Persistence + Undoability = Transactions

Scott M. Nettles and Jeannette M. Wing*
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Persistence means objects live potentially forever.
Undoability means that any change to a program’s
store can potentially be undone. In our design
and implementation of support for single-threaded
nested transactions in Standard ML of New Jersey
(SML/NJ), we provide persistence and undoability as
orthogonal features and combine them in a simple and
elegant manner. We provide support for persistence
through an SML inlerface that lets users manipulaie a
set of persistent roots and provides a save function that
causes all data reachable from the persistent roots to
be moved into the persistent heap. We provide support
for undoability through an SML interface that ezports
two functions: checkpoint, which checkpoints the cur-
rent store, and restore, which undoes all changes made
to the previously checkpointed store. Finally, we suc-
cinctly define a higher-order function transact com-
pletely in terms of the interfaces for persistence and
undoability.

1 Motivation
1.1 Revisiting Transactions

Transactions are a well-known and fundamental
control abstraction that arose out of the database
community. A transaction is a group of operations
that is performed atomically (“all-or-nothing”). Tra-
ditional database applications like electronic banking
and airline reservations systems rely on properties of
transactions to guarantee the consistency of the data
they read and modify. Systems such as Tabs [28] and
Camelot [13] demonstrate the viability of layering a
general-purpose transactional facility on top of an op-
erating system. Languages such as Argus [15] and
Avalon/C++ [11] go one step further by providing

*This research was sponsored by the Avionics Lab, Wright
Research and Development Center, Aeronautical Systems Di-
vision (AFSC), U. S. Air Force, Wright-Patterson AFB, OH
45433-6543 under Contract F33615-90-C-1465, Arpa Order No.
7597.

0073-1129-1/92 $3.00 © 1992 |EEE

832

linguistic support for transactions in the context of
a general-purpose programming language. In princi-
ple programmers can now use transactions as a unit
of encapsulation to structure an application program
without regard for how they are implemented at the
operating system level.

In practice, however, transactions have yet to be
shown useful in general-purpose applications program-
ming. The problem is a mismatch between what ap-
plications need and what transactions provide. State-
of-the art transactional facilities provide support for
distributed, concurrent, nested transactions in a com-
pletely integrated operating system layer or program-
ming language. These facilities were built with
database applications like electronic banking in mind.
Hence, they were designed and tuned for that applica-
tion domain, where typically short-lived transactions
operate on large-sized objects. However, the concept
of a transaction is useful in its own right, not just
for database applications. Some applications, such as
object repositories and the Coda highly available file
system [25], need support for single-site, non-nested,
single-threaded transactions that access small, simple
objects for short time periods measured in millisec-
onds. Other applications, such as CAD/CAM and
software development environments, need support for
transactions that access (and usually infrequently up-
date) large, complex data structures for long time peri-
ods measured in hours or days. Builders of these appli-
cations have the choice of buying in toto an integrated
transactional facility tuned for performance charac-
teristics different from the applications’ or building
from scratch a facility with the same functionality
but tailored specifically for their performance needs.
These applications would like to exploit the trans-
action abstraction but current transactional facilities
treat them as anomalous cases.

In this paper we revisit support for transactions by
adopting a “pick-and-choose” approach rather than
a “kit-and-kaboodle” approach. We provide separate
modules to support different transactional properties

individually and then compose these modules to pro-
vide transactional semantics. To illustrate our ap-
proach in detail we will focus on single-site, single-
threaded nested transactions. In this context we can
view the persistence and undoability properties of
transactions as completely orthogonal. We plan to
build upon this work to handle distributed concurrent,
multi-threaded transactions (Section 5).

Our approach keeps support for separate proper-
ties separable and modular; as a result, our design is
simple and elegant. Of course, we do not avoid the in-
herent semantic complexity of transactions, borne by
its non-trivial model of computation, but we provide
users with more flexibility to choose what guarantees
they need for their application.

1.2 Why SML?

We cast our approach concretely in the context of
programming languages. Instead of designing a brand
new language from scratch, we target an existing lan-
guage as a basis for extension. For technical and prac-
tical reasons, we chose Standard ML of New Jersey
as our base language. Henceforth we will use SML to
mean just the language and SML/NJ to mean the New
Jersey implementation of SML. SML is a strongly-
typed, mostly functional, programming language. At
its core, it supports functions as first-class values, ex-
ceptions, and polymorphism. SML’s modules facility
supports information hiding, data abstraction, and pa-
rameterized modules. Most notably, SML has a pub-
lished formal semantics [18], which means that any ex-
tension has the potential of being formally defined and
can be objectively evaluated in terms of how much it
perturbs the existing semantics. One important prac-
tical reason for choosing SML as our base language
is that a decent compiler and runtime were readily
available and relatively easy to extend. Another prac-
tical reason is that SML has a growing local (CMU)
and international user community. Finally, we chose
to target the New Jersey implementation of SML be-
cause SML/NJ supports continuations ! and it runs
on different architectural and operating system plat-
forms.

In the design and implementation of our own ex-
tensions, we gain additional leverage from SML’s
high-level language features and SML/NJ’s well-
modularized design. SML makes a type distinction
between immutable and mutable values (refs); we rely
on strong typing to let the runtime system safely op-
erate on addresses (without the programmer’s knowl-
edge). We use signatures to separate interface infor-

1GML as defined in {18] does not feature continuations, but
see [12] for a formal description.

833

signature RELATION = sig
type relation
type rtuple
type attributes

val create: attributes -> relation
exception InvalidRTuple

val insert: rtuple * relation -> relation
val delete: rtuple * relation -> relation

end

Figure 1: Signature for Relations

mation from implementation and functors to compose
parameterized modules. We exploit SML/NJ’s highly-
phased compiler by not modifying its front-end at all.
We modify its back-end with small additions that fit
neatly into its garbage collection scheme and take ad-
vantage of its simple runtime representation of data;
we use the storage allocation algorithm unchanged.

