
Towards an Algebra for Security Policies
(Extended Abstract)

Jon Pincus1 and Jeannette M. Wing2

1 Microsoft Research,
One Microsoft Way, Redmond, WA 98052

jpincus@microsoft.com
2 Computer Science Department, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213
wing@cs.cmu.edu

1 Context

Clashing security policies leads to vulnerabilities. Violating security policies leads to
vulnerabilities. A system today operates in the context of a multitude of security poli-
cies, often one per application, one per process, one per user. The more security policies
that have to be simultaneously satisfied, the more likely the possibility of a clash or vi-
olation, and hence the more vulnerable our system is to attack. Moreover, over time a
system’s security policies will change. These changes occur at small-scale time steps,
e.g., using setuid to temporarily grant a process additional access rights; and at large-
scale time steps, e.g., when a user changes his browser’s security settings. We address
the challenge of determining when a system is in a consistent state in the presence of
diverse, numerous, and dynamic interacting security policies.

Formal specifications of these security policies let us pinpoint two potential prob-
lems: when security policies for different components are inconsistent and when a com-
ponent does not satisfy a given security policy. We present a simple algebra for com-
bining and changing security policies, and show how our algebraic operations can be
used to explain different real-life examples of security policy clashes and violations.

2 Model and Definitions

We model security policies as access rights matrices:

SP ⊆ P × O × R

where P is a set of principals, O is a set of typed objects, and R is a set of rights.
Principals include processes, users, applications, etc. Objects include files, directories,
registry keys, communication channels, etc. Rights are type-specific: for each type of
object, there are certain associated operations. For example, for a file, the operations
might be open, close, read, write, and execute; for a Web service, the operations might
be search, recommend, and purchase. Henceforth, when we say “security policy,” we
mean its underlying access rights matrix.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 17–25, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



18 J. Pincus and J.M. Wing

For a given security policy, sp, principal, p, and object, o, we write sp(p, o) to stand
for the set of rights in R that p has on o. Informally, this means that for an operation in
sp(p, o), p has the right to invoke that operation on o. Negative rights are represented
implicitly, by the absence of an explicit right in the security policy.

Definition 1. Two security policies, sp1 and sp2, clash iff sp1 �= sp2.

Definition 2. Given two security policies, sp1 and sp2, sp1 respects sp2 iff
∀p∀o . sp1(p, o) ⊆ sp2(p, o); otherwise, sp1 disrespects sp2.

Combining two security policies potentially introduces vulnerabilities. Whether there
is a vulnerability depends on the way in which the two security policies combine. Let
⊕ : SP ×SP → SP denote a combination operation on two security polices. There

is a potential vulnerability if sp1 ⊕ sp2 disrespects sp1 or sp1 ⊕ sp2 disrespects sp2.
Disrespecting security policies imply they clash.

3 An Algebra for Security Policies

Since security policies are ternary relations, i.e., sets of triples, we define combinations
of security policies in terms of operations on sets. In practice, in combining two security
policies we might require that we satisfy both (And); satisfy either (Or); or satisfy one
but not another (Minus). We might simply override (Trumps) the second by the first.

For the following combinations, we assume that the security policies are defined
over the same sets of P , O, and R.

spec SecurityPolicy
And : SP × SP → SP
Or : Sp × SP → SP
Minus : SP × SP → SP
Trumps : SP × SP → SP

sp1 And sp2 = sp1 ∩ sp2

sp1 Or sp2 = sp1 ∪ sp2

sp1 Minus sp2 = sp1 \ sp2

sp1 Trumps sp2 = sp1

end SecurityPolicy

Whereas And and Or are commutative, Trumps and Minus are not, as should be clear
from the equations above. The following facts follow from the definitions of respects,
And, and Trumps:

(sp1 And sp2) respects sp1

(sp1 And sp2) respects sp2

(sp1 Trumps sp2) respects sp1

When we use Or to combine two security policies, sp1 and sp2, the combination might
disrespect sp1 or disrespect sp2; similarly, when we use Trumps, the combination might
disrespect sp2.



