each year there will be
three or four feasibility studies and that one or two of these studies will be further funded to lay
the foundation for the work possibly becoming an initiative.

Feasibility studies are evaluated against the following criteria:

• Mission criticality: To what extent is there a potentially dramatic increase in maturing and/or
transitioning software engineering practices if work on the proposed topic yields positive re-
sults? What will the impact be on the Department of Defense (DoD)?

• Sufficiency of study results: To what extent will information developed by the study help in
deciding whether further work is worth funding?

• New directions: To what extent does the work set new directions as contrasted with building
on current work? Ideally, the SEI seeks a mix of studies that build on current work and stud-
ies that set new directions.

At a DoD meeting in November 2001, the SEI’s DoD sponsor approved a set of thrust areas and
challenge problems to provide long-range guidance for the SEI research and development pro-
gram, including its IRAD program. The thrust areas are survivability/security, interoperability,
sustainability, software R&D, metrics for acquisition, acquisition management, and commercial
off-the-shelf products. The IRAD projects conducted in FY 2006 were based on these thrust areas
and challenge problems.

® ` Carnegie Mellon is registered in the U. S. Patent and Trademark Office by Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 1

1.2 OVERVIEW OF IRAD PROJECTS

The following research projects were undertaken in FY 2006:

• Using Structural and Dynamic Modeling to Support Acquisition, Development, and Sustain-
able Deployment of Software-Intensive Systems (Bill Anderson, Lisa Brownsword, Dave
Fisher, Suzanne M. Garcia, Philip Boxer)

• Understanding Organizational Risk in Architectural Design (Len Bass, Jim Herbsleb, Mat-
thew Bass)

• Certified Binaries for Software Components (Sagar Chaki, James Ivers, Peter Lee, Kurt
Wallnau, Noam Zeilberger)

• Technology for Managing Data and Data Quality in Distributed Embedded Real-Time Sys-
tems (Jorgen Hansson, Peter H. Feiler, Aaron Greenhouse)

• Technology Foundations for Computational Evaluation of Software Security Attributes
(Gwendolyn H. Walton, Thomas A. Longstaff, Richard C. Linger)

• Toward Interoperable Acquisition: The Example of Risk Management (B. Craig Meyers,
Christopher J. Alberts, Eileen C. Forrester, Suzanne M. Garcia, D. Michael Phillips, Carol A.
Sledge, James D. Smith II)

• An Attack Surface Metric (Pratyusa K. Manadhata, Jeannette Wing)

These projects are described in detail in this technical report.

2 | CMU/SEI-2007-TR-006

2 Using Structural and Dynamic Modeling to Support
Acquisition, Development, and Sustainable Deployment of
Software-Intensive Systems

Bill Anderson, Lisa Brownsword, Dave Fisher, Suzanne M. Garcia,
Philip Boxer

2.1 PURPOSE

Complex modeling techniques such as system dynamics and discrete event modeling have been
used in economics, urban planning, and other specialty areas for decades. In the software devel-
opment arena, simpler structural modeling techniques such as data flow diagrams and struc-
ture/function charts have been the prevalent modeling approaches, while techniques like system
dynamics and agent-based simulations have had much lower adoption rates. In this IRAD, we
surveyed the use of different modeling techniques in software and systems engineering and then
selected a few of these—systems thinking, system dynamics, and complex structural modeling—
to explore in more depth. We were particularly looking for techniques that will provide novel
technical insight into the integration and evolution of systems of systems. We looked at these
three approaches from the viewpoint of their anticipated value and transitionability (the factors
that create enablers or barriers to their adoption) to the software, systems, and system-of-systems
engineering communities.

2.2 BACKGROUND

From the viewpoint of our IRAD, we defined a model as any means of characterizing something
that abstracts in some way from reality and simulation as any process that determines the implica-
tions of a model through automated interpretation of the model. Thus a model can be viewed as a
theory of how a system behaves, while a simulation is a means to determine the implications of
that theory for a particular set of initial conditions.

We presumed that systems of systems represent a level of complexity not historically dealt with
and that

• Modern systems are or will become systems of systems.

• Specialization (due to its independent development of specialized system components) con-
tinues to be a driver of the need for systems of systems.

If modeling and simulation have contributed to understanding similar challenges in other domains
and if the cost of doing the modeling and simulation is less than the value derived, we could con-
clude that use of modeling and simulation is a viable strategy.

 SOFTWARE ENGINEERING INSTITUTE | 3

2.3 APPROACHES

Our overall approach included

• conducting literature reviews of relevant research

• using multiple modes of interaction (interviews, class instruction, conference attendance, and
client engagement) to obtain the requisite skills and knowledge for evaluating the approaches

• recommending a subset of techniques for further feasibility and transitionability analysis and
trial application

• directly participating in and observing a significant client engagement

• synthesizing and publishing the results of our research for community review

• recommending next steps for the SEI in relation to research in this area

2.4 COLLABORATIONS

Within the SEI, the project team consisted of Bill Anderson, Lisa Brownsword, David Fisher, and
Suzanne Garcia. We also received valuable inputs from Andrew Moore and Dawn Cappelli of
CERT.

Outside the SEI, Philip Boxer of Boxer Research Limited co-authored one of our reports and pro-
vided invaluable insights into complex Structural Modeling. Drs. Guenther Ruhe and Dietmer
Phafl of the University of Calgary hosted our team for a series of meetings and also provided in-
valuable inputs and peer review. All of these individuals contributed their time without SEI com-
pensation.

2.5 EVALUATION CRITERIA

The a priori success criteria for judging the results of this IRAD were

• One or more approaches to structural or dynamic modeling have been identified that have
evidence of successful application within a complex, software-intensive system application.

− We found systems-thinking approaches applicable to many different contexts and ob-
served the use of both system dynamics modeling being used successfully within the SEI
and complex structural modeling being used within a case study context.

• Barriers and enablers to the transitionability of structural and dynamic modeling techniques
have been identified and characterized.

− See our results section and the transitionability technical note for details.
• At least one trial participant has been identified to apply one or more of the promising tech-

niques identified by the study.

− We were able to trial complex structural modeling in one setting and observe results of
the use of system dynamic modeling in CERT via interviews with Andy Moore and
Dawn Capelli.

− Three additional potential trial participants have been identified.

4 | CMU/SEI-2007-TR-006

We believe we have exceeded the defined evaluation criteria.

2.6 RESULTS

2.6.1 Comparison of Perspectives

Modeling and simulation approaches can be categorized along two major dimensions: (1) the per-
spective from which the system is being modeled and (2) the simulation method being used. The
allocation of nine major modeling and simulation methods along these two dimensions is shown
in Figure 2-1.

Figure 2-1: Comparison of Modeling and Simulation Approaches

2.6.2 Comparison of Properties

To facilitate tradeoff decisions among modeling and simulation approaches, we offer a compari-
son matrix (Figure 2-2) that compares modeling and simulation approaches according to the prop-
erties highlighted in the rows.

 SOFTWARE ENGINEERING INSTITUTE | 5

Figure 2-2: Property-Based Comparisons of Approaches1

2.6.3 Comparison Conclusions

Modeling and simulation are important tools for a broad spectrum of applications and purposes.
There are also many approaches to modeling and simulation. The appropriate choice for a given
purpose depends on the kind of phenomena being studied and the traditions of the community
doing the modeling. The choice should also be influenced by whether simulation is required, the
degree of accuracy needed, cost of development and execution, and availability of languages and
other support tools. In practice, the split between communities with traditions in continuous ma-
thematical and those with the discrete methods of computer science is paramount, unfortunately to
the detriment of both communities. Physics-based and agent-based approaches, for example, can
both be used to address the same class of scientific and engineering problems but with differing
methods and cost profiles.

There is also potential value in the understanding and insight that several abstract modeling ap-
proaches provide without need for simulation. Abstract modeling approaches can be used alone or
in combination with executable models and may offer a more transitionable alternative in soft-
ware-intensive system development settings.

1 See the technical note Transitionability of Complex Modeling and Simulation Approaches to Software-Intensive

Systems Development [Anderson 2006] for details on analyses that we performed with these tables.

* Structural Modeling is a general classification and Complex Structural Modeling is a specific example of the
class, with some blurring of the boundaries implied in this matrix.

6 | CMU/SEI-2007-TR-006

2.6.4 Transition Challenges

We addressed the transitionability of three modeling and simulation approaches: (1) systems
thinking, (2) system dynamics modeling, and (3) complex structural modeling.

We define transitionability as the degree to which the characteristics of the technology and its
whole product support adoption by the intended user population at the intended level of use. We
used the following categories for organizing transition challenges:

• Inherent adoptability— Relative Advantage, Complexity, Observability, and Trialability

• Implementation adoptability —Modularity, Implementation Complexity, and Technology
Drag

• Adopter characteristics—Innovators, Early Adopters, Early Majority, Late Majority, and
Laggards

• Transition mechanisms—includes factors related to the existence/deployment of transition
mechanisms related to the Commitment Adoption curve used by the SEI

See the CMMI Survival Guide [Garcia 2006] for descriptions of these heuristics.

2.6.4.1 Summary of Transitionability Analysis

The following table summarizes the transitionability of three selected techniques. Following the
table are some general statements about the transitionability of complex modeling techniques as a
whole.

Table 2-1: Transitionability of Modeling and Simulation Approaches Examined

Approach

Inherent
Adoptability

Implementation
Adoptability

Adopter
Characteristics

Transition
Mechanisms

System
Thinking (ST)

C – Low (+)
T – Medium
O – High (+)
R – High (+)

M – Medium
I – Medium
TD – Low (+)

• Early Majority (modelers)

• Late Majority (users
led through process)

• Books

• Commercial tool market

• Academic and industry training

System
Dynamics
(SD)

C – High (-)
T – Low (-)
O – Medium
R – Medium

M – Low (-)
I – High (-)
TD - N/A
Steep learning
curve

• Early Adopter
(modelers)

• Early Adopter
(users led by)

• Domain focused

• Books

• Robust commercial tool market

• Academic and industry training

Complex
Structural
Modeling (SM)
(as exemplified
by PAN)

C – High (-)
T – High (+)
O – Medium
R – Medium

M – Medium
I – High (-)
TD – Medium

• Innovators
(modelers)

• Early Adopter
(users led by)

• Technical papers

• Workshops/consultants

• Mix of commercial and proprietary
tools used

Key to Inherent Adoptability and Implementation Adoptability Codes

C= Complexity; T = Trialability; O= Observability; R = Relative Advantage; M = Modularity; I = Implementation Complexity;
TD = Technology Drag; (+) = a positive value for transitionability; (-) = a negative value for transitionability

 SOFTWARE ENGINEERING INSTITUTE | 7

2.6.5 Value Considerations

The use of models and simulations as decision support and learning tools provides direct tangible
benefit to the user community (e.g., risk identification for project managers, complexity analysis
for architects, and decision support for design decision makers). The cost/benefit comparisons and
learning curves associated with a user community will be different from those required of com-
munities that wish to actively build models and simulations and use them as discovery mecha-
nisms. This second community is broadly labeled analysts for our purposes. Analysts use these
techniques to develop (the models and simulations), discover (unique attributes of the investiga-
tion subject), and teach (the discoveries and how to use the models as user tools). Users leverage
the models and simulations provided by the analysts to learn and make decisions about the subject
that has been modeled. The participation by both communities in the modeling and simulation
(M&S) elicitation also has significant value as a mechanism to generate deeper, shared under-
standing of the modeled subject.

We compared the techniques on several value scales from both of these perspectives. While they
are difficult to quantify in absolute terms, the selected techniques can be compared relatively, as
shown in Figure 2-3 and Figure 2-4. The IRAD SR [Anderson 2007a] includes detailed descrip-
tions of these comparisons.

 Analyst's Perspective

SD

SM

ST

- < Value as Discovery Tool >+

- <

Em
pi

ric
al

 R
ig

or

>
+

 User's Perspective

SD

SM

ST

- < Value as Learning Tool > +

-
 V

al
ue

 to
 D

ec
is

io
n

S
up

po
rt

 +

Figure 2-3: Analyst's Perspective on Value Figure 2-4: User's Perspective on Value

A third perspective is that of software engineering practitioners. Each of the focus techniques ad-
vocates system-level analysis and comprehension. In today’s era of specialization, we believe this
system perspective is increasingly diminished at the risk of overall system quality. The abstraction
techniques taught by each of these methodologies generate unique appreciation of and perspec-
tives on complexity, dynamics, and holistic thinking that would benefit every software engineer.
To the extent that software engineering is linked with systems engineering, valuable lessons and
skills could be developed in the technical staff through general education in the philosophy and
techniques advocated in this body of knowledge.

8 | CMU/SEI-2007-TR-006

2.6.5.1 Areas of Benefit

We suggest three broad areas within the SEI that could benefit from modeling and simulation: (1)
process, (2) education, and (3) systems of systems, or more generally, large complex systems.

• Process: We recommend that the CMMI® framework include more elaborations that support
complex modeling. M&S should be leveraged to increase awareness (learning) in non-
Software Engineering Measurement and Analysis courses (most SEMA courses are already
leveraging M&S). Also, we recommend adding more awareness of M&S benefits to appraisal
training, especially for high maturity clients.

• Education: We recommend leveraging the CERT System Dynamics and System Thinking
expertise and experience to develop SEI staff training in these philosophies and techniques.
We believe the SEI could position itself to offer outreach to undergraduate programs and
could directly influence graduate curricula such as the Master of Software Engineering pro-
gram at CMU.

• Systems of Systems: The Integration of Software-Intensive Systems (ISIS) Initiative is ac-
tively exploring M&S through its application of Complex Structural Modeling on the NATO
risk probe engagement and Dr. Fisher’s student mentoring of agent-based modeling at Cali-
fornia State University at Pomona. Initial steps also have been taken with the University of
Calgary to explore Visiting Scientist potential during Dr. Ruhe’s upcoming sabbatical. These
are initial steps toward building SEI capabilities to improve SEI skill levels in modeling the
complexity being seen in systems of systems. CERT’s insider threat M&S efforts demonstrate
M&S value when analyzing complex behavior patterns.

2.6.5.2 Problem Solving Tools

The value entry point is in providing novel insights into complex problems. M&S is a means to
this end and should not be presented (at least initially) as an end product. As we gain expertise
and case examples, productized M&S applications are envisioned (e.g., training simulators for
users to explore complex system behavior or decision support models to assist portfolio manage-
ment). We believe there is an opportunity for the SEI to become a leader in the creative applica-
tion of M&S in the software engineering domain, potentially creating opportunities as our exper-
tise and reputation grows.

2.7 PUBLICATIONS AND PRESENTATIONS

[Anderson 2007a]
Anderson, W.; Brownsword, L.; Fisher, D.; & Garcia, S. Transitionability of Complex Modeling
and Simulation Approaches to Software-Intensive Systems Development. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, special report forthcoming.

® CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 9

Anderson, W.; Boxer, P.; & Brownsword, L. An Examination of a Structural Modeling Risk
Probe Technique. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
special report forthcoming.

Anderson, W.; Brownsword, L.; Fisher, D.; & Garcia, S. Using Structural and Dynamic Modeling
to Support Acquisition, Development, and Sustainable Deployment of Software Intensive Systems.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, out-brief presenta-
tion.

2.8 BIBLIOGRAPHY

[Adams 2005]
Adams, R. J. & Black, L. “System Dynamics Modeling: Integrating Acquisition, Program, and
Technical Management.” Proceedings of the 17th Annual Systems & Software Technology Confer-
ence (SSTC 2005). Salt Lake City, UT (USA), April 18–21, 2005.
http://www.sstc-online.org/Proceedings/2005/CDHome.htm

[Alberts 2003]
Alberts, D. S. & Hayes, R. E. Power to the Edge: Command and Control in the Information Age.
Washington, DC: CCRP Publication Series, 2003.

[Andersson 2002]
Andersson, C.; Karlsson, L.; Nedstam, J.; Host, M.; & Nilsson, B. I. “Understanding Software
Processes Through System Dynamics Simulation: A Case Study,” 41–48. Proceedings Ninth An-
nual IEEE International Conference and Workshop on the Engineering of Computer-Based Sys-
tems. Lund, Sweden, April 8–11, 2002. Los Alamitos, CA, USA: IEEE, 2002 (ISBN 0-7695-
1549-5).

[Barros 2002]
Barros, M. D. O.; Werner, C. M. L.; & Travassos, G. H. “A System Dynamics Metamodel for
Software Process Modeling.” Software Process Improvement and Practice 7, 3–4 (Sept.-Dec.
2002): 161–172 (ISSN 1077-4866).

[Bérard 2005]
Bérard, C.; Cloutier, L. M.; & Cassivi, L. Performance Evaluation of Management Information
Systems in Clinical Trials: A Systems Dynamics Approach.
http://www.albany.edu/cpr/sds/conf2005/proceed/papers/CLOUT410.pdf (2005).

