
5

FORMAL SEMANTICS FOR
VISUAL SPECIFICATION

OF SECURITY

MARK W. MAIMONE, J. D. TYGAR,

AND JEANNETTE M. WING

1. Introduction

Visual languages, like all languages, need a formal semantics. This
chapter presents an outline of a visual language and gives a formal defini-
tion of its meaning.

Pictures from a language that has ambiguous (informal) interpretations
for graphical constructs only serve to frustrate the user of the visual
language, and confuse the reader ("But what does it mean?"). Some

languages at least come equipped with rules that determine when a
"picture"* is well formed. A formal semantics, however, would describe
not only the syntactically valid pictures, but more importantly, their
mathematical interpretation. That is, it does not suffice to give only a BNF
for pictures; one must additionally map each well-formed picture onto some
underlying mathematical entity.

The Mir6 Project at Carnegie Mellon University is designing and
implementing a visual language for specifying properties of large software
systems. The first class of properties to which we are applying our visual
notation is security, e.g., secrecy and integrity of files, as described in Refs, 1,
3, 8, 9. Unlike the development of many other visual languages, our design

* We use the term "picture" here generically to mean some ensemble of graphical objects

drawn using some visual language; our pictures are diagrams, not raster images.

MARK W. MAIMONE, J. D. TYGAR, and JEANNETTE M. WING . School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. The views and con-
clusions contained in this paper are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

97

98 MARKW. MAIMONEet al.

proceeds in tandem with the development of its formal semantics. We there-
fore benefit from not only the concision of visual notation, but the precision
of a rigorous semantics.

2. Informal Description

File system security is an especially compelling area in which to apply
our techniques. Besides the inherent importance of the subdiscipline, it is an
area based on a clearly defined underlying model (e.g., Lampson's access
matrix representation) and has motivated much research in formal specifi-
cation techniques. The goal of the Mir6 Project is to present a formal speci-
fication model that is straightforward to understand and still has a mathe-
matically precise meaning. Previous work in protection systems tended to
concentrate on operating system mechanisms for specifying file system access

on a file-by-file or process-by-process basis; these mechanisms usually involve
adding auxiliary information to the information on the file, the auxiliary
information being encoded in some fixed format. However, heterogeneous
systems typically have vastly different representations of protection informa-
tion, and even on a single system it is frequently difficult or impossible to
trace completely when access is permitted without inspecting the encoded
information stored with each file or process. In UNIX,* for example, each
file has associated with it an owner and a group. The owner represents a single
user and the group represents a set of users. Three access types are defined:
Read, Write, and Execute. The meaning of these access types varies with the
type of file (e.g., Execute privileges not only control the fight to run
executable programs, they also govern the fight to access any files inside a
directory). These fights are stored as bits, and the interpretation of these bits
must be understood by a user. As a result, many naive users make frequent
errors by allowing unauthorized individuals to access their files. These
problems are further complicated when we consider other UNIX features
such as "set user ID" bits and "sticky" bits.

The constructs of Mir6 are simple: boxes and arrows, each optionally
labeled.* In giving such constructs aosemantics, it is essential to provide an
interpretation for individual boxes and arrows and their compositions when
they form pictures. Depending on the class of properties of interest, the inter-
pretation of the boxes and arrows will change. In this chapter, we present
a complete interpretation for the Mir6 constructs in the domain Of file

* UNIX is a trademarkof AT & T.
*Boxesare drawnas rectangleswith roundedcomers,inspiredby Harel'sStatechartnotation

(seeRef. 2).

FORMAL SEMANTICS FOR vISUAL SPECIFICATION OF SECURITY 99

Universe "

Group1

[°°°)
Fmum_ 1. A sample Mir6 security specification.

system security properties. The underlying semantic model for security is
simple: an access-rightsmatrix, where each user (represented by a process) has
a (possibly empty)set of rights governing access (e.g., Read, Write, Execute)
to each file (or program). Informally, boxes represent individual users and
files or collections of users and files; arrows represent fights. Since we have

negative arrows as well (expressed as arrows with slashes through them), we
can express the absence of rights. The introduction of negative arrows causes
some nontriviality in our semantics, since we wish to disallow ambiguous
pictures.

