ON ADDING CONCURRENCY TO THE

FORMAL DEVELOPMENT METHODOLOGY (FDM)

Mark Nixon

Jeanette Wing

. INTRODUCTION .
. PRELIMINARIES .

3. INTERPRETATION OF INA JO ASSERTIONS

3.1 Syntax . . .

CONTENTS

3.2 Ina Jo Models, Truth, and Validity

. EXTENDING THE INA JO LANGUAGE WITH TEMPORAL LOGIC ‘.

4.1 Enriching the Ina Jo Vocabulary
4.2 Extending the EVAL Function

4.3 Extending FDM'’s Deductive Methods o e e
5. AN EXAMPLE OF A LIVENESS PROPERTY IN EXTENDED FDM
. SUMMARY OF CHANGES PROPOSED FOR FDM WITH TEMPORAL

LOGIC

6.1 Syntax, Processing and Theorem Proving with Temporal Operators .

6.2 Generalizing the Syntax of the New-Value Operator .
6.3 Generalizing the Application of New-Value Operators .
6.4 Requiring Conjoint Initial Condition and Criterion Consistency Proofs
6.5 Adding the Proposed Form of Initial Condition Correctness Theorem |

. ANNOTATED PROOFS .
7.1 DERIVEDRULES . .
7.2 THEOREM SCHEMATA

. BIBLIOGRAPHY .

A ph b DD =

p—
o

13
13
14
14
14
15

16
16
20

31

March 1986 System Development Corporation
SP-4360

1. INTRODUCTION

This paper seeks to define an approach to adding concurrency capability to FDM. In this
context, the /na Jo* specification language and the system of logic underlying the FDM tools are
treated as an extended first-order predicate logic (FOPL). This approach preserves the intent of
FDM as far as we have been able to determine except for certain foundational issues which, as
we point out below, have not been adequately formalized in the past. In the following sections,
we give precise definitions of those aspects of FDM’s syntax, semantics and proof-theory
affected by our approach and then show how these may be extended to encompass a class of
deterministic and non-deterministic temporal operators used in the expression of concurrent
system requirements. A short but highly illustrative example then follows, together with a
discussion of how it uses the FDM concurrency extensions to express a simple liveness property.
The final section contains detailed proofs of all derived theorems and rules of inference
presented below.

We have focussed our efforts on defining a fully formal syntax, semantics and proof theory. for
the temporal extensions to FDM for single-level /na Jo specifications. By focussing on single-
level specifications, we gain the immediate advantage that we deal with only one level of
granularity in the state space. Mappings, used in multi-level specifications, introduce possibly
many levels of granularity. Not until a better understanding of their current formal meaning and
intended use is achieved, can mappings be addressed at the same level of formal detail as what
follows. One of the most significant results of this work is that it provides a formal definition of
single-level Ina Jo specifications.

There are two practical matters bearing on the extension of FDM to temporal logic that deserve
mention at the outset. First, our approach would be worth implementing if FDM is not near the
end of its life cycle. It might be more cost effective to build a next-generation formal verification
system which takes the temporal logic approach into account at the outset. Secondly, the
sophistication required of FDM users will be increased by the expressibility the extensions bring
to the Ina Jo language. Greater expressibility requires learning more linguistic distinctions and
the associated axioms, theorems and rules that involve them. This is a natural cost for greater
expressibility, however.

What we have done for the FDM concurrency enhancement is provide for assertions whereby
FDM users may state assumptions that currently are not expressible in the Ina Jo language, e.g.,
that the state space implicit in a specification is complete or that the structure of time implicit in
a specification is deterministic and linear.

2. PRELIMINARIES

The formal proof system used for the Ina Jo language is assumed to be standard first-order
predicate calculus with equality with the usual axioms and rules of inference, e.g., substitution
for equality, modus ponens, and generalization. In order to define the nondeterministic state
machines underlying the /na Jo language and its relation to FDM’s proof system, we need to
define the class of models from which state machines are constructed, and the notions of truth
and validity for these models. In what follows, we provide these definitions first for the current
" Ina Jo language, and then make necessary extensions to the definitions to handle our temporal
logic enhancements.

* InaJo is a Trademark of System Development Corporation, A Burroughs Company.

-1-

March 1986 Silstem Development Corporation
SP-4360

These enhancements are based largely upon and combine formal techniques due to Ben-Ari,
Kripke, Manna and Pnueli ([BP80], [Kr63], [Man81], [MP81a), [MP81b]). They represent
traditionally well-founded extensions to the sort of first-order predicate logic underlying FDM.

3. INTERPRETATION OF INA JO ASSERTIONS

3.1 Syntax

The extended BNF for the Jna Jo assertion language is summarized as follows. The usual order
of precedence of Boolean connectives is used and the elimination of redundant parentheses is
allowed. ,

Assn L “Assn | Assn BinOp Assn | ‘(’Assn‘)’ | Assn ‘=>’ Assn ‘<>’ Assn
| Quant Binding {, Binding} ‘(‘Assn‘)’ | Term ‘=’ Term | Term
Term tim Var | ‘N"’Var | Func_Name'(’'Term {, Term}‘)’
| ‘N"‘Func_Name'(’Term {, Term}‘)’
BinOp - \r 4 ' \'l ' AN l SG=DT
Quant - \AHI ' \EHI
Binding ::= Id {, Id} : Type_Name

3.2 Ina Jo Models, Truth, and Validity

Adapting the methods of Kripke [Kr63], we define an /na Jo model structure as an ordered
quintuple, <INIT, STATE, DOM, TRANS, EVAL>, of:

i. aset, INIT, of alternative initial states;
ii. a setof states, STATE, INIT ¢ STATE;
iii. a primitive domain, DOM, of typed values;
iv. a finite set, TRANS, of binary state transition relations on STATE;
v. asemantic evaluation function, EVAL, for the class of Ina Jo assertions (in Assn).

We first present the definitions for an Ina Jo machine, its states, transforms, and computation
paths, all in terms of components of the above structure. We then define the two notions, truth in
an Ina Jo model and validity.

Let ID be a set of identifiers. A machine, MCID, is a set of Ina Jo state variables distinguished
by declaration in an /na Jo specification in variables. A szate, s € STATE, of a machine, M, is a
function,

s:ID—VAL
where VAL, the set of primitive semantic values, is defined as follows:

AL=DOMPOM'
Let there be the class of all functions, f,

(f :DOM*—>DOM)e VAL

each mapping i-tuples of DOM into DOM. We consider simple /na Jo state variables, x, as

-

,,*‘
i —— el

March 1986 System Development Corporation
SP-4360

zero-placed functions, so that we have for s € STATE,
s (x)e DOMPOM’ =pom{<>)=poM

as primitive semantic values. For Ina Jo state variables, f, of finite non-zero degree j, used as
function symbols, we have:

s (f)EDOMDOMj=DOM(<V1.....v,->}
as primitive semantic values. The type of a function variable, f, is the type of the value of the
range of f.

A binary state-transition relation, &r € TRANS, is such that for every s, so € STATE, there is
atleastone x € M, {v,v’} ¢ VAL and <x,v> in s such that:

tr (sq, $3) iff s, = 8¢ [<x,Vv’'>/<%x,v>]

That is, a state, s, is obtained from a state, s;, and a state-transition, #r, by replacing the
assignment, <x,v> € §;, of some element, v € VAL, to some state variable, x € M, with
another, <x,v’>. We define the binary relation of immediate accessibility among states as the
union over all the state transitions so that:

R = (<s,t> | for some i&r € TRANS, <s,t> € tr)

When <s,t> € R we say that t is an immediate successor (descendent) of s. To capture the
concept of non-ending time, we require that R be total. Let the relation, R*, of accessibility be
the reflexive transitive closure of R. We say that a compuzation path is a countable sequence,
<s;>, of states of M such that #r(s;, s;,1) for some state transform, r € TRANS cR.

To obtain semantic interpretations for the assertions in Assn, we first distinguish the STATE-
induced assignment function:

A: ID X STATE — VAL
given, for all s, s’ € STATE, and x € ID, by the conditions:

A(x) s = s(x), for x € M.
A(x) s = A(x) s’ for x € (Id - M).

The A-induced valuation function:

V: Term X STATE X STATE —» VAL

is given, for all s, s’ € STATE, and /na Jo terms, X, ¢;, 1<i<n, and f(z, ...,#,), by the recursive
equations:

Vix) s s’ = A(x) s

V(N"x) s s’ = A(x) s’

V(E(), . .nlh)) s s’ = s(f)(V(t,) s s’, ..., V() s s')
V(N"E(2),.u8y)) 8 8 = s/ (£)(V(h) s 8, ..., V() 8 8’)

Here we have defined the semantics of N" in such a way that for non-Boolean functional terms,
the operator applies to the denotation of the function symbol but does not distribute to the

-3-

March 1986 System Development Corporation
SP-4360

denotations of the function arguments. This captures the intended interpretation of N" in current
Ina Jo [SA8S, p.24, section 6].

Third, we distinguish the V-induced Boolean-valued interpretation function:

EVAL: Assn X STATE X STATE - {true, false} ¢ VAL

given, for all s, s’ € STATE such that R(s,s’), by the recursive equations:

EVAL(t) s s’ = V(t) s 8’, for Boolean-valued terms t,
EVAL(tl = t2) s s’ Vitl) s 8’ = V(t2) s s’,
EVAL(~a) s s’ “EVAL(a) s s‘,
EVAL (A"x:T (a(x]))) s s’ A { EVAL(a(x]) s s': W € M (EVAL(V) 8 8’ = EVAL(v) s s’) },
EVAL(E"x:T (a[x]))) s s’ V { EVAL(a[x]) s s’ : WweM (EVAL(vV) 8 8’ = EVAL(v) s s’)y},
EVAL(al#a2) s s’ EVAL(al) s s’ # EVAL(a2) s s’, for # € BinOp,
EVAL(al=>a2) s s’ (EVAL(al) s s‘’— EVAL(a2) s s’),
EVAL (al=>a2<>a3) s s’ (EVAL(al) s s’'— EVAL(a2) s s’) &
("EVAL(al) s s’—» EVAL(a3) s s’)

where a[x] is an arbitrary ASSN string of Ina Jo with free occurrences of x € (D - M). (The
notations, A { v:F }andV { v : F }, used above denote the conjunction and disjunction,
respectively, over sets of values, v, satisfying the specified conditions, F.)