[Burke 1997]
Burke, S. Radical Improvements Require Radical Actions: Simulating a High-Maturity Software
Organization (CMU/SEI-96-TR-024, ADA327609). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 1996.
http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.024.html

[Caulfield 1991]
Caulfield, C. W. & Maj, S. P. “A Case for Systems Thinking and System Dynamics,” 2793–2798.
2001 IEEE International Conference on Systems, Man and Cybernetics: e-Systems and e-Man for
Cybernetics in Cyberspace. Tucson, AZ (USA), October 7–10, 2001.
http://ieeexplore.ieee.org/iel5/7658/20951/00971932.pdf

10 | CMU/SEI-2007-TR-006

http://www.sstc-online.org/Proceedings/2005/PDFFiles/RJA764.pdf
http://www.sstc-online.org/Proceedings/2005/PDFFiles/RJA764.pdf
http://www.sstc-online.org/Proceedings/2005/CDHome.htm
http://www.albany.edu/cpr/sds/conf2005/proceed/papers/CLOUT410.pdf
http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.024.html
https://bscw.sei.cmu.edu/bscw/bscw.cgi/d443389/A%20Case%20for%20Systems%20Thinking%20and%20System%20Dynamics
http://ieeexplore.ieee.org/iel5/7658/20951/00971932.pdf

[CPSMA 2000]
Commission on Physical Sciences, Mathematics, and Applications. A Transition Strategy for En-
hancing Operational Capabilities. Washington, DC (USA): The National Academies Press, 2000.
http://books.nap.edu/books/0309069254/html

[Forrester 1991]
Forrester, J. W. “System Dynamics and the Lessons of 35 Years.” The Systemic Basis of Policy
Making in the 1990s. Boston, MA (USA): Sloan School of Management, MIT, 1991.

[Garcia 2004]
Garcia, S.; Roberts, J.; & Estrin, L. “Managed Technology Adoption Risk: A Way to Realize Bet-
ter Return from COTS Investments,” 74–83. Proceedings of the Third International Conference
on COTS-Based Software Systems (ICCBSS 04). Redondo Beach, CA (USA), January 2–4, 2004.
Heidelberg, Germany: Springer-Verlag, 2004.

[Garcia 2006]
Garcia, S. M. & Turner, R. CMMI Survival Guide: Just Enough Process Improvement. Boston,
MA (USA): Addison-Wesley, 2006.

[Gray 2005]
Gray, D. E. & Gibson, D. “Déjà Vu, Again and Again.” Proceedings of the 2005 SEPG (SEPG
2005). Seattle, WA (USA), March 7–10, 2005. Pittsburgh, PA (USA): Software Engineering In-
stitute, Carnegie Mellon University, 2005.

[Greene 2005]
Greene, H. & Mendoza, R. “Lessons Learned from Developing the ABCS 6.4 Solution.” Defense
AR Journal (April-July 2005). http://www.dau.mil/pubs/arq/2005arq/arq2005.asp

[Grizzle 2002]
Grizzle, G. A. & Pettijohn, C. “Implementing Performance-Based Program Budgeting: A System-
Dynamics Perspective.” Public Administration Review 62, 1 (January-February 2002), 51–62.

[Guo 2001]
Guo, H.; Liu, L.; Huang, G. H.; Fuller, G. A.; Zou, R. & Yin, Y. Y. “A System Dynamics Ap-
proach for Regional Environmental Planning and Management: A Study For The Lake.” Journal
of Environmental Management 61, 1 (January 2001): 93–111.

[Häeberlein 2003]
Häeberlein, T. A Framework for System Dynamic Models of Software Acquisition Projects.
http://prosim.pdx.edu/prosim2003/paper/prosim03_haeberlein.pdf (2003).

[Homer 2000]
Homer, J.; Ritchie-Dunham, J.; Rabbino, H.; Puente, L. M.; Jorgensen, J.; & Hendricks, K.
“Toward a Dynamic Theory of Antibiotic Resistance.” System Dynamics Review 16, 4 (Winter
2000): 287–319.

[Jackson 2001]
Jackson, M. C. “Critical Systems Thinking and Practice.” European Journal of Operational Re-
search 128, 2 (16 January. 2001): 233–244 (ISSN 0377-2217).

 SOFTWARE ENGINEERING INSTITUTE | 11

http://www7.nationalacademies.org/deps/
http://books.nap.edu/books/0309069254/html
http://www.dau.mil/pubs/arq/2005arq/arq2005.asp
http://scholar.google.com/url?sa=U&q=http://www.ingentaconnect.com/content/bpl/puar/2002/00000062/00000001/art00154
http://scholar.google.com/url?sa=U&q=http://www.ingentaconnect.com/content/bpl/puar/2002/00000062/00000001/art00154
http://scholar.google.com/url?sa=U&q=http://www.ingentaconnect.com/content/els/03014797/2001/00000061/00000001/art90400
http://scholar.google.com/url?sa=U&q=http://www.ingentaconnect.com/content/els/03014797/2001/00000061/00000001/art90400
http://prosim.pdx.edu/prosim2003/paper/prosim03_haeberlein.pdf
http://prosim.pdx.edu/prosim2003/paper/prosim03_haeberlein.pdf
http://scholar.google.com/url?sa=U&q=http://doi.wiley.com/10.1002/sdr.200

[Karnopp 2000]
Karnopp, D. C.; Margolis, D. L.; & Rosenberg, R. C. System Dynamics: Modeling and Simulation
of Mechatronic Systems. New York, NY (USA): John Wiley & Sons, 2000.

[Lyneis 1999]
Lyneis, J. M. “System Dynamics for Business Strategy: A Phased Approach.” System Dynamics
Review 15, 1 (Spring 1999): 37–70.

[Madachy 1996]
Madachy, R. J. “System Dynamics Modeling of an Inspection-Based Process,” 376–386. Pro-
ceedings of the 18th International Conference on Software Engineering. Berlin, Germany, March
25-29, 1996. Washington, DC (USA): IEEE Computer Society, 1996 (ISBN 0-8186-7246-3).

[McGrath 2001]
McGrath, G. M. & Campbell, B. “Implementing Recommendations as a Result of a System Dy-
namics Intervention.” Proceedings of the 34th Hawaii International Conference on System Sci-
ences (HICSS-34). Maui, HI (USA), January 3–6, 2001.
http://www.hicss.hawaii.edu/HICSS_34/PDFs/DTABS02.pdf

[Morris 2004]
Morris, E.; Levine, L.; Meyers, C.; Place, P.; & Plakosh, D. Systems of Systems Interoperability
(CMU/SEI-2004-TR-004, ADA455619). Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tr004.html

[Pfahl 2005]
Pfahl, D.; Ruhe, G.; Lebsanft, K.; & Stupperich, M. “Software Process Simulation with System
Dynamics―A Tool for Learning and Decision Support,” 57–90. New Trends in Software Process
Modelling. Edited by S. T Acuña and M. I. Sánchez-Segura. Vol. 18, Series on Software Engi-
neering and Knowledge Engineering. Singapore: World Scientific, 2006 (ISBN 981-256-619-8).

[Richmond 2004]
Richmond, B. An Introduction to Systems Thinking. Lebanon, NH (USA): isee systems, 2004.

[Senge 1990]
Senge, P. The Fifth Discipline: The Art and Practice of the Learning Organization. New York,
NY (USA): Doubleday, 1990.

[Senge 1994]
Senge, P.; Roberts, C.; Ross, R.; Smith, B.; & Kleiner, A. The Fifth Discipline Fieldbook: Strate-
gies and Tools for Building a Learning Organization. New York, NY (USA): Doubleday, 1994.

[Simonovic 2003]
Simonovic, S. P. “Assessment of Water Resources Through System Dynamics Simulation: From
Global Issues to Regional Solutions,” 93b. Proceedings of the 36th Hawaii International Confer-
ence on System Sciences (HICSS-36). Maui, HI (USA), January 6–9, 2003.
http://csdl2.computer.org/comp/proceedings/hicss/2003/1874/03/187430093b.pdf

[Skartveit 2003]
Skartveit, H.-L.; Goodnow, K.; & Viste, M. “Visualized System Dynamics Models as Information
and Planning Tools,” 1113–1128. Proceedings of the Informing Science + Information Technol-

12 | CMU/SEI-2007-TR-006

http://scholar.google.com/url?sa=U&q=http://doi.wiley.com/10.1002/%28SICI%291099-1727%28199921%2915:1%253C37::AID-SDR158%253E3.3.CO%3B2-Q
http://scholar.google.com/url?sa=U&q=http://doi.ieeecomputersociety.org/10.1109/ICSE.1996.493432
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/7255/20032/00926297.pdf
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/7255/20032/00926297.pdf
http://www.hicss.hawaii.edu/HICSS_34/PDFs/DTABS02.pdf
http://www.sei.cmu.edu/publications/documents/04.reports/04tr004.html
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/8360/26341/01174224.pdf
http://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/8360/26341/01174224.pdf
http://csdl2.computer.org/comp/proceedings/hicss/2003/1874/03/187430093b.pdf
http://scholar.google.com/url?sa=U&q=http://proceedings.informingscience.org/IS2003Proceedings/docs/140Skart.pdf
http://scholar.google.com/url?sa=U&q=http://proceedings.informingscience.org/IS2003Proceedings/docs/140Skart.pdf

ogy Education Joint Conference (IS 2003). Pori, Finland, June 24–27, 2003.
http://proceedings.informingscience.org/IS2003Proceedings/docs/140Skart.pdf

[Stacey 1992]
Stacey, R. Managing the Unknowable: Strategic Boundaries between Order and Chaos. San
Francisco, CA (USA): Jossey-Bass, 1992.

[Stallinger 2001]
Stallinger, F. & Grunbacher, P. “System Dynamics Modelling and Simulation of Collaborative
Requirements Engineering.” Journal of Systems and Software 59, 3 (15 December 2001): 311 –
321 (ISSN: 0164-1212).

[Stave 2002]
Stave, K. A. “Using System Dynamics to Improve Public Participation in Environmental Deci-
sions.” System Dynamics Review 18, 2 (Summer 2002): 139–167.

[Sterman 2000]
Sterman, J. D. Business Dynamics: Systems Thinking and Modeling for a Complex World. New
York, NY (USA): Irwin/McGraw-Hill, 2000.

[Sweeney 2000]
Sweeney, L. “Bathtub Dynamics: Initial Results of a Systems Thinking Inventory.” System Dy-
namics Review 16, 4 (Winter 2000): 249–286.

[VanDerHejden 2005]
Van Der Hejden, K. Scenarios: The Art of Strategic Conversation. West Sussex, UK: John Wiley
& Sons, 2005.

[Weaver 2000]
Weaver, W. Science and Complexity. http://www.ceptualinstitute.com/genre/weaver/weaver-
1947b.htm (2000).

[Weinberg 1991]
Weinberg, G. Quality Software Management Volume 1: Systems Thinking. New York, NY (USA):
Dorset House Publishing, 1991.

 SOFTWARE ENGINEERING INSTITUTE | 13

http://proceedings.informingscience.org/IS2003Proceedings/docs/140Skart.pdf
http://scholar.google.com/url?sa=U&q=http://doi.wiley.com/10.1002/sdr.237
http://scholar.google.com/url?sa=U&q=http://doi.wiley.com/10.1002/sdr.237
https://bscw.sei.cmu.edu/bscw/bscw.cgi/d441836/Bathtub%20Dynamics%3a%20Initial%20Results%20of%20a%20Systems%20Thinking%20Inventory
http://www.ceptualinstitute.com/genre/weaver/weaver-1947b.htm
http://www.ceptualinstitute.com/genre/weaver/weaver-1947b.htm

14 | CMU/SEI-2007-TR-006

3 Understanding Organizational Risk in Architectural Design

Len Bass, Jim Herbsleb, Matthew Bass

3.1 PURPOSE

The purpose of the IRAD was twofold: first to establish that there is a source of risk in the mis-
alignment between organization structure and processes and the architectural decisions that have
been made. Secondly, the purpose was to identify and verify low-cost indicators that can be used
to identify the occurrences of this misalignment.

3.2 BACKGROUND

It is well known that architectures (both software and system) become deeply “embedded” in the
organizations that design and build software-intensive systems (e.g., [Conway 1968]). Architec-
tures determine key characteristics of organizations, such as work assignments, and have implica-
tions for communication patterns, habitual ways that people select and filter information, and or-
ganizational problem-solving strategies. Changing the architecture, even in seemingly simple
ways, can cause serious misalignments between the architecture and the organization, leading in
some cases to complete failure of the firm [Henderson 1990]. Organizations are notoriously diffi-
cult to change, and we do not yet have any tools for understanding the kinds of changes we are
imposing on them when we perform architectural design. We don’t know how to assess the risks,
nor do we know how to address the risks once they are identified.

Suppose, for example, that the designer of an architecture who was considering two alternative
designs knew that design 1 requires the developers of a particular component to access expertise
from a separate organization requiring extensive long distance communication, and design 2 re-
quires the same developers to access expertise from a co-located site. Everything else being equal,
design 2 is preferable, since it will reduce organizational risk by lowering the communication
overhead required to solve any problem that arises. Organization structure, existing communica-
tion patterns, location of people and resources, shared work history, and potentially other factors
not yet identified, will influence the risk, time required, component quality, and development effi-
ciency of the design and construction of software components. Organizational factors should be
considered during the making of design decisions, just as performance or reliability considerations
are considered.

It is also well known that a system’s software architecture is a central artifact in the development
of software-intensive systems. It is a primary determinant of the system’s quality attributes. It is
the bridge between business goals served by a system and its implementation. The SEI has in-
vested considerable effort in understanding the principles of the design and analysis of software
architecture. However, people must effectively collaborate to realize the benefits of software ar-
chitecture. Conversely, organizational inhibitors to collaboration can be inimical to realizing the

 SOFTWARE ENGINEERING INSTITUTE | 15

potential benefits of software architecture. Therefore, understanding the relationship between
types of organizations and types of architecture is vital to realizing the benefits of software archi-
tecture.

The purpose of this IRAD was to investigate the relation between organizational characteristics
and software architecture. If two people are working together on the same component, they must
communicate about all aspects of the component. If they are working on different components,
they must communicate about the ways in which their respective components interact. The two
situations may require different types and bandwidths of communication. Depending on the fash-
ion in which two components interact, there may be a requirement for high or low bandwidth
communication between the people. The communication bandwidth among people is affected by
many different elements, such as co-location, organizational structure, technological support, and
knowledge of where different types of expertise reside in an organization. In the modern world,
most large systems are constructed across multiple sites, usually involving multiple distinct or-
ganizations. Understanding the organizational characteristics that are essential to effectively
building a system with a particular architecture will provide fundamental knowledge that can be
exploited to more effectively manage and design large software systems.

If the relation between organizational characteristics and software architecture were well under-
stood, it would have application in architecture evaluation and architecture design and in assess-
ing the readiness of an organization for architecture-centric development. During an architecture
evaluation, discovering a misalignment between architectural decisions and organizational struc-
ture is discovering a risk to the development effort. During an architecture design, discovering a
misalignment between proposed architectural decisions and proposed organizational structure
allows for the correction of the misalignment or at least for allowing for it in the project manage-
ment. There might be a tradeoff, for example, between optimizing the performance of a system
and optimizing it for the organizational structure of the developing organizations. One question
that the Software Architecture Technology initiative is frequently asked is “How ready is organi-
zation X for architecture-based development?” Being able to analyze the structure of organization
X with respect to common architecture usages is one aspect of being able to answer this question.
A fundamental understanding of the relation between organizational characteristics and software
architectures could allow us to go beyond assessing readiness in general and determine the range
of architectures an existing organization could build.

A complicating element of the understanding of organizational characteristics is that they evolve
over time, and desirable characteristics may change, depending on the current stage of the project
development. During the initial stages of a project, one might see, for example, particular patterns
of communication among the groups working on the infrastructure. During later stages one might
see communication between application developers and infrastructure developers.

During this IRAD project, we proceeded on both quantitative and qualitative paths. The quantita-
tive path was based on the Siemens Global Studio project, which exists to provide a test bed for
studying global development practices. The qualitative path was based on particular Siemens and
other companies projects that were known to the members of the project. The Siemens Global
Studio project is heavily instrumented, and through identification of “significant events” involv-
ing coordination issues, we were able to isolate the types of data that provide indication of the

16 | CMU/SEI-2007-TR-006

occurrence of these events. The particular projects we investigated exhibited different types of
misalignments. One project had a requirement for extensive coordination over shared resources,
but the organizational structure did not support this coordination. The second project had a re-
quirement for extensive coordination over state management to support high availability, but,
again, the organizational structure did not support this coordination. The third project had metrics
in place for one of the development organizations that led to design decisions that were locally but
not globally optimum.

3.3 APPROACH

The fundamental premise of the IRAD is new. That is, that software architecture decisions and
organizational structures and processes interact in various fashions. Indeed, one of the major re-
sults of the IRAD was to discover instances where major projects were seriously impacted, if not
caused to fail, by this interaction.

The next step in the approach is to prepare a catalog of various types of interactions between or-
ganization structures and processes and architecture decisions that are problematic. This catalog
will enable several activities:

• Coupling the catalog with low-cost monitoring activities, managers will have early indica-
tion of the onset of a problem caused by the misalignment of organization structure and
processes and the software architecture. This will enable the adjustment of either the proc-
esses or the architecture to reduce the severity of the problem.

• The catalog will provide another tool to architecture evaluators. Evaluators will be able to
examine the architecture and the organization structure to determine potential risks from mi-
salignment.

