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Abstract 

Specifications are useful because they allow reason- 
ing about objects without concern for their implemen- 
tations. Type hierarchies are useful because they al- 
low types that share common properties to be 
designed as a family. This paper is concerned with 
the interaction between specifications and type hierar- 
chies. We present a way of specifying types, and 
show how some extra information, in addition to 
specifications of the objects’ methods, is needed to 
support reasoning. We also provide a new way of 
showing that one type is a subtype of another. Our 
technique makes use of information in the types’ 
specifications and works even in a very general com- 
putational environment in which possibly concurrent 
users share mutable objects. 

1. Introduction 

Object-oriented programming languages support a 

programming methodology based on data abstraction 

in which programs are composed of modules, each 

implementing an abstract data type. The type is 

abstract because it is possible to interact with its ob- 

jects only by calling their operations or methods. The 

type’s implementation (e.g., a class) defines a 
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representation for the type’s objects (e.g., a set of in- 

stance variables) and provides implementations of the 

methods based on this representation. The represen- 

tation details are encapsulated: they are accessible 

only to the class, and hidden from users. 

Encapsulation is useful because it allows us to 

reimplement a type with another class without affect- 

ing its users, assuming the new class has the same 

behavior as the old one. However, to make sense out 

of this “behavior” requirement we need a way of 

defining what the required behavior is. The old im- 

plementation is not a sufficient definition since it in- 

cludes details that may or may not be important. For 

example, if a collection object has a method that 

returns an element that matches some predicate, the 

implementation of the method will make a choice if 

there are several elements that match. Is this choice 

part of the required behavior? Or, can a different im- 

plementation make a different choice? 

The way to capture behavior is to define it 

separately from implementations in a specification. 

Specifications have long been a cornerstone of the 

data abstraction methodology, but have received less 

attention in work on object-oriented programming. 

Furthermore, specification techniques for data 

abstractions aren’t quite right for object types because 

they assume methods belong to the type, not the ob- 

ject. 

This paper provides a specification technique 

tailored to the needs of object types. Our approach 

allows a type to have multiple implementations and 

makes it convenient to define the subtyping relation. 

Our specifications are based on the Larch formal 

OOPSLA’93, pp. 16-28 
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specification technique, which means that they have a 

precise mathematical meaning that serves as a firm 

foundation for reasoning, e.g., that a class implements 

a type correctly. We also discuss informal specifica- 

tions based on our approach. 

Specifications are used to reason about object be- 

havior in abstract terms. Two kinds of properties are 

of interest: invariant properties, which are properties 

true of all states, and history properties, which are 

properties true of all sequences of states. For ex- 

ample, an invariant property of an integer counter 

might be that its value is always greater than or equal 

to zero; a history property might be that its value al- 

ways increases. Both invariant and history properties 

are examples of safe9 properties (“nothing bad 

happens”). We might also want to prove liveness 

properties (‘ ‘something good eventually happens”), 

e.g., the value of the integer counter eventually 

reaches 100, but our focus here will be just on safety 

properties. 

Our type specifications define the behavior of 

methods of objects of the type (i.e., the “instance 

methods”) but not any of the additional methods, 

usually called “class methods”, that do not belong to 

particular objects. These additional methods are used 

to create new objects from scratch (we will refer to 

such methods as creators) and may also be used for 

additional purposes, e.g., to maintain statistics about 

various properties of the objects. Leaving these 

methods out is desirable because this is a place where 

implementations might differ (e.g., different classes 

that implement the same type might have different 

creators); in addition, different creators may be 

needed for subtypes. 

In the absence of the creators, however, there is no 

way to prove invariant properties. The problem is 

that such properties are proved by data type 

induction, in which the creators are used for the basis 

step, and the methods for the induction step. If there 

are no creators defined in the specification, there is no 

basis step. To compensate for this loss, we add ex- 

plicitly stated invariants to our specifications. 

Specifications are also useful for defining type 

hierarchy. In strongly-typed languages such as 

Simula 67, Modula-3, and Trellis/Owl, subtypes are 

used to broaden the assignment statement. An assign- 

ment 

x: T := E 

is considered to be legal provided the type of expres- 

sion E is a subtype of the declared type T of variable 

x. Once the assignment has occurred, x will be used 

according to its “apparent” type T, with the expec- 

tation that if the program performs correctly when the 

actual type of x’s object is T, it will also work cor- 

rectly if the actual type of the object denoted by x is a 

subtype of T. Intuitively, the subtype’s objects must 

behave “the same” as the supertype’s as far as 

anyone using the supertype’s objects can tell. This 

paper gives a definition of the subtype relation that 

ensures the subtypes’ objects behave properly. Our 

definition ensures that all history and invariant 

properties that can be proved about supertype objects 

also hold for subtype objects. In particular, just as we 

add invariants to specifications to state a type’s in- 

variant properties, we add constraints to state its his- 

tory properties explicitly. Proofs that a subtype en- 

sures constraints of a supertype are done in terms of 

type specifications directly. 