Towards an Algebra for Security Policies 19

We also introduce a way for one principal to gain (Inherit) its rights from another, so
that Inherit(p1, p2) means p1 inherits rights from p2; and conversely, for one principal
to grant (Delegate) its rights to another. We include a revocation (Revoke) operator to
remove all rights associated with a given principal.

spec ChangeSP extends SecurityPolicy
Inherit : SP × P × P → SP
Delegate : SP × P × P → SP
Revoke : SP × P → SP

Inherit(sp, p1, p2) = sp ∪ {〈p, o, r〉|〈p1, o, r〉 ∈ sp ∧ p = p2}
Delegate(sp, p1, p2) = Inherit(sp, p2, p1)
Revoke(sp, p) = sp � (Prin(sp) \ {p})

end ChangeSP

where � is the domain restriction operator and Prin : SP → Set[P ] returns the set of
principals over which a given security policy is defined. Inherit (and similarly Delegate)
has the following compositional property:

Inherit(Inherit(sp, p2, p3), p1, p2) ⊇ Inherit(sp, p1, p3)
which informally says “If p2 inherits p3’s rights and then p1 inherits p2’s rights, then p1

inherits p3’s rights.”

4 Examples

We give a series of four examples. The first (Outlook and IE) illustrates an example
of two different components, each of which has their own security policy; when put
together, one security policy ”trumps” the other, causing a potential privacy violation
as well an surprising behavior to the user. The second (Run As) illustrates a use of in-
heriting rights that causes potential security vulnerabilities. The third (Google Desktop
Search) illustrates another use of inheritance. Finally, the fourth example (Netscape and
DNS) simply shows what can happen when an informally stated security policy is am-
biguous, leading to an implementation with a security vulnerability. We present the first
example in detail and give the gists of the problems for the other three. The first, third,
and fourth examples are also examples of composition flaws, when two independently
designed and implemented components are combined in a way that lead to unintended
interactions, which could lead to security vulnerabilities.

4.1 Outlook and IE

Many applications (e.g., email clients and browsers) have security settings that users
may modify. Each configuration of the settings represents a different security policy.

Let’s consider an example where we would like to block the display of embedded
graphics in our mail messages. Microsoft’s Outlook email client includes a setting “Don’t
Download Pictures” which lets the user specify this behavior. Microsoft’s Internet Ex-
plorer (IE) browser includes a similar setting “Show Pictures” which lets the user con-
trol the display of graphics embedded in any HTML document. Since Outlook uses IE’s
HTML rendering component, these two settings interact in the case of HTML email.



20 J. Pincus and J.M. Wing

Actual Behavior
The following table describes the actual behavior when reading and forwarding mes-

sages. There are four possibilities for how an image is displayed:

– display: Retrieve and display the image.
– red X: Display a small icon of a red X, with a textual comment saying “Right-

click here to download pictures. To help protect your privacy, Outlook prevented
automatic download of this picture from the Internet.”

– small graphic: Display a small “unknown graphic” icon, with the same textual
comment.

– sized graphic: Display a correctly-sized box with a small “unknown graphic” icon
(and no textual comment).

As will be discussed below, the behavior in italics is a vulnerability.

IE Show Pictures Outlook Don’t Download Pictures

False True
False Read: sized graphic Read: small graphic

Forward: sized graphic Forward: sized graphic
True Read: display Read: red X

Forward: display Forward: display

The Vulnerability and an Attack
From a security perspective, there are at least two reasons to disable graphics in email.
First, downloading the graphic transfers information back to the web site containing
the graphic; at a minimum, this kind of information disclosure confirms that the mail
was received and viewed, e.g., allowing spammers to confirm that an email address is
real. Second, disabling graphics is a Defense in Depth strategy that mitigates the risk
of unknown exploitable bugs, e.g., buffer overruns in image rendering code. Thus, the
counter-intuitive display of graphics while forwarding email is a vulnerability.

