
Larch: Languages and Tools for Formal
Specification

J.V. Guttag and J.J. Horning, with
S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing

January 19, 1993

Preface

Building software often seems harder than it ought to be. It takes longer
than expected, the software’s functionality and performance are not as
wonderful as hoped, and the software is not particularly malleable or easy
to maintain. It does not have to be that way.

This book is about programming, and the role that formal specifications
can play in making programming easier and programs better. The intended
audience is practicing programmers and students in undergraduate or basic
graduate courses in software engineering or formal methods. To make
the book accessible to such an audience, we have not presumed that the
reader has formal training in mathematics or computer science. We have,
however, presumed some programming experience.

The roles of formal specifications

Designing software is largely a matter of combining, inventing, and
planning the implementation of abstractions. The goal of design is to
describe a set of modules that interact with one another in simple, well-
defined ways. If this is achieved, people will be able to work independently
on different modules, and yet the modules will fit together to accomplish
the larger purpose. In addition, during program maintenance it will be
possible to modify a module without affecting many others.

Abstractions are intangible. But they must somehow be captured and
communicated. That is what specifications are for. Specification gives
us a way to say what an abstraction is, independent of any of its
implementations.

The specifications in this book are written in formal specification
languages. We use formal languages because we know of no other way to
make specifications simultaneously as precise, clear, and concise. Anyone
who has attempted to write documentation for a subroutine library, drafted

vi Preface

contracts, or studied the tax code, knows how difficult it is to achieve even
precision in a natural language—let alone clarity and brevity.

Mistakes from many sources will crop up in specifications, just as they
do in programs. A great advantage of formal specification is that tools can
be used to help detect and isolate many of these mistakes.

Some programmers are intimidated by the mere idea of formal
specifications, which they fear may be too “mathematical” for them to
understand and use. Such fears are groundless. Anyone who can learn
to use a programming language can learn to use a formal specification
language. After all, programs themselves are formal texts. Programmers
cannot escape from formality and mathematical precision, even if they
want to.

Overview of the book

Chapter 1 discusses the use of formal specifications in program develop-
ment, providing a context for the technical material that follows. Chapter 2
contains a very short introduction to the notation of mathematical logic.
The chapter is aimed at those with no background in logic, and provides
all the logic background needed to understand the remainder of the book.

The rest of the book is an in-depth look at Larch, our approach to the
formal specification of program components.

Chapter 3 gives an overview of the Larch two-tiered approach to
specification. Each Larch specification has components written in two
languages: one that is designed for a specific programming language
(a Larch interface language) and another that is independent of any
programming language (LSL, the Larch Shared Language). It also
introduces LP, a tool used to reason about specifications. The descriptions
are all brief; details are reserved for later chapters.

The remaining chapters are relatively independent, and can be read in
any order. Chapter 4 is a tutorial on LSL. It is not a reference manual, but it
does cover all features of the language. Chapter 5 is an introduction to LCL,
a Larch interface language for Standard C. It describes the basic structure
and semantics of the language, and it presents an extended example—along
with hints about how to use LCL to support a style of C programming that
emphasizes abstraction. Chapter 6 is an introduction to LM3, a Larch
interface language for Modula-3. Chapter 7 discusses how LP can be used
to analyze and help debug specifications written in LSL. It contains a
short review of LP’s major features, but is not comprehensive. Chapter 8

Preface vii

presents a brief summary of what we believe to be the essence of Larch.
The book concludes with several appendices. Appendix A contains a

handbook of LSL specifications. Appendix B contains C implementations
of the abstractions specified in Chapter 5. Appendix C deals with Larch’s
customization of lexical conventions. Appendix D contains a bibliography
on Larch, and tells how to get more information about Larch, including
how to get some of the Larch tools.

Some history

This book has been a long time in the growing. The seed was planted
by Steve Zilles on October 3, 1973. During a programming language
workshop organized by Barbara Liskov, he presented three simple
equations relating operations on sets, and argued that anything that could
reasonably be called a set would satisfy these axioms, and that anything that
satisfied these axioms could reasonably be called a set. We developed this
idea, and showed that all computable functions over an abstract type could
be defined algebraically using equations of a simple form, and considered
the question of when such a specification constitutedan adequate definition
[40].

As early as 1974, we realized that a purely algebraic approach to
specification was unlikely to be practical. At that time, we proposed a
combination of algebraic and operational specifications which we referred
to as “dyadic specification” [39].

By 1980 we had evolved the essence of the two-tiered style of
specification used in this book [43], although that term was not introduced
until 1983 [86]. An early version of the Larch Shared Language was
described in 1983 [44]. The first reasonably comprehensive description
of Larch was published in 1985 [50]. Many readers complained that the
contemporaneous Larch in Five Easy Pieces [51] should have been called
Larch in Five Pieces of Varying Difficulty. They were not wrong.

By 1990 some software tools supporting Larch were available, and
we began using them to check and reason about specifications. There
is now a substantial and growing collection of support tools. We used
them extensively in preparing this book. All of the formal proofs
presented have been checked using LP. With the exception of parts of the
LM3 specifications, all specifications have been subjected to mechanical
checking. This process did not guarantee that the specifications accurately
capture our intent; it did serve to help us find and eliminate several errors.

viii Preface

In the spring of 1990, we decided that it was time to make information
on Larch more widely available. We originally thought of an anthology.
The editors we contacted encouraged us to prepare a book, but urged us
to provide a more coherent and integrated presentation of the material. We
decided to take their advice. Had our families known how much of our
time this would take, they would surely have tried to talk us out of it. In
any event, we apologize to Andrea, David, Jane, Mark, Michael, and Olga
for all the attention that “The Book” stole from them.

Acknowledgments

An important role in the development of Larch has been played by the
organizations that provided the funding necessary to keep the project alive
for so long. DARPA, NSF, the Digital Equipment Corporation, and Xerox
were all valued patrons. A special debt of gratitude is owed to Bob Taylor,
who as Director of the Computer Science Laboratory at the Xerox Palo
Alto Research Center and then as Director of Digital’s Systems Research
Center has been a consistent supporter and friend. He encouraged people
in his laboratories to work on Larch, he encouraged and funded efforts to
transfer Larch to other parts of Digital, and he made possible the close
collaboration between us by facilitating numerous visits by John Guttag,
first to PARC and then to SRC, and by Jim Horning to MIT.

During the almost two decades we have been working on formal
specification, we have accumulated a large number of intellectual debts.
To list everyone who contributed an idea or an apt criticism would be
impractical.

Over the years, Larch and related topics have been discussed at many
meetings of IFIP Working Group 2.3. These discussions helped us to clarify
our thinking in a number of areas.

Our early work on formal specification was influenced by a variety
of people in the Department of Computer Science and the Computer
Systems Research Group at the University of Toronto. The high degree
of interaction between the theory and systems groups there provided a
conducive atmosphere for this kind of work.

In the mid-seventies, John Guttag went to work at USC (and USC-ISI)
and Jim Horning at Xerox PARC. Co-workers and visitors at both of these
places played a significant role in the development of the Larch Shared
Language and in helping us to understand the importance of support tools.

Preface ix

The most influential set of people have been our colleagues at
Digital (particularly SRC) and at MIT’s Laboratory for Computer
Science (particularly members of the Systematic Program Development
Group). They have encouraged our research and provided valuable
technical feedback. Without their help, Larch would not exist. A few
of these colleagues made particularly notable contributions. Jim Saxe’s
relentless criticism and creative suggestions contributed enormously to the
development of both LSL and LP. Gary Feldman, Bill McKeeman, Yang
Meng Tan, and Joe Wild contributed greatly to the design of LCL, as well
as building and maintaining the LCL Checker. Greg Nelson provided the
formal underpinnings on which the design of LM3 rests.

Our four co-authors played vital roles in the development of this book.
They have worked with us on so many versions of the material in this
book that we have not tried to record which words were whose. Steve
Garland was a principal author of Chapters 2 and 7 and a vital contributor
to the design of LSL, LCL, and LP. He also developed the majority of the
software used to check and reason about the specifications appearing in
this book. But for Steve, Larch would be a paper tiger. Kevin Jones was a
principal designer of LM3 and provided much of the material in Chapter 6.
Andrés Modet played a major role in the design and documentationof LSL.
Jeannette Wing designed the first Larch interface language (Larch/CLU)
and has been a vital contributor to almost all aspects of Larch ever since.

Many other people have helped in the preparation of this book. William
Ang helped with the design of the artwork on the cover. Leslie Lamport
provided a Larch style for LaTeX that made our life immeasurably easier.
Manfred Broy, Daniel Jackson, Eric Muller, Sue Owicki, Fred Schneider,
Mark Vandevoorde, and several anonymous reviewers provided extensive
and helpful comments on various drafts. Cynthia Hibbard carefully edited
the series of technical reports that led to this book. Judith Blount helped us
to assemble and check the list of references. Jane Horning and Mary-Claire
Van Leunen helped organize the index.

Finally, we wish to thank the Palo Alto Police Department for providing
perspective. In August, a draft of this book was in a car that was stolen.
Several days later the police recovered the car. When asked if any of the
contents of the car had been recovered, they replied “Nothing of value.”
The thieves had removed everything from the car, except the manuscript.

J.V. Guttag and J.J. Horning
October 1992

Contents

Preface v

1 Specifications in Program Development 1
1.1 Programming with abstractions � � � � � � � � � � � � � � 1
1.2 Finding abstractions � 3
1.3 The many roles of specification � � � � � � � � � � � � � � 4
1.4 Styles of specification � � � � � � � � � � � � � � � � � � � 5
1.5 Formal specifications � 6

2 A Little Bit of Logic 8
2.1 Basic logical concepts � � � � � � � � � � � � � � � � � � � 8
2.2 Proof and consequences � � � � � � � � � � � � � � � � � � 12

3 An Introduction to Larch 14
3.1 Two-tiered specifications � � � � � � � � � � � � � � � � � � 14
3.2 LSL, the Larch Shared Language � � � � � � � � � � � � � 18
3.3 Interface specifications � � � � � � � � � � � � � � � � � � � 20
3.4 Relating implementations to specifications � � � � � � � � � 25
3.5 LP, the Larch proof assistant � � � � � � � � � � � � � � � � 29
3.6 Lexical and typographic conventions � � � � � � � � � � � 33

4 LSL: The Larch Shared Language 35
4.1 Equational specifications � � � � � � � � � � � � � � � � � � 35
4.2 Stronger theories � 37
4.3 Combining traits � 39
4.4 Renaming � 41
4.5 Stating intended consequences � � � � � � � � � � � � � � � 41
4.6 Recording assumptions � � � � � � � � � � � � � � � � � � � 44
4.7 Built-in operators and overloading � � � � � � � � � � � � � 47
4.8 Shorthands � 49
4.9 Further examples � 51

xii Contents

5 LCL: A Larch Interface Language for C 56
5.1 The relation between LCL and C � � � � � � � � � � � � � � 56
5.2 Function specifications � � � � � � � � � � � � � � � � � � � 61
5.3 A guided tour through an LCL specification � � � � � � � � 62

6 LM3: A Larch Interface Language for Modula-3 102
6.1 The relation between LM3 and Modula-3 � � � � � � � � � 102
6.2 The LM3 semantic model � � � � � � � � � � � � � � � � � 103
6.3 A guided tour through an LM3 specification � � � � � � � � 105

7 Using LP to Debug LSL Specifications 121
7.1 Semantic checks in LSL � � � � � � � � � � � � � � � � � � 122
7.2 Proof obligations for LSL specifications � � � � � � � � � � 125
7.3 Translating LSL traits into LP � � � � � � � � � � � � � � � 129
7.4 Proof mechanisms in LP � � � � � � � � � � � � � � � � � � 133
7.5 Checking theory containment � � � � � � � � � � � � � � � 137
7.6 Checking consistency � � � � � � � � � � � � � � � � � � � 145
7.7 Extended example � 146
7.8 Perspective � 152

8 Conclusion 154

A An LSL Handbook 157
A.1 Introduction � 157
A.2 Foundations � 161
A.3 Integers � 163
A.4 Enumerations � 165
A.5 Containers � 166
A.6 Branching structures � 182
A.7 Maps � 184
A.8 Relations � 186
A.9 Graph theory � 190
A.10 Properties of single operators � � � � � � � � � � � � � � � 191
A.11 Properties of relational operators � � � � � � � � � � � � � � 192
A.12 Orderings � 194
A.13 Lattice theory � 197
A.14 Group theory � 198
A.15 Number theory � 201
A.16 Floating point arithmetic � � � � � � � � � � � � � � � � � � 207

Contents xiii

B Implementations of Example LCL Interfaces 211

C Lexical Forms and Initialization Files 222

D Further Information and Tools 225

E Classified Bibliography 228

References 230

Index 239

Chapter 1

Specifications in Program
Development

This book is about formal specification of programs and components of
programs. We are interested in using specifications to help in the production
and maintenance of high quality software.

