
Specifications and Their Use in Defining Subtypes

Barbara Liskov Jeannette M. Wing

Massachusetts Institute of Technology School of Computer Science

Laboratory for Computer Science Carnegie Mellon University

Cambridge, MA 02139 Pittsburgh, PA 15213-3890

Abstract

Specifications are useful because they allow reason-
ing about objects without concern for their implemen-
tations. Type hierarchies are useful because they al-
low types that share common properties to be
designed as a family. This paper is concerned with
the interaction between specifications and type hierar-
chies. We present a way of specifying types, and
show how some extra information, in addition to
specifications of the objects’ methods, is needed to
support reasoning. We also provide a new way of
showing that one type is a subtype of another. Our
technique makes use of information in the types’
specifications and works even in a very general com-
putational environment in which possibly concurrent
users share mutable objects.

1. Introduction

Object-oriented programming languages support a

programming methodology based on data abstraction

in which programs are composed of modules, each

implementing an abstract data type. The type is

abstract because it is possible to interact with its ob-

jects only by calling their operations or methods. The

type’s implementation (e.g., a class) defines a

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

o 1993 ACM 0-89791-587~9/93/0009/0016...$1.50

representation for the type’s objects (e.g., a set of in-

stance variables) and provides implementations of the

methods based on this representation. The represen-

tation details are encapsulated: they are accessible

only to the class, and hidden from users.

Encapsulation is useful because it allows us to

reimplement a type with another class without affect-

ing its users, assuming the new class has the same

behavior as the old one. However, to make sense out

of this “behavior” requirement we need a way of

defining what the required behavior is. The old im-

plementation is not a sufficient definition since it in-

cludes details that may or may not be important. For

example, if a collection object has a method that

returns an element that matches some predicate, the

implementation of the method will make a choice if

there are several elements that match. Is this choice

part of the required behavior? Or, can a different im-

plementation make a different choice?

The way to capture behavior is to define it

separately from implementations in a specification.

Specifications have long been a cornerstone of the

data abstraction methodology, but have received less

attention in work on object-oriented programming.

Furthermore, specification techniques for data

abstractions aren’t quite right for object types because

they assume methods belong to the type, not the ob-

ject.

This paper provides a specification technique

tailored to the needs of object types. Our approach

allows a type to have multiple implementations and

makes it convenient to define the subtyping relation.

Our specifications are based on the Larch formal

OOPSLA’93, pp. 16-28

16

specification technique, which means that they have a

precise mathematical meaning that serves as a firm

foundation for reasoning, e.g., that a class implements

a type correctly. We also discuss informal specifica-

tions based on our approach.

Specifications are used to reason about object be-

havior in abstract terms. Two kinds of properties are

of interest: invariant properties, which are properties

true of all states, and history properties, which are

properties true of all sequences of states. For ex-

ample, an invariant property of an integer counter

might be that its value is always greater than or equal

to zero; a history property might be that its value al-

ways increases. Both invariant and history properties

are examples of safe9 properties (“nothing bad

happens”). We might also want to prove liveness

properties (‘ ‘something good eventually happens”),

e.g., the value of the integer counter eventually

reaches 100, but our focus here will be just on safety

properties.

Our type specifications define the behavior of

methods of objects of the type (i.e., the “instance

methods”) but not any of the additional methods,

usually called “class methods”, that do not belong to

particular objects. These additional methods are used

to create new objects from scratch (we will refer to

such methods as creators) and may also be used for

additional purposes, e.g., to maintain statistics about

various properties of the objects. Leaving these

methods out is desirable because this is a place where

implementations might differ (e.g., different classes

that implement the same type might have different

creators); in addition, different creators may be

needed for subtypes.

In the absence of the creators, however, there is no

way to prove invariant properties. The problem is

that such properties are proved by data type

induction, in which the creators are used for the basis

step, and the methods for the induction step. If there

are no creators defined in the specification, there is no

basis step. To compensate for this loss, we add ex-

plicitly stated invariants to our specifications.

Specifications are also useful for defining type

hierarchy. In strongly-typed languages such as

Simula 67, Modula-3, and Trellis/Owl, subtypes are

used to broaden the assignment statement. An assign-

ment

x: T := E

is considered to be legal provided the type of expres-

sion E is a subtype of the declared type T of variable

x. Once the assignment has occurred, x will be used

according to its “apparent” type T, with the expec-

tation that if the program performs correctly when the

actual type of x’s object is T, it will also work cor-

rectly if the actual type of the object denoted by x is a

subtype of T. Intuitively, the subtype’s objects must

behave “the same” as the supertype’s as far as

anyone using the supertype’s objects can tell. This

paper gives a definition of the subtype relation that

ensures the subtypes’ objects behave properly. Our

definition ensures that all history and invariant

properties that can be proved about supertype objects

also hold for subtype objects. In particular, just as we

add invariants to specifications to state a type’s in-

variant properties, we add constraints to state its his-

tory properties explicitly. Proofs that a subtype en-

sures constraints of a supertype are done in terms of

type specifications directly.

Thus, the paper makes two contributions:

1. It provides a way of specifying object
types that allows a type to have multiple
implementations and makes it con-
venient to define the subtyping relation.
The technique requires creators to be
specified separately from types, but still
supports the invariant properties needed
for reasoning about the type’s objects.