• Architecture designers will have another tool to support their design process. They will be
able to either match their architecture design to the organizational constraints or inform the
management that a misalignment is possible.

3.4 COLLABORATIONS

The SEI participant in this study was Len Bass. Collaborators included Professor James Herbsleb
of the School of Computer Science at Carnegie Mellon and one of his graduate students. An addi-
tional collaborator was Matthew Bass of Siemens Corporate Research. Matthew Bass’s participa-
tion was funded by Siemens.

3.5 EVALUATION CRITERIA

One result was the demonstration that there is a problem. The examples were subjected to peer
review through submission to a respected professional conference [Bass 2007].

A second result of the project involves the collection of data to enable the determination of the
early indicators of misalignment. The process of collecting data was subjected to peer review

 SOFTWARE ENGINEERING INSTITUTE | 17

[Mullick 2006], and the results will be subjected to the normal evaluation of empirical results, as
well as peer review.

3.6 RESULTS

We have two classes of results. The first class is qualitative in nature and they demonstrate that, in
fact, misalignment is a serious problem. The second class is quantitative and they are intended to
identify early indicators for misalignment. We have not yet finished the analysis of the quantita-
tive data, but we will describe the data we have been collecting in detail.

3.6.1 Qualitative Results

We describe three systems and their misalignment problems.

System 1

System 1 was an embedded information system with limited memory. The architecture decision
was made for multiple processes to share this memory in a dynamic fashion. The organizational
decision was that the development of the different process was done by teams in two different
countries with no history of working together. The sharing of memory was not identified as a po-
tential risk for the development.

The system failed repeatedly during execution. The failure was traced to the sharing of memory.
As a result, a major customer for the system was lost.

Sharing a resource is an activity that requires intensive coordination, yet there was no recognition
either by management or by the development teams that special coordination was needed to over-
come the distributed development aspects of the system.

System 2

System 2 was a control system for transportation vehicles. The transportation system had multiple
vehicles being controlled and multiple control stations. There was a requirement for high avail-
ability for the overall system. Development teams were located in Western Europe, Eastern Eu-
rope, and the United States. The various teams had no history of working together.

The initial architecture for the system is shown in Figure 3-1. Each local system had its own cache
for sensitive data. The concept was that the local data could be consolidated into an overall state
necessary for recovery in the event of a failure. The problem was that different aspects of the dif-
ferent caches were distributed. The development teams had no provision for special coordination
over the design of the different caches. On the other hand, the basic design had been used success-
fully by the business unit (although not using these particular development teams).

18 | CMU/SEI-2007-TR-006

Central System

Local System

Local
Cache

Local System

Local
Cache

Local System

Local
Cache

Local System

Local
Cache

Synchronizes with Synchronizes with

Figure 3-1 Initial System Architecture

The development effort floundered because the assembling of an overall state from the local sta-
tions became too difficult. The system was redesigned to have an overall repository in the central
system with local copies of the repository in the local systems.

In this example, we see that the delegating of the same type of decisions to distributed teams re-
sulted in inconsistent decisions being made with no special means for coordinating those deci-
sions.

Neither the delegating of the state management decisions to the different development teams nor
the distribution of the development teams was by itself incorrect. The basic design had been used
previously, and distributed development had occurred previously. It was the combination of the
two that caused a problem.

System 3

System 3 is an embedded system. The system was developed as layers. Layer 1 was developed in
Europe and layer 2 in Asia. The organization in Asia was measured by three metrics:

1. delivery time

2. customer satisfaction (end customer)

3. defects (in layer 2)

A dispute developed between the developers of Layer 1 and the developers of Layer 2 over the
type of interface between the two layers. The developers of Layer 2 favored an interface style that
funneled many of the calls through one main application programmer interface. The developers of
Layer 1 favored an interface style that had separate application programmer interfaces for differ-
ent functions.

The virtue of the style favored by the developers of Layer 2 was that it made testing Layer 2 eas-
ier, since there were fewer interfaces to test. The virtue of the style favored by the developers of
Layer 1 is that it made integration testing easier, since each function was separately identified
through the two layers.

 SOFTWARE ENGINEERING INSTITUTE | 19

The developers of Layer 2 ended the dispute by stating that they had to develop immediately in
order to meet their development schedule. This decision caused great difficulty in the integration
process.

This is not a coordination problem, as in the prior two examples, but a problem of misplaced met-
rics. The customer for the developers of Layer 2 should have been identified as the integrators of
the system, since they were the recipients of the development. The count of defects should not
have been limited to Layer 2 but should have included defects discovered during integration. This
is, however, an example of the misalignment between organizational processes (in this case, the
metrics) and architectural decisions (the interface style between the two layers).

3.6.2 Quantitative Results

The quantitative results come from the Siemens Global Studio project, which was described in
[Mullick 2006]. Since this project was designed as a test bed, a great deal of data is being col-
lected about the development. The information being collected is

• from the Media Wiki (the basic coordination mechanism)

− who visited what artifact and when
− who edited what artifact and when
− who replied to posts by whom
− what were they talking about (page discussions)

• from Mailman (the e-mail server)

− who replied to posts by whom
− what were they talking about

• Social Network Survey

− who’s talking to whom
− purpose of conversation and mechanism used

• Additional Survey

− conformance of code to architecture
− effectiveness of process

• from Subversion (the configuration management system) – who was working on common
files with whom

• From Mantis (issues/bugs) – amount/severity/cost of issues on a particular component

• During code reviews – issue tracking

• meeting minutes – issue tracking

• interviews with architect

− what issues arose
− what was stability of interfaces (for architectural dependency analysis)

• From the architecture description – what “parts” are dependent upon what other parts

• From the plan data – who was working on what “parts” and when

20 | CMU/SEI-2007-TR-006

We have identified a number of “important events” that, potentially, represent examples of mis-
alignments. Our plan for each important event is to perform the following analysis:

• Build a timeline of events.

• Consolidate data on coordination activities related to the event.

• Understand misalignment between coordination activities and technical decisions.

• Examine data collected to see what pattern of data might have identified the problem.

• Test data to determine whether a similar pattern exists elsewhere in the data set and whether
it also indicated a problem.

For those events that upon examination actually represent misalignments, we will have identified
early indicators of these events from the data collected.

3.7 SUMMARY OF RESULTS

We have shown through our qualitative examples that the misalignment problem is a serious one
deserving of attention. Through the quantitative examples we are identifying early indicators.
Through both types of examples, we are preparing a catalog of misalignments that satisfies the
needs identified in the justification for this IRAD.

3.8 REFERENCES

[Bass 2007]
Bass, M.; Mikulovic, V.; Bass, L.; Herbsleb, J.; & Cataldo, M. “Architectural Misalignment: An
Experience Report.” Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’07). New York, NY: IEEE Computer Society Press, 2007 (0-7695-2744-2/07).

[Conway 1968]
Conway, M. E. “How Do Committees Invent?” Datamation 14, 4 (1968): 28-31.

[Henderson 1990]
Henderson, R. M. & Clark, K. B. “Architectural Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established Firms.” Administrative Science Quarterly 35,
1 (1990): 9-30.

[Mullick 2006]
Mullick, N.; Bass, M.; El Houda, Z.; Paulish, D. J.; Cataldo, M.; Herbsleb, J. D.; Sangwan, R.; &
Bass, L. “Siemens Global Studio Project: Experiences Adopting an Integrated GSD Infrastruc-
ture.” Proceedings of the International Conference on Global Software Engineering. Brazil, Oct.
2006. New York, NY: IEEE Computer Society Press, 2006.

 SOFTWARE ENGINEERING INSTITUTE | 21

22 | CMU/SEI-2007-TR-006

4 Certified Binaries for Software Components

Sagar Chaki, James Ivers, Peter Lee, Kurt Wallnau, Noam Zeilberger

4.1 PURPOSE

There is an evident need for mechanisms that enhance our ability to trust third-party software. In
the current era of plug-and-play, off-the-shelf programs are being increasingly made available as
modules or components that can be attached to an existing infrastructure. More often than not,
such plug-ins are distributed in machine code or binary form. In this report we present a frame-
work that can be used to generate trustworthy binaries for software components and to prove that
binaries generated elsewhere satisfy specific policies. At the core of our method lies a paradigm
called proof-carrying-code (PCC), originally proposed in a seminal paper by Necula and Lee [Ne-
cula 1996, Necula 1997]. The essential idea underlying PCC is to construct a proof of the claim
that a piece of machine code respects a desired policy. The proof is shipped along with the code so
that it may be independently verified before the code is deployed.

To date, the application of PCC has been restricted to pure safety policies. The progress of PCC
has also been hindered by, among other things, the need for manual intervention (e.g., discovering
complicated loop invariants) and large proof sizes. Our approach overcomes these limitations of
PCC in the context of certifying software components. In particular, we achieve the following
three objectives: (1) Enrich: Expand the set of PCC policies to include both safety and liveness.
To this end, we use a state/event-based temporal logic called SE-LTL developed in the context of
the Predictable Assembly from Certifiable Components (PACC)2 project at the SEI. (2) Auto-
mate: Use iterative refinement in combination with predicate abstraction and model checking to
generate appropriate invariants and ranking functions required for certificate and proof construc-
tion in a completely automated manner. (3) Compact: Use state-of-the-art Boolean satisfiability
(SAT) technology to generate extremely small proofs. Preliminary investigations [Chaki 2006a]
indicate that the use of SAT yields proof sizes that are several orders of magnitude more compact
than when using conventional methods.

4.2 BACKGROUND

In the original formulation of PCC, the world is divided into trusted code consumers and un-
trusted code producers. A code consumer publishes a safety policy. In general, safety policies as-
sert that “something bad never happens,” while liveness policies assert “something good will
eventually happen.” The code producer annotates the code with key invariants and uses a certify-
ing compiler to generate object code as well as a verification condition (VC); in essence, the VC
is the logical formula that is valid if and only if the object code respects the safety policy. The

2 http://www.sei.cmu.edu/pacc

 SOFTWARE ENGINEERING INSTITUTE | 23

http://www.sei.cmu.edu/pacc

certifying compiler also constructs a proof of the VC, which is embedded in the object code;
hence “proof carrying.” The code consumer checks that the proof is valid by verifying its con-
struction against a set of sound axioms and inference rules that have been defined on the machine
instructions themselves. The verification step is efficient and reduces to a form of type checking.
In other words, the proof is valid if, and only if, it is well typed.

PCC does not depend on the correctness of the certifying compiler or on the technologies used to
construct proofs of program properties. PCC is also resistant to tampering, including code optimi-
zations. Most attempts at modifying either the object code or the proof of the VC will lead to an
ill-typed proof and hence will be detected. Moreover, any undetected tampering is guaranteed to
result in code that still respects the published safety policy and hence is harmless as far as the pol-
icy is concerned. Last, proof-carrying code is efficient, since the static proof eliminates the need
for runtime checks. Still, a number of technical challenges (discussed by Necula et al. [Necula
1996]) arose in this original formulation of PCC. Particularly notable among these are

• (CH1) The restriction to safety conditions is problematic if the cost of developing a trust-
worthy PCC infrastructure is great.

• (CH2) The proof generator sometimes requires manual assistance (to compute loop invari-
ants, for example); for practical transition purposes, this is a non-starter.

• (CH3) The proofs generated are often quite large, hindering wider use of the PCC paradigm.
Despite many recent advances, this continues to be an open problem.

Prior to this work, we conducted two projects that have a direct bearing on the above challenges.
First, as part of the PACC project, we developed an expressive linear temporal logic called SE-
LTL that can be used to express both safety and liveness claims of component-based software. In
this work, we adopt and modify SE-LTL to express certifiable policies, thereby targeting CH1.
Second, in collaboration with Prof. Peter Lee, an original proponent of and leading expert in PCC,
we conducted an Independent Research and Development (IRAD) project [Chaki 2005b] on “As-
sessing and Demonstrating the Readiness of Proof Carrying Code for Obtaining Objective Trust
in Software Components.” As part of this PCC-IRAD, we developed an infrastructure to generate
compact certificates for C programs (not binaries) against SE-LTL claims in an automated man-
ner. The automation is achieved by combining iterative refinement with predicate abstraction and
model checking to generate appropriate invariants and ranking functions that are required for cer-
tificate and proof construction. The tightness of proofs is obtained via the use of state-of-the-art
Boolean satisfiability (SAT) technology [Chaki 2006a]. In this work, we extend this framework to
certify binaries generated from component specifications. Thus, we complete the framework from
a PCC perspective and also address issues CH2 and CH3. To this end we build on the PACC in-
frastructure for analyzing specifications of software component assemblies and generating de-
ployable machine code for such assemblies.

4.2.1 Related Work

PCC was proposed by Necula and Lee [Necula 1996, Necula 1997, Necula 1998b] for certifying
memory safety policies on binaries. PCC works by hard-coding the desired safety policies within
the machine instruction semantics, while our approach works at the source code level and encodes
the policy as a separate specification state machine. Foundational PCC [Appel 2001, Hamid 2002]

24 | CMU/SEI-2007-TR-006

attempts to reduce the trusted computing base of PCC to include only the foundations of mathe-
matical logic. Bernard and Lee [Bernard 2002] propose a new temporal logic to express PCC pol-
icies for machine code. Non-SAT-based techniques for minimizing PCC proof sizes [Necula
1998a, Necula 2001] have also been proposed. Certifying model checkers [Kupferman
2004,Namjoshi 2001] emit an independently checkable certificate of correctness when a temporal
logic formula is found satisfiable by a finite state model. Namjoshi [Namjoshi 2003] has proposed
a two-step technique for obtaining proofs of Mu-Calculus specifications on infinite state systems.
In the first step, a proof is obtained via certifying model checking. In the second step, the proof is
lifted through an abstraction. Namjoshi’s approach is still restricted to certifying source code,
while our work aims for low-level binaries. Iterative refinement has been applied successfully by
several software model checkers such as SLAM [Ball 2001], BLAST [Henzinger 2002b] and
MAGIC [Chaki 2004]. While SLAM and MAGIC do not generate any proof certificates, BLAST
implements a method [Henzinger 2002a] for lifting proofs of correctness. However, BLAST’s
certification is limited to source code and purely safety properties. Assurance about the correct-
ness of binaries can also be achieved by proving the correctness of compilers (which is impracti-
cable) or via translation validation [Pnueli 1998] (which still assumes that the source code is cor-
rect). In contrast, our approach requires no such correctness assumptions.

4.3 APPROACH

Our technical approach is best summarized by the architecture described in Figure 4-1. This figure
depicts the final infrastructure for certified component binary generation that we developed. The
boxes are numbered for ease of reference. The steps involved in generating certified component
binaries can be summarized as follows:

Step 1. We begin (Box 1) with a specification Spec of a component assembly written in the Con-
struction and Composition Language (CCL) [Wallnau 2003], which has been developed as part of
the PACC project. The specification Spec contains a description of the component assembly as
well as the desired policy Pol that the assembly needs to be certified against. CCL is currently
implemented as a profile of an executable subset of UML 2.0.

Step 2. Spec is automatically interpreted [Ivers 2002] into a program, Prog, that can be processed
by a model checker. Prog (Box 2) essentially comprises a C program Prog along with finite state
machine specifications for library routines invoked by the program. This step was implemented
by augmenting the interpretation for the ComFoRT [Ivers 2004] reasoning framework so that
Prog contains additional information. Specifically, Prog contains information that relates its line
numbers, variables, and other data structures with those of Spec. This information is crucial for
the subsequent reverse-interpretation of certificates in Step 4.

Step 3. Prog is input to Copper (Box 3), a state-of-the-art certifying software model checker.
Copper [Chaki 2005a] was originally developed as part of ComFoRT. To perform this step, Cop-
per was enhanced [Chaki 2006a] with the ability to generate certificates. Copper interfaces with
theorem provers (TP) and SAT solvers (SAT) during model checking and certificate generation.
The output of Copper is either a counterexample (CE) to the desired policy Pol or a certificate
(Cert1) that Prog respects Pol. Specifically, Cert1 is a ranking function that associates with each

 SOFTWARE ENGINEERING INSTITUTE | 25

line number of Prog a set of pairs (r,i) where r is a rank and i is an invariant. In addition, Cert1
can be used to generate a valid verification condition for proving that Prog respects Pol.

Step 4. The certificate Cert1 certifies Prog only against the policy Pol. It is reverse-interpreted
(arrow 4) into a certificate (Cert2) that Spec itself also respects Pol. The reverse interpretation is
enabled by the additional information generated during interpretation to connect Spec with Prog
(Step 2). The certificate Cert2 is the counterpart of Cert1 for Spec. Thus, it is a ranking function
that associates sets of pairs of ranks and invariants with line numbers of Spec. It can also be used
to generate a valid verification condition for proving that Spec respects the policy Pol.