We begin this chapter with a few remarks about programming and the
role of abstraction. We then move on to discuss how specifications fit into
the picture.

1.1 Programming with abstractions

Building a software system is almost entirely a design activity. Unfor-
tunately, software is usually designed badly or barely designed at all. A
symptom of negligence during design is the number of software projects
that are seriously behind schedule, despite having had design phases that
were “completed” right on schedule [10]. In practice, design is the phase of
a software project that is declared “complete” when circumstances require
it. Part of the problem is that there are few objective criteria for evaluating
the quality and completeness of designs. Another part is the elapsed time
between producing a design and getting feedback from the implementation
process.

This book describes how formal specifications can be used effectively
to structure and control the design process and to document the results.

The key to structuring and controlling the design process is, as
Machiavelli said, “Divide et impera.” Regrettably, he was not clear about
how to apply this stratagem to software development.

Two primary tools for dividing a problem are decomposition and
abstraction. A good decomposition factors a problem into subproblems
that:

� are all at the same level of detail,

� can be solved independently, and

� have solutions that can be combined to solve the original problem.

2 1.1. Programming with abstractions

int sqrt(int x) {
requires x � 0;
modifies nothing;
ensures � i: int

(abs(x - (result*result)) � abs(x - (i*i)));
}

FIGURE 1.1. A specification of an integer square Root procedure

The last criterion is the hardest to satisfy. This is where abstraction
comes in. Abstraction involves ignoring details that are irrelevant for
some purpose. It facilitates decomposition by making it possible to focus
temporarily on simpler problems.

Consider, for example, the problem of designing a program to compile
a source language, say Modula-3, to a target language, say Alpha machine
code. Much of the compiler can be designed without paying attention to
many of the details of either Modula-3 or the Alpha architecture. One might
well begin by abstracting to the problem of compiling a source language
with a deterministic context-free grammar to a reduced instruction (RISC)
set target language. One might then choose to model the compiler’s design
on the design of other compilers that solve the same abstract problem,
e.g., to decompose the problem into the separate problems of writing a
scanner, a parser, a static semantic checker, and several code generation
and optimization phases.

This paradigm of abstracting and then decomposing is typical of the
program design process. Two important abstraction mechanisms are used:
abstraction by parameterization and abstraction by specification.

Abstraction by parameterization allows a single program text to
represent a potentially infinite set of computations or types. For example,
the C code

int twice(int x) {return x + x;}

denotes a procedure that can be used to double any integer.
Abstractionby specification allowsa single text to represent a potentially

infinite set of programs. For example, the specification in Figure 1.1
describes any procedure that, given an appropriate argument, computes
an integer approximation to its square root. Notice that it specifies the
required result, not any particular algorithm for achieving it. Notice also
that it does not describe the result completely. For example, it does not

1. Specifications in Program Development 3

constrain the result to be positive.
For the most part, software design is the process of inventing and

combining abstractions and planning their implementation.
There are several reasons why it is better to think about combining

abstractions than to think about combining their implementations:

� Abstractions are easier to understand than implementations, so
combining abstractions is less work.

� Relying only on properties of the abstractions makes software easier
to maintain, because it is clear what properties must be preserved
when an implementation is changed.

� Because an abstraction can have several implementations with
different performance properties, it can be used in various contexts
with different performance requirements. Any implementation can
be replaced by another during performance tuning without affecting
correctness.

The key to good software design is inventing appropriate abstractions
around which to structure the software. Bad programmers typically don’t
even try to invent abstractions. Mediocre programmers invent abstractions
sufficient to solve the current problem. Great programmers invent elegant
abstractions that get used again and again.

1.2 Finding abstractions

Structure is sometimes identified with hierarchy; hierarchical decomposi-
tion is sometimes preached as the only “structured” programming method.
The problem with hierarchical decomposition is that, as the hierarchy gets
deeper, it leads to highly specialized components that assume a great deal
of context. This decreases the likelihood that components will be useful
elsewhere—either in the current system or in software that is built later. A
relatively flat structure usually encourages more reuse.

Important boundaries in the software should correspond to stable
boundaries in the problem domain. Such correspondence makes it more
likely that when customers ask for a small change in the observed behavior
of the software, the change can be accomplished by a small change to
the implementation. Stable boundaries in the problem domain frequently
involve data types, rather than individual operations, because the kinds of

4 1.2. Finding abstractions

objects that long-lived software manipulates tend to change more slowly
than the operations performed on those objects. This leads to a style of
programming in which data abstraction plays a prominent role.

A data type (data abstraction) is best thought of as a collection of
related operations that manipulate a collection of related values [68]. For
example, one should think of the type integer as providing operations,
such as 0 and +, rather than as an array of 32 (or perhaps 64) bits, whose
high-order bit is interpreted as its sign. Similarly, one should think of the
type bond as a collection of operations such as get coupon rate and
get current yield rather than as a record containing various fields.

An abstract type is a type that is presented to a client in terms
of its specification, rather than its implementation. To implement an
abstract type, one selects a representation (i.e., a storage structure and
an interpretation that says how values of the type are represented) and
implements the type’s operations in terms of that representation. Clients
of an abstract type invoke its operations, rather than directly accessing its
representation. When the representation is changed, programs that use the
type may have to be recompiled, but they needn’t be rewritten.1

Even in languages, such as C, that provide no direct support for abstract
types, there is a style of programming in which abstract types play
a prominent role. Programmers rely on conventions to ensure that the
implementation of an abstract type can be changed without affecting the
correctness of software that uses the abstract type. The key restriction is
that programs never directly access the representation of an abstract value.
All access is through the operations (procedures and functions) provided
in its interface.

1.3 The many roles of specification

Abstractions are intangible. But they must somehow be captured and
communicated. Specification gives us a way to say what an abstraction
is, independent of any of its implementations. Writing specifications can
serve to clarify and deepen designers’ understanding of whatever they are
specifying, by focusing attention on possible inconsistencies, lacunae, and
ambiguities.

Once written, specifications are helpful to implementors, testers, and

1For a more comprehensive discussion of the role of data abstraction in programming,
see [63].

1. Specifications in Program Development 5

maintainers. Specifications provide “logical firewalls” by documenting
mutual obligations. Implementors are to write software that meets its
specification. Clients, i.e., writers of programs that use the software
interface, are to rely only on properties of the software that are guaranteed
by its specification.

During module testing and quality assurance, specifications provide
information that can be used to generate test data, build stubs, and
analyze information flow. During system integration, specifications reduce
the number and severity of interface problems by reducing the number
of implicit assumptions. Finally, specifications aid in maintenance by
recording the properties that must be preserved and by delimiting the
changes that might affect clients.

All of these virtues can be attributed to the information hiding provided
by specifications. Specification makes it possible to completely hide the
implementation of an abstraction from its clients, and to completely hide
the uses made by clients from the implementor [70].

1.4 Styles of specification

A good specification should be tight enough to rule out implementations
that are not acceptable. It should also be loose enough to allow the most
desirable (i.e., efficient and elegant) implementations. A specification that
fails to rule out undesired “solutions” is not sufficiently constraining;
one that places unnecessary constraints on implementations is guilty of
implementation bias.

A definitional specification explicitly lists properties that implemen-
tations must exhibit. The specification in Figure 1.1 is definitional. An
operational specification gives one recipe that has the required properties,
instead of describing them directly. Figure 1.2 contains an operational
specification of a square root procedure. It looks suspiciously like a
program—it defines a function by showing how to compute it. In fact,
every program can be viewed as a specification. The converse is not true:
many specifications are not programs. Programs have to be executable,
but specifications don’t. This freedom can often be exploited to make
specifications simpler and clearer.

There are strong arguments in favor of both the operational and
definitional styles of specification. The strength of operational specification
lies in its similarity to programming. This reduces the time required for
programmers to learn to use specifications. Some operational specifications

6 1.4. Styles of specification

int sqrt(int x)
requires x � 0
effects
i � 0;
while i*i � x
i � i + 1 end

if abs(i*i - x) � abs((i - 1) * (i - 1) - x)
then return i - 1
else return i

FIGURE 1.2. An Operational Specification of Integer Square Root

are directly executable. By executing specifications as “rapid prototypes,”
specifiers and their clients can get quick feedback about the software system
being specified.

On the other hand, definitional specifications are not bound by the
constraint of constructivity. They are often shorter and clearer than
operational specifications. They are also easier to modularize, because
properties can be stated separately and then combined. Because definitional
specifications are so different from programs, they provide a distinct
viewpoint on systems that is frequently helpful.

It is often difficult to determine from an operational specification which
properties are necessary parts of the thing being specified and which are
unimportant. The specification in Figure 1.2, for example, allows fewer
implementations than the specification in Figure 1.1. An implementation is
certainly not obliged to use the simple, but horribly inefficient, specification
algorithm, but it must compute the same result, and therefore must not
return a negative number. This constraint might be essential in some
contexts and insignificant in others. Figure 1.2 does not say, and cannot
easily be modified to say, whether the sign of the result matters. Figure 1.1,
on the other hand, can easily be strengthened to specify the sign if that is
important.

1.5 Formal specifications

The specifications in this book are written in formal specification
languages. A formal specification language provides:

1. Specifications in Program Development 7

� a syntactic domain—the notation in which the specifications are
written,

� a semantic domain—a universe of things that may be specified, and

� a satisfaction relation saying which things in the semantic domain
satisfy (implement) which specifications in the syntactic domain.

We use formal languages because it seems to be the easiest way to write
specifications that are simultaneously precise, clear, and concise. This is
hardly surprising. It is no accident that such diverse activities as chemistry,
chess, knitting, and music all have their own formal notations.

Mistakes from many sources will crop up in specifications, just as they
do in programs. A great advantage of formal specification is that tools can
be used to help detect and isolate many of these mistakes. Anyone who has
used a strongly typed programming language knows that even something
as simple as a syntax and type checker is invaluable. Comparable checking
and diagnosis of formal specifications is easy and worthwhile, but we can
do even better. Various kinds of formal specifications can be checked more
thoroughlyby tools that help explore the consequences of design decisions,
detect logical inconsistencies, simulate execution, execute symbolically,
prove the correctness of implementation steps (refinements), etc.

Are formal specifications too “mathematical” to be used by typical
programmers? No. Anyone who can learn to read and write programs can
learn to read and write formal specifications. After all, each programming
language is a formal language.

Chapter 2

A Little Bit of Logic

This chapter contains all the logic one needs to know to understand Larch.
The mathematical formalism underlying the Larch family of languages

is multisorted first-order logic with equality. We use a few notations and
basic concepts from this logic quite freely in the rest of the book. If you
are already familiar with logic, you should scan this chapter quickly to
see which of the many “standard” logical notations we have adopted. If
you have no acquaintance with logic, don’t worry. This is a brief chapter,
and the parts of logic that we present are really quite simple—almost as
simple as basic arithmetic and much simpler than common programming
languages. If you want a fuller treatment of logic, you should consult one
of the many textbooks available, but there is no reason to do so before
continuing in this book.

To help the your intuition, we point out programming analogs of some
of the logical concepts. However, these analogies should not be pushed
too far; logic is not a programming language. We use logic to describe
properties that objects might or might not have (e.g., to describe what it
means to be the shortest path between two points in a graph), whereas we
use programming languages to describe how to produce certain objects
(e.g., to describe how to find a shortest path).

2.1 Basic logical concepts

A logical language consists of a set of sorts and operators (function
symbols). Sorts are much like programming language types. An operator
(e.g., +) stands for a map from tuples of values to values; its signature
(e.g., Int,Int�Int) is a tuple of sorts for its arguments (its domain
sorts, e.g., Int,Int) and a sort for its result (its range sort, e.g., Int).
A relational operator is a binary operator with range sort Bool (e.g.,
�:E,E�Bool). Operators are much like identifiers for value-returning
procedures in programming languages.

An application consists of an operator and a tuple of terms, each of
which has the same sort as the corresponding domain sort for the operator.
The sort of an application is the same as that of the operator’s range sort.

2. A Little Bit of Logic 9

Applications are much like procedure calls in programming languages.
An important special case is an operator whose signature has no domain

sorts. We will write such applications without parentheses (e.g., empty
rather than empty()). We refer to both the operator and its application as
a constant.