For example, Figure 1 shows a Mir6 security specification that reflects
some aspects of the UNIX file protection scheme. The outermost left-hand
box depicts a universe, Universe, of users, three (out of possibly many not
explicitly shown) groups, Groupl, Group2, and Group3, and two (out of
many not explicitly shown) users, Alice and Bob. The containment and over-
lap relationships between the universe, groups, and users indicate that all
users are in the universe, and users can be members of more than one

group.* The right-hand box denotes the set of files in Alice's private direc-
tory. The arrows indicate that Alice, and no other user, has Read access to

her private files. That is, the direct positive arrow from Alice overrides the
negative arrow from Universe.

Figure 2 illustrates some more features of the language. Here only Alice
has Read and Write rights to/usr/Alice/private. Since the boxes for Alice,
Bob, and Charlie are all in the Universe box, and there is a Read arrow

from Universe to/etc./passwd, all of these users can read/etc./passwd. What
of the rest of the users--do they or do they not have Write access to Alice's

* We do not address the property that a user must belong to at least one group here, though
Mir6 does provide for this expressibility (see Ref. 3).

FIGURE 2. Another security specification.

private directory? The answer is no, they do not. We define the absence of
an appropriate arrow to mean no access. Both Fig. 1 and Fig. 2 also
illustrate the distinction between user and file boxes: the former lie at the

tails of all arrows, the latter at the heads.

:_ Finally, what does the picture in Fig. 3 mean? Is Bob a special user
who has access to all programs in usr, including admin? Or are no users
(including Bob) allowed access to the admin directory? Either interpretation
seems valid; therefore this picture is ambiguous. One result of this chapter is
a closed form expression for determining when an entry in the access-rights
matrix is ambiguous.

Already, the reader might wonder the following: What do "contain-
ment" and "overlap" mean when some boxes look like they denote atomic
objects (e.g., Alice and Bob) and some denote sets of atomic and nonatomic
objects (e.g., Group2)? (What do "atomic" and "nonatomic" mean?) What
is the interpretation of the absence of a box or arrow? What is the
interpretation of seemingly conflicting negative and positive arrows (i.e.,
what are the rules for overriding arrows)? How are ambiguous pictures
dealt with? These are the sorts of questions formal semantics can answer

:_ precisely.
In what follows, we capture these visual notions in a logical setting: the

set theoretic notions hinted at in Fig. 1 are made explicit. We formally

present the syntactic domains in*Section 3, and the semantic domains

_ Universe _'_ (usr

[8ob J admln FIGURE 3. An ambiguous security. specification.

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 101

(access-rights matrix) and interpretation in Section 4. We present a careful
treatment of ambiguity in Section 5, and close with some final remarks
about current and future work in Section 6.

3. Syntax

Although the Mir6 language itself is primarily visual, we will give its
semantics in a well-known denotational language: the language of mathe-
matics. We wili build propositions out of set theoretic constructs and use
frst-order logic to reason about them. Table 1 lists the definitions we will
need to build these propositions. We will motivate each of these definitions
in the following section.

Before beginning the presentation, we clarify some aspects of our nota-
tion. Throughout the chapter, indentation is used to reduce the number of

parentheses, negation symbols (7) will bind more closely than conjunction
(^), and conjunction will bind more closely than disjunction (v). Implica-
tion (=_) is less restrictive than these, but will bind more closely than the
quantifiers (V, 3). The symbol (_) will be used to denote the union of two
disjoint sets, and (_) will be used to define new constructs.

3.1. Explanation of the Syntax Table

Consider the kinds of things that make up a picture. There are two
types of boxes, User/Process and File boxes. Each box has an identifier

associated with it. Let Fid be the set of file identifiers given for a particular
picture, and Pi_ the set of User (or Process) identifiers.

Now that we have names for both types of boxes, let us look carefully
at just What these boxes stand for. We will ignore the fact that there are two
types of boxes for now, and just consider generic boxes (i.e., we will leave the
identifiers uninstantiated).

Just what does a box represent? The simplest kind of box, the atomic
box (one that contains no other boxes), represents exactly one column in an
access matrix; that column has the name of the box. The box's size and loca-

tion do not affect the matrix, as long as it is not enclosed within another

(nonatomic) box. So we can fully characterize atomic boxes with just their
labels.