2. It provides a new definition of the sub-
type relation. Our technique requires
that additional information be included
in the type’s specification. It works
even in a very general environment in
which possibly concurrent users share
mutable objects. Our technique is also
constructive: One can prove whether a
subtype relation holds by proving a
small number of simple lemmas.

Others have worked on both of the problems at-

tacked in this paper. For example, many have

proposed Z as the basis of specifications of object

types [7, l&51; Goguen and Meseguer use

FOOPS [13]; Leavens and his colleagues use

Larch [16, 18,9]. Though many of these researchers

separate the specification of an object’s creators from

its other methods, no one has identified the problem

posed by the missing creators, and thus no one has

provided an explicit solution to this problem,

17

Others such as America [l], Cusack [6], and Dhara

and Leavens [9] have proposed rules for determining

whether one type is a subtype of another. Many of

these approaches are not constructive, i.e., they tell

you what to look for, but not how to prove that you

got it. Other work [27, 171 is couched in formalisms

that we believe are not very easy for programmers to

deal with. In contrast, our subtype definition is con-

structive and takes the form of a simple checklist of

rules, which programmers can use in a formal or in-

formal way. Furthermore, only we have a technique

that works in a general environment in which objects

can be shared among possibly concurrent users. The

rule for proving the subtype relation given in this

paper is simpler than the one given in our own earlier

work [22], but it requires more information in

specifications, which may be a disadvantage.

The remainder of the paper is organized as follows.

In Section 2 we describe our model of computation.

Section 3 describes our specification technique and

the extra information needed to make up for the loss

of data type induction. Section 4 describes our sub-

type relation and the extra information needed for it to

work in a very general computational environment.

We close with a summary of what we have ac-

complished.

2. Model of Computation

We assume a set of all potentially existing objects,

Obj, partitioned into disjoint typed sets. Each object

has a unique identity. A type defines a set of values

for an object and a set of methods that provide the

only means to manipulate that object.

Objects can be created and manipulated in the

course of program execution. A state defines a value

for each existing object. It is a pair of two mappings,

an environment and a store. An environment maps

program variables to objects; a store maps objects to

values.

State = Env x Store
Env = Var + Obj
Store = Obj + Val

Given an object, x, and a state, p, with an environ-

ment, p.e, and store, p.s, we use the notation xp to

denote the value of x in state p; i.e., x0 = p.s(p.e(x)).
r

When we refer to the domain of a state, dam(p), we

mean more precisely the domain of the store in that

state.

We model a type as a triple, ~0, V, MB, where 0 c

Obj is a set of objects, V c Vu1 is a set of values, and

M is a set of methods. Each method for an object is a

constructor, an observer, or a mutator. Constructors

of an object of type z return new objects of type 7;

observers return results of other types; mutators

modify the values of objects of type z. A type is

mutable if any of its methods is a mutator. We allow

“mixed methods” where a constructor or an observer

can also be a mutator. We also allow methods to sig-

nal exceptions; we assume termination exceptions,

i.e., each method call either terminates normally or in

one of a number of named exception conditions. To

be consistent with object-oriented language notation,

we write x.m(a) to denote the call of method m on

object x with the sequence of arguments a.

Objects come into existence and get their initial

values through creators. Unlike other kinds of

methods, creators do not belong to particular objects,

but rather are independent operations. They are the

“class methods”; the other methods are the “instance

methods.” (We are ignoring other kinds of class

methods in this paper.)

A computation, i.e., program execution, is a se-

quence of alternating states and statements starting in

some initial state, PO:

PO s, Pl *‘* Pn-1 5 Pn

Each statement, Si, of a computation sequence is a

partial function on states. A history is the sub-

sequence of states of a computation. A state can

change over time in only three ways’: the environ-

ment can change through assignment; the store can

change through the invocation of a mutator; the

domain can change through the invocation of a

creator or constructor. We assume the execution of

each statement is atomic. Objects are never

destroyed:

‘d 1 5 i I n. dom(ol-1) c dom(pi).

‘This model is based on CLU semantics [191.

18

3. Specifications of Types and Creators

3.1. Type Specifications

While we do not wish to endorse one formal

specification method over another, we do assume a

type specification includes the following information:

l The type’s name;

l A description of the type’s value space;

l For each of the type’s methods:

l Its name;

l Its signature (including signaled
exceptions);

l Its behavior in terms of pre-
conditions and post-conditions.

In our work we use formal specifications in the two-

tiered style of Larch [141. In the first tier, Larch

traits, written in the style of algebraic specifications,

are used to define a vocabulary of sort and function

symbols. These symbols define a term language,

where each term denotes a value (of a particular sort).

For example, the term “{ }” might be used to denote

the empty set value and the term “s u { i 1” might be

used to denote the set value equal to the union of the

set s and the singleton set { i }. Axioms and inductive

rules of inference are used to determine when two

terms, and hence two values, are equal. For example,

such axioms would let us prove the commutativity of

u so that we could show that the two terms

“s u { i }” and “{ i } u s” denote the same set

value. In our examples, we stick to standard notation

for functions on sets, sequences, and tuples with their

usual mathematical properties; in this paper we omit

the Larch traits that would be used to specify such

details. Many other specification languages like

Z [26], OBJ3 [12], ACT-ONE [II] could just as

easily be adopted to describe a type’s value space.