Step 5. Spec and Cert2 are now transformed (Box 5) into a certified Pin/C program Code (Box 6)
that can be compiled and deployed in the Pin runtime environment (RTE) [Hissam 2005]. The
uncertified version of this code generation process, which transforms a CCL specification to
Pin/C code, had been developed as part of the PACC project. We enhanced the code generation so
that it also creates a certificate, using Cert2, and embeds it in Code. In essence, we transform the
certificate, along with the component, from one format (CCL) to another (Pin/C). In practice, this
is achieved by embedding calls to special procedures inside Code. Recall that Cert2 is a ranking
function that associates each line number of Spec with a set of pairs of ranks and invariants. In
practice, a rank is just an integer, while an invariant is a C expression. Suppose that Cert2 associ-
ates line X of Spec with the set {(r1,i1), …,(rn,in)}. Then, just before generating the code for line X,
we add the following two function calls:

BEGIN(); INV((rank == r1 && i1) || … || (rank == rn && in));

In the above, BEGIN and INV are distinguished procedures, while rank is a special global vari-
able introduced in the generated code for the purpose of certification.

Step 6. The final step (Box 7) consists of three distinct stages and results in the final product: the
certified binary for Spec. The first compilation step is conceptually the same as Step 5 but trans-
forms the certified program from Pin/C to binary code (Box 8). In our implementation we use the
gcc compiler (which targets the PowerPC instruction set) to achieve this goal. The end result is a
certified binary for the component assembly. Part of the certificate is a ranking function that is
embedded directly in the binary as calls to BEGIN and INV and the evaluation of the arguments
to these procedures. Recall that these arguments are the ranks and invariants specified by Cert2.

The remaining portion of the certificate consists of the proof of a verification condition (VC) and
is constructed by the remaining two stages of Step 6. The first of these two stages constructs VC
using the binary and weakest precondition computation. In essence, VC is a logical formula that
codifies the following two facts: (Fact 1) the ranking function embedded in the binary (as calls to
BEGIN and INV) is well formed, and (Fact 2) the ranking function implies that the binary re-
spects the policy Pol. Once VC is constructed, it is proved using a proof-generating automated
theorem prover. For our implementation we use a theorem prover based on Boolean satisfiability
(SAT). In essence we convert the logical negation of VC to a Boolean formula F. We then check
if F is unsatisfiable using the proof-generating SAT solver ZChaff. If this is the case (and hence if
VC is valid), the resolution proof emitted by ZChaff serves as the proof of the validity of VC. The
use of SAT enables us to obtain extremely compact proofs [Chaki 2006a] in practice.

26 | CMU/SEI-2007-TR-006

Certificate Validation. As mentioned before, one of the key aspects of our approach is that the
certified binary (specifically, the certificate itself) can be independently, and objectively, validated
without the need to trust most of the artifacts (shown in Figure 4-1) that are involved in the gen-
eration of the certified binary. In fact, this process occurs in two stages:

1. First, the verification condition VC is reconstructed from the certified binary. This is done in
exactly the same manner as during certification (specifically Step 6 described above). Note
that the procedure for constructing VC is publicly known and is also deterministic. Thus, the
VC constructed during certificate validation should be exactly the same as the one construc-
tion during certification.

2. Finally, we verify that the proof Proof associated with the certified binary corresponds to the
VC that was obtained in the first step. To do this, we again convert the logical negation of
VC to a Boolean formula F and check that Proof is a resolution proof of the unsatisfiability
of F. Once again, the procedure for constructing F from VC is public and deterministic, en-
suring that the two versions of F obtained during certification and validation are exactly the
same. If Proof is indeed found to refute F, we declare the certificate to be valid. Otherwise,
the certificate is declared invalid.

Trusted Computing Base (TCB). It is instructive to discuss the artifacts that must be trusted in
order for our approach to be effective. In essence, the TCB comprises the following: (i) the proce-
dure for constructing the verification condition VC, (ii) the procedure for converting the negation
of VC to a Boolean formula F, and (iii) the procedure for checking that the resolution proof asso-
ciated with the certified binary actually refutes F. All of these procedures are computationally
inexpensive and can be implemented by relatively small programs. Thus, they are much more
trustworthy (and more amenable to some form of formal verification or validation) than the rest of
the components of Figure 4-1. Specifically, these components, which are no longer required to be
in the TCB, are the interpreter, the certifying model checker, the reverse-interpreter, the code gen-
erator, the compiler, and the theorem prover. All of these tools are considerably more complex,
and their elimination from the TCB raises considerably the degree of confidence associated with
our certification methodology. In fact, a very rough measurement indicates that in our own case,
the TCB is over fifteen times smaller in size than the rest of the infrastructure.

 SOFTWARE ENGINEERING INSTITUTE | 27

Cert1

SAT

4

Certified
Pin/C

Compilation
VC Generation

Theorem Proving

6
Code

Generation

C + FSP
Prog

CCL
Spec

1

2

5

Cert2

Copper
3

Certified
Binary

7

CE

8

TPTP

Figure 4-1: Architecture of Developed Framework

4.4 COLLABORATIONS

The IRAD project was carried out as a collaborative effort between the SEI and Carnegie Mellon
University. Specifically, the participants from the SEI were Sagar Chaki, James Ivers, and Kurt
Wallnau, all members of the Product Line Systems Program. The participants from Carnegie Mel-
lon were Professor Peter Lee, one of the original proponents of PCC, and his student Noam Zeil-
berger, both of whom are affiliated with the Computer Science Department.

4.5 EVALUATION CRITERIA

• A prototypical infrastructure for automatically generating certified binaries of software com-
ponents from UML Statechart specifications.

• An improved SEI understanding of the issues related to software trust and component certifi-
cation documented in a technical report and/or peer-reviewed publications.

• Improved collaborative work between (i) the SEI and the Carnegie Mellon Computer Sci-
ence Department and (ii) SEI programs and initiatives.

• Improved visibility of the SEI in the world of software and computer science research.

4.6 RESULTS

We implemented a prototype of our technology and experimented with two kinds of examples.
First, we created a CCL specification of a component that manipulates an integer variable and the
specification that the variable never becomes negative. Our tool was able to successfully prove,
and certify at the assembly code level, that the implementation of the component does indeed sat-
isfy the desired claim. The CCL file size was about 2.6 KB, while the generated Pin/C code was
about 20 KB. In contrast, the assembly code was about 110 KB, while the proof certificate size
was just 7.7 KB. The entire process took about 5 minutes with modest memory requirements.

28 | CMU/SEI-2007-TR-006

In order to validate the translation of a certified C program to a certified binary (Step 7 in Figure
4-1), we experimented with Micro-C,3 a lightweight operating system for embedded real-time
applications. The OS source code consists of about 6000 lines of C (97 KB) and uses a semaphore
to ensure mutually exclusive access to shared kernel data structures. Using our approach we were
able to certify that all kernel routines follow the proper locking order when using the semaphore.
In other words, the semaphore is always acquired and released alternately, and thus deadlock is
avoided. The total certification time was about one minute, and the certificate size was about 11
KB, or roughly 11% of the operating system source code size. We also experimented with the C
implementation of the “tar” program in the Plan 94 operating system. Specifically, we certified,
using our approach, that a particular buffer will never overflow when the program is executed.
The source code was manually annotated in order to generate the appropriate proof certificates.
While our experiments show that our approach is viable, we believe that a more robust implemen-
tation and more realistic case studies are needed in order to push our technique amongst a wider
user base.

A paper [Chaki 2006a] describing the SAT technology we used to obtain concise proof certifi-
cates was published and presented at the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS) in March 2006. An article describing the ad-
aptation of our IRAD research for certifying the absence of buffer overflows is available as an
SEI technical note [Chaki 2006b]. Moreover, an invited talk on research carried out during this
IRAD was delivered at the XOOTIC Symposium in September 2006. By enabling our collabora-
tion with Prof. Peter Lee, an original proponent and internationally recognized stalwart in the area
of PCC, this IRAD has fostered closer connections between the SEI and the Carnegie Mellon
campus. It has also strengthened our knowledge and expertise in the theory and practice of soft-
ware certification.

4.7 REFERENCES

[Appel 2001]
Appel, A. “Foundational Proof-Carrying Code,” 247-256. Proceedings of the 16th Annual IEEE
Symposium on Logic in Computer Science. June 16-19, 2001. New York, NY: IEEE Computer
Society Press, 2001.

[Ball 2001]
Ball, T. & Rajamani, S. “Automatically Validating Temporal Safety Properties of Interfaces.”
Proceedings of the 8th International SPIN Workshop on Model Checking of Software
(SPIN'2001). Berlin, Germany: Springer, LNCS 2057, 2001.

[Bernard 2002]
Bernard, A. & Lee, P. “Temporal Logic for Proof-Carrying Code.” Proceedings of the Confer-
ence on Automated Deduction. Copenhagen, Denmark, July 27-30, 2002.

3 http://www.micrium.com
4 http://plan9.bell-labs.com/plan9

 SOFTWARE ENGINEERING INSTITUTE | 29

http://www.micrium.com
http://plan9.bell-labs.com/plan9

[Chaki 2004]
Chaki, S.; Clarke, E.; Groce, A.; Jha, S.; & Veith, H. “Modular Verification of Software Compo-
nents in C,” 388–402. IEEE Transactions on Software Engineering 30, 6 (June 2004).

[Chaki 2005a]
Chaki, S.; Ivers, J.; Sharygina N.; & Wallnau, K. “The ComFoRT Reasoning Framework,” 164-
169. Proceedings of the 17th Conference on Computer Aided Verification (CAV). Berlin, Ger-
many: Springer, LNCS 3576, July 2005.

[Chaki 2005b]
Chaki, S. & Wallnau, K. Proof-Carrying Code (Chapter 6, CMU/SEI-2005-TR-020,
ADA449433). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tr020.html

[Chaki 2006a]
Chaki, S. “SAT-Based Software Certification.” Proceedings of the 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, 2006. Berlin, Germany:
Springer, LNCS 3920, 2006.

[Chaki 2006b]
Chaki, S. & Hissam, S. Certifying the Absence of Buffer Overflows (CMU/SEI-2006-TN-030).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn030.html

[Hamid 2002]
Hamid, N.; Shao, Z.; Trifonov, V.; Monnier, S. & Ni, Z. “A Syntactic Approach to Foundational
Proof-Carrying Code,” 89-100. Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science. July 22-25, 2002. New York, NY: IEEE Computer Society Press, 2002.

[Henzinger 2002a]
Henzinger, T.; Jhala, R.; Majumdar, R.; Necula, G.; Sutre, G.; & Weimer, W. “Temporal Safety
Proofs for Systems Code.” Proceedings of the 14th Conference on Computer Aided Verification
(CAV). Berlin, Germany: Springer, LNCS 2404, 2002.

[Henzinger 2002b]
Henzinger, T.; Jhala, R.; Majumdar, R.; & Sutre, G. “Lazy Abstraction,” 58-70. ACM SIGPLAN
Notices, Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL '02). Portland, January 16-18, 2002. New York, NY: ACM Press, 2002.

[Hissam 2005]
Hissam, S.; Ivers, J.; Plakosh, D.; & Wallnau, K. Pin Component Technology (V1.0) and Its C
Interface (CMU/SEI-2005-TN-001, ADA441815). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn001.html

[Ivers 2002]
Ivers, J.; Sinha, N.; & Wallnau, K. A Basis for Composition Language CL (CMU/SEI-2002-TN-
026, ADA407797). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2002. http://www.sei.cmu.edu/publications/documents/02.reports/02tn026.html

30 | CMU/SEI-2007-TR-006

http://www.sei.cmu.edu/publications/documents/05.reports/05tr020.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn030.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn001.html
http://www.sei.cmu.edu/publications/documents/02.reports/02tn026.html

[Ivers 2004]
Ivers, J. & Sharygina, N. Overview of ComFoRT: A Model Checking Reasoning Framework
(CMU/SEI-2004-TN-018, ADA442864). Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tn018.html

[Kupferman 2004]
Kupferman, O. & Vardi, M. “From Complementation to Certification.” Proceedings of the 10th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
2004. Berlin, Germany: Springer, LNCS 2988, 2004 (ISBN 978-3-540-21299-7).

[Namjoshi 2001]
Namjoshi, K. “Certifying Model Checkers.” Proceedings of the 13th Conference on Computer
Aided Verification (CAV). Berlin, Germany: Springer, LNCS 2102, 2001.

[Namjoshi 2003]
Namjoshi, K. “Lifting Temporal Proofs through Abstractions,” 174-188. Proceedings of the 4th
International Conference on Verification, Model Checking and Abstract Interpretation, 2003.
Berlin, Germany: Springer, LNCS 2575, 2003.

[Necula 1996]
Necula, G. & Lee, P. “Safe kernel extensions without runtime checking,” 229-243. Proceedings of
the 2nd USENIX Symposium on Operating System Design and Implementation (OSDI). Seattle,
Washington, 1996.

[Necula 1997]
Necula, G. “Proof-Carrying Code,” 106-119. Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages 1997. Paris, France, January 15-17, 1997.
New York, NY: ACM Press, 1997.

[Necula 1998a]
Necula, G. & Lee, P. “Efficient Representation and Validation of Proofs,” 93-104. Proceedings of
the 13th Annual IEEE Symposium on Logic in Computer Science. June 21-24, 1998. New York,
NY: IEEE Computer Society Press, 1998.

[Necula 1998b]
Necula, G. & Lee, P. “Safe, Untrusted Agents Using Proof-Carrying Code,” 61-91. Proceedings
of Mobile Agents and Security. Berlin, Germany: Springer, LNCS 1419, 1998 (ISBN 3-540-
64792-9).

[Necula 2001]
Necula, G. & Rahul, S. “Oracle-Based Checking of Untrusted Software,” 142-154. Proceedings
of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 2001.
New York, NY: ACM Press, 2001.

[Pnueli 1998]
Pnueli, A.; Siegel, M.; & Singerman, E. “Translation Validation,” 151-166. Proceedings of the
4th International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, 1998. Berlin, Germany: Springer, LNCS 1394, 1998 (ISBN 3-540-64356-7).

 SOFTWARE ENGINEERING INSTITUTE | 31

http://www.sei.cmu.edu/publications/documents/04.reports/04tn018.html

[Schneider 2000]
Schneider, F. “Enforceable Security Properties.” ACM Transactions on Information and System
Security 3, 1 (February 2000): 30-50.

[Wallnau 2003]
Wallnau, K. & Ivers, J. Snapshot of CCL: A Language for Predictable Assembly (CMU/SEI-
2003-TN-025, ADA418453). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003. http://www.sei.cmu.edu/publications/documents/03.reports/03tn025.html

32 | CMU/SEI-2007-TR-006

http://www.sei.cmu.edu/publications/documents/03.reports/03tn025.html

5 Technology for Managing Data and Data Quality in
Distributed Embedded Real-Time Systems

Jorgen Hansson, Peter H. Feiler, Aaron Greenhouse

5.1 PURPOSE

It is a fait accompli that the amount of data being managed by embedded real-time systems has
increased significantly, and it continues to increase. This presents new challenges on how to effi-
ciently design a real-time system at a conceptual and architectural level, modeling data require-
ments, and how to implement the real-time system at a system level to enable efficient manipula-
tion and storing of real-time data. In essence, we are advocating that data needs to be explicitly
modeled early in the development process and that a data-centric framework provides a better
platform for data-intensive real-time applications, in contrast to task-centric methodologies used
today when designing real-time systems.

The purpose of this project has been to (i) investigate existing solutions for managing real-time
data and their constraints, (ii) identify technical gaps and shortcomings of distributed real-time
systems for enabling efficient management of data in these systems, and (iii) work toward a data
modeling framework that can be used at design time of embedded real-time systems to ensure that
data quality attributes are satisfied.

Although there are technology advances in managing real-time data, existing technology has not
yet been exploited widely or on a large scale. We believe that the primary component missing is
that the there is no framework and techniques for modeling data that can be used at design time of
real-time systems. By effectively incorporating a framework for managing data effectively in real-
time systems, there are significant gains when exploited in large scale across several systems as
the development time decreases significantly due to software reuse. The software qual-
ity/correctness increases over time as a common and tested framework is being used. Interopera-
bility, in this context referring to simplified exchange of data across systems, can also be im-
proved dramatically.

We have focused on embedded sensor networks, as they are becoming increasingly important in
net-centric warfare to perform dense sensing of physical environments and in distributed embed-
ded systems. These two applications both represent distributed systems and cover the spectrum of
soft to hard real-time performance constraints.

 SOFTWARE ENGINEERING INSTITUTE | 33

5.2 BACKGROUND

The number of data items that are used in real-time embedded systems has increased over the
years. There are several reasons for this depending on the application domain. We observe that for
a large class of systems, it is enabled by the availability of cost-effective but still more powerful
CPUs and larger amounts of memory, and more advanced functions in the software. Also, the ap-
plications require that data is ensured to be of higher quality and/or more data is monitored and
collected. An example of this is the increasing need for performing system diagnostics in ECUs
(electronic control units) to meet emission regulations.