Thus, the paper makes two contributions: 

1. It provides a way of specifying object 
types that allows a type to have multiple 
implementations and makes it con- 
venient to define the subtyping relation. 
The technique requires creators to be 
specified separately from types, but still 
supports the invariant properties needed 
for reasoning about the type’s objects. 

2. It provides a new definition of the sub- 
type relation. Our technique requires 
that additional information be included 
in the type’s specification. It works 
even in a very general environment in 
which possibly concurrent users share 
mutable objects. Our technique is also 
constructive: One can prove whether a 
subtype relation holds by proving a 
small number of simple lemmas. 

Others have worked on both of the problems at- 

tacked in this paper. For example, many have 

proposed Z as the basis of specifications of object 

types [7, l&51; Goguen and Meseguer use 

FOOPS [13]; Leavens and his colleagues use 

Larch [16, 18,9]. Though many of these researchers 

separate the specification of an object’s creators from 

its other methods, no one has identified the problem 

posed by the missing creators, and thus no one has 

provided an explicit solution to this problem, 
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Others such as America [l], Cusack [6], and Dhara 

and Leavens [9] have proposed rules for determining 

whether one type is a subtype of another. Many of 

these approaches are not constructive, i.e., they tell 

you what to look for, but not how to prove that you 

got it. Other work [27, 171 is couched in formalisms 

that we believe are not very easy for programmers to 

deal with. In contrast, our subtype definition is con- 

structive and takes the form of a simple checklist of 

rules, which programmers can use in a formal or in- 

formal way. Furthermore, only we have a technique 

that works in a general environment in which objects 

can be shared among possibly concurrent users. The 

rule for proving the subtype relation given in this 

paper is simpler than the one given in our own earlier 

work [22], but it requires more information in 

specifications, which may be a disadvantage. 

The remainder of the paper is organized as follows. 

In Section 2 we describe our model of computation. 

Section 3 describes our specification technique and 

the extra information needed to make up for the loss 

of data type induction. Section 4 describes our sub- 

type relation and the extra information needed for it to 

work in a very general computational environment. 

We close with a summary of what we have ac- 

complished. 

2. Model of Computation 

We assume a set of all potentially existing objects, 

Obj, partitioned into disjoint typed sets. Each object 

has a unique identity. A type defines a set of values 

for an object and a set of methods that provide the 

only means to manipulate that object. 

Objects can be created and manipulated in the 

course of program execution. A state defines a value 

for each existing object. It is a pair of two mappings, 

an environment and a store. An environment maps 

program variables to objects; a store maps objects to 

values. 

State = Env x Store 
Env = Var + Obj 
Store = Obj + Val 

Given an object, x, and a state, p, with an environ- 

ment, p.e, and store, p.s, we use the notation xp to 

denote the value of x in state p; i.e., x0 = p.s(p.e(x)). 
r 

When we refer to the domain of a state, dam(p), we 

mean more precisely the domain of the store in that 

state. 

We model a type as a triple, ~0, V, MB, where 0 c 

Obj is a set of objects, V c Vu1 is a set of values, and 

M is a set of methods. Each method for an object is a 

constructor, an observer, or a mutator. Constructors 

of an object of type z return new objects of type 7; 

observers return results of other types; mutators 

modify the values of objects of type z. A type is 

mutable if any of its methods is a mutator. We allow 

“mixed methods” where a constructor or an observer 

can also be a mutator. We also allow methods to sig- 

nal exceptions; we assume termination exceptions, 

i.e., each method call either terminates normally or in 

one of a number of named exception conditions. To 

be consistent with object-oriented language notation, 

we write x.m(a) to denote the call of method m on 

object x with the sequence of arguments a. 

Objects come into existence and get their initial 

values through creators. Unlike other kinds of 

methods, creators do not belong to particular objects, 

but rather are independent operations. They are the 

“class methods”; the other methods are the “instance 

methods.” (We are ignoring other kinds of class 

methods in this paper.) 

A computation, i.e., program execution, is a se- 

quence of alternating states and statements starting in 

some initial state, PO: 

PO s, Pl *‘* Pn-1 5 Pn 

Each statement, Si, of a computation sequence is a 

partial function on states. A history is the sub- 

sequence of states of a computation. A state can 

change over time in only three ways’: the environ- 

ment can change through assignment; the store can 

change through the invocation of a mutator; the 

domain can change through the invocation of a 

creator or constructor. We assume the execution of 

each statement is atomic. Objects are never 

destroyed: 

‘d 1 5 i I n. dom(ol-1) c dom(pi). 

‘This model is based on CLU semantics [ 191. 
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3. Specifications of Types and Creators 

3.1. Type Specifications 

While we do not wish to endorse one formal 

specification method over another, we do assume a 

type specification includes the following information: 

l The type’s name; 

l A description of the type’s value space; 

l For each of the type’s methods: 

l Its name; 

l Its signature (including signaled 
exceptions); 

l Its behavior in terms of pre- 
conditions and post-conditions. 