The application of an infix operator may be written with the operator
between the two operands (e.g., x+y rather than +(x, y)). For operators
that are associative, such as +, we also allow more than two operands (e.g.,
x+y+z is equivalent to (x+y)+z and to +(+(x, y), z)).

A variable is an identifier standing for an arbitrary value of some
sort. Logical variables are different from programming language variables
because the value of a logical variable does not change over time.

A term is a variable, an application, or a parenthesized term.
An equation is a term of sort Bool, written as a pair of terms of the

same sort, joined by the the equality operator, =.
A predicate (also called a formula) is a term of sort Bool. In order to

determine whether a given predicate is true or false, we must know how
to interpret the sorts and operators in the logical language. For example,
sqrt(5) = 2 is false if sqrt is interpreted as the square-root function
over the real numbers and the constant operators 5 and 2 are interpreted as
the real numbers five and two. Alternatively, the predicate is true if sqrt
is interpreted as the greatest-integer-less-than-or-equal-to-the-square-root
function. So it only makes sense to talk about whether a predicate is true
or false if we are given a structure (interpretation) that assigns

� a nonempty set of values to each sort, and

� a total function (that maps tuples of values of its domain sorts to
values of its range sort) to each operator.

Most logics come with a set of operators whose meanings are fixed
a priori, for example, the equality operator for each sort. Others are the
propositional connectives � (if and only if), � (not), � (and), � (or), and
� (implies).

First-order logic provides several ways to form predicates. We describe
these, as well as what it means for each kind of predicate to be true in a
given structure under a given assignment of values to its variables.

� As mentioned above, an equation is a predicate consisting of a pair
of terms of the same sort, joined by the equality operator, =. It is true
if its two operands have the same value in the given structure under

10 2.1. Basic logical concepts

the given assignment of values to variables. The predicate x = y
may be read as “x equals y.” The propositional connective � has
the same meaning as the equality operator for the sort Bool. The
predicate P � Q may be read as “P if and only if Q.”

� A negation is a predicate preceded by the negation operator, �. It is
true if the operand of � is false. The predicate �P may be read as
“not P.”

� A conjunction is a pair of predicates joined by the conjunction
connective, �. A conjunction is true if both its operands are true.
The predicate P � Q may be read as “both P and Q.”

� A disjunction is a pair of predicates joined by the disjunction
connective, �. A disjunction is true if at least one of its operands is
true. The predicate P � Q may be read as “either P or Q or both.”

� An implication is a pair of predicates joined by the implication
connective, �. An implication is true if its left operand is false or
its right operand is true. Therefore, P � Q has the same meaning
as �P � Q. The predicate P � Q may be read as “P implies Q”
or “if P then Q.”

� A binding is a predicate preceded by a variable and its sort. All
occurrences of the variable in the predicate are said to be bound
(and to have that sort). The binding is said to have captured the
variable it binds. A variable is free in a predicate if there are any
instances of it anywhere in the predicate that are not bound.

� A quantified predicate is a binding preceded by either the existential
quantifier,�, or the universal quantifier,	. Bindings are onlyallowed
immediately following quantifiers. The binding 	x:S may be read
as “for all x of sort S.”

– A witness for a bound variable is a value that makes the
predicate in its binding true, in a structure under a given
assignment, when the assignment is modified to assign the
witness to the bound variable.

– An existentially quantified predicate is true if there is at least
one witness for its bound variable. The predicate �x:S (P)
may be read as “there exists an x of sort S such that P.”

2. A Little Bit of Logic 11

– A universally quantified predicate is true if the predicate in its
binding is true for all values of its bound variable. The predicate
	x:S (P) may be read as “for all x of sort S, P.”

If a predicate is true in all structures under all assignments to its free
variables, it is said to be valid or a tautology. If there exists a structure and
an assignment to its free variables under which it is true, it is said to be
satisfiable.

A sentence is a predicate with no free variables. By convention, we
consider a free-standing predicate with free variables as standing for
the sentence obtained by universally quantifying its free variables at the
outermost level. Since the truth of a predicate in a structure depends only
on the values assigned to its free variables, and since a sentence contains
no free variables, we talk about a sentence being true in a structure, rather
than in a structure under an assignment.

When a sentence is true in a structure, we say that the structure is a model
of that sentence. Similarly, when each member of a set of sentences is true
in a structure, we say that the structure is a model of that set. Consider, for
example, a language with a single non-Bool sort, E, with one operator,
the binary relation <, and with three variables x, y, and z of sort E. Any
structure that is a model of the two sentences

� x:E �(x � x)

� x:E � y:E � z:E ((x � y � y � z) � x � z)

is commonly known as a strict partial order, and we call these sentences
axioms for strict partial orders.

A sentence S is a logical consequence of a set T of sentences if every
model of T is also a model of S. For example, the sentence

� x:E � y:E �(x � y � y � x)

is a consequence of the axioms for strict partial orders, because it is true
in all strict partial orders.

A set of sentences is closed under logical consequence if it contains all
its logical consequences. A theory is a set of sentences closed under logical
consequence. For example, the theory of strict partial orders is the set of
all consequences of the axioms for strict partial orders; equivalently, it is
the set of sentences true in all strict partial orders.

A theory is complete if for every sentence S, either S or �S is in
the theory. Most of the time, we find ourselves dealing with incomplete
theories. For example, there is no computable set of sentences whose

12 2.2. Proof and consequences

logical consequences are exactly the sentences true about the natural
numbers under the usual operations of addition and multiplication.

A set of sentences is consistent if it has a model. It is easy to show
that a sentence S is a consequence of a set T of sentences if and only if
T
 f�Sg is inconsistent. Likewise, a theory is consistent if and only if
it does not contain a contradiction, that is, the sentence true = false.

2.2 Proof and consequences

In the preceding section, we provided a semantic description of what it
means for a sentence S to be a logical consequence of a set of sentences
T, namely that every model of T also be a model of S. Unfortunately,
this definition does not provide a practical means for determining when S
is a logical consequence of T. For example, T may have infinitely many
models, some of its models may have infinitely many elements, etc.

Fortunately, there is a syntactic characterization of what it means for S
to be a logical consequence of T. A formal deduction system consists of
a set of sentences (called logical axioms) together with a set of functions
(called deduction rules) that map finite sets of sentences (the premises of a
deduction) to a single sentence (its conclusion). For example, the deduction
rule

P, P � Q

Q

states that Q can be deduced from the premises P and P � Q.
A proof based on a set T of sentences is a finite sequence of sentences

each of which is either a logical axiom, a member of T, or the conclusion
of a deduction rule applied to a set of sentences occurring earlier in the
proof. A sentence S is a theorem of T if it occurs in some proof based on
T.

There are three properties that a good formal system of deduction should
possess:

� It should not allow any spurious proofs. A system is sound if, for
any T, every theorem of T is really a logical consequence of T.

� It should provide enough proofs. A system is complete if, for any T,
every logical consequence of T is also a theorem of T.

2. A Little Bit of Logic 13

� It should be possible to recognize what is a proof and what is not. A
system is effective if, for any computable set T of sentences, the set
of proofs based on T is also computable.

There are several sound, complete, and effective formal systems of
deduction for first-order logic. For most of this book, the mere existence
of good formal systems of deduction is all that counts. The choice of
a particular system, or the details of that system (which we refer to as
“the usual rules of first-order logic”), do not really matter. What matters
is that the system is sound (because we do not want to prove anything
that isn’t true) and effective (because we want to know when we have a
proof). Completeness of a deductive system matters less, since we often
find ourselves dealing with incomplete theories. Of course, the system of
deduction used in LP, Chapter 7, is sound and effective.

This concludes our whirlwind introduction to the vocabulary and
notation of mathematical logic used in the remainder of this book. We
rely primarily on the predicate-forming operators described on pages 9–
11.

Chapter 3

An Introduction to Larch

We begin this chapter by describing the Larch approach to specification and
illustrating it with a few small examples. Our intent is to give you a taste
of Larch. Details are reserved for later chapters. We then discuss LP, the
Larch proof assistant, a tool that supports all the Larch languages. Again,
we give only a taste. Finally, we discuss the lexical and typographical
conventions used for preparing and presenting the Larch specifications in
this book.

3.1 Two-tiered specifications

The Larch family of languages supports a two-tiered, definitional style of
specification. Each specification has components written in two languages:
one language that is designed for a specific programming language and
another language that is independent of any programming language. The
former kind are Larch interface languages, and the latter is the Larch
Shared Language (LSL).

Interface languages are used to specify the interfaces between program
components. Each specification provides the information needed to
use an interface. A critical part of each interface is how components
communicate across the interface. Communication mechanisms differ from
programming language to programming language. For example, some
languages have mechanisms for signalling exceptional conditions, others
do not. More subtle differences arise from the various parameter passing
and storage allocation mechanisms used by different languages.

It is easier to be precise about communication when the interface
specification language reflects the programming language. Specifications
written in such interface languages are generally shorter than those written
in a “universal” interface language. They are also clearer to programmers
who use components and to programmers who implement them.

Each interface language deals with what can be observed by client
programs written in a particular programming language. It provides a way
to write assertions about program states, and it incorporates programming-
language-specific notations for features such as side effects, exception

3. An Introduction to Larch 15

uses TaskQueue;
mutable type queue;
immutable type task;

task *getTask(queue q) {
modifies q;
ensures
if isEmpty(qˆ)
then result � NIL � unchanged(q)
else (*result)’ � first(qˆ) � q’ � tail(qˆ);

}

FIGURE 3.1. An LCL interface specification

handling, iterators, and concurrency. Its simplicity or complexity depends
largely on the simplicity or complexity of its programming language.

Larch interface languages have been designed for a variety of
programming languages. The two that are discussed in this book are for
C and for Modula-3. Other interface languages have been designed for
Ada [15, 37], CLU [86], C++ [60, 90, 92], ML [93], and Smalltalk [17].
There are also “generic” Larch interface languages that can be specialized
for particular programming languages or used to specify interfaces between
programs in different languages [16, 53, 61, 88].

Larch interface languages encourage a style of programming that
emphasizes the use of abstractions, and each provides a mechanism
for specifying abstract types. If its programming language provides
direct support for abstract types (as Modula-3 does), the interface
language facility is modeled on that of the programming language; if
its programming language does not (as C does not), the facility is designed
to be compatible with other aspects of the programming language.

Figure 3.1 contains a sample interface specification for a small fragment
of a scheduler for an operating system. The specification is written in LCL
(a Larch interface language for C, described in Chapter 5). This fragment
introduces two abstract types and a procedure for selecting a task from a
task queue. Briefly, * means pointer to (as in C), result refers to the
value returned by the procedure, the symbol ˆ is used to refer to the value
in a location when the procedure is called, and the symbol ’ to refer to its
value when the procedure returns.

The specification of getTask is not self-contained. For example,
looking only at this specification there is no way to know which task

16 3.1. Two-tiered specifications

TaskQueue: trait
includes Nat
task tuple of id: Nat, important: Bool
introduces
new: � queue
__ a __: task, queue � queue
isEmpty, hasImportant: queue � Bool
first: queue � task
tail: queue � queue

asserts
queue generated by new, a
� t: task, q: queue
isEmpty(new);
�isEmpty(t a q);
�hasImportant(new);
hasImportant(t a q) ==
t.important � hasImportant(q);

first(t a q) ==
if t.important � �hasImportant(q)
then t else first(q);

tail(t a q) ==
if first(t a q) � t then q else t a tail(q)

FIGURE 3.2. LSL specification used by getTask

3. An Introduction to Larch 17

getTask selects. Is it the one that has been in q the longest? Is it is the
one in q with the highest priority?

Interface specifications rely on definitions from auxiliary specifications,
written in LSL, to provide semantics for the primitive terms they use.
Specifiers are not limited to a fixed set of notations, but can use
LSL to define specialized vocabularies suitable for particular interface
specifications or classes of specifications.

Figure 3.2 contains a portion of an LSL specification that specifies the
operators used in the interface specification of getTask. Based on the
information in this LSL specification, one can deduce that the task pointed
to by the result of getTask is the most recently inserted important
task, if such a task exists. Otherwise it is the most recently inserted task.

Many informal specifications have a structure similar to this. They
implicitly rely on auxiliary specifications by describing an interface in
terms of concepts with which readers are assumed to be familiar, such as
sets, lists, coordinates, and windows. But they don’t define these auxiliary
concepts. Readers can misunderstand such specifications, unless their
intuitive understanding exactly matches the specifier’s. And there is no
way to be sure that such intuitions do match. LSL specifications provide
unambiguous mathematical definitions of the terms that appear in interface
specifications.