We assume some familiarity of SML and explain
details of examples as necessary, especially our use of
SML’s modules facility.

1.3 Example

As a running example, we use the relation abstrac-
tion whose signature is given in Figure 1. We can obvi-
ously use relations to implement a relational database.

Create constructs a new relation from a given a set
of attributes. Insert (delete) returns a new relation
that is the result of adding (removing) a given rtuple
into a given relation. An rtupleis a set of bindings be-
tween attributes and values. For illustrative reasons,
we also choose to have both insert and delete modify
their relation argument. Both raise the exception In-
validRTuple if the number of values given in the rtuple
argument is not the same as the number of attributes
in the relation.

We have omitted listing the usual relational
database operations like union, intersect, project, and
select since their purely functional (side-effect free) be-
havior has no effect on our discussion of persistence
and undoability.

Bindable relations (Figure 2) extends relations by
adding bind, unbind, and fetch functions. Bind lets
us bind to an identifier an entire relation; unbind has
the side effect of disassociating the relation bound to
a given identifier; fetch returns the relation bound to
its identifier argument or raises an exception if the
identifier is unbound.

In the SML modules facility, a structure is a kind
of module that implements the interface specified in a
signature. A functor is a parameterized module that,

signature BIND_RELATION = sig
structure Relation : RELATION
type identifier

2 Persistence
An object that is persistent is one that outlives the
computation that created it. Persistent objects live

val bind: (Relation.relation * identifier) -> unit Potentially forever. In our current design for SML, any

val unbind: identifier -> unit

exception UnboundId
val fetch: identifier -> Relation.relation
end

Figure 2: Signature for Bindable Relations

when instantiated, creates a structure. Hence, large,
modular SML programs typically consist of signatures
and functors. Programmers create structures by func-
tor application, which is analogous to instantiation of
a parameterized module in many other programming
languages.

For our example, we assume there are two func-
tors: Relation(): RELATION, which takes no pa-
rameters and returns a structure that matches the
RELATION signature; and Bind-Relation(Relation:
RELATION): BIND_RELATION, which takes as a
parameter a structure that matches the RELATION
signature and returns a structure that matches the
BIND_RELATION signature. Below, we use these
two functors, first to create a relation structure, Rela-
tion, and next to create a bindable relation structure,
Bind_Relation, by functor application on the structure
Relation?:

structure Relation = Relation();

structure Bind_Relation =

In the next three sections we extend the two sig-
natures given in Figures 1 and 2 to support persis-
tent relations (Section 2), “undoable” relations (Sec-
tion 3), and finally transactional relations (Section 4).
For each section, we first explain informally the model
of computation, give the design of our extension, give
details of our implementation, and illustrate a use of
the extension on the relation example, reusing the Re-
lation structure created above. In Section 5 we close
with a discussion of related work, our current imple-
mentation status and future work. A longer version of
this paper, including preliminary benchmark results is
in [24].

2Since structure names and functor names are in disjoint
namespaces, we follow the standard SML naming convention:
the structure named on the left-hand side of the equal symbol
has the same name as the functor applied on the right-hand
side.

Bind_Relation(Relation);

834

first-class value can be a persistent object. Formally,
any member in the semantic domain Val can be made
persistent. 3
2.1 Model of Computation

Informally, here are the modifications and additions
we make to the dynamic semantics of SML:

o We add to the domain of values, Val, a new do-
main of persistent memory addresses, PAddr.

e We add the notion of a persistent memory,
PMem: PAddr — Val, a finite mapping from per-
sistent addresses to values. Persistent memory
co-exists with the usual SML memory (bindings
between “normal” addresses and values).

e We add the notion of a persistent environment,
PEnv, which co-exists with the usual SML en-
vironment (bindings between identifiers and val-
ues). PEnv can be thought of as a symbol table
containing bindings between identifiers and val-
ues. In particular, a persistent address can be
bound to an identifier, thus giving us a way to
access the persistent memory through the persis-
tent environment. Conceptually, the persistent
environment contains a set of persistent “roots”
into persistent memory.

2.2 Interface

The interface to the persistent memory and per-
sistent environment is shown in the signature in Fig-
ure 3. Before explaining each function in detail, con-
sider the following typical scenario for using them. At
startup, an SML user links to the persistent environ-
ment through a call to init. The user can choose to
add to and remove entries from the persistent environ-
ment through bind and unbind. The user calls save to
save changes made to objects (in persistent memory)
reachable from the root set contained in the persistent
environment.

More specifically, init has the effect of obtaining a
pointer, which we call the persistent handle, to the per-
sistent environment. If its boolean argument is false,
the handle points to a new, empty persistent environ-
ment (and memory); otherwise, the handle points to
a previously saved environment. Its two string argu-
ments are filenames: the first names the log file; the
second, the data file. They are needed for the under-
lying recoverable virtual memory (RVM) system that

3See p. 47 in [18] for a detailed definition of Val.

signature PERS = sig
exception InitFailed
val init: string * string * bool -> unit

exception SaveFailed
val save: unit -> unit

val bind: identifier * ’a —-> unit
val unbind: identifier -> unit

exception UnboundId
val retrieve: identifier -> ’a
end

Figure 3: Signature for Persistence

we use (see Section 2.3) to implement persistent stor-
age. Save has the effect of writing to disk all changes
(including additions) to the persistent memory and
persistent environment since the last save. Both init
and save may raise an exception because of rare I/0
problems encountered by RVM.

Bind adds to the persistent environment a bind-
ing between an identifier and value. Unbind removes
a binding from the persistent environment given an
identifier. Retrieve returns the value bound to an iden-
tifier in the persistent environment and raises an ex-
ception if no binding for the identifier exists. Notice
here a need for dynamic types [1], which SML does not
currently support. SML cannot statically determine
whether the type of the value returned by a retrieve
of some identifier is the same as the type of the value
when it was initially bound through a bind.