The basic formal semantic notions for Ina Jo are then defined for Ina Jo assertions, a € Assn,
over Ina Jo model structures, K = <INIT, STATE, DOM, TRANS, EVALS>, as follows:

i. a is true ar 5; on K iff for every A-induced valuation, V, over s;, s;,; such that
R*(si,5i41), EVAL (@) 5;,5;4) = true.

il. ais frue on K iff a is true at some initial state sge INIT on K.

iii. ais valid iff a is true on every Ina Jo model structure, K, in which case we write |=
a
4. EXTENDING THE INA JO LANGUAGE WITH TEMPORAL LOGIC
4.1 Enriching the /na Jo Vocabulary
We add to the syntax for Assn as follows:

Assn = ... | UnOp Assn | Assn TBinOP Assn
UnOp ti= AH" | EH" | AV" | EV" | AN" | EN" | N"
TBinOp ::= ... | AU™ | EU" | AP" | EP* | AB" | EB"

The new operators cited above come in two varieties: deterministic operators beginning with the
letter *A’, and non-deterministic operators beginning with the letter ’E’. The intention is to
specify which R*-successor states are to be taken into account in evaluating strings in Assn. The
deterministic variety call for evaluation across all R*-successor states to a given state (hence the

"A’) while the non-deterministic variety call for evaluation in some successor state (hence the
"E’ for "exists").

Note that the grammatical role of the *N"’ operator has been generalized to apply to compound
Boolean-valued strings in Assn rather than merely to atomic Terms (Boolean and other). The

-4-

March 1986

System Development Corporation
SP-4360

other operators cited above apply to strings in Assn as unary prefix operators, e.g.,

ah" (a) =—- henceforth a.
ev" (a) ~—— eventually a.

an"(a) -- in the nextsiate a is the case.

or as binary infix operators, e.g.,
(a au" b) -- a is the case wntii b is the case.
(a ep" b) =-- a’s being the case precedes b’s being the case.
(a ab” b) =-- a is the case before b is the case.

Their formal meanings are captured in the next section which presents extensions to the model-
theoretic definitions given in the last section. In section 5.3, we present definitions of the before
and precedes operators in terms of the henceforth, eventually, next and until operators.

4.2 Extending the EVAL Function

We extend EVAL as follows for non-Boolean terms, t, Boolean atoms al and a2, and s, s’,s’’ €
STATE such that R(s,s’) and R (s’, s’’):

EVAL(N" (a) s
if a is t
if is (t1
it is ~al
it
if
if
it
if
if

is (al

is #al
is (al

[IR B B

EVAL (AN" (a)
EVAL (EN" (a)
EVAL (AH" (a)
EVAL (EH" (a)
EVAL (AV" (a)
EVAL (EV” (a)
EVAL (al AU"
EVAL(al EU"

s’ -

=t2)

is A"x:T (al)
is E"x:T (al)

$ a2)

is (al => a2 <>

$ a2)

sl
al
sl
sl
sl
sl
a2) s s’
a2) s s’

then V(N"t) s s’
then EVAL(tl=t2) s s’
then EVAL("N"al) s s’

then EVAL(A"x:T (N"al)) s s’
then EVAL(E"x:T (N"al)) s s’

then EVAL(N"al # N"a2) s s’, for # in BinOp
a3) then EVAL(N"al => N"a2 <> N"a3) s s’

then EVAL(# al) s’ s’’, for # in UnOp

then EVAL(al #a2) s’ s’’, for # in TBinOp

EVAL(N"a)s s’ & A { EVAL(N"a)
EVAL(N"a)s s’ | V { EVAL(N"a)
EVAL(a) s s’ & A { EVAL(AH"a)
EVAL(a) s s’ & V { EVAL(EH"a)
EVAL(a) s s’ | A { EVAL(AV"a)
EVAL(a) s s’ | V { EVAL(EV"a)

EVAL(a2) s s’ | (EVAL(al) s s’ & A

sl
sl
sl
sl
sl
sl

(a2 L o B 2 A 2

: R(s’,t)
: R{s’,t)
: R{s’,t)

{

R(s’,t)
R(s’,t)
R(s’,t)

EVAL (al AU" a2) s’

EVAL(a2) s s’ | (EVAL(al) s s’ & V { EVAL(al AU" a2) s’

The definitions of V, truth on an Ina Jo model structure, and validity remain the same.
4.2.1 New-Value Operations in Extended FDM

t : R(s’,t) } !
t : R(s',t) } |

On the formal semantics just presented, the intended interpretation of the three new-value
operators, N", AN" and EN", provides values for /na Jo expressions across R-successor states,
s’, of a state s. In the case of the N" operator, the R-successor, s’, is specified. In the case of
AN", the operation is taken as the conjunction over every R-successor, s’, of the value of its
operand.’ In the case of EN", the operation is taken as the disjunction over every R-successor, s,
of the value of its operand. Note, in particular, that N has broader application than AN" and
EN" since it may take non-Boolean terms as operands.

-5-

March 1986 System Development Corporation
SP-4360

In the next section, we present the proof-theoretic counterparts to our formal semantical
definitions. We give axiom schemata and rules of inference that capture the semantical behavior
of the three new-value operators.

4.3 Extending FDM’s Deductive Methods

We extend FDM'’s basis for first-order predicate logic (FOPL) with the following axiom
schemata:

Nl. |- en™a <-> “an""a

N2. |- an"(al -> a2) -> (an"al -> an"a2)

N3. |- an"a -> n"a

N4. |- n""a <-> “n"a

N5. |- n"(a & b) <-> (n"a & n"b)

Al. |- av"a <-> “eh""a

A2. |- ah"(al -> a2) -> (ah"al -> ah"a2)

A3. |- ah"a ~> an"a & an"ah"a

A4. |- ah"(a -> an"a) -> (a -> ah"a)

AS5. |- (al au" a2) <-> (a2 | al & an" (al au" a2))
A6. |- (al au” a2) -> av"a2

El. |- ev"a <-> ~“ah""a

E2. |~ ah"(al -> a2) -> (eh"™al -> eh"a2)

E3. |- eh"a -> a & en"eh"a

E4. |- ah"a -> eh"a

ES5. |- ah"(a -> en"a) -> (a -> eh"a)

E6. |- (al eu” a2) <=> (a2 | al & en" (al eu" a2))
E7. |- (al eu® a2) -> av"a2

Ql. |- a"x:TYPE (an"a <=> an"a"x:TYPE

)
Q2. |- e"x:TYPE (an"a) <-> an"e"x:TYPE
Q3. |- a"x:TYPE (ah"a) <-> ah"a"x:TYPE
Q4. |- a"x:TYPE (eh"a) <-> eh"a"x:TYPE

S P~
[
-~

We then add the following primitive rules of inference:

Rl: NEC (necessitation)
|- a
|- ah"a
R2: ENINST (en"-instantiation)
|- en"a
|- n"a => b where b has no occurrences of terms prefixed by n".
I- b
R3: ANGEN (an"~generalization)
j— n"a
|- an"a

R2 allows the elimination of EN" in favor of N" for the duration of a sub-proof ending with a
predicate expression without occurrences of N". This corresponds to the usual sort of natural
deduction rule for existential quantification elimination in which the existential quantifier is

-6-

March 1986 System Development Corporation
SP-4360

dropped and all occurrences of its bound variable are treated as free occurrences for the duration
of the sub-proof. The sub-proof must end in a step without such free occurrences of the initially
bound variable.

R3 corresponds, on the other hand, to a rule of universal generalization in which the universal
quantification of a predicate expression may be deduced from a restricted sub-proof of that
expression. The sub-proof must not refer to any steps occurring before and outside its scope
with free occurrences of the quantified variable. The two rules, R2 and R3 together, capture the
idea that the AN" and EN" new-value operators implicitly bind R-successor state references and
that occurrences of N" indicate unbound or free R-successor state references.

We next extend the stock of temporal operators through the following four forms of syntactic
elimination:

: (a ab" b) =df. av"b -> (“b au" a)
eb" b) =df. av"b -> (*b eu" a)
(a ap" b) =df, “(*a au" b)
(a ep" b) =df. “(Ta eu" b)

BEBE

Note the differences in intended meaning among the before, precedes and until varieties of
operators. The precedes operators imply that a precedes b only if b is not already the case in a
given state, whereas the before operators do not.

We now list certain useful derived rules of inference. Complete proofs as well as an explanation
of all proof notation used below are contained in the final section.

DRO: AHIMP
|- a->b

|- ah"a =-> ah"b

DR1: EHIMP
|- a ->b

|- eh"a -> eh"b

DR2: AVIMP
|- a =->b

|- av"a -> av"b

DR3: EVIMP
|- a =>b

|- ev'a -> ev"b

DR4: ANI

DR5: ANIMP

" |- an"a -> an"b

March 1986 System Development Corporation
' SP-4360

DR6: ENIMP
|- a ->b

|- en"a -> en"b

DR7: ENI
|- a

DR8: CIA (computational induction rule)
|- a => an"a

|- a =-> ah"a

DR9: CIE (computational induction rule)
|- a =-> en"a

|- a -> eh"a

DR10: BIA (backward induction rule)
|- an"a -> a

|- av"a -> a

DR11: BIE (backward induction rule)
|- en"a -> a

|- ev'a -> a

DR12: NPA (next to present rule)
I= (an"a <=> an"b) -> (a <-> b)
|- a => av"(a & b)
= b => av"(a & b)

|- a <=>b

DR13: NPE (next to present rule)
I= (en"a <-> en"b) -> (a <=> b)
|- a -> av"(a ¢ b)
I- b => av"(a & b)

|- a €=> b

DR14: WNPA : (weak next-to-present rule)
I- (an"a -> an"b) -> (a -> b)
|- a => av"(a ¢ b)
= b ~> av"(a & b)

- a->b

DR15: WNPE (weak next-to-present rule)
|- (en"a => en"b) -> (a => b)
|- a =-> av'(a ¢ b)
I= b => av"(a & b)

|- a-=>b

March 1986 System Development Corporation
SP-4360

DR16: TSUBST <->
Let ¢’ be the result of replacing an occurrence
of a subformula al in ¢ by a2. Then
|- al <=> a2

|+ ¢ <=> ¢’

The backward induction rules, BIA and BIE, may be used in proving specification cormrectness
theorems in FDM extended with the temporal operators. The initial condition correctness
theorem of the example given below in extended FDM, for instance, uses BIE.