Larch encourages a separation of concerns, with basic constructs in the
LSL tier and programming details in the interface tier. We suggest that
specifiers keep most of the complexity of specifications in the LSL tier for
several reasons:

� LSL specifications are likely to be more reusable than interface
specifications.

� LSL has a simpler underlying semantics than most programming
languages (and hence than most interface languages), so specifiers
are less likely to make mistakes, and any mistakes they do make are
more easily found.

� It is easier to make and to check assertions about semantic properties
of LSL specifications than about semantic properties of interface
specifications.

Many programming errors are easily detected by running the program,
that is, by testing it. While some Larch specifications can be executed,
most of them cannot. The Larch style of specification emphasizes brevity

18 3.2. LSL, the Larch Shared Language

and clarity rather than executability. To make it possible to validate
specifications before implementing or executing them, Larch permits
specifiers to make assertions about specifications that are intended to
be redundant. These assertions can be checked mechanically. Several
tools that assist specifiers in checking these assertions as they debug
specifications are already in use, and others are under development.1

3.2 LSL, the Larch Shared Language

LSL specifications define two kinds of symbols, operators and sorts.
The concepts of operator and sort are the same as those used in
Chapter 2. They are similar to the programming language concepts of
procedure and type, but it is important not to confuse these two sets of
concepts. When discussingLSL specifications, we will consistentlyuse the
words “operator” and “sort.” When talking about programming language
constructs, we will use the words “procedure” (or “function,” “routine,” or
“method,” as appropriate) and “type.” As discussed in Chapter 2, operators
stand for total functions from tuples of values to values. Sorts stand for
disjoint non-empty sets of values, and are used to indicate the domains and
ranges of operators. In each interface language, “procedure” and “type”
must mean what they mean in that programming language.

The trait is the basic unit of specification in LSL. A trait introduces
some operators and specifies some of their properties. Sometimes the trait
defines an abstract type. However, it is frequently useful to define a set of
properties that does not fully characterize a type.

Figure 3.3 shows a trait that specifies a class of tables that store values
in indexed places. It is similar to specifications in many “algebraic”
specification languages.

The specification begins by including another trait, Integer. This
specification, which can be found in the LSL handbook in Appendix A,
page 163, supplies information about the operators +, 0, and 1, which are
used in defining the operators introduced in Table.

The introduces clause declares a set of operators, each with its signature
(the sorts of its domain and range). Signatures are used to sort-check terms
in much the same way as procedure calls are type-checked in programming
languages.

The body of the specification contains, following the reserved word

1See Appendix D for a list.

3. An Introduction to Larch 19

Table: trait
includes Integer
introduces

new: � Tab
add: Tab, Ind, Val � Tab
__ 	 __: Ind, Tab � Bool
lookup: Tab, Ind � Val
size: Tab � Int

asserts � i, i1: Ind, v: Val, t: Tab
�(i 	 new);
i 	 add(t, i1, v) == i � i1 � i 	 t;
lookup(add(t, i, v), i1) ==

if i � i1 then v else lookup(t, i1);
size(new) == 0;
size(add(t, i, v)) ==

if i 	 t then size(t) else size(t) + 1

FIGURE 3.3. Table.lsl

20 3.3. Interface specifications

asserts, equations between terms containing operators and variables.2

The third equation resembles a recursive function definition, since the
operator lookup appears on both the left and right sides. However, it
merely states a relation that must hold among lookup, add, and the
built-in operator if then else ; it does not fully define lookup.
For example, it doesn’t say anything about the value of the term
lookup(new, i).

The theory of a trait is the set of all logical consequences of its assertions.
It is an infinite set of formulas in multisorted first-order logic with
equality. It contains everything that logically follows from its assertions,
but nothing else. The theory associated with Table contains equalities
and disequalities that can be proved by substitution of equals for equals.
LSL also provides two constructs for non-equational assertions that can be
used to generate stronger (larger) theories. These important constructs are
discussed in Chapter 4.

It is instructive to note some of the things that Table does not specify:

1. It does not say how tables are to be represented.

2. It does not give algorithms to manipulate tables.

3. It does not say what procedures are to be implemented to operate on
tables.

4. It does not say what happens if one looks up an Ind that is not in a
Tab.

The first two decisions are in the province of the implementation. The third
and fourth are recorded in interface specifications.

3.3 Interface specifications

An interface specification defines an interface between program compo-
nents, and is written in a programming-language-specific Larch interface
language. Each specification mustprovide the information needed to use an
interface and to write programs that implement it. At the core of each Larch
interface language is a model of the state manipulated by the associated
programming language.

2The equation connective in LSL, ==, has the same semantics as the equality symbol,
=. It is used only to introduce another level of precedence into the language.

3. An Introduction to Larch 21

PROGRAM STATES

States are mappings from locs (abstract storage locations, also known as
objects) to values. Each variable identifier has a type and is associated with
a loc of that type. The major kinds of values that can be stored in locs are:

� basic values. These are mathematical constants, like the integer 3
and the letter A. Such values are independent of the state of any
computation.

� exposed types. These are data structures that are fully described
by the type constructors of the programming language (e.g., C’s
int * or Modula-3’s ARRAY [1..10] OF INTEGER). The
representation is visible to, and may be relied on by, clients.

� abstract types. As mentioned in Chapter 1, data types are best thought
of as collections of related operations on collections of related values.
Abstract types are used to hide representation information from
clients.

Each interface language provides operators (e.g., ˆ and ’) that can be
applied to locs to extract their values in the relevant states (usually the
pre-state and the post-state of a procedure).

Each loc’s type defines the kind of values it can map to in any state. Just
as each loc has a unique type, each LSL term has a unique sort. To connect
the two tiers in a Larch specification, there is a mapping from interface
language types (including abstract types) to LSL sorts. Each type of basic
value, exposed type, and abstract type is based on an LSL sort. Interface
specifications are written using types and values. Properties of these values
are defined in LSL, using operators on the corresponding sorts.

For each interface language, a standard LSL trait defines operators that
can be applied to values of the sorts that the programming language’s
basic types and other exposed types are based on. Users familiar with
the programming language will already have an intuitive understanding of
these operators. Abstract types are typically based on sorts defined in traits
supplied by specifiers.

PROCEDURE SPECIFICATIONS

The specification of each procedure in an interface can be studied,
understood, and used without reference to the specifications of other

22 3.3. Interface specifications

procedures. A specification consists of a procedure header (declaring the
types of its arguments and results) followed by a body of the form:

requires reqP
modifies modList

ensures ensP

A specification places constraints on both clients and implementationsof
the procedure. The requires clause is used to state restrictions on the state,
including the values of any parameters, at the time of any call. The modifies
and ensures clauses place constraints on the procedure’s behavior when it
is called properly. They relate two states, the state when the procedure is
called, the pre-state, and the state when it terminates, the post-state.

A requires clause refers only to values in the pre-state. An ensures clause
may also refer to values in the post-state.

A modifies clause says what locs a procedure is allowed to change (its
target list). It says that the procedure must not change the value of any
locs visible to the client except for those in the target list. Any other loc
must have the same value in the pre and post-states. If there is no modifies
clause, then nothing may be changed.

For each call, it is the responsibility of the client to make the requires
clause true in the pre-state. Having done that, the client may assume that:

� the procedure will terminate,

� changes will be limited to the locs in the target list, and

� the postcondition will be true on termination.

The client need not be concerned with how this happens.
The implementor of a procedure is entitled to assume that the

precondition holds on entry, and is only responsible for the procedure’s
behavior if it is. A procedure’s behavior is totally unconstrained if its
precondition isn’t satisfied, so it is good style to keep the requires clause
weak. An omitted requires clause is equivalent to requires true (the
weakest possible requirement).

TWO INTERFACE LANGUAGE EXAMPLES

Figure 3.4 contains a fragment of a specification written in LCL (a Larch
interface language for Standard C). Figure 3.5 contains a fragment of
a similar specification written in LM3 (a Larch interface language for
Modula-3). They use the same Table trait of Figure 3.3. We present

3. An Introduction to Larch 23

mutable type table;
uses Table(table for Tab, char for Ind,

char for Val, int for Int);
constant int maxTabSize;

table table_create(void) {
ensures result’ � new � fresh(result);
}

bool table_add(table t, char i, char c) {
modifies t;
ensures result � (size(tˆ) � maxTabSize � i 	 tˆ)
� (if result then t’ � add(tˆ, i, c)

else t’ � tˆ);
}

char table_read(table t, char i) {
requires i 	 tˆ;
ensures result � lookup(tˆ, i);
}

FIGURE 3.4. A Sample LCL Interface Specification

24 3.3. Interface specifications

INTERFACE Table;
�* TRAITS Table(CHAR FOR Ind, CHAR FOR Val,

INTEGER FOR Int) *�
TYPE T �: OBJECT

METHODS
Add(i: CHAR; c: CHAR) RAISES {Full};
Read(i: CHAR): CHAR;

END;
PROCEDURE Create(): T;
CONST MaxTabSize: INTEGER � 100;
EXCEPTION Full;

�*
FIELDS OF T
val : Tab;

METHOD T.Add(i, c)
MODIFIES SELF.val
ENSURES SELF.val’ � add(SELF.val, i, c)
EXCEPT size(SELF.val) � MaxTabSize

� �(i 	 SELF.val)
�� RAISEVAL � Full � UNCHANGED(ALL)

METHOD T.Read(i)
REQUIRES i 	 SELF.val
ENSURES RESULT � lookup(SELF.val, i)

PROCEDURE Create
ENSURES RESULT.val � new � FRESH(RESULT)

*�
END Table.

FIGURE 3.5. A Sample LM3 Interface Specification

3. An Introduction to Larch 25

void choose(int x, int y) int z; {
modifies z;
ensures z’ � x � z’ � y;

}

FIGURE 3.6. A specification of choose

these examples here simply to convey an impression of how programming
language dependencies influence Larch interface languages. At this point,
you should not be concerned with their exact meaning; the notations used
are described in detail in Chapters 5 and 6.

3.4 Relating implementations to specifications

In this book we emphasize using specifications as a communication
medium. Programmers are encouraged to become clients of well-specified
abstractions that have been implemented by others. This book does not
discuss the process of implementing specifications; there is already a
copious literature on the subject.

One of the advantages of Larch’s two-tiered approach to specification
is that the relationship of implementations to specifications is relatively
straightforward. Consider, for example, the LCL specification in Figure 3.6
and the C implementation in Figure 3.7.

The specification defines a relation between the program state when
choose is called and the state when it returns. This relation contains all
pairs of states �pre, post� in which

� the states differ only in the value of the global variable z, and

� in post the value of z is that of one of the two arguments passed to
choose.

The implementation also defines a relation on program states. This
relation contains all pairs of states �pre, post� in which

� the states differ only in the value of the variable z, and

� in post the value of z is the maximum of the two arguments passed
to choose.

26 3.4. Relating implementations to specifications

void choose(int x, int y) {
if (x > y) z = x;
else z = y;

}

FIGURE 3.7. An implementation of choose

We say that the implementation of choose in Figure 3.7 satisfies the
specification in Figure 3.6—or is a correct implementation of Figure 3.63—
because the relation defined by the implementation is a subset of the relation
defined by the specification. Every possible behavior that can be observed
by a client of the implementation is permitted by the specification.

The definition of satisfaction we have just given is not directly useful.
In practice, formal arguments about programs are not usually made by
building and comparing relations. Instead, such proofs are usually done by
pushing predicates through the program text, in ways that can be justified
by appeal to the definition of satisfaction. A description of how to do this
appears in the books [21, 36].

The notion of satisfaction is a bit more complicated for implementations
of abstract types, because the implementor of an abstract type is working
simultaneously at two levels of abstraction. To implement an abstract type,
one chooses data structures to represent values of the type, then writes the
procedures of the type in terms of that representation. However, since the
specifications of those procedures are in terms of abstract values, one must
be able to relate the representation data structures to the abstract values
that they represent. This relation is an essential (but too often implicit) part
of the implementation.

Figure 3.8 shows an implementation of the LCL specification in
Figure 3.4. A value of the abstract type table is represented by a pointer
to a struct containing two arrays and an integer. You need not look at the
details of the code to understand the basic idea behind this implementation.
Instead, you should consider the abstraction function and representation
invariant.

The abstraction function is the bridge between the data structure used

3“Correct” is a dangerous word. It is not meaningful to say that an implementation
is “correct” or “incorrect” without saying what specification it is claimed to satisfy. The
technical sense of “correct” that is used in the formal methods community does not imply
“good,” or “useful,” or even “not wrong,” but merely “consistent with its specification.”