Now what about more complicated boxes? Consider boxes that contain
only atomic boxes. These boxes each have a name and a list of (atomic)
boxes contained within them. Going one step further, consider boxes con-
taining these (that is, boxes whose subboxes contain only atomic boxes).
Again, the meaning of these boxes is wholly contained in the boxes' iden-
tifiers and lists of subboxes.

102 MARKW. MAIMONEet al.

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 103

Thus, every box can be uniquely characterized by its identifier and the
set of boxes contained within it. Notice that this definition also takes care of

overlapping boxes; we place no constraints on the list of subboxes, so one
box may be contained in many others. We should also point out that when
two boxes overlap in a picture, but have no other boxes in their intersection,
then the overlapping is ignored; it has no bearing on the access matrix. This
is an intended, though controversial, aspect of the semantics.

We can express this box encapsulation more formally, and do so in
Table 1. We define box layer x(B_l) inductively, in terms of increasingly
larger enclosing sets. B ° is the set of atomic boxes, and B_ is the set of atomic
boxes plus all boxes that contain only atomic boxes. We continue in the same
fashion, adding at each layer boxes that contain all of the boxes listed at the
previous layer. Members of B/2 are boxes that contain either atoms or boxes
containing atoms. Formally, B_ = B ° u B_Iu { (x, id)Ixe (2 n_- {_ }) ^
ide I}. This definition ensures that our boxes are well-founded; no box is
inside itself.

There is a quirk in the formalism. In order to make the mathematical
expression for contains all boxes at lower layers more concise, we replicate each
earlier layer in the later ones. Every earlier set of boxes is included in the

later ones; more formally, ViVjwhereO<_j<i B_IC B_. Thus we can conveniently

use the power set notation 2 _-' (see Table 1). We remove the empty set
from the power set for convenience only; boxes with no subboxes are added
to the set by the union with B °, the set of atomic boxes. It could have just
as easily (and more importantly, just as correctly) been left in.

Finally, we can talk about the set of all possible boxes. We could say
that B_° is the set of all possible boxes, but to avoid trying to prove that
such a limit exists, we instead define the set of all boxes to be the union of

all box layers. Since each earlier layer is contained in all later ones, the

union is unnecessary for a particular (finite) picture, but most necessary for
describing the infinite set of all pictures.

Now that we have a mechanism for describing the meanings of boxes,
we can apply it to the security domain by instantiating the box identifiers
to the file identifiers and the user/process identifiers in turn, giving us sets
F and P of boxes. F and P are disjoint; File boxes contain only File boxes,
and User/Process boxes contain only User/Process boxes. We will call the set
of all boxes in the security domain BOXES (this is just the union of F
and P).

Now we know how to construct boxes for this domain. We define a few

operators on these box objects that will be useful later on: subbox (tr) and
all-subboxes (_*, defined below). Subbox functions are defined with respect
to the set of box identifiers; here, we have trF and orj,. If we consider
mappings to be equivalent to the (possibly infinite) set of pairs of <input,

H

i_, 104 MARK W. MAIMONEet al.
i:!

!

]

FIGuI_ 4. Illustration for the auxiliary definitions. Atomic boxes are labeled with numbers,
nonatomic boxes with letters.

1 function value), we can take (unsubscripted) _ to be the union of _F and
I _l,; _ applied to some box returns the set of boxes contained within it. So

now we have a mechanism for getting at the subboxes of one box.We can do something similar for sets of boxes. We define _ of a set of
boxes X to be the union of all subboxes in X. T* returns a set containing all

possible subboxes (those at every layer in each input box). Technically,

x*(X) returns the transitive closure of boxes in X with respect to the subbox

operator _. So cr and • only return the subboxes at the next layer down, but

_* returns all possible subboxes.

Just a few more definitions before we continue. ATOMS is the set of

security domain boxes that have no subboxes, i.e., the set of atomic boxes.

Our pictures will contain not only boxes, but also arrows. TYPES will be
the set of identifiers allowed on these arrows. Each arrow must join two

boxes (a Uger/Process box and a File box), have some identifier in TYPES,

and can have positive or negative parity..The set of arrows used in a

particular picture will be called ARROWS.

3.2. Auxiliary Definitions p

Now that we have a formal representation for the objects in our

pictures, we can construct predicates that talk about object interaction. In

particular, we want to say how different boxes are related, and which

arrows join which boxes. We present these set constructors and predicates

below. They are illustrated in Fig. 4 and Table 2. Free variables in the

definitions below (x, y, P, P', N, N') range over elements in BOXES.