Our design maintains the principle of orthogonality
between persistence and type [4]: persistence is not a
property associated with a type. We also maintain
the principle of referential transparency [19]: the per-
sistent value retrieved is the same, not a copy, of the
value saved and its internal topology is preserved.

In short, our design, which may change as we gain
experience with our implementation, provides a single-
level of indirection to persistent memory through a
“symbol table” of identifier/value bindings. This de-
sign decision reflects a compromise between not pro-
viding the user with any mechanism at all for naming
values to be saved in persistent storage, e.g., by having
at most a single persistent root, and forcing the user
to always explicitly move, upon each access or modifi-
cation, values to and from persistent storage by name,
e.g., by providing make-persistent/ make-volatile oper-
ations [8]. Our approach, which is similar to that
taken in other languages and systems like Poly/ML
(17), Galileo [2], and Staple [10], gives programmers

835

some control over naming and managing persistent
values. It also lets us implement persistent storage
management efficiently.
2.3 Implementation
2.3.1 SML Veneer
In our implementation we represent persistent mem-
ory as part of a persistent heap and the persistent en-
vironment as a symbol table that is itself stored in the
persistent heap. The persistent heap lives alongside
SML/NJ’s volatile heap.

We implement the interface for persistence through
a thin veneer of SML code, which calls two C routines
in SML/NJ’s runtime. One routine initializes the per-
sistent heap and returns a ref, i.e., the persistent han-
dle, to the persistent symbol table; one implements
the effects of the save function. We give details of im-
plementing init and save in the next section. Bind,
unbind, and retrieve are standard insert, remove, and
lookup operations on symbol tables and need no fur-
ther discussion.

2.3.2 C-level Code

RVM: We do not directly rely on the standard (Unix)
file system to provide actual permanence of effects;
instead we use the CMU Recoverable Virtual Memory
(RVM) system [16] that provides a different abstrac-
tion of permanent storage. RVM allows applications
to map recoverable unstructured byte arrays, called
segments, into a program’s address space. To ensure
changes made to a segment are saved permanently on
disk, first we need to inform RVM which locations have
been changed, and we need to call RVM’s commit op-
eration to force the changes to disk. RVM uses a log
to make this force efficient.

Implementing init: We use two RVM segments to
implement the persistent heap. The first contains
three pointers, one to the beginning of the heap, one to
the end, and one to the location of the persistent sym-
bol table. The first two pointers determine the domain
of persistent addresses (PAddr). The third pointer is
the persistent handle. The second segment contains
the persistent heap (i.e., the actual data area). Upon
initialization, we map the persistent heap into RVM,
returning the location of the persistent symbol table.
We treat this persistent handle as an implicit argu-
ment to the save, bind, unbind, and retrieve functions.

Implementing save: The key idea behind imple-
menting save is to garbage collect the set of point-
ers residing in the persistent heap that point into the
volatile heap. SML/NJ’s runtime system uses a store
list to support a straightforward generational garbage
collection algorithm [3]. This list records every store to
a location that might contain a pointer; it is discarded

functor PRelation (Relation : RELATION) :

struct

fun insert (tup, rel) =
(Relation.insert (tup, rel);
Pers.save();
rel)

fun delete (tup, rel) =
(Relation.delete (tup, rel);
Pers.save();
rel)
end

Figure 4: Persistent Relations

after every minor collection. We extend the store list
to include non-pointer mutations and, at each minor
collection, we save any entries that point inside the
persistent heap.

Upon a call to save, we first do a minor collection,
thereby leaving only one volatile heap. We then do
two things: First, for all the items on the store list,
we inform RVM that their locations have changed, al-
lowing RVM to log these changes to disk. Second, we
consider all items on this list that are pointers to be
roots for garbage collection. This garbage collection
step copies objects from the volatile heap onto the end
of the persistent heap. Once it is done, we update the
end-of-heap pointer, and tell RVM to log all the new
objects. Finally, we adjust any pointers that point
to objects that have been copied out of the volatile
heap to point to their respective copies in the persis-
tent heap. When save finishes we have established the
property that no pointers exist from the persistent to
the volatile heap. (There may, of course, be pointers
within each heap and from the volatile to the persis-
tent heap).

2.4 Use

To show a sample use of the interface for persis-
tence, consider making our relations persistent (see
Figure 4) by extending our previous signature. For
persistent relations, we need only modify the in-
sert and delete functions by simply adding a call to
Pers.save after we call the insert (delete) function on
regular relations.

To show how we manipulate the persistent envi-
ronment, we define a functor PBind-Relation (Fig-
ure 5) that lets users associate an identifier with a
persistent relation. Bind, unbind, and fetch operate
on table, internally represented as a symbol table.
Pers.retrieve retrieves the table, if it exists, that is
bound to the identifier RELATION_TABLE; if it does

RELATION =

836

functor PBind_Relation (Relation : RELATION):
BIND_RELATION = struct

structure Relation : RELATION = Relation
type identifier = Table.identifier

exception UnboundId = Table.UnboundId

fun new_table () =
let val st = Table.new ()
in (Pers.bind ("RELATION_TABLE", st);
Pers.save ();
st)
end

val table =
(Pers.retrieve "RELATION_TABLE"):Table.symtable
handle Pers.UnboundId => new_table ()

fun bind (rel, ident) =
(Table.bind table (ident, rel); Pers.save ())

fun unbind ident =
(Table.unbind table ident; Pers.save ())

fun fetch ident =
end

Table.retrieve table ident

Figure 5: Bindable Persistent Relations

not exist, then through the call to new_table we create
a new table, bind it to RELATION_TABLE, save it,
and return it.