In the second tier, Larch interfaces are used to

describe the behaviors of an object’s methods. For

example, Figure 3-1 gives a specification for a set

type whose objects have methods insert, delete,

select, elements, and equal. The uses clause defines

the value space for the type by identifying a sort. For

example, the uses clauses in the figure indicates that

all values of objects of type set are denotable by terms

of sort S, as introduced in the MSet trait. The values

of this particular sort are mathematical sets. The

methods clause provides a specification for each

method. Since a method’s specifications need to refer

to the method’s object, we introduce a name for that

object in the for all line. For each method, pre- and

post-conditions are written in terms of requires,

modifies, and ensures clauses. The pre-condition is

the predicate of the requires clause; if this clause is

missing, the pre-condition is trivially “true.” For ex-

ample, select’s pre-condition checks to see if the set

has any elements. The post-condition is the conjunc-

tion of the modifies and ensures clauses. Insert’s

post-condition says that the set’s value may change

because of the addition of its integer argument.2 The

ensures clause of the elements method makes use of

the same-els function; we assume this is defined in

the MSet trait (it returns true iff the set and the se-

quence contain exactly the same elements and further-

more the sequence has no duplicates).

set = type

uses MSet (set for S)

for all s: set

methods

insert = proc (i: int)
modifies s
ensures spOst = sPre UC}

delete = proc (i: int) signals (not-in)
modifies s
ensures if i E s pre then spost = spre - ii)

else signal not-in

select = proc () returns (int)
.

reqmres spre # { }

ensures result E s
Pre

elements = proc () returns (sequence[int])
ensures same-els(spr,, result)

equal = proc (t: set) returns (bool)
ensures result = (s = t)

Figure 3-1: A Type Specification for Sets

A modifies x1, x, clause is shorthand for the fol-

lowing predicate

2Notice that we rely on the meaning of set union to guarantee
that if i is already in the set, then inserting i again will not change
the set’s value.

19

V x E (dom(pre) - {xl, x,1> . xpre = xpost

which says only objects listed may change in value.

A modifies clause is a strong statement about all ob-

jects not explicitly listed, i.e., their values may not

change. If there is no modifies clause then nothing

may change.

In the requires and ensures clauses x stands for an

object, xpre stands for its value in the initial state, and

xpost stands for the object’s value in the final state.3

Distinguishing between initial and final values is

necessary only for mutable types, so we suppress the

subscripts fjr parameters of immutable types (like

integers). We”need to distinguish between an object,

x, and its value, xpre or xpOSt, because we sometimes

need to refer to the object itself, e.g., in the equal

method, which determines whether two (mutable) sets

are identical. Result is a way to name a method’s

result parameter.

Methods may terminate either normally or excep-

tionally. Specifiers can introduce values for excep-

tions that the method may signal through a signals

clause in the method’s header. Delete signals the ex-

ception not-in if the element to be deleted is not in

the set.

In general, for a given method specification

m = proc (args) returns (result) signals (el, . . . en)
requires ReqPred
modifies x1, x,
ensures EnsPred

m.pre is ReqPred, m.post is ModPred A EnsPred,

where ModPred is the predicate defined earlier for the

meaning of a modifies clause, and m.pred, the

method’s associated first-order predicate, is:

ReqPred 3 (ModPred A EnsPred)

Thus, a method’s behavior is defined only when the

pre-condition is satisfied; it is undefined otherwise.

The form of a Larch interface specification can

easily be adapted for informal specifications. The

uses clause is simply a description of the values, pos-

sibly using well-understood mathematical concepts.

The specifications of the methods have requires,
modifies, and ensures clauses, but the predicates are

3Referring to an object’s final value is meaningless in pre-
conditions. of course.

given informally (in English) in terms of the concepts

introduced in the uses clause. We have used

specifications like this with considerable success in

our own work, and they are described in Liskov and

Guttag [20].

3.2. Specifying Creators

Objects are created and initialized through creators.

We do not include creators in type specifications so

that different implementations of a type can have dif-

ferent creators and also so that subtypes can have dif-

ferent creators from their supertypes.

Figure 3-2 shows specifications for three different

creators for sets. The first creator creates a new

empty set, the second creates a singleton set, and the

third creator allows the implementor to represent the

set as a hash table, where the given integer argument

determines the hash table’s size. These examples

show that different implementations may require dif-

ferent information when new objects are created, and

therefore it is a good idea to allow the creators to be

defined differently for them.

create = proc () returns (set)
ensures resultpost = { } A new(result)

create-single = proc (i: int) returns (set)
ensures resultpost = { i } A new(result)

create-hash = proc (n: int) returns (set)
requires n > 0
ensures resultpost = { } A new(result)

Figure 3-2: Three Creators for Sets

As an argument to the special predicate new, result

stands for the object returned, not its value. The
assertion new(x) stands for the predicate:

x E dom(post) - dom(pre)

Recall that objects are never destroyed so that

dom(pre) G dom(post).

3.3. Type Specifications Need Explicit
Invariants

By not including creators we lose a powerful

reasoning tool: data type induction. Data type induc-

tion is used to prove type invariants. The base case of

the rule requires that each creator of the type establish

20

the invariant; the inductive case requires that each

non-creator preserve the invariant. Without the

creators, we have no base case, and therefore we can-

not prove type invariants!