In our work we use formal specifications in the two- 

tiered style of Larch [ 141. In the first tier, Larch 

traits, written in the style of algebraic specifications, 

are used to define a vocabulary of sort and function 

symbols. These symbols define a term language, 

where each term denotes a value (of a particular sort). 

For example, the term “{ }” might be used to denote 

the empty set value and the term “s u { i 1” might be 

used to denote the set value equal to the union of the 

set s and the singleton set { i }. Axioms and inductive 

rules of inference are used to determine when two 

terms, and hence two values, are equal. For example, 

such axioms would let us prove the commutativity of 

u so that we could show that the two terms 

“s u { i }” and “{ i } u s” denote the same set 

value. In our examples, we stick to standard notation 

for functions on sets, sequences, and tuples with their 

usual mathematical properties; in this paper we omit 

the Larch traits that would be used to specify such 

details. Many other specification languages like 

Z [26], OBJ3 [12], ACT-ONE [II] could just as 

easily be adopted to describe a type’s value space. 

In the second tier, Larch interfaces are used to 

describe the behaviors of an object’s methods. For 

example, Figure 3-1 gives a specification for a set 

type whose objects have methods insert, delete, 

select, elements, and equal. The uses clause defines 

the value space for the type by identifying a sort. For 

example, the uses clauses in the figure indicates that 

all values of objects of type set are denotable by terms 

of sort S, as introduced in the MSet trait. The values 

of this particular sort are mathematical sets. The 

methods clause provides a specification for each 

method. Since a method’s specifications need to refer 

to the method’s object, we introduce a name for that 

object in the for all line. For each method, pre- and 

post-conditions are written in terms of requires, 

modifies, and ensures clauses. The pre-condition is 

the predicate of the requires clause; if this clause is 

missing, the pre-condition is trivially “true.” For ex- 

ample, select’s pre-condition checks to see if the set 

has any elements. The post-condition is the conjunc- 

tion of the modifies and ensures clauses. Insert’s 

post-condition says that the set’s value may change 

because of the addition of its integer argument.2 The 

ensures clause of the elements method makes use of 

the same-els function; we assume this is defined in 

the MSet trait (it returns true iff the set and the se- 

quence contain exactly the same elements and further- 

more the sequence has no duplicates). 

set = type 

uses MSet (set for S) 

for all s: set 

methods 

insert = proc (i: int) 
modifies s 
ensures spOst = sPre UC} 

delete = proc (i: int) signals (not-in) 
modifies s 
ensures if i E s pre then spost = spre - ii) 

else signal not-in 

select = proc ( ) returns (int) 
. 

reqmres spre # { } 

ensures result E s 
Pre 

elements = proc ( ) returns (sequence[int]) 
ensures same-els(spr,, result) 

equal = proc (t: set) returns (bool) 
ensures result = (s = t) 

Figure 3-1: A Type Specification for Sets 

A modifies x1, . . . . x, clause is shorthand for the fol- 

lowing predicate 

2Notice that we rely on the meaning of set union to guarantee 
that if i is already in the set, then inserting i again will not change 
the set’s value. 
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V x E (dom(pre) - {xl, . . . . x,1> . xpre = xpost 

which says only objects listed may change in value. 

A modifies clause is a strong statement about all ob- 

jects not explicitly listed, i.e., their values may not 

change. If there is no modifies clause then nothing 

may change. 

In the requires and ensures clauses x stands for an 

object, xpre stands for its value in the initial state, and 

xpost stands for the object’s value in the final state.3 

Distinguishing between initial and final values is 

necessary only for mutable types, so we suppress the 

subscripts fjr parameters of immutable types (like 

integers). We”need to distinguish between an object, 

x, and its value, xpre or xpOSt, because we sometimes 

need to refer to the object itself, e.g., in the equal 

method, which determines whether two (mutable) sets 

are identical. Result is a way to name a method’s 

result parameter. 

Methods may terminate either normally or excep- 

tionally. Specifiers can introduce values for excep- 

tions that the method may signal through a signals 

clause in the method’s header. Delete signals the ex- 

ception not-in if the element to be deleted is not in 

the set. 

In general, for a given method specification 

m = proc (args) returns (result) signals (el, . . . en) 
requires ReqPred 
modifies x1, . . . . x, 
ensures EnsPred 

m.pre is ReqPred, m.post is ModPred A EnsPred, 

where ModPred is the predicate defined earlier for the 

meaning of a modifies clause, and m.pred, the 

method’s associated first-order predicate, is: 

ReqPred 3 (ModPred A EnsPred) 

Thus, a method’s behavior is defined only when the 

pre-condition is satisfied; it is undefined otherwise. 

The form of a Larch interface specification can 

easily be adapted for informal specifications. The 

uses clause is simply a description of the values, pos- 

sibly using well-understood mathematical concepts. 