An attacker can exploit this vulnerability in a social engineering attack if he can
convince a user, Alice, to forward some email containing an image. For example,
consider the scenario where the attacker wants to validate whether an email address
Alice@bigco.com corresponds to a real user (perhaps in the context of a brute-
force generation of all email addresses for the domain bigco.com to discover which
are valid addresses to resell to spammers). If Alice has downloading of images disabled,
the straightforward attack of simply getting Alice to read the mail will fail. However, if
the attacker knows that bigco has an internal policy of forwarding all “phishing” email
to a central alias for followup, then the attacker simply sends an obviously fake “phish-
ing” email containing an embedded image to Alice@bigco.com. Alice can read the
email without any danger; but when she goes to forward it, because of the vulnerability,
the image is downloaded, and the attacker confirms that the address is valid.

A Fix
The vulnerability disappears if the behavior is as follows, where the only change, shown
in boldface, is to display a red X on mail forwarding instead of retrieving and displaying
the image.



Towards an Algebra for Security Policies 21

IE Show Pictures Outlook Don’t Download Pictures

False True
False Read: sized graphic Read: small graphic

Forward: sized graphic Forward: sized graphic
True Read: display Read: red X

Forward: display Forward: red X

Using our Security Policy Formalism
More formally, we can use our algebra for security policies to characterize the security
policy clash. Let viewread be the right associated with the operation that lets us view an
embedded graphic while reading a mail message; viewforward, while forwarding.

Security Policy for Outlook (SPOutlook): If the “Don’t Download Pictures” setting
is false (i.e., downloading pictures is ok), then all users can view embedded graphics
when both reading and forwarding mail messages. More precisely:

Download Pictures = true
⇔

∀p : user ∀o : embedded graphic
〈p, o, viewread〉 ∈ SPOutlook ∧ 〈p, o, viewforward〉 ∈ SPOutlook

(To avoid a double negative, we wrote above “Download Pictures = true” rather than
the more accurate “Don’t Download Pictures = false”.)

Security Policy for IE (SP IE): If the “Show Pictures” setting is true, then all users can
view embedded graphics when viewing HTML. This setting applies both when reading
and forwarding mail messages. More precisely:

Show Pictures = true
⇔

∀p : user ∀o : embedded graphic
〈p, o, viewread〉 ∈ SP IE ∧ 〈p, o, viewforward〉 ∈ SP IE

When Outlook is combined with IE, then the actual behavior differentiates between
the reading and forwarding cases:

Read: SP IE And SPOutlook

Forward: SP IE Trumps SPOutlook

When reading email, then the actual behavior reflects the conjunction of the security
policies associated with Outlook and IE; but when forwarding, then the actual behavior
reflects IE’s security policy, trumping Outlook’s. Thus, when forwarding, the combined
security policy disrespects the Outlook security policy:

(SPIE Trumps SPOutlook) disrespects SPOutlook

The fix reflects conjunction in both cases, regardless of whether we are reading or
forwarding email:



22 J. Pincus and J.M. Wing

Read: SPIE And SPOutlook

Forward: SPIE And SPOutlook

By properties of And (Section 3), we know that the combined security policies respect
both of the individual ones.

Note that the original combination of security policies led not only to a security
vulnerability but also to a confusing usability problem. Users would normally expect
a single policy to hold (whether it be Outlook’s, IE’s, or their conjunction) regardless
of what operation they perform, e.g., reading or forwarding a mail message. When the
two policies combine in one way for one operation and in another way for the other,
the user’s mental model is inconsistent, which invariably leads to usability issues. The
proposed fix also removes this inconsistency.

4.2 Run as

Suppose in a file system, FS, we wish to let a process, p, perform operations on behalf
of (i.e., “run as”) a user, u; this “run as” capability allows p to gain access temporarily
to a set of files owned by u. We can model this behavior in terms of inheriting rights.
For example, if u can read a file, f , and if p inherits u’s rights, then p can read f . The
Unix setuid mechanism and Windows impersonate privileges are implementations of
this functionality.