We now list certain useful theorems of /na Jo extended with temporal logic. Complete proofs
are contained in the final section.

From The Logic of Nexttime [BP80]:

Tl: |- ah"™a -> a
T2: |- ah"a -> av"a
T3: |- an"(a => b) -> (en"a -> en"b)
T4: |- ah"(a -> b) -> (av"a =-> av"b)
TS: |- eh"a -> en"a
T6: |- an"a -> en"a
T7: |- ah"(a & b) <-> (ah"a & ah"b)
T8: |- eh”(a & b) <~> (eh"a & eh"b)
T9: |- an"(a & b) <=> (an"a & an"b)
T10: |- en"(a & b) -> (en"a & en"b)
Tll: |- an®"a & en"b -> en"(a & b)
Ti2: |- ah"a & eh"b -> eh" (a & b)
T13: |- ah"a <-> a & an"ah"a
Tl4: |- eh"a <-> a & en"eh"a
T15: |- ah"a <-> ah"ah"a
T16: |- eh"a <-> eh"eh"a
T17: |- eh"(a -> an"a) -> (a -> eh"a)
T18: |- av"ah"a -> ah"av"a
T19: |- eh"((a | eh"b) & (eh"a | b)) <-> (eh"a | eh"b)
T20: |- an"ah"a <-> ah"an"a
T21: |- en"eh"a -> eh"en"a

Some Lewis S4 [HC68] theorem schemata: '
T22: |- a =-> av"a
T23: |~ a =-> ev"a
T24: |- av"a <~> av"av"a
T2S5: |~ ev'a <~> ev"ev"a

Distribution laws for henceforth and eventually:
T26: |- ah"(a -> b) -> (ev"a -> ev"b)

T27: |- av"(a | b) <=> (av"a | av"b)
T28: |- ev"{(a | b) <-> (ev"a | ev'"b)
T29: |- av"(a & b) ~-> (av"a & av"b)
T30: |- ev"(a & b) -> (ev'a & ev'"b)
T31: |- (ah"a | ah"b) -> ah"(a | b)
T32: |- (eh"a | eh"b) -> eh" (a | b)
T33: |- (ah"a & ev"b) =-> ev"(a & b)
T34: |- (eh"a & av"b) -> ev"(a & b)
Some theorem schemata concerning next-time:
T35: |- an"a -> av"a
T36: |- en"a -> ev"a
T37: |- (an"a | an"b) -> an"(a | b)
T38: |- en"(a | b) <> (en"a | en"b)

March 1986 System Development Corporation

SP-4360

T39: |- an"(a <-> b) —> (an"a <-> an"b)
T40: |- an"(a <-> b) -> (en"a <-> en"b)

Some theorem schemata concerning next-time and eventually:

T41: |- av"an"a -> an"av'"a
T42: |- ev"en"a <-> en"ev"a
T43: |- av"an"a ~-> av"a
T44: |- ev'en™a -> ev"a
T45: |- av"a <=> (a | an"av"a)
T46: |- ev"a <-> (a | en"ev"a)
T47: |- (a & av"~a) -> ev"(a & an""a)
T48: |- (a ¢ ev"~a) -> ev"(a & en"~a)
Theorem schemata for unzil:
T49: |- a & ("a au" b) -=> b
" TS50: |- *b & (a au" b) -> a
I51: |- b -> (a au” b)
T52: |- a & an" (a au" b) -=> (a au” b)
TS3: |- av"(a au" b) <-> (av"a au" av"b)
TS54: |- ev"(a eu" b) <-> (ev"a eu" ev"b)
TS5: |- (a au" b) -> (a eu” b)
T56: |- an"a au" an"b -> an” (a2 au” b)

Theorem schemata for precedes:

T57: |- a & “b -> a ap” b
TS8: |- (a ap" B) -> -b
TS9: |- (alble)e(a ap” b)& (b ap" c) -> (a ap" c¢)
T60: |~ (a ap" b) -> (b —> c)
Theorem schemata for before:
T61: |~ a -> (a ab"” b)
T62: |- (a|blc) & (a ab" b) & (b ab" ¢c) => (a ab" ¢)
T63: |- (a->d) & (a ab" b) & (b ab" c) => (¢ -> d)

5. AN EXAMPLE OF A LIVENESS PROPERTY IN EXTENDED FDM

The following specification written in Ina Jo extended with temporal operators contains a
liveness property (expressed as a criterion with the non-deterministic new-value operator, ev").

specification LIVE
level tla

variable
X : integer;

initial
x>0 & ah"(an" (n"x = x-1))

criterion .

/** if x>0 then eventually x=0 *#/

20 -> ev"(x=0)

transform decrement external

/** x is decremented in every next state **/
effect

an" (n"x = x-1)
end tls

The correctness theorems to be generated by the Ina Jo processor for such a specification under
extended FDM would include the following:

-10-

s aaE A O = W T Sw ASee GEe .

|
b
l

March 1986 System Development Corporation

SP-4360
THEOREM FROM LEVEL TLS FOR: INITIAL CONDITIONS
|- ev" (ah" (an" (n"x=x-1)) & x>0 -> (x>0 -> ev" (x=~0)))
-> (ah" (an" (n"x=x-1)) & x>0 -> (x>0 -> ev" (x=0}))
proof

1. | | en" (ah"(an" (n"x=x-1)) & x>0 =-> (x>0 -> ev" (x=0))) assume
2. | 1| ~(ah"(an" (n"x=x-1)) & x>0 => (x>0 -> ev" (x=0))) assume
3. | | | ah"(an"(n"x=x-1)) & x>0) 2: simp
4. | | | ~ (x>0 => ev" (x=0)) 2: simp
5. 1 | | x0 3: simp
6. | | | “ev"(x=0) 4: aimp
7. | | | en"(“(ah"(an" (n"x=x-1)) & x>0 } | (x>0 -> ev" (x=0))) 1: FOPL
8. | | | en"((-ah"(an" (n"x=x~1)) | ~(x>0)) | (x>0 -> ev"(x=0))) 7: FOPL
9. | | | en"~ah" (an" (n"x=x-1)) | en"~ (x>0) | en" (x>0 -> ev" (x=0)) 8,T38: subst <->
10. | | | an"ah" (an" (n"x=x~1)) 3,A3: simp, FOPL
11. | | | “en"~ah" (an" (n"x=x-1)) 10,N1: FOPL
12. | | | en"" (x>0) | en” (x>0 => ev" (x=0)) 9,11: ds
13. | 1 | an" (x>=0) 5,3: simp, arith
14. | | | en"(x=0) -> ev" (x=0) T36
15. | 1 | “en"(x=0) 6,14: FOPL
16. | | | an"~ (x=0) 15,N1: DNI, subst <->, DNE
17. | | | an"(x>=0 & ~(x=0)) 13,16,T9: FOPL
18. | | | an"(x>0) 17: arith
19. | | | “en"" (x>0) 18,N1: DNI, subst <->, DNE
20 [| | en" (x>0 -> ev" (x=0)) 12,19: ds
21. | | | en"" (x>0) | en"ev" (x=0) 20,T38: FOPL
22. | | | en"ev" (x=0) 19,21: ds
23. | | | x=0 | en"ev" (x=0) 22: addition
24. | | | ev"(x=0) 23,T46: subst <->
25. | | ah"(an"(n"x=x-1)) & x>0 -> (x>0 -> ev" (x=0)) 2-24: IP
26. | en" (ah”" (an" (n"x=x-1)) & x>0 -> (x>0 -> ev" (x=0))) 1-25: Cp

-> (ah" (an" (n"x=x-1)) & x>0 —> (x>0 -> ev" (x=0)))
27. | ev" (ah"(an"(n"x=x-1)) & x>0 -> (x>0 -> ev" (x=0))) 26: BIE

-> (ah” (an”" (n"x=x-1)) & x>0 -> (x>0 -> ev" (x=0))))

qged

which is entailed by the following analogue of what FDM would currently require:

|- (ah" (an" (n"x=x-1)) & x>0) => (x>0 -> ev" (x=0))

since the proposed theorem has the analogue to the current one as consequent. It follows that the
proposed theorem form:

|- ev"(INITIAL -> CRITERION)
=> (INITIAL -> CRITERION)

preserves the theoremhood of initial condition correctness theorems under current FDM.

It is noteworthy that the the initial condition of specification LIVE contains the subformula

ah" (an" (n"x=x-1))

which is an instance of the following schema for that particular specification:

ah" (Tp & € | «-. | Tpo & €)

-11-

March 1986 System Development Corporation
SP-4360

the rules and theorems for temporal operators to the proof task. Note that the non-deterministic
new-value operator, en", is used to express the new value of the criterion for the reason that the
state machine underlying an Ina Jo specification is assumed to be non-deterministic in both
current and extended FDM.

THEOREM FROM LEVEL TLS FOR: DECREMENT

|- an” (n"x=x-1) & (x>0 => ev" (x=0)) ~-> en" (x>0 -> ev" (x=0))

proof
1. | | ~(an"(n"x=x~-1) & (x>0->ev" (x=0)) -> en" (x>0->ev" (x=0))) assume
2. | | an"(n"x=x-1) & (x>0 -> ev"(x=0)) & ~en" (x>0 -> ev" (x=0)) 1: FOPL
3. | | an"(n"x=x-1) 2: simp
4. | | 0 => ev" (x=0) 2: simp
5. | | an"(x>0 & “ev" (x=0)) 2,N1: simp, FOPL
6. | | an” (x>0) ’ 5,T9: subst <->, simp
7. | | an""ev" (x=0) 5,T9: subst <->, simp
8. | | “en"ev" (x=0) 7,N1: FOPL, subst <->
9. | | 1 3,6: arith
10. | | ev" (x=0) 4,9: arith, mp
11. | | x=0 | en"ev" (x=0) 10,T46: subst <->
12. | | en"ev" (x=0) 9,11: arith, ds
13. | an"(n"x=x-1) & (x>0 -> ev" (x=0)) -> en” (x>0 —> ev" (x=0)) . 1-12: CP
ged

It should be noted that FDM has hitherto provided no support for the expression of liveness
properties such as the eventuality requirement we imposed on states satisfying the antecedent
condition of our criterion. Other examples illustrating the applicability of the until (au" and
eu"), precedes (ap" and ep") and before (ab" and eb") operators can be constructed with little
difficulty. Proving that such properties are preserved under arbitrary state transitions, however,
does require more sophistication of both the ITP software and the FDM user.