To store, remove, and retrieve bindable persistent
relations, users make calls on the externally visible
bind, unbind, and fetch functions. Bind lets users asso-
ciate an identifier with a relation. It adds this binding
to the internally named table, RELATION TABLE.
Unbind lets users break the binding between an iden-
tifier and a relation and fetch lets users retrieve a re-
lation associated with an identifier.

By applying these two functors to the previously
created relation structure, Relation (Section 1.3), we
can now create a persistent relation structure, PRela-
tion, and a bindable persistent relation structure,
PBind_Relation:

structure PRelation = PRelation(Relation);

structure PBind_Relation = PBind_Relation(PRelation):

If we create, using PRelation.create, a persis-
tent relation, pr, our implementation guarantees that
changes resulting from subsequent PRelation.inserts
and PRelation.deletes to pr are persistent. We achieve
orthogonality between type and persistence: pr is of
type relation to which we can perform the same op-
erations as for any relation. Similar remarks hold

signature UNDO = sig
exception Restore of exn

val checkpoint : (unit -> ’a) -> ’a
val restore : exn -> ’a
end

Figure 6: Signature for Undo

for any bindable persistent relation created using
PBind_Relation.create.

To show how we use the persistent environment,
suppose we create a bindable persistent relation, bpr,
and then add it to the persistent environment:

PBind_Relation.bind bpr "MyPersRelation";

Then we can quit this SML session and later retrieve
the saved relation into bprl using:

val bpri = PBind_Relation.fetch “MyPersRelation";

The simplicity of our approach raises a namespace
problem with identifiers used in the persistent envi-
ronment itself (i.e., the persistent symbol table map-
ping identifiers to persistent values). For now, we as-
sume that for each type T, we can use the identifier
T_TABLE to keep track of all persistent values of type
T. Of course, as illustrated above with our examples
using pr and bpr, programmers who simply want to
create and make persistent values of type T never see
or need to know about the name T_TABLE.

3 Undoability

Undoability means that any change to a program’s
store can potentially be undone. This property is only
of relevance in the presence of side-effects. Support for
undoability requires the ability to save a program’s
store and restore a program’s store to a previously
saved one.
3.1 Model of Computation

Informally, a program’s store is a mapping between
locations and values. Formally, SML defines the se-
mantic domain Mem to be the set of finite mappings
from Addr (memory locations) to Val; a store is an
element of Mem. As an SML computation proceeds,
most changes are to the environment, not the store,
since SML programs are mostly functional. However,
through assignment to ref values, users can make ex-
plicit changes to a program'’s store.
3.2 Interface

The UNDO interface (Figure 6) provides two opera-
tions that checkpoint and restore the store. In the nor-

837

mal case (non—exceptional), checkpoint has the identi-
cal effects of simply calling its functional argument f;
that is, all changes to the current store by f are in
effect upon return, and if executing f returns a value
or raises an exception so does executing checkpoint f.

The call restore e has the effect of resetting the
store to the (dynamically) previously checkpointed
store and raising the exception Restore with value e.
A call to restore always returns control to the point at
which the store was last checkpointed; we effect this
flow of control using SML’s exception handling mech-
anism.

Because of this transfer of control by restore, check-
point can also terminate by raising the Restore excep-
tion. Hence, when the Restore exception is raised as
a result of a call to checkpoint, it is as if no change to
the current store has been made. This functionality of
checkpoint/ restore will give us the ability to support
the“all-or-nothing” property of transactions.

The rationale for providing an exception Restore is
to distinguish between a normal return (from check-
point) where side effects are done and one in which
restore is called, in which case side effects are un-
done. Having the Restore exception return an excep-
tion value is useful since it lets restore’s caller pass
information through the restore back to the caller of
checkpoint. As we will see in detail in the next section,
this provides us with a nice way to handle transac-
tional semantics.

By means of foreshadowing, as a simple example,
consider the following function*:

fun foo () =
(x :=5;
if C then Undo.restore Abort
else ix)

where z has been defined and Abort is an exception
value (in anticipation of the next section). In the fol-
Jowing call to foo, let st and st be the values of the
store before and after the call:

(Undo. checkpoint foo)
handle Restore exn => [some work]

When we call foo the current store is st. If C is false,
the store is updated by the change to z, 5 is returned,
and computation proceeds as usual with the updated
store st'. If C is true then st is unchanged, ie., st’
= st, the Abort exception is passed back, and [some
work] is done (e.g., abort-handling code or reraising
Abort).

4y in SML is the fetch operation on ref’s.

3.3 Implementation

To implement undo, we keep a log of all modifica-
tions to the store and the old values (elements of Val)
originally assigned to the modified locations (elements
of Addr). To restore the previous state of the store, we
simply replay the log from youngest entry to oldest.
To handle nesting, we need to remember intermediate
points in the log; for single-threaded applications, we
can follow a simple stack discipline to remember these
points.

For traditional imperative languages with explicit
storage management, this log-based approach has sev-
eral drawbacks. First since modifications to the store
are frequent, maintaining and replaying such logs
would be expensive. Second, since storage is managed
explicitly, the undo system would have to carefully
maintain copies of objects referred to by the undo log.
This would be a formidable task, especially in lan-
guages where pointers and integers cannot be distin-
guished.

For SML and other mostly functional languages,
using a log to implement undoability is much more
reasonable. First, assignments are rare, and in fact
happen to only a few data types, i.e., refs and arrays.
Maintaining a log and replaying it is not prohibitively
expensive. Second, since the garbage collector does
storage management, it is easy to ensure that data
referred to by the undo log are not deleted; we need
only make sure that the garbage collector is able to
reach the entries in the log.

3.3.1 Runtime Data Structures and Routines

The three main pieces of state information we main-
tain for our implementation of undo are the eztended
store list, a checkpoint stack, and the undo log. The
four main activities in our implementation of undo for
SML/NJ are log construction, checkpoint creation and
deletion, garbage collector interaction with the undo
log, and finally, log replay.