The emergence of embedded sensor networks (ESNs) introduces a new paradigm in distributed
computing platforms, as they are fundamentally different from conventional distributed systems
and ad hoc networks [Stankovic 2003]. From the perspective of data quality cognizance, a net-
centric system is intrinsically a system of systems comprising a number of heterogeneous, geo-
graphically dispersed systems, that is, loosely coupled nodes interconnected by a communication
network. Normally they operate under real-time constraints of varying stringency and criticality.
ESNs are increasingly being deployed in applications to monitor, collect, process, and communi-
cate data obtained from the environment (e.g., monitoring of weather conditions to improve accu-
racy in weather forecasting, water leakage systems in nuclear power plants, corrosion in building
constructions by the use of smart paint, intrusion in restricted areas). The applications vary in their
criticality and also rely on ESNs’ ability to monitor and timely detect situations, where the conse-
quences of an undetected situation may range from innocuous to cataclysmal. ESNs provide data
services to high-level applications, and they are becoming an important constituent of many net-
centric systems. In ESNs the main objective is to minimize communication due to sparse energy
resources and dynamically changing topology of networks and to satisfy constraints on timely
data dissemination within the network [Akyildiz 2002, Stankovic 2003].

Thus, we can see that there is a significant need for efficient real-time data services, where the
application data normally span from low-level control data, typically acquired from sensors, to
high-level management and business data. In these applications it is desirable to process user re-
quests within their deadlines using fresh data. As has been pointed out by others, there is no me-
thodical way of handling embedded database systems, and there is a big need for embedded data-
base systems for embedded systems [Ortiz 2000].

Current research and previously developed techniques that have focused on managing data in em-
bedded real-time systems can be categorized as follows:

• Work on algorithms for managing resources (CPU, data, bandwidth) that ensure a perform-
ance metric, e.g., data quality (temporal correctness, consistency, freshness, and accuracy).
Thus, the focus has been on concurrency control, scheduling, data routing (sensor networks),
logging, and recovery.

• Work on real-time database architectures appropriate for real-time systems (BerkeleyDB,
BeeHive, COMET, DeeDS, EagleSpeed, Rodain, Starbase).

34 | CMU/SEI-2007-TR-006

There are several research issues that need to be resolved that can have a major impact on how
data is maintained. Technology advances allow us to understand how we physically should go
about building small embedded real-time systems with the support for efficient managing of data.
However, two key challenges are

• how to model real-time data and its quality attributes conceptually at design time to ensure
that data requirements are satisfied, and

• the efficient exchange of data between small embedded real-time systems and larger infor-
mation systems, e.g., integration of embedded sensor networks with command-and-control
systems that build the global view by collecting and aggregating data from subsystems.

If these challenges can be conquered, the impact is expected to be major, as it would allow for a
common information infrastructure and framework for maintaining data and its quality attributes
in real-time systems and for integrating the data to higher level systems.

5.3 APPROACH

The approach taken has been to identify the technical gaps and shortcomings of distributed real-
time systems (previous work has primarily focused on centralized systems) that hinder their effi-
cient management of data. Specifically, we have characterized the specific requirements and qual-
ity attributes of data in embedded sensor networks; embedded sensor networks are increasingly
important in DoD applications and part of net-centric warfare scenarios, as the embedded sensor
networks exchange data with control-and-command systems. To contribute to a solution, we have
focused on developing a framework for modeling quality attributes of the data at the design time
of distributed real-time systems, to both aid the designer when it comes managing the data and to
enable simple exchange of data with higher layer systems.

Incorporating a framework for managing data effectively using model-based engineering for
building real-time systems is conducive to building assurance of the viability of a system architec-
ture in the design phase and the pre-implementation phase, especially when exploited in large
scale across several systems.

5.4 COLLABORATIONS

SEI staff involved in this project have been Jorgen Hansson (Performance Critical Systems), Peter
Feiler (PCS), Aaron Greenhouse (PCS), and Dennis Smith (ISIS).

Academic collaboration has included Prof. Sang H. Son (University of Virginia), Prof. John A.
Stankovic (University of Virginia), Vibha Prasad (University of Virginia), and Dr. Ming Xiong
(Bell Laboratories, Network Data and Services Research Department). Dr. Xiong has provided his
own support.

 SOFTWARE ENGINEERING INSTITUTE | 35

5.5 EVALUATIONS

We have proposed that this project be evaluated on our success in achieving the following deliv-
erables, previously outlined in the overall approach:

• Develop a framework for modeling quality attributes of data at the design time of distributed
real-time systems.

• Characterize specific data requirements of embedded sensor networks.

Our objective has also been to find an industrial partner for future work and attempt to develop a
plan on how issues of data management can incorporated into the Dynamic Systems Program.

5.6 RESULTS

Data quality in a net-centric system can be compromised in a number of ways: confidentiality
might be breached due to lack of adequate encryption or incorrectly assigned security clearance
for subjects operating on an object; the confidence level of the data might be insufficient in part
due to the set size of active sensors or environmental conditions; the accuracy of sensor readings
is affected by environmental conditions; correctness of data is low, as it is a function of its tempo-
ral coherence, that is, correctness of data decays over time. These attributes together determine the
quality of the data forwarded to the subsystems from the net-centric system. Enforcing 100% ac-
curacy, temporal correctness, and confidence is in practice not always possible nor desirable, as
the cost becomes too significant with respect to monetary means, computational power, power
consumption, quality of sensor, etc. It is more desirable to ensure that data quality is within ac-
ceptable tolerance levels of the applications, not jeopardizing their correctness.

We believe that model-driven engineering is conducive and of paramount importance to validat-
ing the quality of data and thereby ensuring that high-level systems are provided with data of suf-
ficient quality and consistency driven by the application requirements. Architectural description
languages have successfully been applied to prove system properties, often with a propensity to-
ward task- or component-centric perspectives and, thus, generally preclusive of data quality at-
tributes. We have developed a modeling framework for validating, a priori to the implementation
phases of the system, the enforcement of the data quality attributes temporal correct-
ness/freshness, data accuracy/precision, data confidence, and data confidentiality. We use the
architecture and analysis description language AADL as a platform for this research.

To enable modeling and validation of data quality attributes in a model-driven approach using
AADL, we have addressed the following technical issues: (i) identifying the appropriate as-
pects/levels of validating a quality attribute, i.e., what it is we want to validate; (ii) developing
adequate analytical methods for validating these aspects (these methods have been implemented
in the OSATE tool platform), i.e., how validation is performed; (iii) identify representational is-
sues, i.e., how the properties are represented in an AADL model to enable analysis.

We have investigated how to model and verify that several data quality attributes of a modeled
system are enforced. We have developed a framework that models and validates confidentiality

36 | CMU/SEI-2007-TR-006

(i.e., ensuring that sensitive data is disclosed to and accessed only by authorized users and appli-
cations, thus enforcing prevention of unauthorized disclosure of information). The framework can
be extended to incorporate integrity (i.e., ensuring prevention of unauthorized modifications of
data). It supports modeling and validation according to the well-known Bell-LaPadula model,
controlled sanitization of data, and enforcement of sound engineering principles that we have
identified that characterize a secure architecture. The framework also supports representation of
the Chinese Wall security model and the role-based access model. The developed framework al-
lows validation of several properties of a system: data confidentiality is maintained in an end-to-
end flow across a system; software with security requirements is mapped to sufficiently secure
hardware platforms (CPUs, memory, communication channels); software components communi-
cate securely with other software components, etc.

Another dimension of successful model-based engineering is the support for incremental model-
ing. In the context of security and confidentiality, the framework supports the following levels of
modeling and validation of various details and strengths: modeling of security requirements of
objects, e.g., data, and generating security clearances for the subjects accessing the objects (syn-
thesis); modeling of security requirements and clearances of objects and subjects respectively,
validation of confidentiality, and based on the outcome, generating an access matrix/security table
specifying allowed operations (the matrix can be used in the final system); or modeling and vali-
dation of confidentiality across subjects and objects and the access matrix.

The framework supports modeling and validation of data confidence and data accuracy, ensuring
that all users only use data objects that are within the specified limits of confidence and accuracy.
Data objects can also be annotated with the temporal validity intervals, capturing for how long a
data object is valid.

An important determinant of the viability of a system architecture is the impact that architectural
changes have on quality attributes, and similarly, adjusting the level of one quality attribute can
impact other quality attributes. A tradeoff and impact analysis using model-based engineering will
aid in exploring and analyze the effects. For example, changing security policy, such as increasing
the encryption level, has several effects: (i) processing demand increases with the complexity of
the encryption, (ii) network bandwidth demand increases with the encryption complexity, the
length of the encryption key, and the frequency with which the key is replaced and communi-
cated, (iii) end-to-end latency occurs, as data is now encrypted and decrypted and takes longer to
communicate, and (iv) power consumption increases due to (i) and (ii). Another example that il-
lustrates dependencies among the quality attributes is the following. To increase confidence in
sensor data, one needs to perform data sampling more frequently (as confidence in a data reading
decreases over time), which in turn generates more network traffic; the communication time in-
creases as the network load increases, which adds to the latency of delivery of the data sensor
reading, which in turn will lower the confidence in the data. This demonstrates the delicate bal-
ance and the need for validation of systems architecture. A challenge for the future is developing a
generalized way of expressing dependencies and cost formulas, using a non-modal mechanism, to
allow for validation of an architecture with respect to multiple quality attributes under different
configurations.

 SOFTWARE ENGINEERING INSTITUTE | 37

The Eaton company has shown strong interest in collaborating with the SEI on model-based engi-
neering using AADL for validating sensor networks of net-centric computing. A contract for
long-term collaboration between the SEI and Eaton has been developed.

5.7 PUBLICATIONS AND PRESENTATIONS

• Jorgen Hansson and Aaron Greenhouse, “Modeling and Validation of Security and Confi-
dentiality,” SEI Technical Note (forthcoming).

• Jorgen Hansson, Aaron Greenhouse, and Peter H. Feiler “Modeling and Validation of Data
Quality Attributes in Distributed Embedded Systems and Embedded Sensor Networks,” SEI
Technical Note (forthcoming).

• Invited presentation at the Integrated Air Weapons Systems Conference in Washington,
D.C., August 2006. Conference organized by IDGA.

• Invited presentation at the Net-Centric Computing Conference, Paris, June 2006; Conference
organized by SAGEM as part of an effort of setting up an international network of excel-
lence.

5.8 BIBLIOGRAPHY

[Akyildiz 2002]
Akyildiz, I. F.; Su, W.; Sankarasubramaniam, Y.; & Cayirci, E. “A Survey on Sensor Networks.”
IEEE Communication Magazine 40, 8 (August 2002): 102-114.

[Beehive]
Stankovic, J. et al. BeeHive Project. http://www.cs.virginia.edu/~stankovic/mmdb.html

[BerkeleyDB 2007]
Oracle Berkeley DB Product Family. http://www.oracle.com/database/berkeley-db/index.html
(2007).

[Cerpa 2004]
Cerpa, A. & Estrin, D. “ASCENT: Adaptive Self-Configuring Sensor Networks Topologies.”
IEEE Transactions on Mobile Computing 3, 3 (July-Aug. 2004):272--285.

[COMET]
COMET. http://www.ida.liu.se/labs/rtslab/projects/ARTES_EmbeddedDatabases/

[DeeDS]
Andler, S. F.; Hansson, J.; Eriksson, J.; Mellin, J.; Berndtsson, M.; & Eftring, B.
“DeeDS: Towards a Distributed Active and Real-Time Database System.” Special Issue on Real
Time Data Base Systems, SIGMOD Record 25, 1 (March 1996).

[Deshpande 2003]
Deshpande, A.; Nath, S.; Gibbons, P. B.; & Seshan, S. “Cache-and-Query for Wide Area Sensor
Databases,” 503-514. Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data. New York, NY: ACM Press, 2003.

38 | CMU/SEI-2007-TR-006

http://www.cs.virginia.edu/%7Estankovic/mmdb.html
http://www.oracle.com/database/berkeley-db/index.html
http://www.ida.liu.se/labs/rtslab/projects/ARTES_EmbeddedDatabases/

[EagleSpeed]
Lockheed Martin. EagleSpeed Real-Time Database Manager.
http://www.lockheedmartin.com/wms/findPage.do?dsp=fec&ci=11378&rsbci=0&fti=126&ti=0&
sc=400

[Intan+ 2003]
Intanagonwiwat, C.; Govindan, R.; Estrin, D.; Heidemann, J.; & Silva, F. “Directed Diffusion for
Wireless Sensor Networking.” IEEE Transactions on Networking 11, 1 (Feb. 2003): 2-16.

[Madden 2005]
Madden, S.; Franklin, M.; Hellerstein, J.; & Hong, W. “TinyDB: An Acquisitional Query Process-
ing System for Sensor Networks.” ACM Transactions on Database Systems (TODS) 30, 1 (March
2005): 122-173.

[Ortiz 2000]
Ortiz, S. Jr. “Embedded Databases Come Out of Hiding.” IEEE Computer 33, 3 (March 2003):
16-19.

[Ramamritham 2004]
Ramamritham, K.; Son, S. H.; & DiPippo, L. “Real-Time Databases and Data Services.” Real-
Time Systems Journal 28 (Dec. 2004): 179-216.

[Rodain 1999]
Rodain Project. http://www.cs.helsinki.fi/research/rodain/ (1999).

[Shenker 2003]
Shenker, S.; Ratnasamy, S.; Karp, B.; Govindan, R.; & Estrin, D. “Data-Centric Storage in Sen-
sornets.” SIGCOMM Computer Communication Review 33, 1 (2003): 137-142.

[Stankovic 2003]
Stankovic, J.; Abdelzaher, T. F.; Lu, C.; Sha, L.; & Hou, J. C. “Real-Time Communication and
Coordination in Embedded Sensor Networks,” 1002-1022. Proceedings of the IEEE 91, 7 (July
2003).

[StarBase 1994]
The StarBase Project. http://www.cs.virginia.edu/~vadb/starbase.html (1994).

[STRIP]
The STRIP Project. http://www-db.stanford.edu/strip.html

[Yao 2002]
Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query Processing in Sensor Net-
works.” ACM SIGMOD Record 31, 3 (2002): 9-18.

[Zhao 2004]
Zhao, F. & Guibas, L. Wireless Sensor Networks – An Information Processing Approach. San
Fransisco, CA: Morgan Kaufmann Publishers, Inc., 2004.

 SOFTWARE ENGINEERING INSTITUTE | 39

http://www.lockheedmartin.com/wms/findPage.do?dsp=fec&ci=11378&rsbci=0&fti=126&ti=0&sc=400
http://www.lockheedmartin.com/wms/findPage.do?dsp=fec&ci=11378&rsbci=0&fti=126&ti=0&sc=400
http://www.cs.helsinki.fi/research/rodain/
http://www.cs.virginia.edu/%7Evadb/starbase.html
http://www-db.stanford.edu/strip.html

40 | CMU/SEI-2007-TR-006

6 Technology Foundations for Computational Evaluation of
Software Security Attributes

Gwendolyn H. Walton, Thomas A. Longstaff, Richard C. Linger

6.1 PURPOSE

In the current state of practice, security properties of software systems are typically assessed
through labor-intensive evaluations by security experts who accumulate knowledge in bits and
pieces from architectures, specifications, designs, code, and test results. Ongoing program main-
tenance and evolution limit the relevance of even this hard won but static and quickly outdated
knowledge. When systems operate in threat environments, security attribute values can change
very quickly. To further complicate matters, security strategies must be sufficiently dynamic to
keep pace with organizational and technical change.

The purpose of this IRAD project was to define a fundamentally different approach to specifica-
tion and evaluation of software security attributes. This research recognized and leveraged the fact
that the problem of determining the security properties of software comes down in large measure
to the question of how programs behave when invoked with stimuli intended to cause harmful
outcomes. Because security properties have functional characteristics amenable to computational
approaches, the research focused on the question “What can be computed with respect to security
attributes?” The results show that security properties of software can in fact be evaluated through
computational automation.

6.2 BACKGROUND

Historically, security analysis has required consideration of a variety of artifacts and concerns.
Researchers have applied analytical tools such as model checking, concurrent sequential process
modeling, and rule-based systems to model, analyze, and verify security protocols. In recent
years, several research threads have emerged that address the difficult problems of security met-
rics and quantitative analysis and evaluation of security attributes. This research to date has typi-
cally focused on finding approximate solutions. Many of the studies have been based on assump-
tions that severely constrain the operational utility of the results. In addition, many security
analysis methods require that a separate model of the software be developed to include considera-
tion of the users and/or the environment in which the software is executed. While these ap-
proaches provide valuable insights, none of them allow security analysts to state with certainty
how the software under consideration behaves under all circumstances of use with respect to se-
curity attributes of interest.

Further complicating the issue, the published definitions for security attributes lack theoretical
foundations and cannot support a disciplined approach to analysis of software and system secu-

 SOFTWARE ENGINEERING INSTITUTE | 41

rity. For example, various U.S. government publications describe privacy as an interest, a free-
dom, an ability, and a right. A method is needed for security attribute specification and analysis
based on (1) the actual behavior of software and (2) security attribute definitions that consider
only data and transformations of data.

6.3 APPROACH

The mathematics of functions provides a solid point of departure for computational analysis of
security attributes. Desired security attributes can themselves be specified in terms of data and
transformation of data, thereby permitting software to be evaluated for conformance or not
through comparison of behavioral requirements of security attributes to the functional behavior of
the software. The emergence of CERT’s new function extraction (FX) technology, unavailable to
previous researchers, provides the critical first step for computational security attribute analysis
by supporting the derivation of the full functional behavior of programs as a starting point for se-
curity analysis.