The specifications of the methods have requires, 
modifies, and ensures clauses, but the predicates are 

3Referring to an object’s final value is meaningless in pre- 
conditions. of course. 

given informally (in English) in terms of the concepts 

introduced in the uses clause. We have used 

specifications like this with considerable success in 

our own work, and they are described in Liskov and 

Guttag [20]. 

3.2. Specifying Creators 

Objects are created and initialized through creators. 

We do not include creators in type specifications so 

that different implementations of a type can have dif- 

ferent creators and also so that subtypes can have dif- 

ferent creators from their supertypes. 

Figure 3-2 shows specifications for three different 

creators for sets. The first creator creates a new 

empty set, the second creates a singleton set, and the 

third creator allows the implementor to represent the 

set as a hash table, where the given integer argument 

determines the hash table’s size. These examples 

show that different implementations may require dif- 

ferent information when new objects are created, and 

therefore it is a good idea to allow the creators to be 

defined differently for them. 

create = proc ( ) returns (set) 
ensures resultpost = { } A new(result) 

create-single = proc (i: int) returns (set) 
ensures resultpost = { i } A new(result) 

create-hash = proc (n: int) returns (set) 
requires n > 0 
ensures resultpost = { } A new(result) 

Figure 3-2: Three Creators for Sets 

As an argument to the special predicate new, result 

stands for the object returned, not its value. The 
assertion new(x) stands for the predicate: 

x E dom(post) - dom(pre) 

Recall that objects are never destroyed so that 

dom(pre) G dom(post). 

3.3. Type Specifications Need Explicit 
Invariants 

By not including creators we lose a powerful 

reasoning tool: data type induction. Data type induc- 

tion is used to prove type invariants. The base case of 

the rule requires that each creator of the type establish 
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the invariant; the inductive case requires that each 

non-creator preserve the invariant. Without the 

creators, we have no base case, and therefore we can- 

not prove type invariants! 

To compensate for the lack of data type induction, 

we state the invariant explicitly in the type specifica- 

tion by means of an invariant clause. In the case that 

the invariant is trivial (i.e., identical to “true”), as it 

is for sets, the invariant clause can be omitted, 

Figure 3-3 gives a specification of a bounded-set type 

for which the invariant is not trivial. The sort in this 

case is a pair <bound, els>, where bound is a natural 

number, and els is a mathematical set of integers. The 

invariant is that a bounded-set’s size never exceeds 

its bound. In general, the predicate @(x,) appearing in 

an invariant clause for type z stands for the predicate 

‘v’ x: ‘c, p: State . $(x,). We assume that components 

of the set’s value, e.g., bound, remain unchanged if 

not otherwise stated explicitly in the post-conditions 

of Figure 3-3. 

bounded-set = type 

uses BSet (bounded-set for S) 

for all s: bounded-set 

invariant I sp.els I I s,,.bound 

methods 

insert = proc (i: int) 
requires I spre.els I < spre.bound 
modifies s 
ensures spost,els = spre.els u { i ) 

delete = proc (i: int) signals (not-in) 
modifies s 
ensures if i E s 

pre 
.els then s post.els = 

spre.els - { i } else signal not-in 

select = proc ( ) returns (int) 
. 

requires spre.els f { }els 

ensures result E s pre’ 

elements = proc ( ) returns (sequence[int]) 
ensures same-els(spre.els, result) 

equal = proc (t: bounded-set) returns (bool) 
ensures result = (s = t) 

Figure 3-3: A Type Specification for Bounded Sets 

Stating invariants explicitly in a type specification 

has three consequences. First, all creators for a type z 

must establish z’s invariant, I,: 

l For each creator for type 7, show 
I,(r~sultpost). 

Second, each method of the type must presewe the 

invariant. To prove it, we assume each method is 

called on an object of type z with a legal value (one 

that satisfies the invariant, Ir) and show that any value 

of an object it produces or modifies is legal: 

l For each method m of z, assume Iz(xpre) 
and show Iz(xpost). 

For example, we would need to show insert, delete, 

select, elements, and equal each preserves the in- 

variant for bounded-set. Informally the invariant 

holds because insert’s pre-condition checks that there 

is enough room in the set for another element; delete 

either decreases the size of the set or leaves it the 

same; select, elements, and equal do not change the 

set at all. The proof ensures that methods deal only 

with legal values of an object’s type. 

Third, the absence of data type induction limits the 

kinds of invariant properties we can prove about ob- 

jects. All invariant properties must follow from the 

conjunction of the type’s invariant and invariants that 

hold for the entire value space. For example, we 

could prove that insertion on bounded-sets is com- 

mutative by appealing to the commutativity of u, 

which, as stated earlier, holds for all mathematical set 

values. Since the explicit invariant limits what in- 

variant properties can be proved, the specifier needs 

to be careful when defining it. 