Let SPFS stand for the security policy on a given file system. Now consider the
following scenario. First, u1 executes p1. This has the effect of giving u1’s rights to p1:

[1] SPE = Inherit(SPFS , p1, u1)

Now, p1 “runs as” u2. This has the effect of first revoking p1’s original rights and then
giving u2’s rights to p1:

[2] SPRA = Inherit(Revoke(SPE , p1), p1, u2)

Assuming u1 controls p1’s behavior, then for the lifetime of p1, u1 gets whatever rights
p1 acquires:

[3] SPC = Inherit(SPRA, u1, p1)

From the compositional property of Inherits (Section 3), [2] and [3] leads to [4] below,
and we are left in a state where u1 has inherited u2’s rights:

[4] SPC ⊇ Inherit(SPFS , u1, u2)

Let’s see how the use of “run as” can lead to a security vulnerability. First, we
introduce a new kind of access right, a, to stand for “can run as.” In our security policy,
we have entries such as 〈p, u, a〉, which says that a process, p, “can run as” user, u.

Now consider a file system with entries such as 〈u1, p1.exe, x〉, which says that user
u1 has execute rights on the executable object, p1.exe (the executable associated with
process p1), as well as entries such as 〈u1, f, read〉, which says that user u1 has read
access to file f .



Towards an Algebra for Security Policies 23

A process’s rights may change over time, depending on what user they are running
as. Thus, a process can access a file, f , if the user the process is currently running as
has access to f .

More concretely, a vulnerability can arise, if SPFS consists of the following entries:

〈p1, ∗, a〉
〈u1, p1.exe, x〉
〈u2, f, read〉

The first entry is the troublesome one: it gives process p1 the ability to run as any
user. Since u1 can execute p1.exe, which creates a process p1 with the given rights, and
since p1 can run as u2 and u2 has access to f , then u1 gains access to f even though
that right is absent from the security policy.

4.3 Google Desktop Search

When a google.com request is made, Google Desktop Search (GDS) performs a
search on the local file system with the same request. The local search results include
30-40 character snippets of local files that contain the query’s terms. GDS integrates its
local search results with the webpage returned by google.com. If the query has been
made by a user in a standard browser window, the user sees a webpage that contains
results of the search on the local host and results from google.com; but if the query
is made by an applet, then GDS introduces a potential security vulnerability [2].

Security Policy for Google Desktop Search (SPGDS): The Google Desktop Search
process has read access to all files on the local host.

Or more formally,

∀f ∈ localhost 〈GDS, f, read〉 ∈ SPGDS

Suppose an applet, app, sends a query that GDS executes. We have the following
situation:

[1] SPApp = Inherit(SPGDS , app,GDS)

Since the applet can connect to a remote host, in particular, the host, rh, from which
the applet originally came, the remote host inherits the applet’s rights:

[2] SPRemHost = Inherit(SPApp, rh, app)

By compositionality of Inherits again ([1] and [2] leads to [3] below), we are in the
situation where the remote host inherits the rights of GDS:

[3] SPRemHost ⊇ Inherit(SPGDS , rh,GDS)

which means the remote host has read access to files on the local host—a security
vulnerability!

The fix that Google made to address this vulnerability is to disallow the applet from
seeing the results of a local search using GDS. This has the effect of invalidating the
state labeled [1] above.



24 J. Pincus and J.M. Wing

4.4 Netscape and DNS

Our final example shows what can go wrong when the specification of a security pol-
icy is ambiguous, leading to an implementation with a security vulnerability. Here the
vulnerable component is the browser, which operates in the DNS infrastructure envi-
ronment [1]. Applets running in the browser sometimes need to contact the server from
which it originated. We have the following security policy on applets (which also must
hold for the Google Desktop Search example):

Security Policy for Applet (SP applet): An applet should connect to the same server
from which it originated.