6. SUMMARY OF CHANGES PROPOSED FOR FDM WITH TEMPORAL LOGIC

In this section, we summarize the changes required to extend FDM with temporal logic in the
interest of specifying concurrent system requirements. We explain each of the changes proposed.
Note that none of the changes we propose is independent of any of the others except those
involving the generalization of the n" operator’s syntax and application.

6.1 Syntax, Processing and Theorem Proving with Temporal Operators

To add the capability to both the /na Jo processor and the ITP of processing assertions involving
the twelve temporal operators would call for extensive revision and addition of CWIC source
code.

6.1.1 Explanation

The Ina Jo processor must be extended to recognize, manipulate and generate theorems for /na
Jo specifications involving the use of the temporal operators. The ITP must be extended to
apply the primitive axioms and rules of inference presented in section 5.3. Moreover, some
method must be introduced to allow for the proof and application of derived rules and theorems.

-13-

t
{

|
March 1986 System Development Corporation
SP-4360

The last point highlights the need for an extensible ITP enhanced so that the FDM user may
introduce axiom schemata and rules of inference in a more general form. Under the ITP’s
current design, we have estimated the amount of CWIC code needed to encompass the 21 axiom
schemata and three primitive rules of inference proposed.

6.2 Generalizing the Syntax of the New-Value Operator

The modifications to Ina Jo’s grammar set out in section 5.1 include the generalization of the n"
~ operator from the class of Ina Jo terms to the class of /na Jo assertions.

6.2.1 Explanation

Axioms N3 and N4 of our proposed extensions to the deductive system underlying FDM are
certified by our semantical extensions for n" (section 5.2) and preserve the intended meaning of
n" under current FDM. Note that because of axioms N3 and N4, simplification laws which
distribute n" inward across all non-temporal logical opators are justified. Thus, occurrences of
n" can always be distributed inward so as to prefix only atomic Boolean elements (variables or
constants) or other occurrences of n".

Under current FDM, expressions such as n"n"x are flagged as syntax errors since nested
applications of n" are not allowed. The Ina Jo processor and the ITP would, therefore, have to
be modified to allow for such expressions under our proposed temporal logic extensions.

6.3 Generalizing the Application of New-Value Operators

Our example of a specification written in /na Jo extended with temporal operators used a
subformula of the inirial condition containing an occurrence of the deterministic new-value
operator, an". We also suggested how allowing occurrences of an" and en" within invariants
would allow FDM users to make explicit those assumptions they wish to make about the
structure of time underlying their specifications. Occurrences of these operators should be
admitted in such cases.

6.3.1 Explanation

In general, the current restrictions against occurrences of the new-value operators in declarations
providing explicit assumptions about a specification’s state machine and its operations (as
against its set of requirements) are not essential to the methodology of FDM.

6.4 Requiring Conjoint Initial Condition and Criterion Consistency Proofs

This extension to FDM would not modify the intended methodology underlying FDM. There
are indeed cases under current FDM in which the inconsistency of a criterion would not be
detected, viz., those in which both the initial condition and the criterion were separately
inconsistent. For, in such cases, both the initial condition correctness theorem and the transform
correctness theorems would prove by virtue of having inconsistent antecedents. As unlikely as
such a case might be, it is not covered at present.

6.4.1 Explanation

The purpose of the initial condition correctness theorem is to guarantee that a specification’s
criterion is true in the initial state underlying its semantic model, i.e., are satisfied by the /na Jo
state machine intended by a specification.

-14-

March 1986 System Development Corporation
| SP-4360

However, there are weaker formulae of the system of temporal logic we propose to add to FDM,
the proofs of which in conjunction with a separate proof of criterion consistency also provide
this guarantee (see the discussion of our example, the initial condition proven for it, and the
argument that criterion consistency is the only additional requirement needed to justify initial
condition correctness).

6.5 Adding the Proposed Form of Initial Condition Correctness Theorem

The proposed form of the initial condition correctness conjecture to be generated by the /na Jo
processor under FDM extended with temporal logic is:

|- ev" (INITIAL -> CRITERION)
-> (INITIAL -> CRITERION)

This form of initial condition correctness theorem is weaker than that currently generated but, as
we discussed above, is sufficiently strong to capture the notion of initial condition correctness
under FDM as it is at present.

6.5.1 Explanation

The following proof schema summarizes how the current form of initial condition correctness is
preserved under FDM extended with temporal logic:

1. |- 1INITIAL -> CRITERION assume
2. |- (INITIAL -> CRITERION) FOPL tautology
=> (ev" (INITIAL ~-> CRITERION)
=> (INITIAL ~-> CRITERION))
3. |- ev" (INITIAL -> CRITERION) 1,2: modus ponens
=> (INITIAL -> CRITERION)

So FDM's current notion of initial condition correctness entails the proposed notion of initial
condition correctness.

The following proof schema summarizes how the consistency of a specification’s criterion with
its initial condition under our proposed temporal logic extensions may be used to derive initial
condition correctness in the sense of FDM at present:

1. | ev" (INITIAL & CRITERION) by initial-criterion consistency
2. | (INITIAL & CRITERION) ~-> (INITIAL -> CRITERION) FOPL tautology
3. | ev" (INITIAL & CRITERION) 2: EVIMP
-> ev" (INITIAL -> CRITERION)

4. | ev" (INITIAL -> CRITERION) 1,3: modus ponens
5. |= ev" (INITIAL -> CRITERION) proposed IC theorem

-> (INITIAL -> CRITERION)
6. | INITIAL -> CRITERION 1,5: modus ponens

-15-

March 1986

7. ANNOTATED PROOFS

! -

i

System Development Corporation
SP-4360

In this section, we give complete proofs of the derived theorems and rules of inference presented

above.

Proofs are given in a natural deduction style using the following notations:

subst <-> =df,

tsubst <-> =df.
FOPL =df.
contraposition =df.
mp =df,

ds =df.
add =df.

syll =df,
dni =df.
dne =df.
simp =df.
ip =df.
cp =df,

7.1 DERIVED RULES

DRO: AHIMP
j- a ->b

substitutivity of material equivalents.

substitutivity of temporal equivalents.

tautology or simple consequence of first-order predicate logic.
from a->b to infer ~“b->"a

modus ponens, from a and a->b to infer b

disjunctive syllogism, from “a and a|b to infer b
addition, from a to infer a|b

hypothetical syllogism, from a->b and b—>c to infer a->c
double-negation introduction

double-negation elimination

conjunction elimination

indirect proof

conditional proof

|- ah"a -> ah"b

proof
1. | |- a->b assume
2. | |- ah"{a -> b) 1: NEC
3. | |- ah"a -> ah"b 2,A2: mp
qed '
DR1: EHIMP
|- a ->b
|- eh"a ~-> eh"b
proof
1. | |- a =>b assume
2. | |- ah"(a -> b) 1: NEC
3. | |- eh"a -> eh"b 2,E2: mp
qed
DR2: AVIMP
|- a=->b
|- av"a -> av"b
proof
1. | I-a=>b assume
2. | |- "b=>"a 1: contraposition
3. | |- ah*""b -> ah"~a 2: AHIMP
4. | |- “ah""a -> ~ah""b 3: contraposition
5. | |- av"a -> av"b 4,Al: subst <->
ged
DR3: EVIMP
|- a=->b
|- ev'a -> ev"b
proof

-16-

W W N FFENNNENNENNENWN NN WEYSNEYNE

March 1986

System Development Corporation
SP-4360

assume

1l: contraposition
2: EHIMP

3: contraposition
4,El: subst <->

assume
1: NEC
2,A3: mp

assume
1: ANI
2,N2: mp

assume

1: contraposition
2: ANIMP

3: contraposition
4,Al: subst <->

assume

l: NEC

2,E4: mp

E3: FOPL

E3: FOPL, ENIMP
3,4,5: FOPL

assume
1: NEC
2,A4: mp

1. | |- a=->b
2. | |- b => ~a
3. | |- eh""b =-> eh""a
4. | |- “eh"~a -> “eh""b
5. | |- ev*a ~> ev"b
qed
DR4: ANI
|- a
|- an"a
proof
1. | |- a
2. | |- ah"a
3. | |- an"a
qed
DR5: ANIMP
|- a->b
|- an"a -> an"b
proof
1. | |- a=>b
2. | |- an"(a =-> b)
3. | |- an™a ~> an"b
qged
DR6: ENIMP
|- a=->b
|- en"a ~> en"b
proof
1. | |I-a->b
2. | |- "b~> ~a
3. | |- an*"b -> an""a
4. | |- ~an"~a ~-> "an""b
5. | |- en"a -> en"b
qged
DR7: ENI1
|- a
|- en"a
proof
1. | |- a
2. | |- ah"a
3. | |- eh"a
4. | |- eh"a -> en"eh"a
5. | |- en"eh"a -> en"a
6. | |- en“a
ged
DR8: CIA (computatiocnal induction rule)
|- a => an"a
|- a -> ah"a
proof
1. | |- a => an"a
2. | |- ah"(a -> an"a)
3. | |- a -> ah"a
ged