However, it is important that the invariant be just 

strong enough and no stronger. A general rule is that 

specifications should be as weak as possible: they 

should state only what a user needs to depend on and 

nothing more. Weak specifications are desirable be- 

cause they give more freedom to the implementor, 

and also, as we shall see, because they accommodate 

more subtypes. This rule affects the specifications of 

the methods as well as the invariant. For example, the 

specification of select is non-deterministic, leaving 

the implementor free to choose whatever element is 

most convenient in that particular implementation; it 

also permits us to define the fife-set subtype dis- 

cussed in the next section. 

In summary, the invariant plays a crucial role in our 

specifications. It captures what normally would be 

proved through data type induction, allowing us to 
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reason about properties of legal values of a type with- 

out having specifications of creators. 

4. Subtypes and the Subtype Relation 

4.1. Specifying Subtypes 

To state that a type is a subtype of some other type, 

we simply append a subtype clause to its specifica- 

tion. We allow multiple super-types; there would be a 

separate subtype clause for each. Figure 4-l gives an 

example. What distinguishes the fife-set type from 

its set super-type is the more constrained behavior of 

its select method. In addition, it has an extra method, 

remove. 

A subtype’s value space may be different from its 

supertype’s. Here, we use sequences (as defined in 

the Sequence trait) to represent values for fife-set. 

The invariant indicates that only sequence values with 

no duplicate elements are legal values of fife-set ob- 

jects. (Again, we assume the no-duplicates function 

is defined appropriately in the sequence trait.) Under 

the subtype clause we define an abstraction function, 

A, that relates these sequence values to set values in 

the obvious manner. The subtype clause also lets 

specifiers rename methods of the supertype, e.g., 

oldest for select; all other methods of the supertype 

are “inherited” without renaming, e.g., insert, delete, 

elements, and equal. Any super-type method may be 

further constrained. In particular, oldest ensures that 

the returned element is the one that was first inserted 

longest ago. The additional remove method removes 

the oldest element from the set. 

4.2. Subtype Relation Defined in Terms of 
Specifications 

Various authors have defined subtyping by relating 

two type specifications [ 1, 1.5, 6, 3, 221. The com- 

monality among these subtype definitions is that they 

all capture the following two properties, stated infor- 

mally: 

l Values of the subtype relate to values of 
the supertype. 

l Behaviors of the subtype methods relate 
to behaviors of corresponding super-type 
methods. 

As introduced in the previous section, we use 

abstraction functions to relate value spaces. These 

are similar to America’s transfer functions [l], 

Leavens’s simulation relations [ 151, and Bruce and 

Wegner’s coercion functions [3]. Since we include 

explicit invariants in type specifications we must 

make sure that the subtype definition requires that 

abstraction functions respect the invariant: the 

abstraction function must map legal values of the sub- 

type to legal values of the supertype. 

fife-set = type 

uses Sequence (fife-set for Seq) 

V s: fife-set 

invariant no-duplicates(sJ 

methods 

insert = proc (i: int) 
modifies s 
ensures if i in s 

else s 
pre then ’ 

II[ip 
re = ‘post 

post = ‘pre 

delete = proc (i: int) signals (not-in) 
modifies s 
ensures if -(i in spre) then signal not-in 

else s post = rem(sp,, i) 

oldest = proc ( ) returns (int) 
. 

requires spr, f [ ] 
ensures result = first(sn,,) 

elements = proc ( ) returns (sequence[int]) 
ensures same-els(spr,, result) 

equal = proc (t: fife-set) returns (bool) 
ensures result = (s = t) 

remove = proc ( ) 
modifies s 
ensures if spre f [ ] then spoSt = rest(spre) 

else s pre = ‘post 

subtype of set (oldest for select) 

A: Seq + S 

If q: Seq . 

A([ I) = { 1 
Nq 11 [ i I> = 44 u { i 1 

Figure 4-1: A Type Specification for Fife-set 

For relating methods, we require that the predicate 

of the subtype method implies that of the supertype. 

(Recall that the predicate for method m is 
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m.pre j m.post.) This requirement guarantees that a 

method called on a subtype object will still exhibit 

acceptable behavior according to the corresponding 

supertype method’s specification. This semantic re- 

quirement on the methods’ pre- and post-conditions is 

analogous to the syntactic requirement on the 

methods’ signatures [2, 24,4] (see our 

contra/covariance rules below). Except for minor dif- 

ferences, our way of relating methods is similar to 

America’s [l], Leavens’s [15], and Cusack’s [6]. 

More formally, given two types, 0 and T, each of 

whose specifications respectively preserves its in- 

variant, I, and I,, we define the subtype relation, <, as 

follows: 

Definition of the subtype relation, <: (3 = CO,, S, M> 
is a subtype of z = <Or, T, N> if there exists an 

abstraction function, A: S + T, and a renaming map, 
R: M + N, such that: 

1. The abstraction function respects invariants: 

l Invariant Rule. ‘d s: S. I,(s) * I&A(s)) 

This rule implies that A must be defined for 
all values of S that satisfy I,; A can be partial 
since it need not be defined for values of S 
that do not satisfy I,. 