More formally, in terms of an access rights matrix, we have the following, where
conn stands for the right for an applet a to connect to a host h:

∀a : applet ∀h : host 〈a, h, conn〉 ∈ SPapplet

⇔ SameAs(a.OriginatingHost , h)

The ambiguity in the informal policy is what “same server” means. In the formal
statement, it boils down to how SameAs is interpreted. There are two sources of ambi-
guity. First, does SameAs mean “same IP address” or “same name”? An interpretation
of “same IP address” for SameAs seems too restrictive to support some common us-
age scenarios, and so Netscape chose to resolve this first ambiguity by using a check
based on DNS names. Unfortunately, the name-based check raises two problems: (1)
the name of a server might map to multiple IP addresses (machines) and (2) the map-
ping of names to IP addresses can change over time. The possibility of change over time
is a second source of ambiguity: Doing a DNS lookup on a name at one point in time,
e.g., when the applet is downloaded, does not guarantee the same result as doing it at a
later point in time, e.g., when the applet wishes to connect to a remote host.

In more detail, here is the problem. In the effort to enforce the security policy,
Netscape’s original check used two DNS name lookups. Let n2a be the many-to-many
relation that maps names to IP addresses, From be the name of the server from which the
applet originated, and To be the name of the server to which the applet wishes to con-
nect. If the lookup on both names yields a nonempty intersection of IP addresses, then
the assumption is that From and To are “the same server,” and we allow the connection.
More succinctly, Netscape implemented this check:

if n2a(From) ∩ n2a(To) �= ∅
then ∃x ∈ n2a(From) ∃y ∈ n2a(To) such that connect(x, y)

where connect :Host×Host →Bool means that for hosts h1 and h2 connect(h1, h2)=
true iff there is a connection from h1 to h2.

There are two problems with Netscape’s check. The first problem is directly related
to the second ambiguity and leads to a vulnerability: in doing the lookup on From at
the time when the applet wants to connect to To, the set of IP addresses to which From
maps may be different from the time when it was first downloaded. The second prob-
lem is simply a logical flaw: choosing some x in n2a(From) and some y in n2a(To) to
establish the connection does not even guarantee that the x and y are in the (nonempty)
intersection of n2a(From) and n2a(To).



Towards an Algebra for Security Policies 25

By manipulating DNS lookup (for example, by running his or her own name re-
solver), an attacker can effectively allow an applet to connect to any host on the network
without violating the policy.

Netscape fixed the vulnerability by storing the actual IP address i of the originating
server (eliminating the first lookup) and changing the intersection check to a member-
ship check, i ∈ n2a(To). This fix means the implementation matches the intended
security policy.

5 Summary and Future Work

We sketched the foundation of a simple algebra for reasoning about security policies,
viewed as access rights matrices. We also sketched the use of our algebra on four real-
life examples: the Outlook and IE example shows a security policy clash; the Run As
and the Google Desktop Search examples show two different uses of inheriting rights
as security policies change over time; and the Netscape and DNS example shows the
consequence of a violation of a security policy.

We would like to develop a security policy language and logic for expressing poli-
cies closer to the way in which software designers think about security requirements
and use our algebra to show when clashes can occur or when designs violate their re-
quirements. We are also interested in building tool support for automating our reasoning
and for letting us scale our approach to large examples.

Acknowledgments

We thank Oren Dobzinski for helping us think about the Google Desktop Search exam-
ple and for comments on earlier drafts of this manuscript. The second author thanks Mi-
crosoft Research for partial support of this work. She is also partially sponsored by the
Army Research Office under contract no. DAAD190110485 and DAAD19-02-1-0389,
the National Science Foundation under grant no. CCR-0121547 and CNS-0433540, and
the Software Engineering Institute through a US government funding appropriation.

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the sponsoring institutions, the US Government or any other
entity.

References

1. D. Dean, E.W. Felten, and D.S. Wallach, “Java Security: From HotJava to Netscape and Be-
yond,” Proceedings of the 1996 IEEE Symposium on Security and Privacy, Oakland, CA, May
1996.

2. S. Nielson, S.J. Fogarty, and D.S. Wallach, “Attacks on Local Searching Tools,” Technical
Report TR04-445, Department of Computer Science, Rice University, December 2004.


	Context
	Model and Definitions
	An Algebra for Security Policies
	Examples
	Outlook and IE
	Run as
	Google Desktop Search
	Netscape and DNS

	Summary and Future Work
	Acknowledgments
	References