Log Entries, Log Construction: As for our imple-
mentation for persistence, to implement undo logs, we
extend SML’s store list in creating our eztended store
list in two ways: (1) Rather than log only mutations
that might affect the pointer graph (which the garbage
collector uses) we also log entries for mutations to non-
pointer values, i.e., integers and byte arrays; and (2)
rather than log only the location of these mutations,
we must also record the old values; we call these ex-
tended records undo log records since their old value
fields will be used for undoing the store. We prepend
entries to the extended store list, thus ordering them
from new to old.

838

functor URelation (Relation :
struct

fun insert (tup, rel) =
let fun restorer €) =
Relation.insert (tup, rel)
handle exn => Undo.restore exn
in
(Undo.checkpoint restorer)
handle Undo.Restore exn => raise exn
end

fun delete (tup, rel) =
let fun restorer () =
Relation.delete (tup, rel)
handle exn => Undo.restore exn

in
(Undo.checkpoint restorer)
handle Undo.Restore exn => raise exn
end
end

Figure 7: Undoable Relations

Checkpointing: To support nesting, we maintain a
stack of checkpoints, each of which points to an undo
log record (either on the extended store list or on the
undo log). When we establish a new checkpoint, we
push on the stack of checkpoints a new pointer, which
points to the most recent entry in the extended store
list. After a nested checkpoint terminates, we pop the
stack. After the last checkpoint terminates, we discard
the entire undo log.

Interaction with the Garbage Collector: The tricki-
est aspect of the undo system involves the transfer of
the store list to the undo system during garbage collec-
tion, and the subsequent garbage collection traversal
of the entries in the undo log. We describe those de-
tails in [24]. Passing, rather than discarding, the store
list to the undo system has the effect of prepending
undo records to the undo log. After this transfer, we
start another garbage collection using as roots the ap-
propriate pointers in the undo log’s entries.

Replay: Before replaying the log, we first force a
garbage collection to occur. As just explained, this
has the side effect of prepending more entries onto the
undo log. Next we replay the log from youngest to old-
est, rewriting old values, until we find the checkpoint
that matches the top of the checkpoint stack. Finally
we pop the checkpoint stack.

3.4 Use: Undoable Relations

Figure 7 shows part of the implementation for “un-
doable” relations. Again, the two relevant operations
are insert and delete. We wrap the call to Rela-

RELATION) : RELATION =

tion.insert by a checkpoint of the store before the call
using checkpoint and a handler for the Restore excep-
tion, in case an exception is raised. If executing Re-
lation.insert raises any exception e (e.g., InvalidRTu-
ple), we call Undo.restore, which causes the Restore
exception with e as its exception value to be raised
and control to transfer to the point at which check-
point was invoked; the outer handler catches the Re-
store exception and reraises e. The code for delete is
similar.

We can create an undoable relation structure by
applying the functor to our Relation structure from
before:

structure URelation = URelation(Relation);

If we create an undoable relation, ur, using URela-
tion.create, then if an exception is raised from at-
tempting to insert into or delete from ur, the effects
of the insertion or deletion are undone.

4 Transactions

As mentioned in the introduction, a transaction is
a group of operations that is treated atomically (“all-
or-nothing”). That is, a transaction must be atomic
and permanent. Atomicity means that a transaction
either succeeds completely and commits, or aborts and
has no effect. Permanence means that the effects of a
committed transaction survive failures. In the pres-
ence of concurrency, transactions must additionally
be serializable, which means that concurrent trans-
actions must appear to execute in some serial order.
With nested transactions, a transaction’s effects be-
come permanent only when commit occurs at the top-
level. That is, the permanence of effects of a nested
transaction is relative to its parent’s commit.

By putting the support for persistence and undoa-
bility together, we can provide support for single-
threaded nested transactions. Support for persistence
gives us a way to guarantee permanence and support
for undoability gives us a way to guarantee atomicity.
We are deliberately not handling concurrency in this
paper, and thus, can ignore serializability.

4.1 Model of Computation

We combine the additions to the model of computa-
tion for persistence and undoability. We extend SML
state to include the persistent memory, PMem, and we
extend the SML environment to include the persistent
environment, PEnv:

State = Mem x ... x PMem

Env = ... Xx PEnv

839

signature TRANSACT = sig
exception Abort

val transact: (unit -> ’a) -> ’a

val abort: unit -> ’a
val abort_top_level: unit -> ’a
end

Figure 8: Signature for Transact

4.2 Interface

Figure 8 gives the TRANSACT signature. The
function transact called with a function f has the ef-
fect of executing f atomically. It begins a possibly
nested transaction, which commits if and only if f
returns without raising an exception; we treat excep-
tional termination of a transaction as an abort. If the
committing transaction is top-level, all its changes to
the persistent environment and persistent memory are
saved to disk. If the committing transaction is not
top-level, no changes to the persistent environment or
persistent memory are made. If a transaction aborts,
all (and, in the case that it is nested, only) its changes
are undone. These properties of transact ensure that
the permanence of the effects of a child transaction
depends on the commit/abort of its parent. Only at
the top-level do effects of committed transactions get
saved to permanent storage, i.e., written to disk.

A call to abort has the effect of raising the Abort
exception and undoing a transaction’s effects by one
level. A call to abort_top_level has the effect of rais-
ing the Abort exception at the top-level and undoing
the effects of the top-level transaction, including the
effects of all its nested transactions. As with any ex-
ception, transact’s caller can use an explicit handler
for the Abort exception, e.g., if the abort of a nested
transaction is not to propagate.