3. An Introduction to Larch 27

#include "bool.h"
#define maxTabSize (10)

typedef struct {char ind[maxTabSize];
char val[maxTabSize];
int next;} tableRep;

typedef tableRep * table;

table table_create(void) {
table t;
t = (table) malloc(sizeof(tableRep));
if (t == 0) {

printf("Malloc returned null in table_create\n");
exit(1);

}
t->next = 0;
return t;

}
bool table_add(table t, char i, char c) {

int j;
for (j = 0; j < t->next; j++)

if (t->ind[j] == i) {
t->val[j] = c;
return TRUE;

}
if (t->next == maxTabSize) return FALSE;
t->val[t->next++] = c;
return TRUE;

}
char table_read(table t, char i) {

int j;
for (j = 0; TRUE; j++)

if (t->ind[j] == i) return t->val[j];
}

FIGURE 3.8. Implementing an abstract type

28 3.4. Relating implementations to specifications

in the implementation of an abstract type and the abstract values being
implemented. It maps each value of the representation type to a value of
the abstract type. Here, we represent a table by a pointer, call it t, to
a struct. If the triple <ind, val, next> contains the values of the
fields of that struct in some state s, then we can define the abstract value
represented by t in state s as toTab(<ind, val, next>), where

toTab(�ind, val, next�) ==
if next � 0 then empty
else insert(toTab(�next - 1, ind, val�),

ind[next], val[next])

Abstraction functions are often many-to-one. Here, for example, if
t->next = 0, t represents the empty table, no matter what the
contents of t->ind and t->val.

The typedefs in Figure 3.8 define a data structure sufficient to represent
any value of type table. However, it is not the case that any value
of that data structure represents a value of type table. In defining the
abstraction function, we relied upon some implicit assumptions about
which data structures were valid representations. For example, toTab
is not defined when t->next is negative. A representation invariant
is used to make such assumptions explicit. For this implementation, the
representation invariant is

� The value of next lies between 0 and maxTabSize:

0 � t
�next � t
�next � maxTabSize

� and no index may appear more than once in the fragment of ind
that lies between 0 and next:

� i,j:int
(0 � i � i � j � j � t
�next)
� (t
�ind)[i] �� (t
�ind)[j]

To show that that this representation invariant holds, we use a proof
technique called data type induction. Since table is an abstract type,
we know that clients cannot directly access the data structure used to
represent a table. Therefore, all values of type table that occur during
program execution will have been generated by the functions specified
in the interface. So to show that the invariant holds it suffices to show,
reasoning from the code implementing the functions on tables, that

3. An Introduction to Larch 29

� the value returned by table create satisfies the invariant (this
is the basis step of the induction),

� whenever table add is called, if the invariant holds for tˆ then
the invariant will also hold for t’, and

� whenever table read is called, if the invariant holds for tˆ then
the invariant will also hold for t’.

A slightly different data type induction principle can be used to reason
about clients of abstract types. To prove that a property holds for all
instances of the type, i.e., that it is an abstract invariant, one inducts over
all possible sequences of calls to the procedures that create or modify locs
of the type. However, one reasons using the specifications of the procedures
rather than their implementations.For example, to show that thesize(t)
is never greater than maxTabSize one shows that

� the specification of table create implies that the size of the
table returned is not greater than maxTabSize, and

� the specification of table add combined with the hypothesis
tˆ � maxTabSize implies that t’ � maxTabSize.

Given the abstraction function, it is relatively easy to define what it
means for the procedure implementations in Figure 3.8 to satisfy the
specifications in Figure 3.4. For example, we say that the implementation
of table read satisfies its specification because the image under the
abstraction function of the relation between pre and post-states defined by
the implementation(i.e., what one gets by applying the abstraction function
to all values of type table in the relation defined by the implementation)
is a subset of the relation defined by the specification. Notice, by the way,
that any argument that the implementation of table read satisfies its
specification will rely on both the requires clause of the specification
and on the representation invariant.

3.5 LP, the Larch proof assistant

The discussions of LSL, LCL, and LM3 have alluded to tools supporting
those languages. LP is a tool that is used to support all three. Chapter 7,
which is about reasoning about LSL specifications, contains a brief
description of LP. Here we give merely a glimpse of its use.

30 3.5. LP, the Larch proof assistant

LP is a proof assistant for a subset of multisorted first-order logic with
equality, the logic—described in Chapter 2—on which the Larch languages
are based. It is designed to work efficiently on large problems and to be
used by specifiers with relatively little experience with theorem proving.
Its design and development have been motivated primarily by our work
on LSL, but it also has other uses, for example, reasoning about circuit
designs [75, 79], algorithms involving concurrency [25], data types [92],
and algebraic systems [65].

LP is intended primarily as an interactive proof assistant or proof
debugger, rather than as a fully automatic theorem prover. Its design is
based on the assumption that initial attempts to state and prove conjectures
usually fail. So LP is designed to carry out routine (but possibly lengthy)
proof steps automatically and to provide useful information about why
proofs fail. To keep users from being surprised and confused by its
behavior, LP does not employ complicated heuristics for finding proofs
automatically. It makes it easy for users to employ standard techniques
such as proof by cases, by induction, or by contradiction, but the choice
among such strategies is left to the user.

THE LIFE CYCLE OF PROOFS

Proving is similar to programming: proofs are designed, coded, debugged,
and (sometimes) documented.

Before designing a proof it is necessary to formalize the things being
reasoned about and the conjecture to be proved. The design of the proof
proper starts with an outline of its structure, including key lemmas and
methods of proof. The proof itself must be given in sufficient detail to be
convincing. What it means to be convincing depends on who (or what) is
to be convinced. Experience shows that humans are frequently convinced
by unsound proofs, so we look for a mechanical “skeptic” that is just hard
enough (but not too hard) to convince.

Once part of a proof has been coded, LP can be used to debug it. Proofs
of interesting conjectures hardly ever succeed the first time. Sometimes
the conjecture is wrong. Sometimes the formalization is incorrect or
incomplete. Sometimes the proof strategy is flawed or not detailed enough.
LP provides a variety of facilities that can be used to understand the problem
when an attempted proof fails.

While debugging proofs, users frequently reformulate axioms and
conjectures. After any change in the axiomatization, it is necessary to
recheck not only the conjecture whose proof attempt uncovered the

3. An Introduction to Larch 31

Nat: trait
includes AC(+, Nat)
introduces
0: � Nat
s: Nat � Nat
__ � __: Nat, Nat � Bool

asserts
Nat generated by 0, s
� i, j, k: Nat
i + 0 == i;
i + s(j) == s(i + j);
�(i � 0);
0 � s(i);
s(i) � s(j) == i � j

implies � i, j, k: Nat
i � j � i � (j + k)

FIGURE 3.9. A trait containing a conjecture

problem, but also the conjectures previously proved using the old axioms.
LP has facilities that support such regression testing.

LP will, upon request, record a session in a script file that can be replayed.
LP “prettyprints” script files, using indentation to reflect the structure of
proofs. It also annotates script files with information that indicates when
subgoals are introduced (e.g., in a proof by induction), and when subgoals
and theorems are proved. On request, as LP replays a script file, it will halt
replay at the first point where the annotations and the new proof diverge.
This checking makes it easier to keep proof attempts from getting “out of
sync” with their author’s conception of their structure.

A SMALL PROOF

Figure 3.9 contains a short LSL specification, including a simple
conjecture (following the reserved word implies) that is supposed to
follow from the axioms. Figure 3.10 shows a script for an LP proof of that
conjecture.

The declare commands introduce the variables and operators in
the LSL specification. The assert commands supply the LSL axioms
relating the operators; the Nat generated by assertion provides an
induction scheme for Nat. The prove command initiates a proof by

32 3.5. LP, the Larch proof assistant

set name nat
declare sort Nat
declare variables i, j, k: Nat
declare operators
0: � Nat
s: Nat � Nat
+: Nat, Nat � Nat
�: Nat, Nat � Bool
..

assert Nat generated by 0, s
assert ac +
assert
i + 0 == i
i + s(j) == s(i + j)
�(i � 0)
0 � s(i)
s(i) � s(j) == i � j
..

set name lemma
prove i � j � i � (j + k) by induction on j
� � 2 subgoals for proof by induction on j
[] basis subgoal
resume by induction on i
� � 2 subgoals for proof by induction on i
[] basis subgoal
[] induction subgoal

[] induction subgoal
[] conjecture

qed

FIGURE 3.10. Sample LP proof script

3. An Introduction to Larch 33

induction of the conjecture. The diamond (<>) annotations are provided
by LP; they indicate the introduction of subgoals for the inductions. The
box ([]) annotations are also provided by LP; they indicate the discharge
of subgoals and, finally, of the main proof. The resume command starts
a nested induction. No other user intervention is needed to complete this
proof. The qed command on the last line asks LP to confirm that there are
no outstanding conjectures.

3.6 Lexical and typographic conventions

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may have its own lexical conventions and capabilities. To
avoid conflicts, LSL assigns fixed meanings to only a small number of
characters. To conform to local conventions and to exploit locally available
capabilities, LSL’s character and token classes are extensible, and can be
tailored for particular purposes by initialization files. Since LSL terms
appear in interface specifications, corresponding extensibility is a part of
each interface language. Appendix C explains the structure of these files
and gives the initialization files used in checking the specifications in this
book.

There are several semantically equivalent forms of each Larch language.
Any of these forms can be translated mechanically into any other without
losing information.

� Presentation forms are used in environments, such as this book, that
have rich character sets with symbols such as 	, �, �, �, �.

� Interchange form is an encoding of the language using a widely
available subset of the ISO Latin4 character set. Characters outside
this subset are represented by extended characters—sequences of
characters from the subset, preceded by a backslash (or other
designated character). Interchange form is the “lowest common
denominator” for each Larch language. Each Larch tool can parse it
and generate it on demand.

� Interactive forms may be used by Larch editors, browsers, checkers,
etc., for interaction with users. Many such forms will not be limited

4This is also a subset of the older ASCII subset.

34 3.6. Lexical and typographic conventions

to character strings for input and output (e.g., they will use menus
and pointing), and some may impose additional constraints and
equivalences (e.g., case folding, operator precedence).

Chapter 4

LSL: The Larch Shared Language

This chapter provides a tutorial introduction the the Larch Shared Language
(LSL). It begins by systematically working through the features of the
language, illustrating each with a short example. It concludes with a
slightly longer example, designed to illustrate how the various features
of the language can be used in concert.

4.1 Equational specifications

LSL’s basic unit of specification is a trait. Consider, for example, the
specification of tables that store values in indexed places, Figure 4.1. This
is similar to a conventional algebraic specification, as it would be written
in many languages [4, 20, 24, 96].

The trait can be referred to by its name, Table1. This should not be

Table1: trait
introduces
new: � Tab
add: Tab, Ind, Val � Tab
__ 	 __: Ind, Tab � Bool
lookup: Tab, Ind � Val
isEmpty: Tab � Bool
size: Tab � Int
0,1: � Int
__ + __: Int, Int � Int

asserts � i, i1: Ind, val: Val, t: Tab
�(i 	 new);
i 	 add(t, i1, val) == i � i1 � i 	 t;
lookup(add(t, i, val), i1) ==
if i � i1 then val else lookup(t, i1);

size(new) == 0;
size(add(t, i, val)) ==
if i 	 t then size(t) else size(t) + 1;

isEmpty(t) == size(t) � 0

FIGURE 4.1. A table trait

36 4.1. Equational specifications

confused with the name of a data abstraction (e.g., the sortTab) or operator
(e.g., lookup). The name of a trait is independent of the names that appear
within it.

The part of the trait followingintroduces declares a list of operators,
each with its signature (the sorts of its domain and range). As discussed
in Chapter 2, an operator stands for a total function that maps a tuple of
values of its domain sorts to its range sort. Every operator used in a trait
must be declared; signatures are used to sort-check terms in much the same
way as expressions are type-checked in programming languages. Sorts are
denoted by identifiers and are declared implicitly by their appearance in
signatures.

The remainder of this trait constrains the operators by means of
equations. An equation consists of two terms of the same sort, separated
by = or ==. The operators = and == are semantically equivalent, but have a
different precedence, as discussed below. We use== as the main connective
in equations. Equations of the form term == true can be abbreviated by
simply writing term; thus the first equation in Table1 is an abbreviation
for

�(i 	 new) == true

Double underscores () in an operator declaration indicate that the
operator will be used in mixfix terms. For example, � is declared as a
binary infix operator. Infix, prefix, postfix, and distributed operators (such
as + , - , !, { }, [], and if then else) are integral parts
of many familiar mathematical and programming notations, and their use
can contribute substantially to the readability of specifications.