-17-

March 1986

DRS: CIE (computational induction rule)
|- a => en"a

|- a => eh"a
proof
1. | |- a -> en"a assume
2. | |- ahn"(a -> en"a) 1l: NEC
3. | |- a => eh"a 2,E5: mp

qed

DR10: BIA (backward induction rule)
|- an"a -> a

S)lstem Development Corporation
SP-4360

|~ av"a => a

proof

1. | |- an"a ~> a assume

2. | |- "a -> ~an"a 1l: contraposition

3. | I- ~a => en"~a 2,N1: dni, subst <->

4. | |- ~a -> eh"-a 3: CIE

5. | |- ~a -> ~ay"a 4,Al: dni, subst <->

6. | |- av"a -> a S: contraposition
qed

DR11l: BIE (backward induction rule)
|- en"a -> a

|- ev'a -> a

proof
1. | |- en"a =-> a assume
2. | |- “a -> “en"a l: contraposition
3. | |- ~a -> an""~a 2,N1l: dni, subst <->
4. | |- ~a -> ah"~a 3: CIA
5. | |- ~a -> ~ev©"a 4,El: dni, subst <->
6. | |- ev"a -> a S: contraposition
ged

DR12: NPA (next to present rule)
|- (an"a <~> an"b) -> (a <~> b)
I- a => av"(a & b)
= b -> av"(a & b)

|- a <=>Db
proof
1. I- a -> av"(a & b)
2. I= b => av"(a & b)
3. I= (a { b) -> av"(a & b)
4. I~ (a & b) -> (a <~> b)
S. I~ av"(a & b) -> av"(a <-> b)
6. I- (an"a <-> an"b) =-> (a <->» b)

|
i
|
|
|
|
7. | |- an"(a <~> b) -> (an"a <-> an"b)
|
|
!
|
|
|
|

8. |- an"(a <-> b) -> (a <=> b)
9. |- av"(a <=> b) -> (a <~> b)
10. I- (a | b) -> (a <-> b)
11, I-= (@1 b) | (asgb| ~as& ~b)
12. I- "a& b | (a&b| ~ag ~b)
13. |l~-a &b | “a& ~b
14. |- a<=>Db

qed

DR13: NPE (next to present rule)
|- (en"a <-> en"b) ~-> (a <-> b)

-18-

assume
assume
1,2: FOPL
FOPL

4: AVIMP
assume
N2: FOPL
6,7: FOPL
8: BIA
3,5,9: FOPL
10: FOPL
11: FOPL
12: FOPL
13: FOPL

|] =" [

March 1986

|- a => av"(a & b)
|- b => av"(a & b)

|- a <=>Db
proof is similar to proof of DR12 using T3 in
DR14: WNPA (weak next-to-present rule)

|- (an"a => an"b) -> (a -> b)
|- a => av"(a & b)

|- b => av*(a & b)
|- a ->b
proof
1. | |- a => av"(a & b)
2. | |- b~> av"(a & b)
3. | |- (al b) -> av*(a & b)
4. | |- (a & b) -> (a -> b)
S. | |- av"{a & b) -> av"{(a =-> b)
6. | |- (an"a -> an"b) -> (a -> b)
7. | |- an"(a -> b) -> (an"a -> an"b)
8. | |- an"(a -> b) -> (a -> b)
9., | |- av"(a -> b) -> (a -> b)
10. { |- (a | b) => (a -> b)
11. | |- “(a | by | (Ca | b)
12. | |- "a & b | "a | b
13. | |- "a | b
14. | |- a->b
qed

DR1S5: WNPE (weak next-to-present rule).
|- (en"a -> en"b) -> (a -> b)
|- a => av”(a & b)
|- b => av"(a & b)

|- a=->b

System Development Corporation
SP-4360

place of N2.

assume
assume
1,2: FOPL
FOPL

4: AVIMP
assume

N2

6,7: FOPL
8: BIA
3,5,9: FOPL
10: FOPL
11: FOPL
12: FOPL
13: FOPL

proof is similar to proof of DR1S using T3 in place of N2.

DR16: TSUBST <->

Let ¢’ be the result of replacing an occurrence

of a subformula al in c by a2.
|- al <~> a2

Then

j- ¢ <=> ¢’
proof:
By induction on the structure of c.

Then for each:

case: ¢’ of the form b, we have:
1. | |- b <> b’ induction hypothesis
2. | |- b <=> “b’ FOPL
3. | |- ¢ €=> ¢’ 2: df.

case: ¢’ of the form bl | b2, we have:
1. | |= bl <=> bl’ induction hypothesis
2. | |- b2 <=> b2’ induction hypothesis
3.] |- (bl | b2) <=> (bl’ | b2’) FOPL
4, | |- e <=> ¢’ . 3: df.

cases: c’ of any of the FOPL forms bl & b2, bl -> b2,

a"x:TYPE (b), etc. are similar.

case: ¢’ of the form ah"b, we have:
1. | |- b <=> b’
2. | |- ah"b <-> ah"b’
3. | |- ¢ <> ¢’
" cases: ¢’ of any of the the forms eh"b,

-19-

induction hypothesis
1: AHIMP, FOPL, subst <->
2: df.

av'b, ev"b, an"b and en"b,

March 1986

we proceed similarly using EHIMP, AVIMP, EVIMP, ANIMP and ENIMP,

respectively, for AHIMP.

|
System Development Corporation

case: c’ of the form bl au”" b2, we have:

1. | |- bl <-> bl’ induction hypothesis
2. | |- b2 <=> b2’ induction hypothesis
3.] |- bl au” b2 <-> (b2 | (bl & an”" (bl au" b2)))

AS
4. | |- bl’ au™ b2’ <-> (b2’ | (bl’ & an"(bl’ au" b2’)))

AS
S. | |- bl’ au*" b2’ <-> (b2 | (bl & an" (bl’ au®” b2’)))

1,2,4: subst <->
6. | |- (an"(bl au"” b2) <-> an"(bl’ au” b2’))

=> ((bl au" b2) <-> (bl’ au" b2’}))

7. 1 |- bl au" b2 ~-> av"b2 A6
8. | |- b2 => ((bl au" b2) & (bl’ au" b2’))
3,5: addition, mp, subst <->
9. | |- av"b2 -> av" ((bl au"” b2) & (bl’ au" b2’))
8: AVIMP
10.| |- bl au” b2 -> av”" ((bl au" b2) & (bl’ au” b2’))
7.,9: FOPL
11.| |- bl’ au" b2’ -> av"b2’ A6
12.} |- av"b2 <-> av"b2’ 2: AVIMP, FOPL
13.] |- bl’ au" b2’ -> av"b2 11,12: subst <->
14.| |- av"b2 -> av"((bl au" b2) & (bl’ au" b2‘))
8: AVIMP
15.] |- bl’ au”" b2’ -> av" ((bl au" b2) & (bl’ au" b2’))
13,14: FOPL
16.] |- (bl au" b2) <=> (bl’ au" b2’) 6,10,15: NPA
17.| |- ¢ <=> ¢’ 3: df.

case: ¢’ of the form bl eu” b2 is similar, using E6 for AS, E7 for AS6,

and NPE for NPA.
These are all the cases of c¢’.

ged
72 THEOREM SCHEMATA
Tl: |- ah"a -> a
proof
1. | |- ah"a ~> eh"a
2. | |- eh"a -> a
3. | |- ah"a -> a
qged
T2: |- ah"a -> av"a
proof
1. | |- ah"a -> a
2. | |- eh""a => ~a
3. | |- ah"a & eh"~"a -> a & ~a
4. | |- ah"a -> “eh""a
5. | |- ah"a -> av"a
qged
T3: |- an"(a => b) -> (en"a -> en"b)
proof
1. |- (a => b) => (b -> ~a)
2. |- an"(a => b) =-> an"("b => ~a)

I
|
3. | |- an"(a -> bB) > (an""b -> an""a)
I
I

4. |- an"(a -> b) -> (Tan"~a -> “an""b)
5. |- an"(a -> b) -> (en"a -> en"b)
qed

-20-

3,5: subst <->

E4
E3
1,2: FOPL

Tl

E3

1,2: FOPL

3: FOPL

4,Al: FOPL, subst <->

FOPL: contraposition
A3,N2: FOPL

2,N2: FOPL

3: FOPL

4,N1: subst <->

March 1986 System Development Corporation

SP-4360
T4: |- ah" (a => b) =-> (av"a -> av"b)
proof
1. | |- ah"((a => b) =-> (b -> ~a)) FOPL: NEC
2. | |- ah"{(a => b) -> ah" (b -> ~a) 1,A2: mp
3. | |- ah" (b => ~a) =-> (eh""b -> eh"~a) E2
4. | |- (eh""b -> eh"~a) -> (“eh""a -> ~eh"~b) contraposition
5. | |- ah"(a => b) =-> (“eh"~a -> “eh""b) 2,3,4: FOPL
€. | |~ ah"(a => b) -> (av"a => av"b) 5,A1: subst <->
qed
TS: |- eh"a -> en"a
proof
1. | |- eh™a -> a E3: simp
1. | |- eh"a -> en"eh"a E3: simp
2. | |- en"eh"a -> en"a 1: ENIMP
4. | |- eh"a -> en"a 3,E3: FOPL
ged
T6: |- an"a -> en"a
proof
1. | |- en"(~a | a) FOPL, ENI
2. | |- en""a | en"a 1,T38: subst <->
3. | |- “en""a -> en"a 2: FOPL, subst <->
4. | |- an"a -> en"a 3,N1: DNI, subst <->, DNE
qged
T7: |- ah"(a & b) <-> (ah"™a & ah"b)
proof
1. | |- (a&Db) ->a) FOPL
2. | |- ah"(a & b) -> ah"a _ : 1: AHIMP
3. J] |- (a&b) ->b FOPL
4. | |- ah"(a & b) -> ah"b '3: AHIMP
S. | |- ah"(a & b) -> (ah"a & ah"b) 2,4: FOPL
6. | |-a->(b->(as&b)) FOPL
7. | |- ah"a -> ah" (b -> (a & b)) 6: AHIMP
8. | |- ah"(b => (a & b)) -> (ah"b -> ah"(a & b)) A2
9. | |- ah"a -> (ah"b -> ah"(a & b)) 7,8: FOPL
10. | |- (ah"a & ah"b) -> ah"(a & b) 9: FOPL
11. | |- ah"(a & b) <-> (ah"a & ah"b) 5,10: FOPL
qged
T8: |- eh"(a & b) <> (eh”a & eh"b)
proof is similar to proof of T7 using E2 in place of A2, and EHIMP in place of AHIMP
T9: |- an"(a & b) <-> (an"a & an"b)
proof is similar-to proof of T7 using N2 in place of A2
T10: |- en"(a & b) -> (en"a & en"b)
proof is similar to proof of T7 lines 1-5, using ENIMP in place of AHIMP
Tll: |- an"a & en"b -> en"(a & b)
proof
1. | |-a-> (b -> (a & b)) FOPL
2. | |- an"a -> an" (b -> (a & b)) 1: ANIMP
3. | |- an"a -> (en"b -> en"(a & b)) 2,T3: FOPL
4. | |- an"a & en"b -> en"(a & b) 3: FOPL
ged
T12: |- ah"a & eh"b -> eh" (a & b)
proof is similar to proof of Tll, using AHIMP and E2 in place of ANIMP and T3.
T13: |- ah"a <-> a & an"ah"a
proof