FX technology can be applied to programs to yield their complete calculated behavior expressed
in terms of net effects on data. The function extraction process derives the as-built specification of
software, that is, the behavior that has actually been implemented. This derived behavior can be
compared to requirements and specifications to determine whether the software is indeed a correct
implementation. Thus, the derived behavior can be used to determine whether the software meets
security requirements if they have been specified in behavioral terms.

6.3.1 The CSA Approach

While analysts have often characterized many security attributes as “non-functional” properties of
programs, it turns out that they are in fact fully functional and thereby subject to FX-based auto-
mated analysis. Complete definitions of the required behavior of security attributes of interest can
be created based solely on data and transformations of data. These definitions can then be used to
analyze the security properties of programs. Thus, as illustrated in Figure 6-1, computational se-
curity attribute (CSA) analysis consists of three steps:

Function
Extractor

Behavior
Catalog

Required
Security
Attribute
Behavior

CSA
Analyzer

Security property
satisfied (or not)

Input
Program

Calculate
Program
Behavior

Define
required
security
behavior

Compare
program
behavior

to
required
security
behavior

CSA Analysis

Function
Extractor

Behavior
Catalog

Required
Security
Attribute
Behavior

CSA
Analyzer

Security property
satisfied (or not)

Input
Program

Calculate
Program
Behavior

Define
required
security
behavior

Compare
program
behavior

to
required
security
behavior

CSA Analysis

Figure 6-1: The CSA Approach

42 | CMU/SEI-2007-TR-006

• Define required security behavior. Specify security attributes in terms of required behavior
during execution expressed in terms of data and transformations of data.

• Calculate program behavior. Apply function extraction to create a behavior catalog that
specifies the complete “as built” functional behavior of the code.

• Compare program behavior to required security behavior. Compare the computed be-
havior catalog with required security attribute behavior to verify whether it is correct.

The security attributes investigated in this research are availability, authentication, authorization,
confidentiality, integrity, non-repudiation, and privacy. It turns out that the behavioral require-
ments for each of these attributes can be completely described in terms of data items and con-
straints on their processing. The processing can be expressed, for example, as logical or quantified
expressions or even conditional concurrent assignments, which can be mechanically checked
against the calculated behavior of the software of interest for conformance or non-conformance
with security attribute requirements. The details of CSA application to analysis of each of these
attributes are described in the SEI technical report that was generated as part of the research (see
Publications below). An introduction to CSA is provided here.

6.3.2 Use of a Trusted Mechanism

Each security attribute requires the use of one or more trusted mechanisms that are implemented
in software components. FX technology can be used to certify a mechanism as trusted. A behavior
catalog for a mechanism can be generated to describe all cases of behavior in terms of its data and
the transformations it carries out on that data. The behavior catalog can then be analyzed in terms
of control data and evidence data to ensure the following:

• The trusted mechanism sets the values of control data, which indicates whether the mecha-
nism executed correctly.

• If control data indicates that the mechanism executed correctly, there exists evidence data to
show that the data transformation was performed in a manner that satisfies the defined secu-
rity specification.

Note that the implementation of a security attribute may include a trusted third party to acquire,
authenticate, and adjudicate evidence of transactions. However, for the purposes of behavior spe-
cification of security attributes, the specific mechanism and actors are not relevant. All that is
needed is a precise specification of the data and the transformations of the data and any con-
straints concerning those transformations.

6.3.3 Trusted Data Transmission

As illustrated in Figure 6-2, the requirements for trusted data transmission are as follows:

• A trusted data transmission mechanism is used for all data transmissions. If the mechanism is
not available or the mechanism fails, the requirement fails.

• No mechanism outside this trusted data transmission mechanism sets the value of the control
data that indicates whether the data transmission mechanism executed correctly.

 SOFTWARE ENGINEERING INSTITUTE | 43

The process for determining whether data transmission security properties are satisfied by the data
transmission components of a system consists of the application of the CSA analysis process illus-
trated in Figure 6-1, where the input is the data transmission components of the system and the
output is a determination of whether the data transmission security requirements have been satis-
fied. Similarly, the process for determining whether the remainder of the system can modify the
control data set by the data transmission components consists of application of the CSA analysis
process, where the input to the process is the software for the entire system and the output is a
determination of whether the control data set by the data transmission components can be modi-
fied by any other part of the system.

CSA Analysis:
data transmission

security

CSA Analysis:
data transmission

security

Data
Transmission
mechanism

Data
Transmission
mechanism

security
property

satisfied?

CSA Analysis:
no modification

of data transmission
control data

CSA Analysis:
no modification

of data transmission
control data

Remainder
of the

System

Remainder
of the

System

security
property

satisfied?

both
properties
satisfied?

No. Data
transmission
is not trusted.

Yes. Data
transmission

is trusted.

CSA Analysis:
data transmission

security

CSA Analysis:
data transmission

security

Data
Transmission
mechanism

Data
Transmission
mechanism

security
property

satisfied?

CSA Analysis:
no modification

of data transmission
control data

CSA Analysis:
no modification

of data transmission
control data

Remainder
of the

System

Remainder
of the

System

security
property

satisfied?

both
properties
satisfied?

No. Data
transmission
is not trusted.

Yes. Data
transmission

is trusted.

Figure 6-2: Requirements for Trusted Data Transmission

To verify that a data transmission mechanism is trusted, it is necessary to verify the data that pro-
vides the evidence related to data transmission. For example, the specification for the data that
provides evidence of valid data transmission may describe the mechanism by which each data
message output incorporates a shared (between sender and receiver) data item that can be used to
verify that the transformation worked correctly. Assignments to this shared data must not be re-
versible (i.e., guaranteed encryption.) As another example, suppose the FX behavior catalogs for
all of the code have been examined to verify that all data transmissions in the system occur as a
result of calls to function YYY. To verify the necessary security properties for data transmission,
it is necessary to examine function YYY’s behavior catalog to determine the net effect of the data
transformations related to any conditions for which invalid data transmission could occur.

6.3.4 The Authentication Security Attribute

If the authentication security attribute is satisfied, the system will allow the requested program to
be executed only if the user has previously been determined to be a trusted user. To verify authen-

44 | CMU/SEI-2007-TR-006

tication, one must examine the net effects on the control data related to authentication: verify the
data that provides evidence that the binding took place, and verify that this evidence data was not
changed before completion of any operation that required authentication. As illustrated in Figure
6-3, the requirements for authentication are as follows:

• A trusted data transmission mechanism is always used for every data transmission.

• A trusted identification mechanism is always used to provide proof of a user’s identification.
Note that the “user” to be identified may be a person, a process, a program, or other entity.

• A trusted binding mechanism is always used to bind user data (user identification, password,
or other information to confirm the identification, and the system information that provides
the proof of the identification) to an execution environment.

• No other mechanism outside the trusted mechanisms sets the value of any of the control data
that indicates whether each of the trusted mechanisms executed correctly and that indicates
the status of the bound data.

• If any of the above requirements or mechanisms fails, authentication fails.

Trusted data
transmission
mechanism

Trusted data
transmission
mechanism

Trusted user
identification
mechanism

Trusted user
identification
mechanism

Trusted user
binding

mechanism

Trusted user
binding

mechanism

control data
(modified only by the
trusted components)

Authentication property is satisfied

Trusted data
transmission
mechanism

Trusted data
transmission
mechanism

Trusted user
identification
mechanism

Trusted user
identification
mechanism

Trusted user
binding

mechanism

Trusted user
binding

mechanism

control data
(modified only by the
trusted components)

Authentication property is satisfied

Figure 6-3: Requirements for Authentication Property

The mechanism for using CSA to determine whether the data transmission is trusted was dis-
cussed earlier. The analysis of the user identification mechanism and the user binding mechanism
applies the CSA approach by proceeding along the same lines to determine whether each of these
mechanisms is trusted.

6.3.5 Other Security Attributes

The requirements for the authorization security attribute build on the requirements for trusted data
transmission and trusted authentication as follows:

• A trusted authentication mechanism is always used to authenticate the user. Note that this
requirement includes a requirement for trusted data transmission and authentication.

• A trusted lookup mechanism is always used to determine that the user has the right to com-
plete the specified request.

 SOFTWARE ENGINEERING INSTITUTE | 45

• No other mechanism outside the trusted mechanisms sets the value of any of the control data
that indicates whether each of the trusted mechanisms executed correctly and that identifies
the authorized user and the scope of the authorization.

• If any of the above requirements or mechanisms fails, authentication fails.

Similarly, the requirements for non-repudiation build on the requirements for trusted data trans-
mission, trusted authentication, and trusted authorization. For the purposes of this discussion we
treat data change as a special case of data transmission, where receipt of the data transmission
includes making and logging the requested change to the dataset. To verify non-repudiation one
must examine the net effects on the control data related to non-repudiation.

The requirements for the other traditional security attributes build on the requirements for trusted
mechanisms for data transmission, authentication, authorization, and non-repudiation. The CSA
analysis for each of the requirements is performed in a manner similar to the analysis of require-
ments for authentication. Details are provided in the technical report.

6.3.6 A Miniature Illustration of CSA Using an FX System

Consider the screen image of a behavior catalog, generated by the Function Extraction for Mali-
cious Code (FX/MC) prototype, as shown in Figure 6-4. This system is under development by the
SEI’s CERT STAR*Lab to compute the behavior of malicious code expressed in the Intel assem-
bly language. FX/MC produces catalogs that represent the net behavior of programs in terms of
disjoint conditional concurrent assignment statements. That is, each case of behavior is expressed
by a condition and a set of non-procedural assignments that define the final values of registers,
flags, and memory locations on exit from an assembly language program.

This notional example illustrates application of the CSA approach to determine whether a security
requirement is satisfied. Suppose that the specification of requirements for a security attribute in-
cludes a constraint that the value of the second argument to each call to function XXX must not
be equal to 4. A constraint such as this, expressed in terms of concrete data operations and values,
could be part of the requirements specification for any of the security attributes discussed above.

46 | CMU/SEI-2007-TR-006

A

B

A

B

Figure 6-4: The Behavior Catalog Computed by the FX/MC Prototype

Imagine that the catalog of Figure 6-4 defines the behavior of a fragment of code that executes
immediately before the program calls function XXX with the second argument equal to the value
stored in register EAX. The computed behavior highlighted as section A is the behavior with re-
spect to register values for the condition ?(1 & EAX) == 0). This condition means “if the value of
register EAX at the beginning of this fragment of code is even.” As shown on the figure, if this
condition is true, the value of register EAX after executing this fragment of code is equal to the
initial value of register ECX, and therefore the value of the second argument to function XXX
will be the initial value of register ECX. In contrast, the computed behavior highlighted as section
B is the behavior with respect to register values for the condition ?(1 & EAX) != 0). This condi-
tion means “if the initial value of register EAX is odd.” As shown on the figure, if this condition
is true, the value of register EAX is unchanged and therefore the value of the second argument to
function XXX will be the initial value of register EAX. Thus, the security constraint is not satis-
fied because, under either of these conditions, it is not possible to certify that the value of the sec-
ond argument will never be equal to 4.

Note that, using FX technology, this analysis can take place in seconds through computational
automation, thereby eliminating the need to study and understand the code by manual means.

6.4 COLLABORATIONS

The SEI team for this project was composed of Gwendolyn Walton, Thomas Longstaff, and Rick
Linger. Several other researchers in the CERT Survivable Systems Engineering group provided
valuable insights throughout the project: Tim Daly, Sven Dietrich, Howard Lipson, Nancy Mead,
Mark Pleszkoch, and Stacy Prowell.

 SOFTWARE ENGINEERING INSTITUTE | 47

6.5 EVALUATION CRITERIA

The objective of the CSA IRAD study was to perform a feasibility study to determine the extent
to which a new theory-based technology can be developed to permit security attributes to be eva-
luated through automatable analysis of the functional behavior of the software. That objective has
been achieved, as discussed briefly below and in more detail in the SEI technical report that re-
sulted from the research. The next step in CSA development is to create engineering examples
and prototype tools to support demonstrations of this method for analysis and verification of secu-
rity attributes.

6.6 RESULTS

This research resulted in the definition of a new analysis and verification method that can replace
the historical definition of security attributes as subjective, high-level statements with computa-
tionally rigorous specifications. The new CSA technology has the potential to transform security
attribute analysis and verification. One surprising result was the demonstration that all traditional
security attributes are fundamentally based on a small number of behavioral assumptions. This
result implies that, to meet security requirements, these fundamental behaviors must first be met
in code. Thus, for example, it is not possible to add, say, a confidentiality capability to a network
system without addressing the fundamental behavioral property of trusted data transmission and
all that follows.

6.7 PUBLICATIONS

Walton, Gwendolyn H.; Longstaff, Thomas A.; & Linger, Richard C. Technology Foundations for
Computational Evaluation of Software Security Attributes (CMU/SEI-2006-TR-021). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tr021.html

48 | CMU/SEI-2007-TR-006

http://www.sei.cmu.edu/publications/documents/06.reports/06tr021.html

7 Toward Interoperable Acquisition: The Example of Risk
Management

B. Craig Meyers, Christopher J. Alberts, Eileen C. Forrester, Suzanne M. Garcia,
D. Michael Phillips, Carol A. Sledge, James D. Smith II

7.1 PURPOSE

The purpose of this IRAD was to investigate the problem of interoperable acquisition using risk
management as an example. The term interoperable acquisition is defined as

the set of practices that enables acquisition, development, and operational organizations
to more effectively collaborate to field interoperable systems of systems. This is achieved
through sharing of relevant information and performing acquisition-related activities that
enable the collective behavior of these organizations to successfully deliver systems of
systems capabilities.

Risk management is an example of a typical acquisition practice. We also make the following
definition:

Interoperable risk management is the subset of interoperable acquisition practices that
enables the acquisition, development, and operational organizations to identify and share
the information that is needed to understand and mitigate risks that are inherent in a sys-
tem-of-systems context.

There is an increased emphasis within and outside the DoD on network-centric operations based
on concepts of information sharing through distributed sensor fusion, collaboration of virtual or-
ganizations, and exploitation of power at the edge of an organization. We would argue that these
very same principles apply to the acquisition, development, fielding, and sustainment of opera-
tional systems. We see the concepts explored in this IRAD as being foundational to any attempt at
moving the network-centric perspective to the acquisition community.

7.2 BACKGROUND

The acquisition system within DoD has often been described using the term stove-pipe, reflecting
a system-centric perspective. This is intended to reflect that acquisitions are principally focused
on a particular system. This system focus appears in statutes (e.g., Title 10), regulations (e.g., Fed-
eral Acquisition Regulations (FARs), and DoD regulations (notably DoDD 5000.1 and DoDI
5000.2).

 SOFTWARE ENGINEERING INSTITUTE | 49

The term interoperability is traditionally interpreted in an operational sense (“Can we plug the
machines together?”). In a previous IRAD project we broadened this concept to include other as-
pects. For example, we use the term programmatic interoperability to mean interoperability be-
tween functions related to program management. Programmatic interoperability is but one impor-
tant facet of interoperable acquisition. The system-centric approach common within DoD is at
odds with the approaches needed to achieve interoperable acquisition [Levine 2003, Morris 2004].
A traditional system-centric approach can lead to predictable problems when applied in the con-
text of acquisition related to a system of systems. The realities of a system of systems necessitate
changes in the processes used to acquire, develop, field, and sustain operational capabilities.

7.3 APPROACH

The approach in this research was to develop an understanding of the main concepts that play a
role in interoperable acquisition. These are shown in Figure 7-1.

Acquisition Entities
(Management,

Construction, or
Operation of a

System)

Management
Processes

Interoperability

System
Construction

System of
Systems

Risk
Management

Acquisition

Figure 7-1: Concepts for Interoperable Acquisition

The entities that participate in acquisition are divided into three broad classes, namely, manage-
ment, construction, and operation. These terms indicate roles to emphasize that successful inter-
operable acquisition depends on the practices and collaboration of these roles. The rationale for
partitioning an acquisition in terms of these entities results from a previous SEI System of Systems
Interoperability (SOSI) IRAD effort [Levine 2003, Morris 2004].

Given an understanding of the relevant concepts, the approach followed included

• gaining a fuller understanding of key topics, namely, acquisition, process, and risk manage-
ment in the context of interoperable acquisition

• assessing the identified topics with regard to

− identifying weaknesses that inhibit the goal of interoperable acquisition
− identifying possible opportunities to improve practices within a chosen topic

50 | CMU/SEI-2007-TR-006

7.4 COLLABORATIONS

The collaborators involved in our team included the following SEI members of the technical staff:

• Christopher J. Alberts

• Eileen C. Forrester

• Suzanne M. Garcia

• B. Craig Meyers (Lead)

• D. Michael Phillips

• Carol A. Sledge

• James D. Smith II

The external collaborators, who provided their own support, who also contributed to this work
include

• Lynn Penn, Lockheed Martin

• Cathy Ricketts, PEO-IWS

7.5 EVALUATION CRITERIA

At the outset of this project we set forth the following success criteria:

• Does this work clearly identify the impediments to multi-program acquisition for interoper-
able systems-of-systems? The technical note Interoperable Acquisition for Systems of Sys-
tems: The Challenges responds to this criterion [Smith 2006].