Consider a simple example:

fun foo () =
(x:=x+ 1;
if C then !x else raise Abort)

fun bar () =
(x :=x+2;
if D then (Transact.transact foo;
else raise Abort)

'x)

and the following calls to transact:

Transact.transact foo;
Transact.transact bar;

In the first call, if C is true then x is incremented

and the new value is returned; otherwise, x remains
unchanged and the Abort exception is raised. To show
how nesting works, consider the second call: If D is
true then if C is true, x gets incremented by 3; if D
is true and C is false, x gets incremented by 2; if D is
false, x remains unchanged and the Abort exception
is raised.

4.3 Implementation

The implementation of the TRANSACT signature
is entirely in SML using the interfaces provided by
PERS and UNDO. Figure 9 gives the code.

Conceptually, transact is the composition of two
functions, g and f, where ¢ has the main effect of
checkpointing the current store (using checkpoint) and
fhas the effect of doing a nested transaction (do_trans)
or top-level transaction (do_top_trans). In both the
nested or top-level cases, if an exception is raised, then
we call restore to undo the transaction’s effects. In
the case of a top-level transaction, we need to do a
little more work: upon commit, we need to save all
its changes to the persistent heap (i.e., persistent en-
vironment and persistent memory).

Let us now step through the code in more de-
tail. First, we initialize a global boolean flag,
in_transaction, that remembers whether or not we
are inside a transaction already. Skipping down to the
bottom of transact’s definition (at the line beginning
do_check if ...), we test to see whether we are in
a transaction; if so we return the function do_trans;
otherwise, we return do_top_trans. We use do_check
to checkpoint the current store and to handle the Re-
store exception, reraising its exception value, ezn, to
transact’s caller.

Next, let us consider what do_trans does since for
both top-level and nested transactions we eventually
call it. Do_trans executes the closure argument to
transact. If an exception ezn is raised, the transac-
tion aborts, restoring the store to the previously check-
pointed value and raising the Restore exception with
the exception value ezn; control returns to the point
at which the store was last checkpointed.

Do_top_trans first sets the boolean flag and
calls do_trans to execute the transaction’s closure.
Do_top_trans may complete successfully, thereby com-
mitting, or unsuccessfully, thereby aborting. If it com-
mits (skipping the exception handler code), we save its
effects in the persistent heap °, reset the boolean flag,
and return the value, res, obtained as the result of
executing the closure. If it aborts, it terminates with
either an AbortTopLevel exception or by some other

5The exception handled by the call to save is SaveFailed. See
Section 2.

840

structure Transact: TRANSACT = struct
exception Abort
exception AbortTopLevel

val in_transaction = ref false
fun transact closure = let
fun do_check f = (Undo.checkpoint f)

handle Undo.Restore exn => raise exn

fun do_trans () = closure ()
handle exn => Undo.restore exn

fun do_top_trans () = let

val _ = in_transaction := true
val res = (do_check do_trans)
handle AbortTopLevel => Undo.restore Abort
| exn => Undo.restore exn
in
(Pers.save () handle exn => Undo.restore exn;
in_transaction := false;
res)
end

in
do_check (if !in_transaction then do_trans
else do_top_trans)
end

fun abort () = raise Abort
fun abort_top_level () = raise AbortTopLevel
end

Figure 9: Implementation of Transact

functor TRelation (Relation : RELATION) : RELATION =

struct

fun insert (tup, rel) =
let fun wrapper () = Relation.insert (tup, rel)
in
Transact.transact wrapper
end

fun delete (tup, rel) =
let fun wrapper () = Relation.delete (tup, rel)
in
Transact.transact wrapper
end
end

Figure 10: Transactional Relations

exception. If it terminates with an AbortTopLevel ex-
ception, then we restore the store and raise the Abort
exception. If it terminates with any other exception,
we restore the store and reraise the exception. By
restoring the store we treat any exceptional termi-
nation of a nested transacction as an abort, yet give
the handler the opportunity to execute abort handling
code depending on what kind of exception is raised.

Note that for top-level transactions there are two
do_checks. The inner one allows us to convert an
AbortTopLevel exception to Abort, to restore the
store to the appropriate value, and to transfer con-
trol to the outermost do_check. The outer do_check
will return control back to the caller of the top-level
transaction. Without the innermost do-check, if an
abort to the top level occurs, then because of the im-
plicit transfer of control in restore, the call to restore in
do_trans would bypass the handler for AbortTopLevel.

Our implementation handles the abort of a trans-
action to the top level (e.g., if some user code calls the
abort_top_level function within a deeply nested trans-
action) by unrolling “inside-out” the effects of each
nested transaction one level at a time, propagating the
AbortTopLevel exception all the way until the outer-
most handler. Since we do not want or need to expose
the AbortTopLevel exception we mask it by raising
the Abort exception to the original caller of transact.
We could have optimized the unrolling by handling
the AbortTopLevel exception specially in the do_trans
function, but it would make the code harder to read.

4.4 Use: Transactional Relations

Figure 10 shows part of the implementation for
transactional relations. The changes for insert and
delete are simple: we wrap the call to each corre-
sponding Relation function inside a call to Trans-
act.transact. The TBind_Relation functor is similar
to the PBind_Relation functor (Figure 5) and omitted
for brevity.

Again, through functor application, we can create
two new structures:

structure TRelation = TRelation(Relation):

5 Related, Current and Future Work
5.1 Related Work

What primarily distinguishes our work from oth-
ers is the principle of orthogonality between the per-
sistence and undoability properties of transactions.
No other language pulls out so explicitly the undoa-
bility property from transactions as we do; rather,
more typically, “save” implies transaction commit and
“undo” implies transaction abort. By our separating
the two properties, we can distinguish between per-
sistent memory (PMem) from regular memory (Mem)
(this is what persistence provides) and between doing
and undoing effects to memory, persistent or other-
wise (this is what undoability provides). Then we can
put the two properties together to give transactional
semantics.