21-

]
March 1986 System Development Corporation
SP-4360
1. | |- ah"a => a & an"ah"a A3,Tl: simp, FOPL
2. | |- an"ah"a -> an"(a & an"ah"a) 1: ANIMP
3. | |- a & an"ah"a -> an"(a & an"ah"a) 2: FOPL
4.] |- a & ah"ah"a -> ah"(a & an"ah"a) 3: CIA
5. | |- ah"(a & an"ah"a) -> ah"a T7: simp
6. | |- a & an"ah"a -> ah"a 4,5: FOPL
7. | |- ah"a <-> a & an"ah"a 1,6: FOPL
qed
Tl4: |- eh"a <-> a & en"eh"a
proof
1. | |- eh"a -> a & eh"eh"a E3
2. | |- en"eh"a -> en"(a & eh"eh"a) 1: ENIMP
3. | |- a & en"eh”a -> en"(a & en"eh"a) 2: FOPL
4. | |~ ah"(a & en"eh"a -> en"(a & en"eh"a)) 3: NEC ‘
5. | |- a & en"eh"a -> eh"(a & en"eh"a) 4,ES: FOPL
6. | |- a & en"eh"a -> eh"a 5,T8: FOPL
7. | |~ eh"™a <=> a & en"eh"a 1,6: FOPL
qged
T1S: |- ah™a <-> ah"ah"a
proof
l. | |- ah"a -> an"ah"a A3: FOPL
2. | [- ah"(ah"a -> an"ah"a) - 1: NEC
3. | |- ah"a -> ah"ah"a 2,A4: mp
4. | |- ah"ah"a -> eh"ah"a E4
S. | |- eh®ah"a ~-> ah"a E3: FOPL
6. | |~ ah"ah"a -> ah"a 4,5: FOPL
7. | |- ah"a <-> ah"ah"a 3,6: FOPL
qged
Tl6é: |- eh"a <-> eh"eh"a
proof
1. | |- eh"a -> en"eh"a E3: FOPL
2, | |- ah"(eh"a -> en"eh"a) 1: NEC
3. | |- eh"a -> eh”"eh"a 2,E5: mp
4. | |- eh"eh"a -> eh"a E3: FOPL
5. | |- eh"™a <-> eh"eh"a 3,4: FOPL
qged
T17: |~ eh"(a -> an"a) -> (a -> eh"a)
proof
1. | |- eh"(a -> an"a) -> (a -> an"a) & en"eh"(a -> an"a) E3
2. | |- a & eh"(a -> an"a) -> an"a & en”"eh" (a -> an"a) 1: FOPL, simp
3. | I-as& eh" (a -> an"a) -> en"(a & eh"(a -> an"a)) 2,T11: FOPL
4. | |- a & eh"(a -> an"a) -> eh"(a & eh" (a -> an"a)) 3,E5: NEC, mp
5. | |- a & eh"(a -> an"a) -> 4,T8: FOPL
6. | |- eh"(a ~> an"a) -> (a -> eh"a) 5: FOPL
qged
Tl18: |- av"ah"”a -> ah"av"a
proof
1. | |- ah"ah"a -> av"ah"a T2
2. | |- ah"a -> av"ah"a 1,T1S5: subst <->
3. | |- an"ah"a -> an"av"ah"a 2: ANIMP
4. | |- ah"a -> an"av"ah"a 3,A3: FOPL
S. | 1= “eh"~~ev"~a <-> (~“ev"~a | an”"“eh"~“~ev"~a) T14,Nl1: FOPL
6. | |- av"ah"a -> (ah"a | an"av"ah"a) 5: FOPL
7. | |- av"ah"a -> an"av"ah"a 6,4: FOPL
8. | |- av"ah"a -> ah"av"ah"a 7,A4: NEC, mp
9. | |- ah"a -> a Tl

22-

March 1986

System Development Corporation

SP-4360
10. | |- ah"av"ah"a -> ah"av"a 9: AVIMP, AHIMP
11. | |- av"ah"a -> ah"av'"a 8,10: syll
ged
T19: |- eh”((a | eh"b) & (eh"a | b)) <-> (eh"a | eh"b)
proof !
1. | |- eh"((eh"alb) & (aleh”b)) & ~eh"a & ~“eh"b E3: FOPL
-> (aleh"b) & (eh"a|b) & ~“eh"a & ~“eh"b
2. | |- eh"((eh"”alb) & (aleh"b)) & ~“eh"a & “eh"b -> a & b 1l: FOPL
3. | |- eh"((eh"a|lb) & (aleh"b)) & ~“eh"a & ~eh"b 2,T14: subst <->, FOPL
-> a &b & (fa | "en"eh"a) & ("b | “en"eh"b)
4. | |- eh"((eh”a|b) & (aleh"b)) & ~“eh™a & ~eh"b 3: FOPL
-> “en"eh"a & ~en"eh"b
S. | |- eh"((eh”a|b) & (aleh"b)) & ~eh™a & ~“eh"b 4,E3: FOPL
-> en"eh" ((eh"a|b) & (aleh"b)) & ~“en"eh"a & ~“en"eh"b
6. | |- eh"((eh"alb) & (aljeh"b)) & ~“eh"™a & ~“eh"b 5,T11,N1l: subst <->
-> en" (eh" ((eh"a|b) & (aleh"b)) & ~“eh"a & ~eh"b)
7. | |- eh"((eh"alb) & (ajeh"b)) & ~“eh”a & ~“eh"b 6: CIE
-> eh" (eh” ((eh"a|b) & (ajeh™)) & ~“eh"a & ~“eh"b)
8. | |- eh"((eh"a|b) & (aleh"b)) & ~“eh"a & ~“eh"b 7,E3: FOPL
-> eh" ({(eh"a|b) & (ajeh"b) & ~“eh"a & ~“eh"b)
9. | |- eh"((eh"a}b) & (aleh"b)) & ~eh"a & ~eh"b 8,E3: FOPL
-> eh" (b & .a)
10. | |- eh"((eh"a|b) & (ajeh"b)) & “eh™a & ~eh"b 9,T8: FOPL
-> eh"a & eh"b
11. | |- eh"((eh™alb) & (aleh"b)) & “eh"a 10: FOPL
~> (“eh"b -> eh"a & eh"b)
12. | |- eh"((eh"alb) & (ajeh”b)) & ~eh"a 11: FOPL
-> (eh"b | eh"a & eh"b)
13. | |- eh"{(eh"aib) & (aleh"b)) & ~“eh"a -> eh"b 12: FOPL
14. | |- eh"{((eh"alb) & (aleh"b)) -> (“eh"a -> eh"b ') 13: FOPL
15. | |- eh"((eh"a|b) & (ajeh"d)) -> (eh"a | eh"b) 14: FOPL
16. | |- eh"a -> eh”a | b FOPL
17. | |- eh™a => a | eh"b E3: simp, add
18. | |- eh"a -> (eh”a | b) & (a | eh"b) 16,17: FOPL
19. | |- eh"eh"a -> eh" ((eh"™a | b) & (a | eh"b)) 18: EHIMP
20. | |- eh"a -> eh"((eh"”a | b) & (a | eh"b)) 19,T16: subst <->
21. | |- eh"b -=> eh"((eh"a | b) & (a | eh"b)) 16-20: symmetry for ‘b’
22. | |- (eh"a { eh"b) -> eh"((eh"a | b) & (a | eh"b)) 20,21: FOPL
23. | |- eh"((eh"a | b) & (a | eh"b)) <-> (eh"a | eh"b) 15,22: FOPL
ged
T20: |- an"ah"a <-> ah"an"a
proof
1. | |- ah"ah"a -> ah"an"a A3: FOPL, AHIMP
2. | |- ah"a -> ah"an"a 1,T15: subst <=>
3. | |- an"ah"a -> an"ah"an"a 2: ANIMP
4. | |- an"ah"a -> an"a Tl: ANIMP
5. | |- an™ah"a -> an"a & an"ah"an"a 3,4: FOPL
6. | |- an"ah"a -> ah"an"a 5,T13: subst <->
7. | |- ah"an"a -> an"a & an"ah"an"a T13
8. | |- ah"an"a -> an"(a & ah"an"a) 7,T9: subst <~>, FOPL
9. | |- a & ah"an"a -> an"(a & ah"an"a) 8: FOPL
10. | |- a & ah™an"a -> ah"(a & ah"an"a) 9: CIA
11. | |- a & ah"an"a -> ah"a 10,T7: FOPL
12. | |- an"a & an"ah"an"a -> an"ah"a 11,T9: ANIMP, tsubst <->
13. | |- ah"an"a -> an"ah"a 7,12: FOPL
14. | |- an"ah"a <~-> ah"an"a 6,13: FOPL
ged

-23-

[
March 1986 _ System Development Corporation
SP-4360

T21: |- en"eh"a -> eh"en"a
proof is similar to proof of T20 lines 1-6 using E3, T1l4, T16 and ENIMP in place
of A3 (T1), T13, T1S and ANIMP_ note that the converse is not provable.