2. Subtype methods preserve the supertype 
methods’ behavior. Let m, of 7 be the cor- 
responding renamed method m, of 0 (i.e., 
R(m,) = n-Q. R may be partial, since it need 
not be defined on extra methods of (3, and 
must be onto and one-to-one. The following 
rules must hold: 

l Signature rule. 

l Contravariance of arguments. m, and 
m, have the same number of arguments. 
If the list of argument types of m, is ai 

and that of m, is pi, then V i. ai < pi. 

l Covariance of result. Either both m, 
and mo have a result or neither has. If 
there IS a result, let m,‘s result type be y 
and ma’s be 6. Then 6 < y. 

l Exception rule. The exceptions signaled 
by m, are contained in the set of excep- 
tions signaled by m,. 

l Methods rule. For all x: (5: 

l Pre-condition rule. mr.pre[A(xpr,)/xprJ 

j m,.pre. 

l Predicate rule. m,.pred j 

m,.Pred[A(xpre)/xpre, A(xpostYxpostl 
where P[a/b] stands for predicate P with 
every occurrence of b replaced by a. 

Using this definition, it is a straightforward exercise 

to show that fife-set is a subtype of set. Preserving 

the invariant is trivial because the invariant for sets is 

trivial. The reason that the oldest method simulates 

the behavior of select is that the specification of select 

does not constrain which element of the set is 

returned; the specification of oldest simply resolves 

this non-determinism in favor of the element that has 

been in the set the longest. The additional method, 

remove, causes no problem because the rule imposes 

no constraints on extra methods. 

Our definition would not allow bounded-set to be a 

subtype of set. The pre-condition for set’s insert is 

“true” since it is always legal to insert more elements 

in a set. Using our definition, we could not show that 

the pre-condition rule hoids for insert. Intuitively, 

this restriction makes sense since a user of a set would 

be surprised if inserting did not cause the element to 

appear in the (unbounded) set. On the other hand, set 

could be a subtype of bounded-set since even though 

a user of a bounded-set might expect to reach the 

bound eventually, it is not surprising that any par- 

ticular call has not reached the bound. However, the 

specification of bounded-set is a bit odd, because it is 

not possible for a user to observe the bound. If we 

were to change bounded-set’s insert to signal an ex- 

ception instead of assuming a non-trivial pre- 

condition, then by the exception rule we could show 

that set is not a subtype of bounded-set. 

4.3. Adding Constraints to Type Specifications 

The subtype rule given in the preceding section is 

perfectly adequate when procedures are considered in 

isolation and when there is no aliasing. For example, 

consider a procedure 

get-max = proc (s: set) returns (int) 
ensures V x: Int . x E s pre * result 2 x 

This procedure could be implemented by using the 

elements method to obtain the sequence of elements 

and then iterating over the sequence. In the execution 

of a call get-max(f), where f is a fife-set, get-max 

actually calls subtype methods, but since each of 
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these simulates the behavior of the corresponding su- 

pertype method, the procedure will execute correctly. 

The definition is not sufficient, however, in the 

presence of aliasing, and also in a general computa- 

tional environment that allows sharing of mutable ob- 

jects by multiple users. Consider first the case of 

aliasing. The problem in this case is that within a 

single procedure a single object is accessible by more 

than one name, so that modifications using one of the 

names are visible when the object is accessed using 

the other name. For example, suppose S is a subtype 

of T and that variables 

x: T 
y: s 

both denote the same object (which must, of course, 

belong to S or one of its subtypes). When the object 

is accessed through x, only T methods can be called. 

However, when it is used through y, S methods can be 

called and the effects of these methods are visible 

later when the object is accessed via x. To reason 

about the use of variable x using the specification of 

its type T, we need to impose additional constraints 

on the subtype relation. 

Now consider the case of an environment of shared 

mutable objects, such as is provided by object- 

oriented databases (e.g., Thor [21] and 

Gemstone [23]). (In fact, it was our interest in Thor 

that motivated us to study the meaning of the subtype 

relation in the first place.) In such systems, there is a 

universe containing shared, mutable objects and a 

way of naming those objects. In general, lifetimes of 

objects may be longer than the programs that create 

and access them (in fact, objects might be persistent) 

and users (or programs) may access objects concur- 

rently and/or aperiodically for varying lengths of 

time. Of course there is a need for some form of con- 

currency control in such an environment. We assume 

such a mechanism is in place, and consider a com- 

putation to be made up out of atomic units (i.e., 

transactions) that exclude one another. The trans- 

actions of different computations can be interleaved 

and thus one computation is able to observe the 

modifications made by another. 

Now let’s consider the impact of having subtyping 

in such an environment. As an example, suppose one 

user installs an object that maps string names to sets. 

Later, a second user enters a fife-set into that object 

mapped under some string name; a binding like this is 

analogous to assigning a subtype object to a variable 

of the supertype. After this, both users occasionally 

access that fife-set object. The second user knows it 

is a fife-set and accesses it using fife-set methods, 

The question is: What does the first user need to 

know in order for his or her programs to make sense? 