LSL’s grammar for mixfix terms is intended to ensure that legal terms
parse as readers expect—even without studying the grammar.1 LSL has a
simple precedence scheme for operators:

� postfix operators that consist of a dot followed by an identifier (as in
field selectors, e.g., .first) bind most tightly;

� other user-defined operators and the built-in Boolean negation
operator � bind more tightly than

� the built-in equality operators (= and
�), which bind more tightly
than

1However, writers of specifications should take pity on readers and study the grammar.

4. LSL: The Larch Shared Language 37

� the built-in propositional connectives (�, �, and �), which bind
more tightly than

� the built-in conditional connective (if then else), which
binds more tightly than

� the equation connective (==).

For example, the equation v == x + w.a.b = y � z is equiv-
alent to the term v = (((x + ((w.a).b)) = y) � z). LSL al-
lows unparenthesized infix terms with multiple occurrences of an operator
at the same precedence level, but not different operators; it associates such
terms from left to right. Fully parenthesized terms are always acceptable.
Thus x � y � z is equivalent to (x � y) � z, but x � y � z
must be written as (x � y) � z or as x � (y � z), depending on
which is meant.

Each well-formed trait defines a theory (a set of sentences closed
under logical consequence, see Chapter 2) in multisorted first-order logic
with equality. Each theory contains the trait’s assertions, the conventional
axioms of first-order logic, everything that follows from them, and nothing
else. This loose semantic interpretation guarantees that formulas in the
theory follow only from the presence of assertions in the trait—never from
their absence. This is in contrast to algebraic specification languages based
on initial algebras [34] or final algebras [85]. Using the loose interpretation
ensures that all theorems proved about an incomplete specification remain
valid when it is extended.

Each trait should be consistent: it must not define a theory containing the
equation true == false. Consistency is often difficult to prove and is
undecidable in general. Inconsistency is often easier to detect and can be
a useful indication that there is something wrong with a trait. Detecting
inconsistencies is discussed in Chapter 7.

4.2 Stronger theories

Equational theories are useful, but a stronger theory is often needed, for
example, when specifying an abstract type. The constructs generated
by andpartitioned by provide two ways of strengthening equational
specifications.

A generated by clause asserts that a list of operators is a complete set
of generators for a sort. That is, each value of the sort is equal to one that

38 4.2. Stronger theories

can be written as a finite number of applications of just those operators,
and variables of other sorts. This justifies a generator induction schema
for proving things about the sort. For example, the natural numbers are
generated by 0 and succ, and the integers are generated by 0, succ, and
pred.

The assertion

Tab generated by new, add

if added to Table1, could be used to prove theorems by induction over
new and add, since, according to this assertion, any value of sort Tab can
be constructed from new by a finite number of applications of add. For
example, to prove

� t:Tab, i:Ind (i 	 t � size(t) � 0)

one can do an inductive proof with the structure

� Basis step:

� i:Ind (i 	 new � size(new) � 0)

� Induction step:

� t:Tab, i1:ind, v1:Val
(� i:Ind (i 	 t � size(t) � 0)
� (� i:Ind (i 	 add(t, i1, v1)

� size(add(t, i1, v1)) � 0)))

A partitioned by clause asserts that a list of operators constitutes a
complete set of observers for a sort. That is, all distinct values of the
sort can be distinguished using just those operators. Terms that are not
distinguishable using any of them are therefore equal. For example, sets
are partitioned by �, because sets that contain the same elements are equal.
Each partitioned by clause is a new axiom that justifies a deduction rule
for proofs about values of the sort. For example, the assertion

Tab partitioned by 	, lookup

adds the deduction rule
� i1:ind (i1 	 t1 � i1 	 t2),
� i1:ind (lookup(t1, i1) � lookup(t2, i1)))

t1 � t2

4. LSL: The Larch Shared Language 39

If added to Table1 this partitioned by clause could be used to derive
theorems that do not follow from the equations alone. For example, to
prove the commutativity of add of the same value,

� t:Tab, i,i1:Ind, v Val
(add(add(t, i, v), i1, v)

� add(add(t, i1, v), i, v))

one discharges the two subgoals

� i2:ind
(i2 	 add(add(t, i, v), i1, v)
� i2 	 add(add(t, i1, v), i, v))

� i2:ind
(lookup(add(add(t, i, v), i1, v), i2)

� lookup(add(add(t, i1, v), i, v), i2))

4.3 Combining traits

Table1 contains three operators that it does not define: 0, 1, and +.
Without more information about these operators, the definition of size
is not particularly useful. We could add assertions to Table1 to define
these operators. However, it is often better to specify such operators in a
separate trait that is included by reference. This makes the specification
more structured and makes it easier to reuse existing specifications, such as
the traits given in Appendix A. We might remove the explicit introductions
of these operators in Table1, and instead add an external reference to the
trait Integer (page 163):

includes Integer

which not only introduces the operators, but also defines their properties.
The theory associated with an including trait is the theory associated

with the union of its introduces and asserts clauses with those of
its included traits.

It is often convenient to combine several traits dealing with different
aspects of the same operator. This is common when specifying something
that is not easily thought of as a data type. Consider, for example,
the specifications of properties of relations in Figure 4.2. The trait
equivalence1 has the same associated theory as the less structured
trait equivalence2.

40 4.3. Combining traits

reflexive: trait
introduces __ � __: T, T � Bool
asserts � x: T
x � x

symmetric: trait
introduces __� __: T, T � Bool
asserts � x, y: T
x � y == y � x

transitive: trait
introduces __ � __: T, T � Bool
asserts � x, y, z: T
(x � y � y � z) � x � z

equivalence1: trait
includes reflexive, symmetric, transitive

equivalence2: trait
introduces __ � __: T, T � Bool
asserts � x, y, z: T
x � x;
x � y == y � x;
(x � y � y � z) � x � z

FIGURE 4.2. Specifications of kinds of relations

4. LSL: The Larch Shared Language 41

equivalence: trait
includes
(reflexive, symmetric, transitive)(
 for �)

FIGURE 4.3. An example of renaming

4.4 Renaming

The trait equivalence1 relies heavily on the use of the same operator
symbol, �, and the same sort identifier, T, in the three included traits. In
the absence of such happy coincidences, renaming can be used to make
names coincide, to keep them from coinciding, or simply to replace them
with more suitable names, as in Figure 4.3, where � is replaced by a more
customary symbol for an equivalence relation.

In general, the phrase Tr(name1 for name2) stands for the trait Tr with
every occurrence of name2 (which must be either a sort or an operator)
replaced by name1. If name2 is a sort, this renaming changes the signatures
of all of the operators in Tr in whose signatures name2 appears.

The two specifications in Figure 4.4 have the same theory. Note that
the infix operator � was replaced by the operator defined, and that
the operator lookup was replaced by the mixfix operator []. All
renamings preserve the order of operands.

Any sort or operator in a trait can be renamed when that trait is referenced
in another trait. Some, however, are more likely to be renamed than others.
It is often convenient to single these out so that they can be renamed
positionally. For example, if the header for the trait had been

SparseArray(Val, Arr): trait

the reference

includes SparseArray(Int, IntArr)

would be equivalent to

includes SparseArray(Int for Val, IntArr for Arr)

4.5 Stating intended consequences

It is not possible to prove the “correctness” of a specification, because
there is no absolute standard against which to judge correctness. But since

42 4.5. Stating intended consequences

SparseArray: trait
includes Table1(Arr for Tab, defined for 	,

assign for add, __[__] for lookup, Int for Ind)

SparseArrayExpanded: trait
introduces
new: � Arr
assign: Arr, Int, Val � Arr
defined: Int, Arr � Bool
__[__]: Arr, Int � Val
isEmpty: Arr � Bool
size: Arr � Int
0,1: � Int
__ + __: Int, Int � Int

asserts � i, i1: Int, val: Val, t: Arr
�defined(i, new);
defined(i, assign(t, i1, val)) ==

i � i1 � defined(i, t);
assign(t, i, val)[i1] ==

if i � i1 then val else t[i1];
size(new) == 0;
size(assign(t, i, val)) ==
if defined(i, t) then size(t) else size(t) + 1;

isEmpty(t) == size(t) � 0

FIGURE 4.4. Two specifications of sparse arrays

4. LSL: The Larch Shared Language 43

specifications can contain errors, specifiers need help in locating them. LSL
specifications cannot, in general, be executed, so they cannot be tested in
the way that programs are commonly tested. LSL sacrifices executability
in favor of brevity, clarity, flexibility, generality, and abstraction. To
compensate, it provides other ways to check specifications.

This section briefly describes ways in which specifications can be
augmented with redundant information to be checked during validation.
Chapter 7 discusses the use of LP, the Larch proof assistant, in specification
debugging.

Checkable properties of LSL specifications fall into three categories:
consistency, theory containment, and completeness. As discussed earlier,
the requirement of consistency means that any trait whose theory contains
the equation true == false is illegal.

Implies clauses make claims about theory containment. Suppose we
think that a consequence of the assertions of SparseArray is that no
array with a defined element is empty. To formalize this claim, we could
add to SparseArray

implies � a: Arr, i: Int

defined(i, a) � �isEmpty(a)

The theory to be implied can be specified using the full power of LSL,
including equations, generator clauses, partitioning clauses, and references
to other traits. Attempting to verify that such a theory actually is implied
can be helpful in error detection, as discussed in Chapter 7. Implications
also help readers confirm their understanding. Finally, they can provide
useful lemmas that will simplify reasoning about specifications that use
the trait.

LSL does not require that each trait define a complete theory, that is, one
in which each sentence is either true or false. Many finished specifications
(intentionally) do not fully define all their operators. Furthermore, it can be
useful to check the completeness of some definitions long before finishing
the specification they are part of. Therefore, instead of building in a single
test of completeness that is applied to all traits, LSL provides a way to
include within a trait specific checkable claims about completeness, using
converts clauses.

Adding the claim

implies converts isEmpty

to Table1 says that the trait’s axioms fully define isEmpty. This means
that, if the interpretations of all the other operators are fixed, there is only

44 4.6. Recording assumptions

one interpretation ofisEmpty that satisfies the axioms. (A more complete
discussion of the meaning of converts is contained in Section 7.1.)

The stronger claim

implies converts isEmpty, lookup

however, cannot be verified, because the meaning of terms of the form
lookup(new, i) is not defined by the trait. This incompleteness in
Table1 could be resolved by adding another axiom to the trait, perhaps

lookup(new, i) == errorVal

But it is generally better not to add such axioms. The specifier of Table1
should not be concerned with whether the sort Val has an errorVal
and should not be required to introduce irrelevant constraints on lookup.
Extra axioms give readers more details to assimilate; they may preclude
useful specializations of a general specification; sometimes there simply
is no reasonable axiom that would make an operator convertible (consider
division by 0).

LSL provides anexempting clause that lists terms that are not claimed
to be defined.2 The claim

implies converts isEmpty, lookup

exempting � i: Ind lookup(new, i)

means that isEmpty and lookup are fully defined by the trait’s axioms
plus interpretations of the other operators and of all terms of the form
lookup(new, i). This is provable from the specification of Table1.

4.6 Recording assumptions

Many traits are suitable for use only in certain contexts. Just as we write
preconditions that document when a procedure may properly be called,
we write assumptions in traits that document when a trait may properly be
included. As with preconditions, assumptions impose a proof obligation
on the client, and may be presumed within the trait containing them.

It is useful to construct general specifications that can be specialized in
a variety of ways. Consider, for example, the specification in Figure 4.5.
We might specialize this to IntegerBag by renaming E to Int and

2This is different from “that are claimed not to be defined.”

4. LSL: The Larch Shared Language 45

Bag0(E): trait
introduces
{}: � B
insert, delete: E, B � B
__ 	 __: E, B � Bool

asserts
B generated by {}, insert
B partitioned by delete, 	
� b: B, e, e1, e2: E
delete(e, {}) == {};
delete(e1, insert(e2, b)) ==
if e1 � e2 then b
else insert(e2, delete(e1, b));

�(e 	 {});
e1 	 insert(e2, b) == e1 � e2 � e1 	 b

FIGURE 4.5. A specification of bags

46 4.6. Recording assumptions

Bag1(E): trait
includes Bag0, Integer
introduces
rangeCount: E, E, B � Int
__ � __: E, E � Bool

asserts � e1, e2, e3: E, b: B
rangeCount(e1, e2, {}) == 0;
rangeCount(e1, e2, insert(e3, b)) ==
rangeCount(e1, e2, b)
+ (if e1 � e3 � e3 � e2 then 1 else 0)

FIGURE 4.6. A specialization of Bag0

including it in a trait in which operators dealing with Int are specified,
for example,

IntegerBag: trait
includes Integer, Bag0(Int)

The interactions between Integer and Bag0 are limited. Nothing in
Bag0 depends on any particular operators being introduced in including
traits, let alone their having any special properties. Therefore Bag0 needs
no assumptions.