T22: |- a => av"a
proocf
1. } |- eh"~a -> ~a E3: FOPL
2. | |- a-> "eh”""a ‘ : contraposition
3. | |- a->av"a 2,A1: subst <->
qed
T23: |- a => ev"a
proof
1. | |- ah""a -> ~a E4,E3: FOPL
2. | |- a-=> “ah""a 1: contraposition
3. | |- a -> ev"a 2,El1: subst <->
ged
T24: |- av"a <=> av"av"a
proof
1. | |- eh"~a <-> eh"eh""a T16: FOPL
2. | |- “eh"~a <-> “eh"eh"~a 1: subst <->
3. | |- av"a <-> “eh"""eh""a 2,Al: tsubst <->, DNI
4. | |- av"a <=> av"av"a 3,A1: subst <->
ged
T2S: |- ev"a <-> ev"ev"a
proof
1. | |- ah""a <-> ah"ah"~a T15: FOPL
2. | |= “ah""a <-> ~“ah"ah""a : subst <->
3. | |= ev"a <=> “ah""~ah""a 2,E1l: tsubst <->, DNI
4. | |- ev"a <-> ev"ev"a 3,El: subst <->
qged
T26: |- ah"(a -> b) -> (ev"a -> ev"b)
proof
1. | |= (a => b) => (b => ~a) FOPL
2. | |- ah"(a -> b) -> ah"("b -> ~a) 1: AHIMP
3, | |- ah"(a -> b) -> (ah”""b -> ah""a) 2,A2: FOPL
4. | |- (ah""b -> ah"“a) -> (~ah"~a -> ~ah""b) contraposition
S. | |- ah*(a => b) -> (“ah"~a -> ~ah""b) 3,4: syll.
6. | |- ah"(a -> b) -> (ev"a -> ev"b) 5,E1: subst <->
qed
T27: j- av"(a | b) <-> (av"a | av"b)
proof
1. | |- eh"("a & “b) <~> (eh"~a & eh"~b) T8
2. | |- eh""(a | b) <=> “(“eh"~a | “eh""b) 1: tsubst <->
3. | |- ~av"{(a | b) <=> ~(av"a | av"b) 2,E1l: dni, subst <->
4. | |- av"(a | b) <> (av"a | av"b) 3: FOPL
qed
T28: |- ev"(a | b) <=> (ev"a | ev"b)

proof is similar to proof of T27 using T7 and Al in place
of T8 and El1, respectively.

T29: |- av"(a & b) -> (av"a & av"b)
proof
1. | |- av®"(a & b) => av"a FOPL, AVIMP
2. | |- av"(a & b) ~-> av"b FOPL, AVIMP
3. | |- av"(a & b) -> (av"a & av"b) : 1,2: FOPL
ged

-24-

March 1986 . System Development Corporation

SP-4360
T30: |- ev”(a & b) -> (ev"a & ev"b)
proof is similar to proof of T29 using EVIMP for AVIMP.
T31: |- (ah"a | ah"b) -> ah"(a | b)
proof
1. | |- ah"a -> ah"(a | b) FOPL: AHIMP
2. | |- ah"b -> ah"(a | b) FOPL: AHIMP
3. | |- (ah"a | ah"b) -> ah"(a | b) 1,2: FOPL
qged
T32: - (eh"a | eh"b) -> eh"(a | b)
proof is similar to proof of T31 using EHIMP for AHIMP.
T33: |- (ah"a & ev"b) -> ev" (a & b)
proof
1. | |- ah"(a => “b) -> (ah"a -> ah""b) ‘ A2
2. | |- ah"~(a & b) -> ~“(ah"a & ~ah""b) 1: tsubst <->
3. | |- “ev"(a & b) -> ~“(ah"a & ev"b) 2,El1: subst <->
4., | |- (ah"a & ev"b) -> ev"(a & b) 3: contraposition
qged
T34: |- (eh"a & av"b) -> ev"(a & b)
proof is similar to proof of T33 using E2 and Al for A2 and El.
T35: |- an"a -> av"a
proof
1. | |- eh" a -> en"eh""a E3: FOPL
. 2. | |- en"eh""a -> en""a E3: FOPL, ENIMP
3. | |- eh""a -> en""a 1,2: syll.
4. | |- "en""a -> “eh""a 3: contraposition
5. | |- an"a -> av"a 4,N1,Al: subst <->, dne, tsubst <->
qed -
T36: |- en"a -> ev"a

proof is similar to proof of T35 using A3, El and ANIMP in place
of E3, Al and ENIMP

T37: |- (an"a | an"b) -> an"(a | b)
proof
1. | |- an"a -> an"(a | b) FOPL: ANIMP
2. | |- an"b -> an"(a | b) FOPL: ANIMP
3., | |- (an"a | an"b) -> an"(a | b) 1,2: FOPL
qed
T38: |- en"(a | b) <-> (en"a | en"b)
proof
1. | |- "an"~~("a & “b) <-> (“an""a | ~an""b) T9: FOPL, subst <~>
2. | |- en"(a | b) <-> (en"a | en"b) 1,N1: subst <->
qed
T39: |- an"(a <-> b) -> (an"a <-> an"b)
proof
1. | |- an"(a <-> b) <~> an"((a => b) & (b => a)) FOPL: ANIMP
2. | |- an"((a => b) & (b -> a)) . T9
<-> (an"(a -> b) & an"(b -> a))
3. | |- (an"(a -> b) & an"(b -> a)) 2,T9,N2: FOPL
-> (an"a =-> an"b) & (an"b -> an"a)
4. | |- an"(a <-> b) -> (an"a <-> an"b) 1,2,3: FOPL
ged
T40: |- an" (a <-> b) -> (en"a <-> en"b)

proof is similar to the proof of T39 using T3 in place of N2

-25-

March 1986

T41: |- av"an"a -> an"av"a

proof
1. | |- ~“eh"""en""a -> “en"~"~eh""a
2. | |- av"an"a ~-> an"av"a
ged
T42: |- ev'en"a <-> en"ev"a

System Development Corporation
SP-4360

T21: FOPL
1,N1: FOPL, tsubst <->

proof is similar to proof of T4l using T20 in place of T21

T43: |- av"an"a -> av"a

proof
1. | |- av"an"a -> av"av"a
2. | |- av"an"a -> av'a
ged
T44: |- ev"en"a -> ev"a
proof
1. | |- ev"en"a -> ev"ev"a
2. | |- ev"en"a -> ev'"a
qged
T45: |- av"a <-> (a | an"av"a)
proof
1. | |- “eh""a <=> ~“(“a & en"eh""a)
2. | |- av"a <=> (a | an"av"a)
qged

T46: |- ev"a <-> (a | en"ev"a)

T35: AVIMP
1,T24: tsubst <~>

T36: EVIMP
1,T25: tsubst <->

T14: FOPL
1,Nl1: FOPL, tsubst <->

proof is similar to proof of T45 using T13 in place of T1l4

T47: |- (a & av"~a) -> ev" (a & an""a)

proof
1. | |- ah"(a => en"a) -> (a -> eh"a) ES
2. | |- ~ev"~(a -> ~an""a) -> (a -> Tav""a) 1,E1,N1: FOPL, tsubst <->
3. | |- “ev"(a & an""a) -> ~“(a & av""a) 2: FOPL
4. | |- (a & av"~a) -> ev"(a & an""a) 3: contraposition
ged
T48: |- (a & ev""a) -> ev"(a & en""a)

proof is similar to proof of T47 using A4 and Al in place of ES and El1

T49: |- a & (Ta au”" b) -> b
proof
1. | | a & (Ta au" b) & b
2. || a
3. | | Ta au" b
4. | | °b
S. | | b | “a & an"("a au" b)
6. | | "a & an"("a au" b)
7. 1| ~a
8. | a& (Cfaau" b) > b
ged
TS0: |- “b & (a au" b) -> a
proof
1. | | b & (a au"” b) & ~a
2. | I °b
3. | | aau" b
4. | | ~a
5. | |b
6. | b & (a au" b) -> a
ged

assume

1: simp

1: simp

l: simp

3,AS5: subst <->
4,5: ds

6: simp

1-7: ind. proof

assume

1l: simp

1: simp

1l: simp
3,4,T49: FOPL
1-5: ind. proof

-26-

s

- I Er W

T O & S am @

March 1986 System Development Corporation
SP-4360
TS1: |- b -> (a au" b)
proof .
1. | | b & ~(a au" b) assume
2. | Ib 1: simp
3. | | b)] aé& an"(a au" b) 2: add
4. | |' ~(b | a & an"(a au" b)) 1,A5: simp, subst <->
5. | b => (a au" b) 1-4: ip
qed
TS2: |- a & an"{a au" b) -> (a au" b)
proof
1. | | a & an"(a au" b) & ~“(a au" b) assume
2. | | a & an"(a au™ b) 1: simp
3. | |l bl a&an"(a au" b) 2: add
4. | | “(b | a & an"(a au”" b)) 4,A5: subst <->
5. | a & an"(a au"” b) -> (a au" b) 1-4: ip
qed
TS53: |- av"(a au” b) <-> (av"a au”" av"b)
proof
1. | | av"(a au" b) assume
2. | | avav"b A6,1: AVIMP, mp
3. | | av"b 2,T24: subst <->
4. | | (av"a au" av"b) 3,TS1: mp
5., | av"(a au” b) -> (av"a au" av"b) 1-4: CP
6. | | (av"a au” av"b) assume
7. | | av"av"b A6,6: mp
8. | | av"d 7,T24: subst <->
9. | | av"(a au" b) TS1,8: AVIMP, mp
10. | (av"a au” av"b) -> av"(a au" b) 6-9: CP
11. | av"(a au" b) <-> (av"a au" av"b) 5,10: FOPL
qed
T54: |- ev"” (a eu” b) <~> (ev"a eu" ev"b)
proof
1. | | ev"(a au" b) assume
2. | | evtav"b E7,1: EVIMP, np
3. | | av'b -> ev"b E3,Al1,El: FOPL
4. | | ev"av"b -> ev"ev"b 3: EVIMP
5. | | ev'd ' 2,4,T25: mp, subst <->
6. | | ev"™ | ev"a & en" (ev"a eu" ev"b) 5: addition
7. | | (ev"a au"™ ev"b) 6,E6: subst <->
8. | ev"(a au" b) -> (ev"a au" ev"b) 1-7: CP
9. | | (ev®"a au" ev"b) assume
10. | | av"ev"b A6,9: mp
11. | | av"ev"b -> ev"ev"b E3,Al,El: FOPL
12. | | ev"d 10,11,T25: mp, subst <->
13. | | ev"(a au” b) T51,12: EVIMP, mp
14. | (ev"a au” ev"b) -> ev"(a au" b) 9-13: CP
15. | ev”(a au” b) <-> (ev"a au" ev"b) 8,14: FOPL
ged
TSS: |- (a au” b) -> (a eu" b)
proof
1. | | | an"(a au" b) -> an"(a eu" b) assume
2. 111 (aau" b) & “(a eu" b) assume
3. 1111 b}l as an"(a au" b) 2,A5: simp, subst <->
4. | | 1 | b | a & an"(a eu” b) 3,1: FOPL
5. 1 11 I b} aé&en"(a eu" b) 4,T6: FOPL
6. | I | | aeu" b 5,E6: subst <->
7. {1} (a au" b) =-> (a eu" b) 2-6: cp

27-

March 1986

10.
11.