To compensate for the lack of data type induction,

we state the invariant explicitly in the type specifica-

tion by means of an invariant clause. In the case that

the invariant is trivial (i.e., identical to “true”), as it

is for sets, the invariant clause can be omitted,

Figure 3-3 gives a specification of a bounded-set type

for which the invariant is not trivial. The sort in this

case is a pair <bound, els>, where bound is a natural

number, and els is a mathematical set of integers. The

invariant is that a bounded-set’s size never exceeds

its bound. In general, the predicate @(x,) appearing in

an invariant clause for type z stands for the predicate

‘v’ x: ‘c, p: State . $(x,). We assume that components

of the set’s value, e.g., bound, remain unchanged if

not otherwise stated explicitly in the post-conditions

of Figure 3-3.

bounded-set = type

uses BSet (bounded-set for S)

for all s: bounded-set

invariant I sp.els I I s,,.bound

methods

insert = proc (i: int)
requires I spre.els I < spre.bound
modifies s
ensures spost,els = spre.els u { i)

delete = proc (i: int) signals (not-in)
modifies s
ensures if i E s

pre
.els then s post.els =

spre.els - { i } else signal not-in

select = proc () returns (int)
.

requires spre.els f { }els

ensures result E s pre’

elements = proc () returns (sequence[int])
ensures same-els(spre.els, result)

equal = proc (t: bounded-set) returns (bool)
ensures result = (s = t)

Figure 3-3: A Type Specification for Bounded Sets

Stating invariants explicitly in a type specification

has three consequences. First, all creators for a type z

must establish z’s invariant, I,:

l For each creator for type 7, show
I,(r~sultpost).

Second, each method of the type must presewe the

invariant. To prove it, we assume each method is

called on an object of type z with a legal value (one

that satisfies the invariant, Ir) and show that any value

of an object it produces or modifies is legal:

l For each method m of z, assume Iz(xpre)
and show Iz(xpost).

For example, we would need to show insert, delete,

select, elements, and equal each preserves the in-

variant for bounded-set. Informally the invariant

holds because insert’s pre-condition checks that there

is enough room in the set for another element; delete

either decreases the size of the set or leaves it the

same; select, elements, and equal do not change the

set at all. The proof ensures that methods deal only

with legal values of an object’s type.

Third, the absence of data type induction limits the

kinds of invariant properties we can prove about ob-

jects. All invariant properties must follow from the

conjunction of the type’s invariant and invariants that

hold for the entire value space. For example, we

could prove that insertion on bounded-sets is com-

mutative by appealing to the commutativity of u,

which, as stated earlier, holds for all mathematical set

values. Since the explicit invariant limits what in-

variant properties can be proved, the specifier needs

to be careful when defining it.

However, it is important that the invariant be just

strong enough and no stronger. A general rule is that

specifications should be as weak as possible: they

should state only what a user needs to depend on and

nothing more. Weak specifications are desirable be-

cause they give more freedom to the implementor,

and also, as we shall see, because they accommodate

more subtypes. This rule affects the specifications of

the methods as well as the invariant. For example, the

specification of select is non-deterministic, leaving

the implementor free to choose whatever element is

most convenient in that particular implementation; it

also permits us to define the fife-set subtype dis-

cussed in the next section.

In summary, the invariant plays a crucial role in our

specifications. It captures what normally would be

proved through data type induction, allowing us to

21

reason about properties of legal values of a type with-

out having specifications of creators.

4. Subtypes and the Subtype Relation

4.1. Specifying Subtypes

To state that a type is a subtype of some other type,

we simply append a subtype clause to its specifica-

tion. We allow multiple super-types; there would be a

separate subtype clause for each. Figure 4-l gives an

example. What distinguishes the fife-set type from

its set super-type is the more constrained behavior of

its select method. In addition, it has an extra method,

remove.

A subtype’s value space may be different from its

supertype’s. Here, we use sequences (as defined in

the Sequence trait) to represent values for fife-set.

The invariant indicates that only sequence values with

no duplicate elements are legal values of fife-set ob-

jects. (Again, we assume the no-duplicates function

is defined appropriately in the sequence trait.) Under

the subtype clause we define an abstraction function,

A, that relates these sequence values to set values in

the obvious manner. The subtype clause also lets

specifiers rename methods of the supertype, e.g.,

oldest for select; all other methods of the supertype

are “inherited” without renaming, e.g., insert, delete,

elements, and equal. Any super-type method may be

further constrained. In particular, oldest ensures that

the returned element is the one that was first inserted

longest ago. The additional remove method removes

the oldest element from the set.

4.2. Subtype Relation Defined in Terms of
Specifications

Various authors have defined subtyping by relating

two type specifications [1, 1.5, 6, 3, 221. The com-

monality among these subtype definitions is that they

all capture the following two properties, stated infor-

mally:

l Values of the subtype relate to values of
the supertype.

l Behaviors of the subtype methods relate
to behaviors of corresponding super-type
methods.

As introduced in the previous section, we use

abstraction functions to relate value spaces. These

are similar to America’s transfer functions [l],

Leavens’s simulation relations [151, and Bruce and

Wegner’s coercion functions [3]. Since we include

explicit invariants in type specifications we must

make sure that the subtype definition requires that

abstraction functions respect the invariant: the

abstraction function must map legal values of the sub-

type to legal values of the supertype.

fife-set = type

uses Sequence (fife-set for Seq)

V s: fife-set

invariant no-duplicates(sJ

methods

insert = proc (i: int)
modifies s
ensures if i in s

else s
pre then ’

II[ip
re = ‘post

post = ‘pre

delete = proc (i: int) signals (not-in)
modifies s
ensures if -(i in spre) then signal not-in

else s post = rem(sp,, i)

oldest = proc () returns (int)
.

requires spr, f []
ensures result = first(sn,,)

elements = proc () returns (sequence[int])
ensures same-els(spr,, result)

equal = proc (t: fife-set) returns (bool)
ensures result = (s = t)

remove = proc ()
modifies s
ensures if spre f [] then spoSt = rest(spre)

else s pre = ‘post

subtype of set (oldest for select)

A: Seq + S

If q: Seq .