We think it ought to be sufficient for a user to know 

only about the “apparent type” of the object. Thus 

the first user ought to be able to reason about his or 

her use of the fife-set object using the invariant and 

history properties of set. 

History properties are of course especially of inter- 

est for mutable types. In general we can formulate 

history properties as predicates over state pairs: For 

any computation, c, 

V x: 2, p, v: State . [ p < w A x E dam(p) ] 

* m,, xw> 

where p < w means that state p precedes state uy in c. 

Notice that we implicitly quantify over all computa- 

tions, c, and we do not require that v is the immediate 

successor of p. We can prove a history property by 

showing that it holds after the invocation of each 

method. Actually we only need to do the proof for 

each mutator: 

l History Rule: For each mutator m of z, 
show m.pred * $[xpre/xp, x~~~~/x,,,] 

where @ is a history property on objects of type T. 

Our subtype rule lets us show that invariant 

properties of the super-type are preserved by its sub- 

type, But what about history properties? Let us look 

at an example before we answer this question. Sup- 

pose we have a fat-set type that has all the methods of 

set except delete; fat-sets only grow while sets grow 

and shrink. The subtype relation discussed in Section 

4.2 would allow us to prove that set is a subtype of 

fat-set. However, someone using a fat-set can 

deduce that once an element is inserted in the fat-set, 

it remains there forever. This history property does 

not hold for sets, and therefore, if the object in ques- 

tion is actually a set, and some other user is using it as 

a set, the user who views it as a fat-set will be able to 

observe surprising behavior (namely, the set shrinks). 

Therefore, set should not be a subtype of fat-set, and 

to disallow such subtype relations we need to extend 

our subtype definition. 
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To obtain a subtype relation that preserves history 

properties, we first add some information to specifica- 

tions, a constraint clause that describes the history 

properties of the type explicitly4. In particular, we 

add to the specification for fat-set: 

constraint V x: int . x E so * x E s 
w 

Similarly, we could add: 

constraint so.bound = s,,,.bound 

to the specification of bounded-set to declare that a 

bounded-set’s bound never changes. The predicate 

appearing in a constraint clause is an abbreviation for 

a history property. For example, fat-set’s constraint 

expands to the following: For any computation, c, 

V s: fat-set, p, u/: State . [ p < v A s E dam(p) ] 
* [ V x: int . x E so * x E sw ] 

Just as we had to prove that methods preserved the 

invariant, we must show that they satisfy the 

constraint by proving it for each mutator using the 

history rule. The constraint replaces the history rule 

as far as users are concerned: users can make deduc- 

tions based on the constraint but they cannot reason 

using the history rule directly. 

Next we extend our definition of the subtype rela- 

tion to require that subtype constraints ensure super- 

type constraints. The full definition of our subtype 

relation is summarized in Figure 4-2, where Co and 

C, are the constraints given in the specifications of 

types (3 and T, respectively. We assume each type 

specification preserves invariants and satisfies con- 

straints. 

Returning to our set and fat-set example, we see 

that the constraint rule is not satisfied since set has the 

trivial constraint “true,” which does not imply 

fat-set’s constraint. On the other hand, fife-set is a 

subtype of set because it also has the trivial constraint. 

As another example, consider a varying-set type 

that allows a bound to increase but does not provide 

any method to make such a change. It has the con- 

straint: 

constraint s,,.bound I s,,,.bound 

‘%he use of the term “constraint” is borrowed from the Ina Jo 
specification language [25], which also includes constraints in 
specifications. 

Bounded-set is a subtype of this type, and so is a 

dynamic-set type with all the methods of varying-set 

plus change-bound, which increases the bound: 

change-bound = proc (n: int) 
requires n 2 s 

modifies s 
pre.bound 

ensures spost.bound = n 

Intuitively, the non-determinism in the supertype is 

resolved in two different ways in the two subtypes: 

varying-set allows the bound to increase but does not 

require it; bounded-set does not take advantage of 

this opportunity, but dynamic-set does. This is 

another example of how subtypes can tighten the non- 

determinism present in the super-type. 