Recall that the shapes of boxes do not determine the final access matrix.

Instead, the atoms contained in the boxes are important. The set constructor

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 105

TABLE2

Some Properties of the Picture in Fig. 4

x members(x) inside(x) contains(x) crisscrosses(x)

l {I} 12_ {I,A,B} O
2 {2} O {2, A, B} O
3 {3} O {3, A, C} O

4 {4} _ {4, A, D} O
5 {5} O {5, A, C, D} O
6 {6} , O {6, A, D} O
7 {7} O {7, A, C}
A {1,2,3,4,5,6,7} {1, 2, 3, 4, 5, 6, 7, B, C, D} {A} _
B {1,2} {1,2} {A,B} O
C /3,5,7} {3,5,7} {A,C} {D}

D {4,5,6} {4,5,6} {A,D} {C}

members(x) gives us the set of all atoms contained within box x. The other
set constructors use members (x) in their definitions.

DEnNITION 1" members(x). The set of atoms contained in (or equal
to) x.

members(x) -&_{aIa_ATOMS ^ a_T*({x})}

Many pictures have boxes that nest in a hierarchical fashion. We use inside
and contains to give us the descendants and ancestors of a particular box.

DEFINI_ON 2: inside(x). The set of boxes whose atoms form a proper
subset of those in x. In particular, x _ inside(x). The reader may find it help-
ful to read y _ inside(x) as "box y is strictly inside box x."

inside(x) _ {bib e BOXES A members(b) _ members(x) }

DEFINI_ON 3: contains(x), The set of boxes whose atoms are at least
those of x. In particular, x_ contains(x). Note that for a given x, inside(x)
and contains(x) are disjoint sets. Ready _ contains(x) as "boxy is or contains
box x."

contains(x) _ {bib E BOXES A members(x) _ members(b) }

We do not require strictly hierarchical pictures, however; pictures may
contain overlapping boxes. We define the set crisscrosses(x) and operator _ to
represent overlapping boxes. These will be useful in the Closure Lemma
below.

DEFINITION4: crisscrosses(x). The set of boxes that share some, but not
all of their atoms with x. Note that this is symmetric, in that

ili,_ 106 MAnI_W. MAIMONEet al.
iii

if! x scrisscrosses(y)=;,yecrisscrosses(x). Also note that no box can be both
_il inside and crisscrossing another box (e.g., in Fig. 4, box B does not crisscross
i11 box A). Read y_crisscrosses(x) as "box y crisscrosses box x (and x

crisscrosses y)."

crisscrosses(x) LX {bib _ BOXES ^ (members(x) c_ members(b) q: _)

^ (b ¢ (inside(x) tv contains(x))) }

:, DEFINITION5: XM_y. X is equal tO, or crisscrosses y. Note that this is not
_ii a transitive relation. For example, construct three boxes x, y, and z. Put y

l

inside x, and put z crisscrossing both of these. Then x t_z and z_y, but x_y.

iii Read x__y as "box x is equal to or crisscrosses box y."

i xM_y &=(members(x)= members(y) v x_ crisscrosses(y))
I
1

1
'I

i _ There are two final definitions. POS(P, P') and NEG(N, N'). These are true
']i! when a positive (negative) arrow connects boxes P and P' (N and N').

D_.FImTIoN 6: POSt(P, P'). A positive arrow of type t exists between P
l and P'.
ij POSt(P, P') &_-(P, P', t, pos) cARROWS

DEFINITION7: NEGt(N, N'). A negative arrow type t

of existsbetween

_/"and dY'.

NEGt(N, aV') _ {N, N',t, neg) e ARROWS
]
t

_] To make the interactions of these definitions clearer, we introduce the con-
cept of box level and the Closure Lemma. Box level refers to the hierarchy
imposed on boxes through containment. Two boxes are said to be at the same
level if and only if x_y.* If x e inside(y), y is said to have a higher level than
box x, and x a lower level than box y. In Fig. 5, A and B have the same level,
neither C nor D is related by level to any other box (since they have no
members in common), F has a lower level than E, E has a higher level than
F, and F has the same level as itself. It should be noted that at the same or

*Just as M_is not transitive, neither is at the same level. Note that the definition of box level
should not be confused with that of box layer, introduced on page 103.