Support for just persistence needs no motivation as
witnessed by the existence of a multitude of persistent
programming languages and systems (e.g., PS-Algol
[4], Napier [20], Poly/ML [17], Amber[6], Galileo [2],
Exodus [7], Argus [15], Avalon [11], Mneme [22]; see
[5] for a survey).

Support for undoability, aside from transactions,
is useful for applications like interactive debuggers,
backtracking programs, and database systems using
optimistic concurrency control; they share a need to
save the state of the system, e.g., by checkpointing
a store, and to go forward and backward in time.
Johnson and Duggan give a denotational semantics
for first-class stores; they use a version stamp scheme
on persistent data structures to implement stores as
first-class objects [14]. Wilson and Moher propose
a general call/cs (call-with-captured-state) construct,
similar to Scheme’s and SML/NJ’s call/cc (call-with-
current-continuation) construct, that lets one treat
stores as first class [29]. Their call/cs construct, use of
garbage collection techniques for implementing check-
pointing, and other ideas about demonic memory in-
spired our initial design of UNDO’s interface. We
backed off from call/cs’s full generality for ease in
understanding and implementation, and most impor-
tantly, to enforce greater safety.

Our work relates most closely to two classes of

structure TBind_Relation = TBind_Relation(Relation) ;programming la.nguages: persistent languages and

Given a bindable transactional relation value, bir, we
are guaranteed that a call to any TBind_Relation func-
tion like insert will be atomic. Moreover, if prog is
a sequence of operations on bir and we call Trans-
act.transact prog, then we are guaranteed that all of
prog’s effects will be done if this top-level transaction
commits, or none are done if it aborts.

transaction-based languages. Some persistent pro-
gramming languages, such as Poly/ML [17] and Am-
ber [6], do not support transactions at all, except per-
haps implicitly as the top-level interactive session with
a user. Others, such as PS-Algol [4] and Napier [20],
support a simple database-oriented notion of a trans-
action where the act of opening a database file for
writing begins a transaction and the act of closing

it commits it. Explicit routines for commiting and
aborting may also be available, but users have little
other control over transaction management. A trans-
action’s role as a control abstraction is combined with
its role as part of the database file abstraction. We
choose to treat transactions only as a control abstrac-
tion.

General-purpose transaction-based languages like
Argus [15] and Avalon [11, 8] do not decouple the
persistence and undoability properties of transactions.
Atomic data types give users a means of guaranteeing
both properties and they are inseparable.® Argus and
Avalon also do not support the principle of orthog-
onal persistence; e.g., array and atomic_array are
both built-in types in Argus. However, both Argus
and Avalon handle concurrency and guarantee strong
correctness conditions, e.g., dynamic atomicity (Ar-
gus) or hybrid atomicity (Avalon), to clients of atomic
data types. Our mechanisms lie at one level lower
since others are now free to extend our work, provid-
ing whatever concurrency correctness condition they
desire.

Of the database-oriented programming languages
(e.g., Pascal/R [26], Adaplex [27] and Taxis [23]), be-
cause of its type system and base language (ML), the
most closely related is Galileo [2]. Its idea of ex-
tending the global environment with additional bind-
ings through the use construct is similar to our use
of SML’s module facility, in particular functor appli-
cation, to extend SML’s top-level environment; e.g.,
in the case of persistence, we add and remove bind-
ings to and from the persistent environment, which
is just an extension of the top-level SML environ-
ment. Galileo does not explicitly provide an “undo”-
only facility, but it does have limited support for
transactions. It supports top-level transactions im-
plicitly (every top-level expression is executed atom-
ically) and nested transactions explicitly through the
transaction/end_transaction bracketing construct.
The only way to abort a transaction is to raise an
exception. Because it is database-oriented, atomic-
ity is guaranteed against the database, which serves
as the storage mechanism for persistent data, rather
than smaller chunks of data; however, programmers
can use its class and subclass features to gain finer-
grained control over data.

5.2 Current and Future Work

Current Status: All the code given in this paper
runs. In short, persistence with RVM works, undoa-

6 Avalon provides a class called recoverable which is similar
to providing just persistence but programmers are encouraged
to use it only in constructing atomic data types.

842

bility works, and nested transactions work. The im-
plementation includes approximately 200 lines of new
SML code and modifications to about 80 lines of ex-
isting SML code; 850 lines of new C code and modifi-
cations to 250 lines of existing C code.

To determine what overhead our persistence and
undo facilities add to SML/NJ, we have run prelimi-
nary benchmarks on two examples: the relation exam-
ple as presented in this paper and the SML/NJ com-
piler itself. Our results indicate that we can perform
1-2 transactions per second which is acceptable perfor-
mance for our application domain. Most of the cost
in persistence is time spent on scanning the persistent
heap; most of the cost in undoability is in garbage
collection—doing collection more frequently and copy-
ing additional data values. The main total expense is
the price paid for saving the persistent store; support
for undoability does not incur a large performance
penalty. E.g., our compiler benchmark indicates that
maintaining the extended store list adds only about
a 5% overhead in time. These results suggest places
in our implementation that warrant optimizations for
future work [24].

Support for Heavyweight and Lightweight Concur-
rency: We have already built, but not yet thoroughly
tested, mechanism to support concurrent transactions
(multiple “heavyweight” processes). We use standard
two-phase read/write locks to ensure serializability
among concurrent transactions. The implementation
essentially keeps locking information per transaction
state. We support Moss’s rules for nested concurrent
transactions [21].

Along with others at Carnegie Mellon, we have
separately designed and built a Threads package for
SML/NJ [9]. We have begun to integrate this Threads
package with our support for persistence, undoability,
and transactions. For example, we can run multiple
threads of control, each of which does multiply nested
checkpoints and restores. This demonstrates the or-
thogonality between lightweight concurrency and un-
doability.