• Does this work identify a comprehensive framework for multi-program acquisition such that
interoperability can be achieved? The principles and elements of a framework for interoper-
able acquisition are discussed from a process perspective in the technical note Process Con-
siderations for Interoperable Acquisition [Garcia 2006], which are then considered for sche-
dules in the technical note Schedule Considerations for Interoperable Acquisition [Meyers
2006b].

• Can such a framework be provided for the case of risk management? Issues related to risk
management are addressed in the technical note Risk Management Considerations for Inter-
operable Acquisition [Meyers 2006a].

• Does this IRAD clearly identify an area of future work for the SEI? During the final outbrief
of this work, a number of possible follow-on activities were identified and discussed with
SEI management. These are identified in the following section.

7.6 RESULTS

The results of this IRAD are organized around the key topics that framed the research conducted.
Each is discussed below.

 SOFTWARE ENGINEERING INSTITUTE | 51

Challenges

With regard to identification of challenges, the following findings are noted [Smith 2006]:

There are a number of key obstacles to achieving interoperable acquisition. These include

• a failure to understand how the relations between various aspects of interoperability (e.g.,
programmatic, constructive, and operational) influence acquisition in a system-of-systems
context

• not understanding the importance of sharing relevant information in performing acquisition-
related activities to enable collective behavior to successfully deliver system-of-systems in-
teroperability

• “system-centric” versus “system-of-systems” thinking in all aspects of acquisition, develop-
ment, fielding, sustainment, and operation

• the inappropriate use of centralized management with hierarchical organizational structures

The above findings are based on the experience of team members in working with acquisition
programs, as well as several years of working on various aspects of systems of systems.

Risk Management

With regard to risk management, the following findings are noted [Meyers 2006a]:

• The current specifications related to risk management are ineffective to meet the needs of
interoperable risk management.

This finding is supported by an assessment of several current documents often cited by risk
management practitioners. In particular, we found that there is not a common vocabulary that
is specified sufficiently to achieve interoperability in the acquisition process. For example,
the term probability is often used in risk management, represented as either a qualitative
measure (e.g., high, medium, or low), or a quantitative measure. Yet the relation between
these measures is not required or specified in any standard we examined.

Of greater concern is that the documents examined do not include a specification of the be-
haviors expected to be performed by various entities to achieve interoperability in the risk
management process. For example, if multiple organizations are engaged in acquisition and
have agreed to collaboratively perform risk management, what behaviors are expected? If an
organization identifies a new risk or develops a risk mitigation plan for an existing risk,
should this information be shared with other organizations? And what depth of information
needs to be shared? We acknowledge the difficulty of specifying trust-related behaviors such
as these within a standards framework; however, absence of guidance is a hindrance.

• The current methods used in risk management are insufficient to meet the needs of interop-
erable acquisition. This finding is based on the experience of our team members, although no
broad assessment was performed.

• Fundamental risk management is also inadequately practiced, even though standards and
other guidance exist. This finding is also based on the experience of the team.

52 | CMU/SEI-2007-TR-006

Possible follow-on work related to risk management includes the following:

• Identify the requirements needed for a risk management standard that addresses interoper-
able acquisition and work with the community to obtain consensus for such a standard.

• Identify and assess the methods currently being used in the practice of risk management by
industry high-performing organizations.

• Continue to evolve the state of the art related to interoperable risk management techniques.

• Develop a strategy to increase risk management capability within the acquisition commu-
nity—for both fundamental and interoperable applications.

Process

With regard to process, the following findings are noted [Garcia 2006]:

• The guidance in process reference models (e.g., the SEI CMMI framework [Chrissis 2003]
and the preliminary report for CMMI-ACQ [Dodson 2006]) that is currently available could
provide needed process support for interoperable acquisition, but it does not.

This finding is based on an analysis of [Dodson 2006]. The document was examined for lan-
guage in both the normative and informative elements that would support concepts of inter-
operable acquisition. The current draft of CMMI-ACQ steps back from CMMI-DEV in some
ways that could provide useful support for interoperable acquisition (e.g., not dealing with
any IPPD content). Throughout CMMI models, the practices for data management are not
adequate to support interoperable acquisition. Further details on this analysis are provided in
[Garcia 2006].

• The current practice of acquisition process management, based on the team’s experience
(supported by reports from outside the SEI such as the recent Defense Acquisition Perform-
ance Assessment (DAPA) report [Kadish 2006]), is insufficient to support interoperable ac-
quisition.

This finding is based on the experience of team members and is amply supported by work
outside the SEI, notably the recent DAPA report [Kadish 2006].

Possible follow-on work in regard to improving processes used to support interoperable acquisi-
tion includes the following:

• Develop an interpretive guide for using CMMI-DEV and the proposed CMMI-ACQ in an
interoperable acquisition context.

• Consider addition of a Generic Practice for data management, at least to CMMI-ACQ if not
CMMI-DEV as well.

• Participate in and contribute to work that has started exploring multi-organizational maturity
models and multi-organization process improvement.

• Provide stronger support mechanisms within the acquisition community for the use of exist-
ing integrated product and process development practice.

• Identify ways to deconflict the contrasting goals and rewards of system-centric and acquisi-
tion in a system-of-systems context.

 SOFTWARE ENGINEERING INSTITUTE | 53

Schedule

Concerns about schedule are paramount in the acquisition of a system and are amplified in a sys-
tem of systems context [Smith 2006]. We examined the role of schedule in terms of interoperable
acquisition from the perspective of a Gedanken red team5 [Meyers 2006b]. That is, given infor-
mation typical of a schedule, what are the questions that might be expected to be posed by a re
team? Many questions were developed in the following areas: basic information, organization and
dependencies, shared information, approval, risks, and dealing with change.

d

The general conclusion from this experiment was that a schedule is a window into a program.
That is, discussion of schedule can vary far and wide. There is information expected to be pro-
vided concerning a schedule; however, that information is often oriented toward a schedule for a
particular system.6 Of relevance to an interoperable acquisition, there is additional information
that one would like, such as

• information relevant to a milestone, such as exit criteria of any product expected to be pro-
vided at a specified milestone

• estimate of variance of a milestone

• confidence of any schedule estimates

• sharing of risk data that could have an impact on schedule

• expected behaviors regarding sharing of schedule information

• approval status of a milestone and the role of collaborative decision making in that process

• status of supplementary information associated with a schedule7

The examination of schedule considerations supports our finding regarding the lack of sufficient
specification and practice to provide the necessary support to interoperable acquisition cited ear-
lier. This is further illustrated by the connection between schedule and risk management consid-
erations. One would expect that there should indeed be such a connection; in particular, the data
that needs to be shared and the expected behaviors of participants need to be identified—and ad-
hered to—to gain broader success.

Possible follow-on work in this area would include identification of the data related to schedule
that needs to be shared. More importantly, concern must be given to the expected behaviors of
participants that constitute the subject of schedule management in a system of systems environ-
ment.

5 The term Gedanken red team refers to a thought experiment involving a red team. Originally used in the sense
of a Gedanken experiment in physics, it refers to an imagined scenario that is used to help gain an understand-
ing of the domain of the experiment. The methodology is a priori, as opposed to empirical.

6 We are speaking of the Data Item Description for an Integrated Master Schedule, DI-MGMT-86150, March 30,
2005.

7 The well-known DODI 5000.1 requires much information for certain types of milestones, such as certification of
Clinger-Cohen Act compliance, technology development strategy, market research, and independent cost esti-
mates. Such information is required according to statute (e.g., Title 10) and DoD regulations.

54 | CMU/SEI-2007-TR-006

7.7 PUBLICATIONS

The following documents have been created as a result of this effort:

• Garcia, Suzanne. M.; Forrester, Eileen; Alberts, Christopher. J.; & Meyers, B. Craig. Process
Considerations for Interoperable Acquisition. SEI technical note, forthcoming.

• Meyers, B. Craig. Risk Management Considerations for Interoperable Acquisition
(CMU/SEI-2006-TN-032). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2006. http://www.sei.cmu.edu/publications/documents/06.reports/06tn032.html

• Meyers, B. Craig, & Sledge, Carol A. Schedule Considerations for Interoperable Acquisition
(CMU/SEI-2006-TN-035). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2006. http://www.sei.cmu.edu/publications/documents/06.reports/06tn035.html

• Meyers, B. Craig & Smith, James D. II. Programmatic Interoperability (CMU/SEI-2007-
TN-012). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2007.8

• Smith, James D. II & Phillips, D. Michael. Interoperable Acquisition for Systems of Systems:
The Challenges (CMU/SEI-2006-TN-034). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn034.html

Several project members also conducted a mini-workshop with a customer regarding interoper-
able acquisition in the context of cost and budget estimates. Results of this work will appear in a
future publication.

7.8 SUMMARY

This IRAD effort has examined a number of topics we believe are critical to success for interop-
erable acquisition. Special concern was given to risk management, process, and schedule consid-
erations. Several barriers were identified that inhibit successful acquisition in a systems of sys-
tems environment. Proposed follow-on work could provide some of the enablers needed to
address particular barriers; however, there are important aspects of this problem that are outside
the scope of the SEI.

We close on a philosophical point related to one of our initial assertions that has been confirmed
by our experience on the IRAD project. The increased emphasis on network-centric operations is
critical for the acquisition community as well as the operational community. Toward that end, the
concept of relevance—desired, though yet to be realized—is that of network-centric acquisition.

8 This work was partially supported by the IRAD effort.

 SOFTWARE ENGINEERING INSTITUTE | 55

http://www.sei.cmu.edu/publications/documents/06.reports/06tn032.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn035.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn034.html

7.9 REFERENCES

[Chrissis 2003]
Chrissis, Mary Beth; Konrad, Mike; & Shrum, Sandy. CMMI: Guidelines for Process Integration
and Product Improvement, 2nd edition. Boston MA: Addison Wesley, 2003.

[Dodson 2006]
Dodson, Kathryn M.; Hofmann, Hubert F., Ramani, Gowri; Yedlin, Deborah K.; Fisher, Matthew
J.; & Kost, Keith. Adapting CMMI for Acquisition Organizations: A Preliminary Report
(CMU/SEI-2006-SR-005). Pittsburgh PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2006. http://www.sei.cmu.edu/publications/documents/06.reports/06sr005.html

[Garcia 2006]
Garcia, Suzanne M.; Forrester, Eileen C.; Alberts, Christopher J.; & Meyers, B. Craig. Process
Considerations for Interoperable Acquisition. SEI technical note, forthcoming.

[Kadish 2006]
Kadish, Ronald et al. Defense Acquisition Performance Report. Department of Defense. January
2006.

[Levine 2003]
Levine, Linda, Meyers, B,. Craig, Morris, Ed ; Place, Patrick R. H.; & Plakosh, Daniel. Proceed-
ings of the System of Systems interoperability Workshop (CMU/SEI-2003-TN-016, ADA416429).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports/03tn016.html

[Meyers 2006a]
Meyers, B. Craig. Risk Management Considerations for Interoperable Acquisition (CMU/SEI-
2006-TN-032). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2006. http://www.sei.cmu.edu/publications/documents/06.reports/06tn032.html

[Meyers 2006b]
Meyers, B. Craig, & Sledge, Carol A. Schedule Considerations for Interoperable Acquisition
(CMU/SEI-2006-TN-035). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2006. http://www.sei.cmu.edu/publications/documents/06.reports/06tn035.html

[Morris 2004]
Morris, Ed; Levine, Linda L; Meyers, B. Craig; Place, Patrick R. H; & Plakosh, Daniel. System of
Systems Interoperability (SOSI): Final Report (CMU/SEI-2004-TR-004, ADA455619). Pitts-
burgh PA: Software Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tr004.html

[Smith 2006]
Smith, James D. II & Phillips, D. Mike. Interoperable Acquisition for Systems of Systems: The
Challenges (CMU/SEI-2006-TN-034). Pittsburgh PA: Software Engineering Institute, Carnegie
Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn034.html

56 | CMU/SEI-2007-TR-006

http://www.sei.cmu.edu/publications/documents/06.reports/06sr005.html
http://www.sei.cmu.edu/publications/documents/03.reports/03tn016.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn032.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn035.html
http://www.sei.cmu.edu/publications/documents/04.reports/04tr004.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn034.html

8 An Attack Surface Metric

Pratyusa K. Manadhata, Jeannette Wing

8.1 PURPOSE

Measurement of security, both qualitatively and quantitatively, has been a long-standing challenge
to the research community and is of practical import to the software industry today [CRA 2003,
McGraw 2003, Vaughn 2003]. The software industry has responded to demands for improvement
in software security by increasing effort into creating “more secure” products and services. How
can industry determine whether this effort is paying off, and how can consumers determine
whether industry’s effort has made a difference? Our work is motivated by the question faced by
both industry and consumers today: How can we quantify a software system’s security?

We propose to use the measure of a system’s attack surface as an indication of the system’s secu-
rity. While it is very difficult to devise metrics that definitively measure the security of software,
prior work has shown that a system’s attack surface measurement serves as a reliable proxy for
security. Howard et al. have measured the attack surfaces of seven different versions of Windows
[Howard 2003], and we have measured the attack surfaces of four different versions of Linux
[Manadhata 2004]. The results of both the Linux and Windows measurements confirm perceived
beliefs about the relative security of the different versions. The measurement methods, however,
are based on intuition and are hard to replicate. Our current work is focused on defining a metric
to systematically measure a system’s attack surface.

We envision our attack surface metric to be useful to both industry and consumers. Software de-
signers and developers can use our attack surface metric as a tool in the software development
process; they can measure their system’s attack surface periodically during the software develop-
ment phase and compare the results with previous measurements. They should strive toward re-
ducing their system’s attack surface from one version to another to mitigate the security risk of
their system. Software consumers can also use our metric to compare and differentiate between
alternative and competing software systems. For example, system administrators can compare the
attack surface measurements of different available Web servers in choosing one for their organi-
zation.

8.2 APPROACH

Intuitively, a system’s attack surface is the set of ways in which an adversary can enter the system
and potentially cause damage. We know from the past that many attacks on a system, such as ex-
ploiting a buffer overflow, take place by sending data from the system’s operating environment
into the system. Similarly, many other attacks on a system, such as symlink attacks, take place
because the system sends data into its environment. In both these types of attacks, an attacker

 SOFTWARE ENGINEERING INSTITUTE | 57

connects to a system using the system’s channels (e.g., sockets), invokes the system’s methods
(e.g., API), and sends data items (e.g., input strings) into the system or receives data items from
the system. An attacker can also send data indirectly into a system by using data items that are
persistent. Specific examples of persistent data items are files, cookies, registry entries, and data-
base records. An attacker can send data into a system by writing to a file that the system later
reads. Similarly, an attacker can receive data indirectly from the system by using shared persistent
data items. Hence an attacker uses a system’s methods, channels, and data items present in the
system’s environment to attack the system. We collectively refer to a system’s methods, channels,
and data items as the system’s resources.

Given the above observation, a system’s attack surface is defined in terms of the system’s re-
sources. Not all resources, however, are part of the attack surface, and not all resources contribute
equally to the measure of a system’s attack surface. In order to measure a system’s attack surface,
we need to identify the relevant resources that are part of the system’s attack surface and deter-
mine the contribution of each such resource to the system’s attack surface. We have introduced a
formal entry point and exit point framework to identify the relevant resources that contribute to a
system’s attack surface; we also have introduced the informal notions of damage potential and
effort to estimate a resource’s contribution to a system’s attack surface [Manadhata 2005].

8.2.1 Attack Surface Definition

A system’s attack surface is the subset of resources that an attacker can use to attack the system.
An attacker attacks a system either by sending data into the system or by receiving data from the
system; hence any resource that the attacker can use either to send data into the system or to re-
ceive data from the system is part of the system’s attack surface. Intuitively, the more resources
available to an attacker, the more ways a system can be attacked, hence the more insecure it is.
We use the entry point and exit point framework to identify the resources that are part of a sys-
tem’s attack surface.

Entry Points

The methods of a system that receive data items from the system’s environment are the system’s
entry points. For example, a method that receives input from a user or a method that reads a con-
figuration file is an entry point. A method m of a system receives data items directly if either
(a) a user or a system in ’s environment invokes m and passes data items as input to , or (b)

 reads from a persistent data item, or (c) m invokes the API of a system in ’s environment
and receives data items as the result returned. A method receives data items indirectly if either
(a) a method of receives a data item d directly, and either passes as input to m or

 receives as result returned from m , or (b) a method of receives a data item indi-

rectly, and either passes as input to or receives as result returned from . A
method m of is a direct entry point if m receives data items directly, and is an indirect entry
point if m receives data items indirectly.

s

m

s m

m

m

m

s

d1m
d

s

s

2

1m
s1

m
2m
d

d

2m d m

58 | CMU/SEI-2007-TR-006

Exit Points

The methods of a system that send data items to the system’s environment are the system’s exit
points. For example, a method that writes into a log file is an exit point. A method of a system

 sends data items directly if either (a) a user or a system in ’s environment invokes and
receives data items as results return from , or (b) writes to a persistent data item, or (c)
invokes the API of a system in ’s environment and passes data items as input to the API. A me-
thod m sends data items indirectly if either (a) passes a data item as input to a method

and passes either directly or indirectly to s ’s environment, or (b) a method receives a

data item as result returned from m and passes either directly or indirectly to ’s en-
vironment. A method of is a direct exit point if sends data items directly, and is an indi-
rect exit point if sends data items indirectly.

m

2m

s s m

s

m m

m

m

1m
s

m

2

d

1m d

m

d m d
m s

Channels

An attacker uses a system’s channels to connect to the system and attack the system. Hence a sys-
tem’s channels act as another basis for attacks. Specific examples of channels are TCP/UDP sock-
ets and pipes.