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 107

IBIA J I 1
FIOURS 5. Illustration of box level.

lower level does not provide a partial ordering of boxes. The following lemma
illustrates Some relationships among these definitions.

LEMMA1 (Cl0sure). If two boxes B, B' both contain the same atomic box, then
exactly one of B __B', B _ inside(B'), or B' _ inside(B) is true.

PROOF. We will show first that at least one of the conditions holds. Let

B,B' be given such that members(B)c_members(B')¢O. We will show
that the result holds for each of four independent cases, one of which must
always hold. First suppose members(B)_ members(B'); then by definition
of inside, B _ inside(B'). Otherwise, suppose members(B') = members(B);
then B' _inside(B), also by definition of inside. If neither of these holds,

suppose members(B)= members(B'); then B__ B' by definition of_ Finally,
if none of these holds, we know B¢contains(B') since members(B)¢
members(B') and members(B)dz members(B'). From that we infer that
B _ crisscrosses(B') and thus BM_B'. Now to see that at most one condition will
hold, refer to the definitions of _ inside, and crisscrosses. •

4. Semantics

4.1. Access Rights Matrix

The interpretation of a Mir6 picture in the security domain is an
access-rights matrix. An access-rights matrix is a standard security entity
that represents binary access relations between entities, such as the right for
one entity to modify another.

The access-rights matrix Z is three dimensional, with axes being
Processes,Files, and types of Relations (or Access-Rights). Entries in the matrix
range over values pos, neg, and ambig. The expressions below determine the
value of a particular matrix element. Let t be the type of the relation, p an
atomic box representing the user/process, and f an atomic box representing
the file. The interpretation is that if Z(P, f, t) is pos then user/process p can
access file f according to relationship type t. If Z(P, f, t) is neg, then p cannot

i 108 MAnKW. MAIMONEet al.
!

TAnL_ 3

II Example of an Access Matrix; the Matrix for Fig. 2

/etc/passwd /usr/Alice/private

Read Write Execute Read Write Execute

Alice pos neg neg pos pos neg
Bob pos neg neg neg neg neg
Ch arlie pos neg neg neg neg neg

iil access f according to t. If Z(P, f, t) is ambig, the access cannot be determined.
ili We want to detect and eliminate all such ambiguity in the matrix.

iiI Before going through the formal procedure for computing values in the
matrix, consider an example. The access-rights matrix for the picture in

i_i Fig. 2 is given in Table 3. Features of the elements in the matrix include thei:ll
_ property that any relation not explicitly specified is given the value neg.

This is a consequence of the clause labeled [-C-]in formula (2) below. So the
i negative arrow in the picture is not strictly necessary, but it is good "visual
il,, programming style" to make the absence of Read rights explicit.

: i]!

!__ In what follows, P and P' will identify the boxes at the tail and head,

iii:I_ respectively, of a positive arrow, and N and N' will identify those at the tail
li!ii and head of a negative arrow. If a positive and negative arrow both

1! emanate from the same box, both P and N would label the same user/
_i process box. Similarly, P' and N' might label the same file box. Boxed

symbols (e.g., _) are used in the formulas below to name clauses for later
reference, and have no semantic or logical interpretation.

Z(P, 3",t)is pos iff (1)

3p,p, p _ members(P) ^f_ members(P') ^ POS'(P, P')

i ^ V_v._v,(P e members(N) ^ fe members(N') ^ NEGt(N, N'))

=_ --1 _ N' e inside(P') v

[-_ N _ inside(P)

Z is positive when the smallest enclosing boxes have only positive arrows;
call these boxes P and P'. We require that no negative arrow join the
following pairs of boxes: boxes at the same level as P and P' (case [i]

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 109

above); one box at a lower level than P or P', and the other box at any level
(cases [-2-]and _ above).

Z(P, f, t) is neg iff (2)

EE
3_v,x, pe members(N) ^ fe members(N') A NEG'(N, N')

^ Vp,p, (pe members(P) ^ fe members(P') ^ POS'(P, P'))

-1 [_] P'_ inside(N') v

P _ inside(N)

VB,B,B _ contains(p) ^ B' _ contains(f) =*

"nPOS'(B, B') ^ "nNEG'(B, B')

Z is negative when the smallest enclosing boxes have only negative arrows
(call these boxes N and N'), or when no surrounding boxes are connected
by arrows. In the former case, we require that no positive arrow join the
following pairs of boxes: boxes at the same level as N and N' (case IT]
above); one box at a lower level than N or N', and the other box at any
level (cases [2] and [3] above).