Acknowledgments: For fruitful discussions of our de-
sign, we thank Anurag Acharya, Eric Cooper, Bob Harper,
Peter Lee, Greg Morrisett, Benjamin Pierce, Gene Rollins,
and David Tarditi. For helpful comments on an earlier
draft of this paper we thank other members of the Ve-
nari Project: Manuel Faechndrich, Greg Morrisett, Gene
Rollins, and Amy Moormann Zaremski. We owe a spe-
cial thanks to Manuel Faehndrich for his invaluable con-
tributions and participation in implementing extensions to
SML/NJ during the Summer of 1991.

References

1]

2

[3

e

(5]

(6]

[7

—

(8]

[

[10]

[11]

[12]

[13]

M. Abadi, L. Cardelli, B.C. Pierce, and G.D. Plotkin.
Dynamic typing in a statically typed language. ACM
TOPLAS, 13(2), April 1991. DEC/SRC TR-47.

Antonio Albano, Luca Cardelli, and Renzo Orsini.
Galileo: A strongly-typed, interactive conceptual lan-
guage. ACM Transactions on Database Systems,
10(2):230-260, June 1985.

A. Appel. Simple generational garbage collection and
fast allocation. Software—Practice and Ezperience,
19(2):171-183, February 1989.

M.P. Atkinson, P.J. Bailey, K.J. Chisolm, W.P. Cock-
shott, and R. Morrison. An approach to persis-
tent programming. Computer Journal, 26(4):360-365,
1983.

M.P. Atkinson and O. Peter Buneman. Types
and persistence in database programming langunages.
ACM Computing Surveys, 19(2):105-190, June 1987.

Luca Cardelli. Amber. In Guy Cousineau, Pierre-
Louis Curien, and Bernard Robinet, editors, Combi-
nators and Functional Programming Languages, vol-
ume 242 of LNCS, pages 48-T0. Springer-Verlag,
Berlin, 1986.

Michael J. Carey, David J. DeWitt, Goetz Graefe,
David M. Haight, Joel E. Richardson, Daniel T.
Schuh, Eugene J. Skekita, and Scott L. Vanden-
berg. The EXODUS extensible DBMS project: An
overview. In S.B. Zdonik and D. Maier, editors, Read-
ings in Object-Oriented Database Systems. Morgan
Kaufmann, 1990.

S.M. Clamen, L.D. Leibengood, S.M. Nettles, and
J.M. Wing. Reliable distributed computing with
Avalon/Common Lisp. In Proc. of the 1990 Int’l
Conf. on Comp. Lang., pages 169-179, March 1990.

E.C. Cooper and J. Gregory Morrisett. Adding
threads to Standard ML. Technical Report CMU-
CS-90-186, CMU, December 1990.

A.J.T. Davie and D.J. McNally. Statically typed ap-
plicative persistent langauge environments (STAPLE)
reference manual. Technical Report CS/90/14, Univ.
of St Andrews, Dept. of Math and Comp. Sci., 1990.

D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inher-
itance of synchronization and recovery properties in
Avalon/C++. IEEE Computer, pages 5769, Decem-
ber 1988.

Bruce F. Duba, Robert Harper, and David B. Mac-
Queen. Typing first-class continuations in ML. In
Proc. of POPL, 1991.

J. Eppinger, L. Mummert, and A. Spector. Camelot
and Avalon: A Distributed Transaction Facility. Mor-
gan Kaufmann, 1991.

843

(14]

(17]

(18]
(19]

20]

(21]

(22]

(23]

[24

—

25]

(26]

(27]

[28]

[29]

G.F. Johnson and D. Duggan. Stores and partial con-
tinuations as first-class objects in a language and its
environment. In Proc. of POPL, pages 158-168, Jan-
uary 1988.

B. Liskov and R. Scheifler. Guardians and actions:
Linguistic support for robust, distributed programs.
ACM TOPLAS, 5(3):382-404, July 1983.

Hank Mashburn and M. Satyanarayanan. RVM: Re-
coverable virtual memory. Note in progress, March
1991.

David C.J. Matthews. A persistent storage system
for Poly and ML. Technical Report 102, University
of Cambridge, Cambridge, UK, January 1987.

R. Milner, M. Tofte, and R. Harper. The Definition
of Standard ML. MIT Press, 1990.

R. Morrison and M.P. Atkinson. Persistent Languages
and Architectures, pages 9-28. Springer-Verlag, 1990.

R. Morrison, A.L. Brown, R. Carrick, R. Conner, and
A. Dearle. On the integration of object-oriented and
process-oriented computation in persistent environ-
ments. In Advances in Object-Oriented Database Sys-
tems, pages 334-339, 1988.

J.E.B. Moss. Nested transactions: An approach
to reliable distributed computing. Technical Report
MIT/LCS/TR-260, MIT, April 1981.

J.E.B. Moss and S. Sinofsky. Managing persistent data
with Mneme: Designing a reliable, shared object inter-
face, volume 334 of LNCS, pages 298-316. Springer-
Verlag, September 1988.

J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. A
language facility for designing database intensive ap-
plications. ACM Transactions on Database Systems,
5(2):185-207, June 1980.

Scott M. Nettles and J.M. Wing. Persistence + Un-
doability = Transactions. Technical Report CMU-CS-
91-173, CMU, August 1991.

M. Satyanarayanan et al. Coda: A highly available
file system for a distributed workstation environment.
IEEE Trans. Comp., 39(4):447-459, April 1990.

J.W. Schmidt. Some high level language constructs
for data of type relation. ACM TODS, 2(3):247-261,
September 1983.

J.M. Smith, S. Fox, and T. Landers. ADAPLEX:
Rationale and Reference Manual. Cambridge, MA,
1983. 2nd ed.

A.Z. Spector et al. Support for distributed transac-
tions in the TABS prototype. IEEE TSE, 11(6):520-
530, June 1985.

P.R. Wilson and T.G. Moher. Demonic memory for
process histories. In Proc. of PLDI, pages 330-443,
June 1989.