A([I) = { 1
Nq 11 [i I> = 44 u { i 1

Figure 4-1: A Type Specification for Fife-set

For relating methods, we require that the predicate

of the subtype method implies that of the supertype.

(Recall that the predicate for method m is

22

m.pre j m.post.) This requirement guarantees that a

method called on a subtype object will still exhibit

acceptable behavior according to the corresponding

supertype method’s specification. This semantic re-

quirement on the methods’ pre- and post-conditions is

analogous to the syntactic requirement on the

methods’ signatures [2, 24,4] (see our

contra/covariance rules below). Except for minor dif-

ferences, our way of relating methods is similar to

America’s [l], Leavens’s [15], and Cusack’s [6].

More formally, given two types, 0 and T, each of

whose specifications respectively preserves its in-

variant, I, and I,, we define the subtype relation, <, as

follows:

Definition of the subtype relation, <: (3 = CO,, S, M>
is a subtype of z = <Or, T, N> if there exists an

abstraction function, A: S + T, and a renaming map,
R: M + N, such that:

1. The abstraction function respects invariants:

l Invariant Rule. ‘d s: S. I,(s) * I&A(s))

This rule implies that A must be defined for
all values of S that satisfy I,; A can be partial
since it need not be defined for values of S
that do not satisfy I,.

2. Subtype methods preserve the supertype
methods’ behavior. Let m, of 7 be the cor-
responding renamed method m, of 0 (i.e.,
R(m,) = n-Q. R may be partial, since it need
not be defined on extra methods of (3, and
must be onto and one-to-one. The following
rules must hold:

l Signature rule.

l Contravariance of arguments. m, and
m, have the same number of arguments.
If the list of argument types of m, is ai

and that of m, is pi, then V i. ai < pi.

l Covariance of result. Either both m,
and mo have a result or neither has. If
there IS a result, let m,‘s result type be y
and ma’s be 6. Then 6 < y.

l Exception rule. The exceptions signaled
by m, are contained in the set of excep-
tions signaled by m,.

l Methods rule. For all x: (5:

l Pre-condition rule. mr.pre[A(xpr,)/xprJ

j m,.pre.

l Predicate rule. m,.pred j

m,.Pred[A(xpre)/xpre, A(xpostYxpostl
where P[a/b] stands for predicate P with
every occurrence of b replaced by a.

Using this definition, it is a straightforward exercise

to show that fife-set is a subtype of set. Preserving

the invariant is trivial because the invariant for sets is

trivial. The reason that the oldest method simulates

the behavior of select is that the specification of select

does not constrain which element of the set is

returned; the specification of oldest simply resolves

this non-determinism in favor of the element that has

been in the set the longest. The additional method,

remove, causes no problem because the rule imposes

no constraints on extra methods.

Our definition would not allow bounded-set to be a

subtype of set. The pre-condition for set’s insert is

“true” since it is always legal to insert more elements

in a set. Using our definition, we could not show that

the pre-condition rule hoids for insert. Intuitively,

this restriction makes sense since a user of a set would

be surprised if inserting did not cause the element to

appear in the (unbounded) set. On the other hand, set

could be a subtype of bounded-set since even though

a user of a bounded-set might expect to reach the

bound eventually, it is not surprising that any par-

ticular call has not reached the bound. However, the

specification of bounded-set is a bit odd, because it is

not possible for a user to observe the bound. If we

were to change bounded-set’s insert to signal an ex-

ception instead of assuming a non-trivial pre-

condition, then by the exception rule we could show

that set is not a subtype of bounded-set.

4.3. Adding Constraints to Type Specifications

The subtype rule given in the preceding section is

perfectly adequate when procedures are considered in

isolation and when there is no aliasing. For example,

consider a procedure

get-max = proc (s: set) returns (int)
ensures V x: Int . x E s pre * result 2 x

This procedure could be implemented by using the

elements method to obtain the sequence of elements

and then iterating over the sequence. In the execution

of a call get-max(f), where f is a fife-set, get-max

actually calls subtype methods, but since each of

23

these simulates the behavior of the corresponding su-

pertype method, the procedure will execute correctly.

The definition is not sufficient, however, in the

presence of aliasing, and also in a general computa-

tional environment that allows sharing of mutable ob-

jects by multiple users. Consider first the case of

aliasing. The problem in this case is that within a

single procedure a single object is accessible by more

than one name, so that modifications using one of the

names are visible when the object is accessed using

the other name. For example, suppose S is a subtype

of T and that variables

x: T
y: s

both denote the same object (which must, of course,

belong to S or one of its subtypes). When the object

is accessed through x, only T methods can be called.

However, when it is used through y, S methods can be

called and the effects of these methods are visible

later when the object is accessed via x. To reason

about the use of variable x using the specification of

its type T, we need to impose additional constraints

on the subtype relation.