Z(P, f, t) is ambig otherwise (3)

The value of an element of Z is ambiguous when neither a positive •nor a
negative relationship holds. An explicit derivation of those pictures that are
ambiguous follows.

4.2. Uniqueness

Before we derive the explicit conditions for ambiguity, let us first ensure
that the other matrix elements are unique. That is, we intend to show that

no two atoms can have both a pos and neg relationship with the same type.

LEMMA2. A relation between two atomic boxes may not be both pos and neg.

PROOF. Let atomic boxes p and f, and relation type t be given. We will
prove the lemma by contradiction, using formulas (1) and (2) above. Sup-
pose Z(P,f, t) is both pos and neg. Then [A] (in formula(l)) is true, and

from _ we know there are boxes P and P' containing p and f with a

110 MARK W. MAIMONE et al.

positive arrow connecting them; let us choose such boxes and call them P
and P'. We can infer that _ [in formula (2)] is false because P and P'
exist, Thus _ must be true since we assumed that formula (2) was true.
Now from _ we may choose N and N' containing p and f with a negative
arrow connecting them. Using this we can determine that clauses [AT]
through [-_ must be false in order for _ to be true. Likewise, clauses

through _ must be false because P and P' exist and have a positive
arrow. Returning to the clauses in I-A], we have the following results: by
[we know that either .N'_P or A"_P'; by -n[_ we know that
Ar' _ inside(P'); by -1 ['_ we know that N¢ inside(P). Suppose N_ P. Then
by Lemma 1 and 7 [-_, P 6 inside(N). But P _ inside(N) by 7 [-B_, a con-
tradiction. Suppose instead that N'_. P'. Then by Lemma 1 and -1 [-_],
P' _ inside(N'). But P'_ inside(N') by "7 [-_], a contradiction. •

5. Ambiguity

We described above explicit conditions for pictures whose contents are
known to have a positive or negative relationship. In this section we show
that ambiguity can be intuitively defined, derive explicit conditions for
pictures whose contents have an ambiguous relationship, and demonstrate
these conditions by drawing the corresponding pictures.

5.1. Intuition

Before defining ambiguity, we introduce the notion of smallest scope for
arrows. This is based on the box level concept defined in Section 3.2,

_ Let boxes p and f, and arrow type t be given. Construct the set
:i A _ ARROWS of t-arrows such that for each a _ A, the tail box of a contains

p, and the head box containsf That is, A is the set of arrows (of type t) con-
necting all boxes around p and f Then some arrow has the smaller scope than
all arrows in A if and only if its tail (and head) box has lower level than all

tail (and head) boxes mentioned in A. For example, consider the Read
arrows in Fig. 2. The Read arrow connecting Alice and /usr/Alice/private

i!_i has the smallest scope, since tlae only other Read arrow has Universe as its
tail box (Universe has a higher level than.Alice).

We now state an informal definition of ambiguity:
_i:!i

DEFINITION8. A relation between p and f is ambiguous when no single
arrow has smaller scope than all (similarly typed) arrows of opposite parity
surrounding p and f A picture is ambiguous when there exists some
ambiguous relation between atoms within it. These cases are illustrated in

: Figs. 6 and 7.

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 111

Figure6 shows the kinds of ambiguity most likely to arise in typical
usage. The pictures onthe left are inherently ambiguous, and those on the
right are ambiguous when their boxes share some atoms. Suppose that P
and N, and P' and N', share at least one atom. Since crisscrossing boxes
have the same level, each of these pictures has the property that no single
arrow has both ends attached to the smallest enclosing boxes. Each case has
both a positive and negative arrow attached to the boxes at the lowest level.

Regrettably, even the meaning of a picture that is formally unam-
biguous may not be immediately clear to a human reader. For instance, sup-
pose that Fig. 7 were unambiguous; then what is the relationship between U
and F? Conversely, a picture that is defined to be ambiguous may have an
"obvious" interpretation (for instance, one might assume that positive
arrows always override negative arrows in Fig. 6). We take a conservative
approach to ambiguity: by increasing the number of ambiguous pictures, we
reduce the number of potentially confusing pictures that can be expressed in
our language.