Untrusted Data

An attacker uses persistent data items either to send data indirectly into the system or receive data
indirectly from the system. A system might read from a file after an attacker writes into the file.
Similarly, the attacker might read from a file after the system writes into the file. Hence the per-
sistent data items act as another basis for attacks on a system. An untrusted data item of a system

 is a persistent data item such that a direct entry point of reads from or a direct exit
point of writes into .
s d s d

s d

Attack Surface

By definition, the relevant resources that contribute to the attack surface are the set of entry points
and exit points, the set of channels, and the set of untrusted data items. Hence a system’s attack
surface is the triple 〈M , C, I 〉, where M is the set of entry points and exit points, is the set
of channels, and

C
I is the set of untrusted data items of the system.

8.2.2 Attack Surface Measurement

A naive way of measuring a system’s attack surface is to count the number of resources that con-
tribute to the attack surface. This naive method that gives equal weight to all resources is mislead-
ing, since all resources are not equally likely to be used by an attacker. For example, a method,

, running as root is more likely to be used in an attack than a method, , running as non-

root; hence ’s contribution to the attack surface is larger than ’s.
1m 2m

1m 2m

We estimate a resource’s contribution to a system’s attack surface as a damage potential-effort
ratio, where damage potential is the level of damage the attacker can cause to the system in using
the resource in an attack and effort is the effort the attacker spends to acquire the necessary access

 SOFTWARE ENGINEERING INSTITUTE | 59

rights in order to be able to use the resource in an attack. The higher the damage potential, the
higher the contribution; the higher the effort, the lower the contribution.

Damage Potential-Effort Ratio

We use informal means to estimate damage potential and effort in terms of the attributes of a re-
source. The estimates depend on the kind of the resource, i.e., method, channel, or data item.

An attacker gains the same privilege as a method by using a method in an attack. For example, the
attacker gains root privilege by exploiting a buffer overflow in a method running as root.
Hence we estimate a method’s damage potential in terms of the method’s privilege. The attacker
uses a system’s channels to connect to a system and send (receive) data to (from) a system. A
channel’s protocol imposes restrictions on the data exchange allowed using the channel, e.g., a
TCP socket allows raw bytes to be exchanged, whereas an RPC endpoint does not. Hence
we estimate a channel’s damage potential in terms of the channel’s protocol. The attacker uses
persistent data items to send (receive) data indirectly into (from) a system. A persistent data
item’s type imposes restrictions on the data exchange, e.g., a file can contain executable code,
whereas a registry entry cannot. Hence we estimate a data item’s damage potential in
terms of the data item’s type.

The attacker can use a resource in an attack if the attacker has the required access rights. The at-
tacker spends effort to acquire these access rights. Hence for the three kinds of resources, i.e., me-
thod, channel, and data, we estimate the effort the attacker needs to spend to use a resource in an
attack in terms of the resource’s access rights.

We assign numbers to the values of the attributes to compute a numeric damage potential-effort
ratio. We impose a total ordering among the attributes of the resources and assign numeric values
in accordance to the total ordering. For example, we assume a method running as root has a
higher damage potential than a method running as authenticated user; hence root > au-
thenticated user in the total ordering, and we assigned a higher number to root than au-
thenticated user. The exact choice of the numeric values is subjective and depends on a
system and its environment. We assign the numeric values based on our knowledge of the system
and its environment.

Attack Surface Measurement Method

We measure a system’s attack surface along three dimensions by estimating the total contribution
of the methods, the total contribution of the channels, and the total contribution of the data items
to the system’s attack surface.

1. Given a system s and its environment, we identify a set, M , of entry points and exit points,
a set, C , of channels, and a set, I , of untrusted data items of s .

2. We estimate the damage potential-effort ratio, ()mder m , of each method m M∈ , the dam-

age potential-effort ratio, ()cder c , of each channel c C∈ , and the damage potential-effort

ratio, ()dder d , of each data item d I∈ .

60 | CMU/SEI-2007-TR-006

3. The measure of s ’s attack surface is the triple

We have demonstrated the use of our attack surface metric by measuring the attack surfaces of
two open source IMAP servers: Cyrus 2.2.10 and Courier-IMAP 4.0.1.

8.2.3 Current Status

A key challenge in security metric research lies in devising appropriate techniques for validating a
security metric. Our current work is focused on developing both formal and empirical validation
techniques for our attack surface metric. Using I/O automata [Lynch 1989], we have formally es-
tablished a relation between a system’s attack surface and the number of executions allowed by
the system that an adversary can use to attack the system; we have shown that if a system, A, has
a larger attack surface compared to a system, B, then A allows a larger number of such executions
compared to B. We are also exploring three different empirical validation techniques. First, we
plan to establish a correlation between a system’s attack surface and the number of vulnerability
bulletins released for the system; if a system, A, has a larger attack surface compared to a system,
B, then we expect to see a larger number of bulletins for A compared to B. In collaboration with
the Idaho National Laboratory (INL), we have measured the attack surfaces of two open source
FTP servers: ProFTP 1.2.10 and Wu-FTP 2.6.2. We have also counted the number of times these
two FTP servers are mentioned in CERT bulletins, MITRE CVEs, and the Bugtraq vulnerabilities
database. The vulnerability bulletin counts are as expected; Wu-FTP has a larger attack surface
compared to ProFTP, and the number of bulletins for Wu-FTP is more than the number of bulle-
tins for ProFTP [Manadhata 2006]. Second, we are using machine learning techniques to show
that the six attributes (method privilege and access rights, channel protocol and access rights, and
data item type and access rights) used in our measurement method are good indicators of a re-
source’s damage potential and effort. Third, we are analyzing the data collected from honeypots
to establish a correlation between a system’s attack surface and the number of observed attacks on
the system.

8.3 RELATED WORK

Prior research on measurement of security has largely taken an attacker-centric approach, i.e.,
relying on the knowledge of the attacker’s capabilities and resources in order to assess a system’s
security. In contrast, we take a system-centric approach. We measure a system’s attack surface in
terms of the system’s inherent attributes without making any assumptions about the attacker’s
capabilities or resources.

Alves-Foss et al. [Alves-Foss 1995] use the System Vulnerability Index (SVI)—obtained by eva-
luating factors such as system characteristics, potentially neglectful acts, and potentially malevo-
lent acts—as a measure of a system’s vulnerability. The problem with the approach is that we
might not be able to quantify the factors that determine a system’s SVI. For example, all the
“physical security vulnerabilities” of a system are not known and hence cannot be estimated.

 SOFTWARE ENGINEERING INSTITUTE | 61

Littlewood et al. [Littlewood 1993] measure the operational security of a system by quantitatively
estimating the intuitive notion of “the system’s ability to resist attacks.” Our attack surface metric
quantitatively estimates the notion of “a system’s attractiveness to an attacker” based on the sys-
tem’s design and operating environment.

Voas et al. [Voas 1996] propose the minimum-time-to-intrusion (MTTI) metric based on the pre-
dicted period of time before any simulated intrusion can take place. Similar to our attack surface
metric, the MTTI metric is a relative metric that allows the users to compare different versions of
the same system. MTTI, however, is computed using fault injection, and the MTTI value depends
on the threat classes being simulated. In contrast, our attack surface metric does not depend on
any particular threat class.

Ortalo et al. [Ortalo 1999] model a system’s known vulnerabilities as a privilege graph [Dacier
1994] and combine simple assumptions about the attacker’s behavior with the privilege graphs to
obtain the attack state graphs. They analyze the attack state graphs using Markov techniques to
obtain probabilistic measures of operational security. Our attack surface metric does not rely on
the knowledge of either the vulnerabilities present in the system or the attacker’s behavior. For
example, Ortalo et al. assign a weight to each arc in the privilege graph corresponding to the effort
needed for the attacker to perform the privilege transfer corresponding to the arc. The weight as-
signed depends on factors such as available attack tools, time needed to perform the attack, and
computing power available to the attacker. In contrast, we estimate the effort spent by an attacker
to use a resource in terms of the resource’s access rights.

Schneier [Schneier 1999] uses attack trees to model the different ways in which a system can be
attacked. Given an attacker goal, Schneier constructs an attack tree to identify the different ways
in which the goal can be satisfied and to determine the cost to the attacker in satisfying the goal.
Construction of an attack tree requires the knowledge of the system vulnerabilities, as well as the
knowledge of the attacker’s behavior. Our attack surface metric does not rely on the knowledge of
either the vulnerabilities present in the system or the attacker’s behavior.

8.4 COLLABORATIONS

Clyde Chittister was the SEI MTS involved in this project. We also collaborated with Mark A.
Flynn and Miles A. McQueen of INL; the INL researchers provided their own support. We also
had many fruitful discussions with Mike Howard and Jon Pincus of Microsoft.

8.5 EVALUATION CRITERIA

We have established the following success criteria for our project:

• developing a formal framework for systematically measuring a system’s attack surface,

• devising appropriate validation techniques for attack surface measurement, and

• demonstrating the suitability of our measurement method by measuring the attack surfaces of
real-world systems.

62 | CMU/SEI-2007-TR-006

8.6 RESULTS

We summarize the significant results of our project in the following paragraphs.

• We have introduced the formal entry point and exit point framework to identify the resources
that contribute to a system’s attack surface. We also have introduced the informal notions of
damage potential and effort to estimate a resource’s contribution to a system’s attack surface.
We have outlined a method to measure a system’s attack surface.

• We have demonstrated our method by measuring the attack surfaces of two open source
IMAP servers and two open source FTP servers.

• We have formally established a relationship between a system’s attack surface and the num-
ber of possible attacks on the system. We are also exploring three empirical techniques for
validating a system’s attack surface measurement.

8.7 PUBLICATIONS AND PRESENTATIONS

8.7.1 Publications

Manadhata, P. K. & Wing, J. M. “An Attack Surface Metric.” First Workshop on Security Met-
rics, Vancouver, BC, August 2006.

Manadhata, P. K.; Wing, J. M.; Flynn, M. A.; & McQueen, M. A. “Measuring the Attack Surfaces
of Two FTP Daemons.” Second Workshop on Quality of Protection, Alexandria, VA, October
2006.

8.7.2 Presentations

Wing, J. M. “Attack Surface Measurement.” CMU CyLab Partners Conference, Pittsburgh, PA,
April 2006.

Manadhata, P. K. “An Attack Surface Metric.” ARO CyLab Research Program Review, Pitts-
burgh, PA, May 2006.

Manadhata, P. K. “An Attack Surface Metric.” First Workshop on Security Metrics, Vancouver,
BC, August 2006.

8.8 REFERENCES

[Alves-Foss 1995]
Alves-Foss, J. & Barbosa, S. “Assessing Computer Security Vulnerability.” ACM SIGOPS Oper-
ating Systems Review 29, 3 (1995): 3–13.

 SOFTWARE ENGINEERING INSTITUTE | 63

[CRA 2003]
Computing Research Association. CRA Conference on “Grand Research Challenges in Informa-
tion Security Assurance.” Warrenton, VA, November 2003.
http://www.cra.org/Activities/grand.challenges/security/home.html

[Dacier 1994]
Dacier, M. & Deswarte, Y. “Privilege Graph: An Extension to the Typed Access Matrix Model,”
317–334. Proceedings of the European Symposium on Research in Computer Security, 1994. Ber-
lin, Germany: Springer-Verlag LNCS 875, 1994 (ISBN 3-540-58618-0).

[Howard 2003]
Howard, M.; Pincus, J.; & Wing, J. M. “Measuring Relative Attack Surfaces.” Proceedings of the
International Workshop on Advanced Developments in Software and Systems Security. Taipei,
Taiwan, December 5–7, 2003.

[Littlewood 1993]
Littlewood, B.; Brocklehurst, S.; Fenton, N.; Mellor, P.; Page, S.; Wright, D.; Dobson, J.;
McDermid, J.; & Gollman, D. “Towards Operational Measures of Computer Security.” Journal of
Computer Security 2, 2/3 (1993): 211–230.

[Lynch 1989]
Lynch. N. & Tuttle, M. “An Introduction to Input/Output Automata.” CWI-Quarterly 2, 3 (Sep-
tember 1989): 219–246.

[Manadhata 2004]
Manadhata, P. & Wing, J. M. “Measuring a System’s Attack Surface.” In technical report CMU-
CS-04-102. Pittsburgh, PA: Carnegie Mellon University, 2004.

[Manadhata 2005]
Manadhata, P. & Wing, J. M. “An Attack Surface Metric.” In technical report CMU-CS-05-155.
Pittsburgh, PA: Carnegie Mellon University, 2005.

[Manadhata 2006]
Manadhata, P.; Wing, J. M.; Flynn, M. A.; & McQueen, M. A. “Measuring the Attack Surfaces of
Two FTP Daemons.” Proceedings of the Second Quality of Protection Workshop. Alexandria,
VA, October 30, 2006. New York, NY: ACM Press, 2006 (ISBN 1-59593-553-3).

[McGraw 2003]
McGraw, G. “From the Ground Up: The DIMACS Software Security Workshop.” IEEE Security
and Privacy 1, 2 (Mar.-Apr. 2003): 59–66.

[Ortalo 1999]
Ortalo, R.; Deswarte, Y.; & Kaâniche, M. “Experimenting with Quantitative Evaluation Tools for
Monitoring Operational Security.” IEEE Transactions on Software Engineering 25, 5 (Sep./Oct.
1999): 633–650.

[Schneier 1999]
Schneier, B. “Attack Trees: Modeling Security Threats.” Dr. Dobb’s Journal, December 1999.

64 | CMU/SEI-2007-TR-006

http://www.cra.org/Activities/grand.challenges/security/home.html

[Vaughn 2003]
Vaughn, R. B.; Henning, R. R.; & Siraj, A. “Information Assurance Measures and Metrics - State
of Practice and Proposed Taxonomy.” Proceedings of the 36th Hawaii International Conference
on System Sciences (HICSS-36). Hawaii, January 6–9, 2003. New York, NY: IEEE Computer
Society Press, 2003 (ISBN 0-7695-1874-5).

[Voas 1996]
Voas, J.; Ghosh, A.; McGraw, G.; Charron, F.; & Miller, K. “Defining an Adaptive Software Se-
curity Metric from a Dynamic Software Failure Tolerance Measure,” 250–263. Proceedings of the
Eleventh Annual Conference on Computer Assurance. New York, NY: IEEE Computer Society
Press, 1996.

 SOFTWARE ENGINEERING INSTITUTE | 65

66 | CMU/SEI-2007-TR-006

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

July 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Results of SEI Independent Research and Development Projects

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Christopher J. Alberts, Bill Anderson, Len Bass, Matthew Bass, Philip Boxer, Lisa Brownsword, Sagar Chaki, Eileen C. Forrester, Suz-
anne M. Garcia, Peter H. Feiler, Dave Fisher, Aaron Greenhouse, Jorgen Hansson, Jim Herbsleb, James Ivers, Peter Lee, Richard C.
Linger, Thomas A. Longstaff, Pratyusa K. Manadhata, B. Craig Meyers, D. Michael Phillips, Carol A. Sledge, James D. Smith II, Kurt
Wallnau, Gwendolyn H. Walton, Jeannette Wing, Noam Zeilberger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2007-TR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-2007-006

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Each year, the Software Engineering Institute (SEI) undertakes several independent research and development (IRAD) projects. These
projects serve to (1) support feasibility studies investigating whether further work by the SEI would be of potential benefit and (2) sup-
port further exploratory work to determine whether there is sufficient value in eventually funding the feasibility study work as an SEI ini-
tiative. Projects are chosen based on their potential to mature and/or transition software engineering practices, develop information that
will help in deciding whether further work is worth funding, and set new directions for SEI work. This report describes the IRAD projects
that were conducted during fiscal year 2006 (October 2005 through September 2006).

14. SUBJECT TERMS
structural modeling, dynamic modeling, software acquisition, software-intensive systems, systems thinking,
risk analysis, software architecture, organizational change, plug-in, binaries, software component, proof-
carrying code, proofs, embedded system, real-time system, sensor networks, software security attributes,
function extraction, interoperable acquisition, risk management, attack surface, attack surface measurement

15. NUMBER OF PAGES
80

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Results of SEI Independent Research and Development Projects
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Using Structural and Dynamic Modeling to Support Acquisition, Development, and Sustainable Deployment of Software-Intensive Systems
	3 Understanding Organizational Risk in Architectural Design
	4 Certified Binaries for Software Components
	5 Technology for Managing Data and Data Quality in Distributed Embedded Real-Time Systems
	6 Technology Foundations for Computational Evaluation of Software Security Attributes
	7 Toward Interoperable Acquisition: The Example of Risk Management
	8 An Attack Surface Metric