Consider, however, extending Bag0 to Bag1 by adding an operator,
rangeCount, to count the number of entries in a B that lie between two
values, as in Figure 4.6.

As written,Bag1 says nothing about the properties of the� operator. But
it probably doesn’t make sense in any specialization unless � provides an
ordering on the values of sortE. We cannot define �withinBag1, because
it will depend on the trait usingBag1. What we need is an assumes clause,
as in Figure 4.7.

Since Bag2 may presume its assumptions, its (local) theory is the same
as ifTotalOrder(E), page 194, had been included rather than assumed;
Bag2 inherits all the introductions and assertions of TotalOrder.
Therefore, the assumption of TotalOrder can be used to derive various
properties of Bag2, for example, that rangeCount is monotonic in its
second argument, as claimed in the implies clause.

The difference betweenassumes and includes appears whenBag2
is used in another trait. Whenever a trait with assumptions is included or
assumed, its assumptions must be discharged. For example, in

4. LSL: The Larch Shared Language 47

Bag2(E): trait
assumes TotalOrder(E)
includes Bag0, Integer
introduces rangeCount: E, E, B � Int
asserts � e1, e2, e3: E, b: B
rangeCount(e1, e2, {}) == 0;
rangeCount(e1, e2, insert(e3, b)) ==
rangeCount(e1, e2, b)
+ (if e1 � e3 � e3 � e2 then 1 else 0)

implies � e1, e2, e3: E, b: B
e1 � e2 �
rangeCount(e3, e1, b) � rangeCount(e3, e2, b)

FIGURE 4.7. An example of an assumption

IntegerBag1: trait
includes Integer, Bag2(Int)

the assumption to be discharged is that the (renamed) theory associated
with TotalOrder is a subset of the theory associated with the rest
of IntegerBag1 (i.e., Integer). When a trait includes a trait with
assumptions, it is often possible to confirm that these assumptions are
syntactically discharged by noticing that the same traits are assumed or
included by the including trait. For example, the Integer trait, page 163
directly includes TotalOrder. A more complete discussion of how
assumptions are discharged is contained in Chapter 7.

4.7 Built-in operators and overloading

In our examples, we have freely used the predicate connectives defined
in Chapter 2. We have also used some heavily overloaded and apparently
unconstrained operators: if then else , �, and
�. These operators
are built into the language. This allows them to have appropriate syntactic
precedence. More importantly, it guarantees that they have consistent
meanings in all LSL specifications, so readers can rely on their intuitions
about them.

Similarly, LSL recognizes decimal numbers, such as 0, 24, and 1992,
without explicit declarations and definitions. In principle, each literal
could be defined within LSL, but such definitions are not likely to
advance anyone’s understanding of the specification.DecimalLiteral,

48 4.7. Built-in operators and overloading

OrderedString(E, Str): trait
assumes TotalOrder(E)
includes DerivedOrders(Str)
introduces
empty: � Str
__ -| __: E, Str � Str
__ � __: Str, Str � Bool

asserts
Str generated by empty, -|
� e, e1: E, s, s1: Str
empty � (e -| s);
�(s � empty);
(e -| s) � (e1 -| s1) ==
e � e1 � (e � e1 � s � s1)

implies TotalOrder(Str)

FIGURE 4.8. An example of overloading

page 164 is a predefined quasi-trait that implicitly defines all the numerals
that appear in a specification.

In addition to the built-in overloaded operators and numbers, LSL
provides for user-defined overloadings. Each operator must be declared
in an introduces clause and consists of an identifier (e.g., empty)
or operator symbol (e.g., �) and a signature. The signatures of most
occurrences of overloaded operators are deducible from context. Consider,
for example, Figure 4.8.3 The operator symbol� is used in the last equation
to denote two different operators, one relating terms of sort Str, and the
other, terms of sort E, but their contexts determine unambiguously which
is which.

LSL provides notations for disambiguatingan overloaded operator when
context does not suffice. Any subterm of a term can be qualified by its sort.
For example, a:S in a:S = b explicitly indicates that a is of sort S.
Furthermore, since the two operands of = must have the same sort, this
qualification also implicitly defines the signatures of = and b. The last
axiom in Figure 4.8 could also be written as

(e -| s):Str � (e1 -| s1):Str ==

e:E � e1:E � (e � e1 � s:Str � s1:Str)

3DerivedOrders is in Appendix A, page195. It relates the ordering relations�, �,
�, and� to each other.

4. LSL: The Larch Shared Language 49

introduces
cold, warm, hot: � Temp
succ: Temp � Temp

asserts
Temp generated by cold, warm, hot
equations
cold �� warm;
cold �� hot;
warm �� hot;
succ(cold) == warm;
succ(warm) == hot

FIGURE 4.9. Expansion of an enumeration shorthand

Outside of terms, overloaded operators can be disambiguatedby directly
affixing their signatures, for example

implies converts �:Str,Str�Bool

4.8 Shorthands

Enumerations, tuples, and unions provide compact, readable representa-
tions for common kinds of theories. They are syntactic shorthands for
things that could be written in LSL without them.

ENUMERATIONS

The enumeration shorthand defines a finite ordered set of distinct
constants and an operator that enumerates them. For example,

Temp enumeration of cold, warm, hot

is equivalent to including a trait with the body appearing in Figure 4.9.

TUPLES

The tuple shorthand is used to introduce fixed-length tuples, similar to
records in many programming languages. For example,

C tuple of hd: E, tl: S

is equivalent to including a trait with the body appearing in Figure 4.10.
Each field name (e.g., hd) is incorporated in two distinct operators (e.g.,
.hd:C�E and set hd:C,E�C).

50 4.8. Shorthands

introduces
[__, __]: E, S � C
__.hd: C � E
__.tl: C � S
set_hd: C, E � C
set_tl: C, S � C

asserts
C generated by [__, __]
C partitioned by .hd, .tl
� e,e1: E, s,s1: S
([e, s]).hd == e;
([e, s]).tl == s;
set_hd([e, s], e1) == [e1, s];
set_tl([e, s], s1) == [e, s1]

FIGURE 4.10. Expansion of a tuple shorthand

S_tag enumeration of atom, cell
introduces
atom: A � S
cell: C � S
__.atom: S � A
__.cell: S � C
tag: S � S_tag

asserts
S generated by atom, cell
S partitioned by .atom, .cell, tag
� a: A, c: C
atom(a).atom == a;
cell(c).cell == c;
tag(atom(a)) == atom;
tag(cell(c)) == cell

FIGURE 4.11. Expansion of a union shorthand

UNIONS

The union shorthand corresponds to the tagged unions found in many
programming languages. For example,

S union of atom: A, cell: C

is equivalent to including a trait with the body appearing in Figure 4.11.
Each field name (e.g., atom) is incorporated in three distinct operators
(e.g., atom:�S tag, atom:A�S, and .atom:S�A).

4. LSL: The Larch Shared Language 51

InsertGenerated (E, C): trait
introduces
empty: � C
insert: E, C � C

asserts
C generated by empty, insert

FIGURE 4.12. InsertGenerated.lsl

4.9 Further examples

We have now covered all the facilities of the Larch Shared Language. The
next series of examples illustrates their coordinated use.

The trait InsertGenerated, Figure 4.12, abstracts the common
properties of data structures that contain elements, such as sets, bags,
queues, stacks, and strings. InsertGenerated is useful both as a
starting point for specifications of many different data structures and as an
assumption when defining generic operators over such data structures.

The generated by clause inInsertGenerated asserts that each value
of sort C can be constructed from empty by repeated applications of
insert (i.e., empty andinsert constitute a complete set of generators
for C). This assertion is carried along when InsertGenerated is
included in or assumed by other traits, even if those traits introduce
additional operators with range C.

The trait Container, Figure 4.13, includes InsertGenerated.
It constrains the operators introduced in InsertGenerated, as well
as the operators it introduces. The axioms defining count guarantee that
insertions are not lost. This implies, for example, that sets do not satisfy this
definition of container. The last axiom asserts that, when applied to a non-
empty container, tail removes an element equal to the element returned
by head. Notice that these axioms do not imply the stronger property
�isEmpty(c) � insert(head(c), tail(c)) = c.

The converts clause adds checkable redundancy to the specification. The
implied formula follows from the last axiom and the two axioms defining
count. If head were to return something that was not in c, inserting it
back in would change the count for that value.
PQueue, Figure 4.14, specializes Container by constraining head

and tail in a way that is consistent with the last two axioms of
Container. The first implication states a fact that may be helpful in

52 4.9. Further examples

Container (E, C): trait
includes InsertGenerated, Integer
introduces
isEmpty: C � Bool
count: E, C � Int
__ 	 __: E, C � Bool
head: C � E
tail: C � C

asserts
C partitioned by isEmpty, head, tail
� e, e1: E, c: C
isEmpty(empty);
�isEmpty(insert(e, c));
count(e, empty) == 0;
count(e, insert(e1, c)) ==
count(e, c) + (if e � e1 then 1 else 0);

e 	 c == count(e, c) � 0;
�isEmpty(c) �
count(e, insert(head(c), tail(c)))
� count(e, c)

implies
� c: C
�isEmpty(c) � count(head(c), c) � 0;

converts isEmpty, count, 	

FIGURE 4.13. Container.lsl

4. LSL: The Larch Shared Language 53

PQueue (E, Q): trait
assumes TotalOrder (E)
includes Container(Q for C)
asserts � e, e1: E, q: Q

head(insert(e, q)) ==
if isEmpty(q) � e � head(q)
then e else head(q);

tail(insert(e, q)) ==
if isEmpty(q) � e � head(q)
then q else insert(e, tail(q))

implies
� q: Q, e: E
e 	 q � �(e � head(q))

converts head, tail, isEmpty, count, 	
exempting head(empty), tail(empty)

FIGURE 4.14. PQueue.lsl

54 4.9. Further examples

reasoning aboutPQueue and may help readers solidify their understanding
of the trait. The second implication states that the trait fully defines head
and tail (except when applied to empty), isEmpty, count, and �.
The axioms that convert isEmpty, count, and � are inherited from
Container.

Unlike the preceding traits in this section, PQueue specifies a complete
abstract type constructor. In such a trait there is a distinguished sort,
sometimes called the type of interest [40] or data sort. An abstract type’s
operators can be categorized as generators, observers, and extensions
(sometimes in more than one way). A set of generators produces all the
values of the distinguishedsort. The extensions are the remaining operators
whose range is the distinguished sort. The observers are the operators
whose domain includes the distinguished sort and whose range is some
other sort. An abstract type specification usually has axioms sufficient to
convert the observers and extensions. The distinguished sort is usually
partitioned by at least one subset of the observers and extensions.

In the example of PQueue, Q is the distinguished sort, empty and
insert form a generator set, tail is an extension, head, isEmpty,
count and � are the observers, and head, tail, and isEmpty form a
partitioning set.

A good heuristic for writing enough equations to adequately define an
abstract type is to write an equation defining the result of applying each
observer or extension to each generator. For PQueue, this rule suggests
writing equations for

1) isEmpty(empty)
2) count(e, empty)
3) e 	 empty
4) head(empty)
5) tail(empty)
6) isEmpty(insert(e, q))
7) count(e, insert(e1, q))
8) e 	 insert(e1, q)
9) head(insert(e, q))

10) tail(insert(e, q))

PQueue contains explicit equations for only the last two of these; it inherits
equations for five more from Container. The third and eighth terms in
the list do not appear explicitly in equations. Instead, � is defined by
relating it directly to count. The remaining two terms, head(empty)
and tail(empty), are explicitly exempted.