Figure 7 shows that ambiguity cannot be determined locally. If we con-

FIounr. 7. Another kind of ambiguous picture.

I_ii!

112 MARKw. MAZMON_.et al.

sider just the vertical boxe s, we see that there is a single positive arrow con-
necting the smallest boxes; likewise for the horizontal boxes. So one might
think that this picture unambiguously yields a positive relation between
atoms in these boxes. However, when we consider the picture as a whole, no
single positive arrow overrides all of the negative arrows, so this picture is
defined to be ambiguous. We include this kind of ambiguity because pictures
of this type are difficult to interpret at a glance, and we wish to eliminate
such pictures from our language.

5.2. Derivation

We will show that the intuitive definition of ambiguity given above
follows logically from the other definitions. We begin by defining ambiguity
as the condition when neither a positive nor a negative relation holds:

Z(p,f,t)isambigiff"n(Z(p, f t)ispos) A "n(Z(p, f t)isneg) (4)

We may now use the definitions in Section4.1, and apply one of
De Morgan's laws to the negative case, to expand formula (4) into the
following:

I ! Z(P, f, t) is ambig iff (5)

--n3p,p. p _ members(P) Af_ members(P') A POSt(P, P')
ii

A V_v.jv'(p _ members(N) Af_ members(N') A NEGt(N, 3/"))

[[-i] (P_N A t"_N') v]
=_ -'1 _ N'e inside(P') v

['_ N_ inside(P)

A

"n3_v,jv,p _ members(N) Afs members(N') A NEG'(N, N')

A Vp,v (p_ members(P) Af_ members(P') A POS'(P, P'))

=. --1 [2] P'.._ inside(N') v

[3] P e inside(N)

A

--1VB.B,B e contains(p) A B' e contains(f) _

"n POS'(B, B') ^ -nNEG'(B, B')

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 113

Now we can use properties of first-order logic to push the negations through
::_' and express the condition for ambiguity as follows:

_; Z(P, f, t) is ambig iff (6)

Vp,e, m(pe members(P) A fe members(P') A POSt(p, P'))

v 3jv,_v,pe members(N) Afe members(N') A NEGt(N, N') A

m (PN_jV̂ jr') v]
N' • inside(P') v

N e inside(P)

^Fq-
V_v,jv, m(pe members(N) Afe members(N') A NEGt(N, N'))

v 3p,_ pe members(P) Afe members(P') A POSt(P, P') A

[_] P'e inside(N') v

[3] P e inside(N)

3&B,B e contains(p) A B' e contains(f)

A (POS'(&B') v NEO'(&B'))

LEMMA3. If the relation betweenp and f is ambiguous according to type t, then
there must be at least two pairs of boxes surrounding both p and f, onepair connected
by a positive arrow and the other by a negative arrow.

PROOF. Suppose the relation between p and f is ambiguous according
to type t, i.e., Z(P, f,, t) is ambig. Then formula (6) is true, and in particular

i the conjuncts labeled _ _ and _ are true. By [-_ we may
choose boxes B and B' that have either a positive or negative relation. Sup-

i! _p_the relation is positive. Then by instantiating P and P' to B and B' in
we can derive the existence of boxes with a negative relation. Suppose

instead that B and B' have a negative relation. Then by instantiating N and
N' to B and B' in [-_ we can derive the existence of boxes with a positive
relation. •

Figure 8 shows all of the pictures that satisfy the three clauses in [-_,
each one labeled with the disjuncts it satisfies and the value it would have

114 MARK W. MAIMONE el at.

[_ AMBIG El AMBIG

N AMBIG [_] AMBIG

I
N NEG [_] NEG

.,

N AMBIG N N NEG

N NEG N NEG

N AMBIG

Fmu_ 8. Pictures that contain positive arrows, but do not have a positive relationship. Boxed

numbers refer to the disjuncts in part _'_ of formula (6); the text gives the relation between

each pair of atoms (where one atom is contained in P and fl', and the other is in P' and fl").