Now consider the case of an environment of shared

mutable objects, such as is provided by object-

oriented databases (e.g., Thor [21] and

Gemstone [23]). (In fact, it was our interest in Thor

that motivated us to study the meaning of the subtype

relation in the first place.) In such systems, there is a

universe containing shared, mutable objects and a

way of naming those objects. In general, lifetimes of

objects may be longer than the programs that create

and access them (in fact, objects might be persistent)

and users (or programs) may access objects concur-

rently and/or aperiodically for varying lengths of

time. Of course there is a need for some form of con-

currency control in such an environment. We assume

such a mechanism is in place, and consider a com-

putation to be made up out of atomic units (i.e.,

transactions) that exclude one another. The trans-

actions of different computations can be interleaved

and thus one computation is able to observe the

modifications made by another.

Now let’s consider the impact of having subtyping

in such an environment. As an example, suppose one

user installs an object that maps string names to sets.

Later, a second user enters a fife-set into that object

mapped under some string name; a binding like this is

analogous to assigning a subtype object to a variable

of the supertype. After this, both users occasionally

access that fife-set object. The second user knows it

is a fife-set and accesses it using fife-set methods,

The question is: What does the first user need to

know in order for his or her programs to make sense?

We think it ought to be sufficient for a user to know

only about the “apparent type” of the object. Thus

the first user ought to be able to reason about his or

her use of the fife-set object using the invariant and

history properties of set.

History properties are of course especially of inter-

est for mutable types. In general we can formulate

history properties as predicates over state pairs: For

any computation, c,

V x: 2, p, v: State . [p < w A x E dam(p)]

* m,, xw>

where p < w means that state p precedes state uy in c.

Notice that we implicitly quantify over all computa-

tions, c, and we do not require that v is the immediate

successor of p. We can prove a history property by

showing that it holds after the invocation of each

method. Actually we only need to do the proof for

each mutator:

l History Rule: For each mutator m of z,
show m.pred * $[xpre/xp, x~~~~/x,,,]

where @ is a history property on objects of type T.

Our subtype rule lets us show that invariant

properties of the super-type are preserved by its sub-

type, But what about history properties? Let us look

at an example before we answer this question. Sup-

pose we have a fat-set type that has all the methods of

set except delete; fat-sets only grow while sets grow

and shrink. The subtype relation discussed in Section

4.2 would allow us to prove that set is a subtype of

fat-set. However, someone using a fat-set can

deduce that once an element is inserted in the fat-set,

it remains there forever. This history property does

not hold for sets, and therefore, if the object in ques-

tion is actually a set, and some other user is using it as

a set, the user who views it as a fat-set will be able to

observe surprising behavior (namely, the set shrinks).

Therefore, set should not be a subtype of fat-set, and

to disallow such subtype relations we need to extend

our subtype definition.

24

To obtain a subtype relation that preserves history

properties, we first add some information to specifica-

tions, a constraint clause that describes the history

properties of the type explicitly4. In particular, we

add to the specification for fat-set:

constraint V x: int . x E so * x E s
w

Similarly, we could add:

constraint so.bound = s,,,.bound

to the specification of bounded-set to declare that a

bounded-set’s bound never changes. The predicate

appearing in a constraint clause is an abbreviation for

a history property. For example, fat-set’s constraint

expands to the following: For any computation, c,

V s: fat-set, p, u/: State . [p < v A s E dam(p)]
* [V x: int . x E so * x E sw]

Just as we had to prove that methods preserved the

invariant, we must show that they satisfy the

constraint by proving it for each mutator using the

history rule. The constraint replaces the history rule

as far as users are concerned: users can make deduc-

tions based on the constraint but they cannot reason

using the history rule directly.

Next we extend our definition of the subtype rela-

tion to require that subtype constraints ensure super-

type constraints. The full definition of our subtype

relation is summarized in Figure 4-2, where Co and

C, are the constraints given in the specifications of

types (3 and T, respectively. We assume each type

specification preserves invariants and satisfies con-

straints.

Returning to our set and fat-set example, we see

that the constraint rule is not satisfied since set has the

trivial constraint “true,” which does not imply

fat-set’s constraint. On the other hand, fife-set is a

subtype of set because it also has the trivial constraint.

As another example, consider a varying-set type

that allows a bound to increase but does not provide

any method to make such a change. It has the con-

straint:

constraint s,,.bound I s,,,.bound

‘%he use of the term “constraint” is borrowed from the Ina Jo
specification language [25], which also includes constraints in
specifications.

Bounded-set is a subtype of this type, and so is a

dynamic-set type with all the methods of varying-set

plus change-bound, which increases the bound:

change-bound = proc (n: int)
requires n 2 s

modifies s
pre.bound

ensures spost.bound = n

Intuitively, the non-determinism in the supertype is

resolved in two different ways in the two subtypes:

varying-set allows the bound to increase but does not

require it; bounded-set does not take advantage of

this opportunity, but dynamic-set does. This is

another example of how subtypes can tighten the non-

determinism present in the super-type.