Definition of the subtype relation, <: 0 = <O,, S, M> 
is a subtype of z = <O,, T, N> if there exists an 

abstraction function, A: S -+ T, and a renaming map, 
R: M + N. such that: 

1. The abstraction function respects invariants: 

l Invariant Rule. ‘# s: S. I,(s) * I,(A(s)) 

2. Subtype methods preserve the supertype 
methods’ behavior. If rnr of z is the cor- 
responding renamed method m, of cs, the fol- 
lowing rules must hold: 

l Signature rule. 

l Contravariance of arguments. m, and 
mo have the same number of arguments. 
If the list of argument types of m, is ai 

and that of m, is pi, then V i. ai < pi. 

l Covariance of result. Either both m, 
and m. have a result or neither has. If 
there is a result, let mr’s result type be y 
and ma’s be 6. Then 6 < y. 

l Exception rule. The exceptions signaled 
by m, are contained in the set of excep- 
tions signaled by m,. 

l Methods rule. For all x: 0: 

l Pre-condition rule. rnr.pre[A(xpre)/xpre] 

=9 m,.pre. 

l Predicate rule. m,.pred + 

m,.Pred[A(xpre)/xpre, A(~postY~postl 

3. Subtype constraints ensure supertype con- 
straints. 

l Constraint Rule. For all x: (r . Co(x) + 

C,[A(xpreYx,,~ A(~postY~Wl 
Figure 4-2: Definition of the Subtype Relation 
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4.4. Discussion 

Our first subtype definition (given in Section 4.2) is 

similar to others [l, 6, 151, but it does not go far 

enough. It fails to rule out subtype relations that 

would permit surprising behavior in the presence of 

shared mutable objects. Besides us, only Dhara and 

Leavens [9, 81 address this case. Rather than add ex- 

plicit constraints in specifications, they place restric- 

tions on the kinds of aliasing allowed in their 

programs. Their solution is limited to the special case 

of single-user, single-program environments. 

We have also worked out another general approach 

that requires an extension map instead of explicit 

constraints [22]. This extension map is defined for all 

extra mutators introduced by the subtype and requires 

“explaining” the behavior of each extra mutator as a 

program expressed in terms of non-extra methods. 

For example, the remove method of fife-set would be 

explained by the program: 

i := s.oldest(); s.delete(i) 

To show that history properties are preserved for non- 

extra mutators, we use the methods rule.5 However, 

because the properties are not stated explicitly, they 

cannot be proved for the extra methods. Instead extra 

methods must satisfy any possible property, which is 

surely guaranteed if the extra methods can be ex- 

plained in terms of the non-extra methods. Showing 

that the subtype constraint is stronger than the 

supertype’s takes care of all the methods, not just the 

extra ones. 

The approach using explicit constraints is appealing 

because it is so simple. In addition, it allows us to 

rule out unintended properties that happen to be true 

because of an error in a method specification. Having 

both the constraint and the method specifications is a 

form of useful redundancy: If the two are not consis- 

tent, this indicates an error in the specification. The 

error can then be removed (either by changing the 

constraint or some method specification). Therefore, 

including constraints in specifications makes for a 

more robust methodology. 

‘A more constraining methods rule that requires subtype 
methods to have identical pre-conditions to those of the cor- 
responding supertype methods is needed. Thanks to Ian Maung 
(private communication) for pointing this out. 

On the minus side is the loss of the history rule. 

Users are not permitted to use the history rule because 

if they did, they might be able to prove history 

properties that a subtype did not ensure. Therefore 

the specifier must be careful to define a strong enough 

constraint. In our experience the desired constraint is 

usually obvious, but here is an example of an inade- 

quate constraint: Suppose the definer of fat-set mis- 

takenly gave the following constraint: 

constraint I sp I I I sv I 

Then users would be unable to deduce that once an 

element is added to a fat-set it will always be there 

(since they are not allowed to use the history rule). 

5. Conclusions 

This paper makes two contributions. First it 

provides a specification technique for object types 

that allows creators to be specified separately from 

types. Separating the creators is important because it 

allows different implementations of a type to have 

different creators, and also because it allows subtypes 

to have different creators from supertypes. However, 

leaving out creators leads to the loss of data type in- 

duction, which is needed to prove type invariants. 

We make up for this loss by including explicit in- 

variants in our specification. Our specifications also 

contain explicit constraints; these identify a minimal 

set of history properties that methods of the type and 

all its subtypes must preserve. 

Our specifications are based on Larch; we believe 

that this is a particularly readable and easy-to-use ap- 

proach for programmers. In addition, it is easy to 

give informal specifications that have the same 

general form as our formal ones. In our experience, 

informal specifications that have a prescribed format 

and information content are very useful in program 

development. 

Our second contribution is a new definition of the 

subtype relation. We argue that all properties prov- 

able about objects of a supertype should also hold for 

objects of its subtypes. This very strong definition 

ensures that if one user reasons about a shared object 

using properties that hold for its apparent type, that 

reasoning will be valid even if the object actually 

belongs to a subtype and is manipulated by other 
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users using the subtype methods. Our definition of 

subtyping highlights the importance of history 

properties by making constraints explicit in specifica- 

tions and by requiring that subtypes guarantee super- 

type constraints. Explicit constraints allow us to give 

a simple and straightforward definition of subtyping 

that works even in a very general environment in 

which possibly concurrent users share mutable ob- 

jects. 

This paper showed how these two contributions in- 

teract with each other. In the presence of subtyping, 

type specifications have to change to accommodate 

the separation of creators from an object’s other 

methods. At the same time, type specifications must 

contain sufficient information for users to prove that 

one type is a subtype of another. 
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