12.
13.

14.

T57:
proof
1.
2.
3.
4.

|- (an"{a au" b) -> an"(a eu" b))
-> ((a au" b) -> (a eu" b))

|- (a au" b) -> av"b

j- (a eu" b) -> av"b

|- b=-=> (b | a & an"(a au" b))
& (b | a & en"(a eu” b))

|- av"b

|- (a au" b)

-> av"((a au" b) & (a eu" b))
|- (a eu" b)

-> av"((a au” b) & (a eu” b))
|- (a au" b) -> (a eu" b)

an"a au" an"b -> an" (a au" b)

|- an"a au" an"b

-> an"b | an"a & an" (an"a au" an

|- an"(a au" b)
<~> an"(b | a & an" (a au" b))
|- an"b | an"a & an"an" (a au" b)
-> an"(b | a & an" (a au" b))
|- an"b | an™a & an"an" (a au" b)
=> an" (a au” b)

A6
E7
FOPL

System Development Corporation
SP-4360

11: AVIMP
~> av"((blasan" (a au" b)) & (blasen”(a eu" b)))
9,12,A5,E6: FOPL

10,12,A5,E6: FOPL

8,13,14: WNPA

"b)

|- (an" (an"™a au” an"b) -> an"an"(a au" b))
~> (an"a au" an"b) -> an"b | an"a & an"an" (a au” b)

|- (an" (an™a au" an"b) -> an"an"(a au" b))
-> (an"a au" an"b) -> an" (a au" b)

|- an"b -> an" (a au" b)
|- an"b =-> (an"a au"™ an"b)
|- an"b -> (an"(a au" b) & (an"a au"
|- av"an"b

-> av" (an™ (a au" b) & (an"a au"
|- an"a au” an"b -> av"an"b
{- an"a au"” an"b

-> av" (an" (a au" b) & (an"a au"
|- a au* b -> av"b
|- an" (a au” b) -> an"av"b
|- an"(a au” b) -> av"an"b
|- an"(a au" b)

=> av" (an" (a au" b) & (an"a au"
|- an"(a au” b) -> (an"a au" an"b)

|-a& “b->aap" b

| a& b & “(a ap” b)
| “a au" b

| b

| "b

a& "b->aap"b

|- (a ap" b) -> ~b

| (a ap" b) & b
| “(Ta au" b)

| b |
|

(

~a & an"{("a au" b)
“{b | “a & an"("a au" b))
a ap" b) -> °b

-28-

AS5: FOPL

A5: ANIMP
T9,T37: tsubst <->, FOPL
2,3: subst <->
1: FOPL

4,5: syll, FOPL

TS1: ANIMP
TS1
an"b)) 7.8: FOPL
9: AVIMP
an"b))
A6
10,11: syll
an"b))
A6
13: ANIMP
14,T41: subst <->
10,15: syll
an"b))
5,12,16: WNPE
assume
1: simp, AP, subst <->, dne
1,2,T49: simp
l: simp
1-4: ip
assume
1: simp, AP, subst <->

1: simp, addition
2,A5: subst <->
1-4: ip

March 1986

ged
T59:

proof

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

(alblc)&(a ap" b)&(b ap" ¢c) -> (a ap" ¢)

~("a au" b) & “("b au" c) & (Ta au" c)
“(b | a & an"(~a au" b))
“(c | b & an" (b au” c))

i

|

|

|

| (¢} “a & an"("a au” c))
| b

{ a | ~an"("a au" b)

| ~e

| b | “an"("b au" c)

| “a & an"("a au" c¢)

| ~a

| b | e

| e

(alblc) & (a ap" b) & (b ap” c) -> (a ap" ¢)

(a ap" b) -> (b => ¢)

(a ap"” b) -> (b ~> ¢)

a -> (a ab" b)

a

("b au" a)

av'd ~> (“b au" a)
a ab" b

=> (a ab" b)

(alblc) & (a ab"” b) & (b ab" ¢) -> (a ab" c)

(alblc) & (a ab™" b) & (b ab"” ¢c) & ~(a ab" ¢)

alb]|e

av"b => (b au" a)
av'c => (“c au" b)
av'c & ~“(“c au" a)

av"c

“(a | "¢ & an”"("c au" a))
~a & (¢ | “Tan"("c au” a))
~a

bl c

& an" ("¢ au" b)

“b au" a

a| b & an"("b au" a)
b & an" ("b au" a)

“b

|
!
|
|
1
|
|
|
|
I
| “c'au" b
|
|
|
|
|
|
|
§a|b|c) & (a ab" b) & (b ab" c) -> (a ab" <)

-290-

(alblec) & (a ap”" b) & (b ap" c) & ~(a ap" c)

System Development Corporation

SP-4360

assume
1: AP,
2,AS:

FOPL
simp,
2,A5: simp,
2,A5: simp,
3: FOPL
3: FOPL
4: FOPL
4: FOPL
5,8: ds
10: simp
1,11: simp, ds
6,12: ds
1-13: ip, FOPL

FOPL
FOPL
FOPL

assume
assume

2: simp
1,T58: FOPL
2-4: ip, FOPL
1-5: cp

assume
1,T51: mp

2: FOPL

3,AB: subst <->
1-4: cp

: simp

: simp

: simp

: simp, FOPL
simp

5,A5: simp, FOPL
7: FOPL

8: simp

2,9: ds

4,6: mp

11,A5: subst <->
12: FOPL

10,13: FOPL
14,T22: mp

3,15: mp

16,A5: subst <->
9,17: ds

18: simp

1-19: ind proof, FOPL

March 1986 System Development Corporation

SP-4360
ged
T63: |- (a => d) & (a ab" b) & (b ab" c) -> (c -> d)
proof
1. |] (a->d) & (a ab" b) & (b ab" c) assume
2. | |1]le assume
3. | | | av"c 2,T22: simp, mp
4. | | | av"ec => ("c au" b) 1,AB: simp, subst <->
5. | | | b| “¢c & an”"(“c au" b) 3,4,AS5: mp, subst <->
6. | | | ¢ | ~an"(“c au" b) S: add
7. 1] “(Cec & an"{"c au” b)) 6: FOPL
8. | I I b 5,7: ds
9. | | | av"b 8,T22: mp
10. | | | av"b -> (b au” a) 1,AB: simp, subst <->
11. | | | a | b & an" (b au" a) 9,10,A5: mp, subst <->
12. {1 | | b | “an" ("b au" a) : add
13. 1 | | (b & an" (b au" a)) 12: FOPL
4. 11| a 11,13: ds
15s. 1 1 | d 1,14: simp, mp
16. | | e =->d 2-15: cp
17. | (a => d) & (a ab" b) & (b ab" c) -> (¢ => d) 1-16: cp
qged

-30-

March 1986

System Development Corporation
SP-4360

8. BIBLIOGRAPHY

[AFFIRM&1]

[BP80]

[HC68]

[Ing78]

[Kr63]

(LZ74]

[Man81]

[MP81a]

MP81b]

Mye78]
{Par72]

[Par76]

[SA85]

[Win83]

[Wir77]

" AFFIRM Reference Manual", D.H. Thompson and R.W. Erickson, Eds., USC
Information Sciences Institute, 1981. :

Ben-Ari, Mordechai and Amir Pnueli, "The Logic of Nexttime", Technical
Report 80-13, Tel Aviv University, Tel Aviv, Israel, J uly 1980.

Hughes, G.E., and M.J. Cresswell, An Introduction to Modal Logic, London,
Methuen (1968).

Ingalls, D.HH., "The Smalltalk-76 Programming System Design and
Implementation, Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, January, 1978. .

Kripke, S.A. "Semantical Considerations on Modal Logics". Acta Philosophica
Fennica, (1963) Modal and Many-valued Logics, pp. 83-94.

Liskov, BH. and Zilles, S.N., "Programming with Abstract Data Types",
SIGPLAN Notices 9:5 (1974).

Manna, Zohar "Verfication of Sequential Programs: Temporal
Axiomatization”, Technical Report No. STAN-CS-81-877, Department of
Computer Science, Stanford University, Stanford, CA, September 1981.

Manna, Zohar and Amir Pnueli, "Verification of Concurrent Programs: Part I:
The Temporal Framework”, Technical Report No. STAN-CS-81-836,
Department of Computer Science, Stanford University, Stanford, CA, July
1981.

Manna, Zohar and Amir Pnueli, "Verification of Concurrent Programs: Part I:
Temporal Proof Principles”, Technical Report No. STAN-CS-81-843,
Department of Computer Science, Stanford University, Stanford, CA,
September 1981.

Myers, G.H., Composite/Structured Design, New York, van Nostrand Reinhbld
(1978).

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into
Modules", CACM 15 (1972).

Parnas, D.L. "Some Hypotheses About the 'Uses’ Hierarchy for Operating
Systems", Technical Report, Technische Hochschule Darmstadt, Darmstadt,
West Germany, March 1976.

Scheid, J. and S. Anderson The Ina Jo Specification Language Reference
Manual, TM-(L)-6021/001/01, System Development Corporation, Santa
Monica, March 1985.

Wing, J.M., "A Two-Tiered Approach to Specifying Programs", Ph.D Thesis,
MITLaboratory for Computer Science, 1983.

Wirth, N., "Modula: A Language for Modular Multiprogramming", Software —
Practice and Experience 7,3-35 (1977).

-31-

™ |

System Development

“Corporation
A Burroughs Company

On Adding Concurrency to the
Formal Development Methodology
(FDM)

SP-4360
March 1986