Definition of the subtype relation, <: 0 = <O,, S, M>
is a subtype of z = <O,, T, N> if there exists an

abstraction function, A: S -+ T, and a renaming map,
R: M + N. such that:

1. The abstraction function respects invariants:

l Invariant Rule. ‘# s: S. I,(s) * I,(A(s))

2. Subtype methods preserve the supertype
methods’ behavior. If rnr of z is the cor-
responding renamed method m, of cs, the fol-
lowing rules must hold:

l Signature rule.

l Contravariance of arguments. m, and
mo have the same number of arguments.
If the list of argument types of m, is ai

and that of m, is pi, then V i. ai < pi.

l Covariance of result. Either both m,
and m. have a result or neither has. If
there is a result, let mr’s result type be y
and ma’s be 6. Then 6 < y.

l Exception rule. The exceptions signaled
by m, are contained in the set of excep-
tions signaled by m,.

l Methods rule. For all x: 0:

l Pre-condition rule. rnr.pre[A(xpre)/xpre]

=9 m,.pre.

l Predicate rule. m,.pred +

m,.Pred[A(xpre)/xpre, A(~postY~postl

3. Subtype constraints ensure supertype con-
straints.

l Constraint Rule. For all x: (r . Co(x) +

C,[A(xpreYx,,~ A(~postY~Wl
Figure 4-2: Definition of the Subtype Relation

25

4.4. Discussion

Our first subtype definition (given in Section 4.2) is

similar to others [l, 6, 151, but it does not go far

enough. It fails to rule out subtype relations that

would permit surprising behavior in the presence of

shared mutable objects. Besides us, only Dhara and

Leavens [9, 81 address this case. Rather than add ex-

plicit constraints in specifications, they place restric-

tions on the kinds of aliasing allowed in their

programs. Their solution is limited to the special case

of single-user, single-program environments.

We have also worked out another general approach

that requires an extension map instead of explicit

constraints [22]. This extension map is defined for all

extra mutators introduced by the subtype and requires

“explaining” the behavior of each extra mutator as a

program expressed in terms of non-extra methods.

For example, the remove method of fife-set would be

explained by the program:

i := s.oldest(); s.delete(i)

To show that history properties are preserved for non-

extra mutators, we use the methods rule.5 However,

because the properties are not stated explicitly, they

cannot be proved for the extra methods. Instead extra

methods must satisfy any possible property, which is

surely guaranteed if the extra methods can be ex-

plained in terms of the non-extra methods. Showing

that the subtype constraint is stronger than the

supertype’s takes care of all the methods, not just the

extra ones.

The approach using explicit constraints is appealing

because it is so simple. In addition, it allows us to

rule out unintended properties that happen to be true

because of an error in a method specification. Having

both the constraint and the method specifications is a

form of useful redundancy: If the two are not consis-

tent, this indicates an error in the specification. The

error can then be removed (either by changing the

constraint or some method specification). Therefore,

including constraints in specifications makes for a

more robust methodology.

‘A more constraining methods rule that requires subtype
methods to have identical pre-conditions to those of the cor-
responding supertype methods is needed. Thanks to Ian Maung
(private communication) for pointing this out.

On the minus side is the loss of the history rule.

Users are not permitted to use the history rule because

if they did, they might be able to prove history

properties that a subtype did not ensure. Therefore

the specifier must be careful to define a strong enough

constraint. In our experience the desired constraint is

usually obvious, but here is an example of an inade-

quate constraint: Suppose the definer of fat-set mis-

takenly gave the following constraint:

constraint I sp I I I sv I

Then users would be unable to deduce that once an

element is added to a fat-set it will always be there

(since they are not allowed to use the history rule).

5. Conclusions

This paper makes two contributions. First it

provides a specification technique for object types

that allows creators to be specified separately from

types. Separating the creators is important because it

allows different implementations of a type to have

different creators, and also because it allows subtypes

to have different creators from supertypes. However,

leaving out creators leads to the loss of data type in-

duction, which is needed to prove type invariants.

We make up for this loss by including explicit in-

variants in our specification. Our specifications also

contain explicit constraints; these identify a minimal

set of history properties that methods of the type and

all its subtypes must preserve.

Our specifications are based on Larch; we believe

that this is a particularly readable and easy-to-use ap-

proach for programmers. In addition, it is easy to

give informal specifications that have the same

general form as our formal ones. In our experience,

informal specifications that have a prescribed format

and information content are very useful in program

development.

Our second contribution is a new definition of the

subtype relation. We argue that all properties prov-

able about objects of a supertype should also hold for

objects of its subtypes. This very strong definition

ensures that if one user reasons about a shared object

using properties that hold for its apparent type, that

reasoning will be valid even if the object actually

belongs to a subtype and is manipulated by other

26

users using the subtype methods. Our definition of

subtyping highlights the importance of history

properties by making constraints explicit in specifica-

tions and by requiring that subtypes guarantee super-

type constraints. Explicit constraints allow us to give

a simple and straightforward definition of subtyping

that works even in a very general environment in

which possibly concurrent users share mutable ob-

jects.

This paper showed how these two contributions in-

teract with each other. In the presence of subtyping,

type specifications have to change to accommodate

the separation of creators from an object’s other

methods. At the same time, type specifications must

contain sufficient information for users to prove that

one type is a subtype of another.

Acknowledgments

Special thanks to John Reynolds who provided

perspective and insight that led us to explore alter-

native definitions of subtyping and their effect on our

specifications. We thank Gary Leavens for helpful

verbal and e-mail discussions on subtyping and

pointers to related work. In addition, Gary, John Gut-

tag, Mark Day, Sanjay Ghemawat, and Deborah

Hwang, Greg Morrisett, Eliot Moss, Bill Weihl, Amy

Moormann Zaremski, and the referees gave useful

comments on earlier versions of this paper.

This research was supported for Liskov in part by the

Advanced Research Projects Agency of the Depart-

ment of Defense, monitored by the Office of Naval

Research under contract NOOO14-91-J-4136 and in

part by the National Science Foundation under Grant

CCR-8822158; for Wing, by the Avionics Lab,

Wright Research and Development Center,

Aeronautical Systems Division (AFSC), U. S. Air

Force, Wright-Patterson AFB, OH 45433-6543 under

Contract F33615-90-C-1465, Arpa Order No. 7597.