according to these semantics. If,_e now inspect all pictures that satisfy some
disjunct in _ as well one in ['-_, we will find that they are exactly
those pictures listed in Fig. 6, which are all ambiguous.

ii 6. Conclusionsit:i

i_'il This chapter has given a precise syntax and semantics for the core of the
_' Mir6 language. It also gave a precise definition of ambiguity. Determining

FORMAL SEMANTICS FOR VISUAL SPECIFICATION OF SECURITY 115

whether a picture is ambiguous can be regarded as a static semantic check.
Mir6 has two additional classes of static semantic checks dealing with types
(of boxes and arrows) and constraints (on boxes and arrows). Type-checking
a picture is similar to type-checking a program in a standard programming
language. Constraint-checking a picture intuitively involves pattern-
matching on pictures as well as checking boolean predicates. We have an
informal definition of these checks in Ref. 3 and are currently formulating
their precise semantics.

Mir6 solves several important problems in security. It provides, for the
first time, a tool for configuring and visualizing complicated security con-
straints. This tool allows precise definitions of security environments in a
convenient mathematical notationMa major advance over previous one-
dimensional (i.e., textual) logic-based approaches (such as Refs. 4-7). It is a
practical tool designed to be used by people who are actively enforcing
security constraints in real environments.

In the future, we intend to apply the Mir6 language to domains outside
of security, e.g., concurrency, where we would reinterpret the meaning of
boxes and arrows. Ideally, we would like to make the part of the semantics
that is independent of security a separate library that can be reused by
many entities, and reinterpret only the part that is dependent on the specific
domain. Finally, we would like to explore the possibility of using a visual
approach to giving semantics instead of the standard denotational approach
as presented in this chapter.

ACKNOWLEDGMENTS

We thank David Harel for his inspiration and enthusiastic support for
our work. We also wish to thank Amy Moormann, Allan Heydon, and
Kenneth McMillan for their comments on earlier versions of this paper.
Support for J. Wing was provided in part by the National Science Founda-
tion under grant No. CCR-8620027 and for J. D. Tygar under a National
Science Foundation Presidential Young Investigator Award, contract
No. CCR-8858087. M. Maimone is also supported by a fellowship from the
Office of Naval Research, under contract No. N00014-88-K-0641.

References

1. J. D. TVGAg and J. M. WING, Visual specification of security constraints, in Proceedings of

the 1987 IEEE Workshop on Visual Languages, Linkoping, Sweden, August 1987.

2. D. HAR£L, Statecharts: A visual formalism for complex systems, Sci: Comput. Programm. 8,
231-274, 1987.

i

ii 116 MARK W. MAIMONE et aL

A

3. A. HEYDON, M. MAIMONE, J. D. TYGAR, J. WING, and A. MOORMANN-ZAREMSKI,

i Constraining pictures with pictures. In 1 lth IFIP World Computer Conference, August
ii 1989.

t,_ 4. D. E. BELL and L. J. LAPADULA, Secure computer systems: Mathematical foundations

ii (3 volumes), Technical Report AD-770 768, AD-771 543, AD-780 528, Mitre Corporation,

ii November 1973.5. D. GooD, R. COHEN, C. HOeH, L. HUNTER, and D. HARE, Report on the language Gypsy,
version2.0, Technical Report ICSCA-CMP-10, Certifiable Minicomputer Project, The

University of Texas at Austin, September 1978.

i 6. T. BENZEL, Analysis of a kernel verification, in Proceedings of the 1984 Symposium on
_ Security and Privacy, Oakland, California, pp. 125-131, May 1984.

7. P. G. NEUMANN, R. S. Bo'fEa, R.J. FEmRTAG, K. N. LEVITT, and L. ROBINSON,A provably
secure operating system: The system, its applications, and proofs, Second Edition, Technical

Report CSL-116, SRI, May 1980.

8. A. HEYDON, M. MAIMONE,J. D. TYGAR, J. WING, and A. MOOI_ANN-ZAREMSKI, Mir6 tools.

In Proceedings of the 1989 IEEE Workshop on Visual Languages, October 1989.
9. A. HEYDON, M. MAIMONE, J. D. TYGAR, J. WING, and A. MOOI_ANN-ZAItEMSKI, Mir6:

Visual Specification of Security, Technical Report CMU-CS-89-199, Carnegie Mellon,
November 1989.

,iii:;ii!

;i