References

1. America, P. LNCS. Volume 489: Designing an
Object-Oriented Programming Language with Be-
havioural Subtyping. In Foundations of Object-
Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990,
J. W. de Bakker and W. P. de Roever and
G. Rozenberg, Ed., Springer-Verlag, NY, 1991, pp.
60-90.

2. Black, A. P., Hutchinson, N., Jul, E., Levy, H. M.,
and Carter, L. “Distribution and Abstract Types in
Emerald”. IEEE TSE SE-I3 (Jan. 1987), 65-76.

3. Bruce, K. B., and Wegner, P. An Algebraic Model
of Subtypes in Object-Oriented Languages (Draft).
ACM SIGPLAN Notices, Oct., 1986. Object-Oriented
Programming Workshop.

4. Cardelli, L. “A semantics of multiple inheritance”.
Information and Computation 76 (1988), 138-164.

5. Carrington,, D., Duke, D., Duke, R., King, P.,
Rose, G., and Smith, P. Object-Z: An Object
Oriented Extension to Z. FORTE89, International
Conference on Formal Description Techniques, Dec.,
1989.

6. Cusack, E. Inheritance in object oriented
Z. Proceedings of ECOOP ‘9 1, 199 1.

7. Cusack, E., and Lai, M. Object-Oriented
Specification in LOTOS and Z, or My Cat Really is
Object-Oriented! Foundations of Object Oriented
Languages, June, 1991, pp. 179-202. LNCS 489.

8. Krishna Kishore Dhara. Subtyping among
mutable types in object-oriented programming lan-
guages. Master Th., Iowa State University, Ames,
Iowa, 1992.

9. Krishna Kishore Dhara and Leavens, G. T. Sub-
typing for mutable types in object-oriented program-
ming languages. Tech. Rept. TR #92-36, Department
of Computer Science, Iowa State University, Ames,
Iowa, Nov., 1992.

10. Duke, D., and Duke, R. A History Model for
Classes in Object-Z. Proceedings of VDM ‘90: VDM
and Z, 1990.

11. Ehrig, H., and Mahr, B.. Fundamentals of Al-
gebraic Speci$cation I. Springer-Verlag, 1985.

12. Goguen, J. A., Kirchner, C., Kirchner, H.,
Megrelis, A., Meseguer, J., and Winkler, T. An Intro-
duction to OBJ3. Proceedings, Conference on Con-

27

ditional Term Rewriting, 1988, pp. 258-263. LNCS
308.

13. Goguen, J. A., and Meseguer, J. Unifying Func-
tional, Object-Oriented and Relational Programming
with Logical Semantics. Research Directions in Ob-
ject Oriented Programming, 1987.

14. Guttag, J. V., Homing, J. J., and Wing, J. M.
“The Larch Family of Specification Languages”.
IEEE SofrYare 2, 5 (sept 1985), 24-36.

15. Leavens, G. Verifying Object-Oriented Programs
That Use Subtypes. Tech. Rept. 439, MIT Lab. for
Computer Science, Feb., 1989. Ph.D. thesis.

16. Leavens, G. T. “Modular specification and
verification of object-oriented programs”. IEEE
Software 8,4 (July 1991), 72-80.

17. Leavens, G. T., and Krishna Kishore Dhara. A
Foundation for the Model Theory of Abstract Data
Types with Mutation and Aliasing (preliminary
version). Tech. Rept. TR #92-35, Department of
Computer Science, Iowa State University, Ames,
Iowa, Nov., 1992.

18. Leavens, G. T., and Weihl, W. E. Reasoning
about Object-Oriented Programs that use Subtypes.
ECOOP/OOPSLA ‘90 Proceedings, 1990.

19. Liskov, B. et al. CLU Reference Manual.
Springer-Verlag, 198 1.

20. Liskov, B., and Guttag, J.. Abstraction and
Specification in Program Design. MIT Press, 1985.

21. Liskov, B. Preliminary Design of the Thor
Object-Oriented Database System. Proc. of the
Software Technology Conference, April, 1992. Also
Programming Methodology Group Memo 74, MIT
Laboratory for Computer Science, Cambridge, MA,
March 1992.

22. Liskov, B., and Wing, J. M. A New Definition of
the Subtype Relation. Proceedings of ECOOP ‘93,
Kaiserslautern, Germany, 1993. to appear.

23. Maier, D., and Stein, J. Development and Im-
plementation of an Object-Oriented DBMS. Read-
ings in Object-Oriented Database Systems, 1990, pp.
167-185.

24. Schaffert, C., Cooper, T., and Wilpolt, C. Trellis:
Object-Based Environment Language Reference
Manual. Tech. Rept. 372, Digital Equipment
Corp./Easter Research Lab., 1985,

25. Scheid, J., and Holtsberg, S. Ina Jo Specification
Language Reference Manual. Tech. Rept.
TM-6021/001/06, Paramax Systems Corporation, A
Unisys Company, June, 1992.

26. Spivey, J. M.. The Z Notation: A Reference
Manual. Prentice-Hall, 1989.

27. Utting, M. An Object-Oriented Refinement Cal-
culus with Modular Reasoning. Ph.D. Th., University
of New South Wales, Australia, 1992.

28