4. LSL: The Larch Shared Language 55

PairwiseExtension (�, �, E, C): trait
assumes Container(E, C)
introduces
__� __: E, E � E
__� __: C, C � C

asserts � e1, e2: E, c1, c2: C
empty � empty == empty;
(�isEmpty(c1) � �isEmpty(c2))
� c1 � c2 � insert(head(c1) � head(c2),

tail(c1) � tail(c2));
implies
converts �
exempting � e: E, c: C
empty � insert(e, c),
insert(e, c) � empty

PairwiseSum(C): trait
assumes Container(Int, C)
includes Integer, PairwiseExtension(+, �, Int, C)
implies Associative(�, C),

Commutative(� for �, C for T, C for Range)

FIGURE 4.15. Specification of generic operators

The traits PairwiseExtension and PairwiseSum, Figure 4.15,
specify generic operators that can be used with various kinds of containers.
PairwiseExtension is a generic trait that may be instantiated using

a variety of data structures and operators. Given a container sort and a
binary operator, �, on elements, it defines a new binary operator, �, on
containers. The result of applying � to a pair of containers is a container
whose elements are the results of applying � to corresponding pairs of
their elements. The exempting clause indicates that, although the result
of applying � to containers of unequal size is not specified, this is not an
oversight.

The trait PairwiseSum specializes PairwiseExtension by
binding � to an operator, +, whose definition is to be taken from the trait
Integer (page 163). The validity of the implications that� is associative
and commutative stems from the replacement of � by +, whose axioms
in the trait Integer imply its associativity and commutativity. These
implications can be proved by induction over empty and insert.

Chapter 5

LCL: A Larch Interface
Language for C

LCL is a Larch interface language for Standard C. LCL is not a C dialect.
Programs specified and developed with LCL are C programs, accepted by
ordinary C compilers. Use of LCL will tend to encourage some styles of
development, but it does not change the programming language.

This chapter is intended to serve three purposes:

� Present almost all of LCL in enough detail to permit interested
readers to start writing their own specifications. If you are interested
in doing this, we strongly urge you to get the LCL tools first. The
tools are available at no cost, as described in Appendix D.

� Provide examples of how two-tiered specifications are used in
practice, not just for C, but for any implementation language. While
the syntax for incorporating traits may differ, all Larch interface
specifications build upon LSL specifications in approximately the
same way.

� Illustrate a style of C programming in which abstract types play a
major role. While LCL can be used to specify interfaces in which all
types are exposed, that is not the style of programming for which it
is best suited. It is certainly not one we would wish to encourage.

Before presenting any interface specifications, we discuss the intended
relation between LCL specifications and C programs, how names appearing
in LCL specifications are related to values in C computations, and the
overall structure of LCL function specifications.

This chapter is intended for C programmers—practicing or potential.
We assume some familiarity with C. Readers unfamiliar with C may wish
to consult one of the numerous books on C.

5.1 The relation between LCL and C

C is a general and flexible language that is used in many different ways. A
common style for organizing a program is as a set of program units, often

5. LCL: A Larch Interface Language for C 57

called modules. A module consists of an interface and an implementation.
The interface is a collection of types, functions, variables, and constants
for use in other modules, called its clients.

A C module M is typically represented by three files:

� M.c contains most of its implementation, including function
definitions and private data declarations.

� M.h contains a description of its interface, plus parts of its
implementation. Comments provide an informal specification of the
module. Type declarations, function prototypes, constant definitions,
declarations of external variables, and macro definitions provide all
the information about M that is needed to compile its clients.

� M.o contains its compiled form. Such files are linked together to
create executable files.

C modules specified using LCL have two additional files:

� M.lcl contains its LCL interface specification—a formal descrip-
tion of the types, functions, variables, and constants provided for
clients—together with comments providing informal documenta-
tion. It replaces M.h as documentation for client programmers. The
extra information it provides will also be exploited by a planned
LCLint tool to perform more extensive checking than an ordinary C
lint.

� M.lh is a header file derived automatically from M.lcl to be
included in M.h. Mechanical generation of .lh files saves the user
from having to repeat information in the .h file, saving work and
avoiding an opportunity for error. The implementation portion of
M.h must still be provided by the implementor.

M.lcl may also refer to another kind of file:

� .lsl files contain auxiliary specifications in the form of LSL traits
to precisely define operators used in .lcl files.

THE LCL STORAGE MODEL

The LCL and LSL tiers of a specification are connected as described in
Chapter 3.

58 5.1. The relation between LCL and C

Since LCL, like C, is statically typed, the kind of values that an object1

can be bound to in a state is fixed. Similarly, each LSL value has a unique
sort. To connect the two languages, there is a mapping from LCL types to
LSL sorts. Each built-in type of C, each type built from C type constructors
(e.g., int *), and each abstract type defined in LCL is based on an LSL
sort. If an expression, e, denotes an object of type T and T is based on sort
S, then the values of eˆ and e’ are of sort S. The sort on which a type is
based does not appear explicitly in LCL specifications. Instead, an LCL
type specifier (a type name or an expression denoting a type) is used to
stand for its associated sort.

A standard LSL trait defines operators of the sorts upon which C built-
in types, e.g., int and double, are based. Users familiar with C will
already know what these operators mean. Specifier-supplied traits are
used to introduce application-specific operators. Users familiar with the
operators involved may not need to examine such traits closely, but most
users are expected to read them. A uses clause is used to incorporate
specifier-supplied traits and to make the connection between types and
sorts.

Consider, for example, the specification fragment:

uses Vector(int for elem, int[] for vec);

void vMult(int i, int a[]) {
modifies a;
ensures a’ � i * aˆ;
}

The uses clause incorporates the trait Vector (not shown here) with two
renamings, the sort of the values contained by objects of type int for
elem and the sort of the values contained by objects of type int[] for
vec. The operator * used in the ensures clause is defined in that trait.
The equation containing this operator sort checks because the formal i
denotes an int, the formal a an array object, and the expressions aˆ and
a’ vectors of integers.

VARIABLES, TYPES, OBJECTS AND STATES

Associated with each scope in a C program is an environment that maps
variables to typed objects. A type, as we said in Chapter 1, is most

1Unfortunately, “object” means several different things in different programming
languages. In this chapter, we use it in its C sense: memory locations that can contain
values; in the next chapter, in its Modula-3 sense.

5. LCL: A Larch Interface Language for C 59

conveniently thought of as a set of values and a set of operations that
can be applied to those values.

LCL provides two different kinds of types. Exposed types correspond
exactly to types in C; abstract types2 do not correspond to anything in C.

Although C provides no direct support for abstract types, there is a style
of C programming in which they play a prominent role. The programmer
relies on conventions to ensure that the implementation of an abstract
type can be changed without affecting the correctness of clients. The key
restriction is that clients never directly access the representation of an
abstract value. All access is through the functions provided in its interface.
LCL supports this style of programming by providing both mutable and
immutable abstract types. Values of immutable types are used in much the
same way as values of exposed types. Values of mutable types are used to
support a more object-oriented style of programming.

In LCL, type checking for exposed types follows the usual C rules.
For abstract types, however, type checking is done strictly on the basis of
names.

Abstractly, an object is a container for values of a particular type. More
concretely, it can be thought of as region of storage. The major kinds of
values are:

� basic values. These are mathematical abstractions, like the integer
3, the letter A, and the set f3g. Such values are independent of the
state of any computation. LSL traits are used to give meaning to
basic values.

� structs. These are (possibly heterogeneous) collections of objects,
each denoted by a field name. For example, given the variable
declaration

struct {int fieldA; char fieldB;} s;

s.fieldA denotes an object of type intObj and s.fieldB an
object of type charObj.

� unions. These are somewhat similar to the variant records of other
programming languages. They are like structs, except that their
objects overlap in memory.

2See Chapter 3 for a more thorough discussion of abstract types.

60 5.1. The relation between LCL and C

� pointers. These point to an object in a homogeneous sequence of
objects. If p is a pointer, *(p + minIndex(p)) denotes the first
object of the sequence and *(p + maxIndex(p)) denotes the
last object, where minIndex(p) � 0 � maxIndex(p).3

The infix operator-> is a syntactic shorthand to dereference a pointer
to a struct and then select one of its members. For example, a->b
is equivalent to (*a).b.

� arrays. These are homogeneous sequences of objects. If a is
an array, a[0] denotes the first object in the sequence and
a[maxIndex(a)] the last object.

Although C makes little distinction between pointer and array
parameters, LCL treats them rather differently. In a C function
prototype, for example, char *s and char s[] are equivalent.
In an LCL prototype, however, char *s allows access to
all of the characters from *(s + minIndex(s)) (recall that
minIndex is non-positive) to *(s + maxIndex(s)), while
char s[] allows access only to the characters from s[0] to
s[maxIndex(s)].

� objects. The value of an object may itself be an object. For example,
the value of a field of a struct may itself be a struct. The value of an
object of a mutable abstract type is always an object. Therefore, if
x is a formal parameter of a mutable abstract type, xˆ stands for the
value contained in the pre-state by the object to which x is bound.

A function call may change the values of objects accessible to the caller,
but it cannot change the caller’s environment. Therefore, for our purposes,
the state of a C computation can be thought of as a mapping from objects
to values.

Since parameters are passed by value in C, formal parameters should
be thought of as denoting values.4 In the case of formals that are of type
array or of a mutable abstract type, this value is an object. Global variables
always denote objects.

3C does not make the values of maxIndex and minIndex available at runtime, but
they are useful for specifying and reasoning about programs.

4Within the body of a function, an object is associated with a formal parameter, but
since that object does not exist in the environment of the caller, it is not relevant to the
specification.

5. LCL: A Larch Interface Language for C 61

In LCL, the postfix operators ˆ and ’ are used to refer to the values
contained by objects in the pre-state and post-state of a function. They
can be applied to expressions denoting objects, collections of objects, or
sequences of objects.

� When applied to an object, ˆ and ’ yield the value stored in that
object. For example, if x is a global variable of type int, xˆ = 3
asserts that in the pre-state the value contained by the object to
which the variable x is bound is 3. On the other hand, if x is a
formal parameter of type int, xˆ = 3 does not sort check, since ˆ
cannot be applied to a basic value.

� When applied to an array, ˆ and’ yield a vector containing the values
stored in the sequence of objects denoted by the array.

� When applied to a struct, ˆ and ’ yield a tuple containing the values
stored in the collection of objects denoted by the struct. Here again,
we make a distinction between pointers and arrays. If a field of the
struct has an array type, the tuple contains a vector. If the field has a
pointer type, the tuple contains a pointer.

5.2 Function specifications

A C function may communicate with its callers by returning a result, by
accessing objects accessible to the caller, by modifying such objects, or by
returning control to a different place. The specification of each function in
an interface can be studied, understood, and used without reference to the
specifications of other functions. As discussed in Chapter 3, a specification
consists of a function header (similar to a C function prototype) followed
by a body. Recall that the specification places constraints on both clients
and implementations of the function.

� The requires clause (precondition) restricts the state and arguments
with which the client is allowed to call the function; the implementor
may presume it on entry. An omitted requires clause is equivalent to
the weakest possible requirement, requires true.

� The modifies clause says what a function is allowed to change. If
there is no modifies clause, then nothing may be changed.

62 5.3. A guided tour through an LCL specification

� The ensures clause (postcondition) places constraints on the
function’s behavior when it is called properly. It relates the state
when the function is called, the pre-state, and the state when it
terminates, the post-state. The object result contains the value (if
any) returned by the function, and the object control contains the
point to which control will be transferred.5

� The client is expected to establish the precondition before each
call; having done so, the client may presume that the function will
terminate in a state satisfying the postcondition, with changes limited
to the modifies list.

� The implementor may presume the precondition upon each entry.
Under that presumption, the implementation must terminate in a state
satisfying the postcondition, without changing any client-visible
object not in the modifies list.

5.3 A guided tour through an LCL specification

To illustrate the use of most of LCL’s features, we present and discuss
a small specification. This example is only superficially realistic; it was
structured to use language constructs in the order we want to discuss them.
It is not really a typical specification or an especially wonderful program
design. As you study this tutorial, you will probably find it instructive to
consider alternative designs and how they would be specified.

The example in this section uses various conventions for names,
formatting, comments, etc. These are not mandated by LCL; specifications
should be written using the conventions of the organization for which they
are intended. Because the example is being used to document LCL features,
rather than a real interface, the density of comments embedded within the
formal text is low, and most of the comments are in the accompanying
prose.

This example has been machine-checked for syntax and type correctness.
The .lcl and .lsl files have been checked by the LCL and LSL
Checkers, respectively. The .lh files were automatically generated by
the LCL Checker. The .lh, .h, and .c files were compiled by gcc (this

5In the pre-state, the value of control is the return address of the invocation.
Constructs like abort and longjmp can be specified as modifications of control.

5. LCL: A Larch Interface Language for C 63

took longer than all the Larch checking). Finally, the compiled code was
exercised by a test driver. Although we tried to be careful at each stage of
development, each of the mechanical checks caught errors that we had not.

The example is a very simplified employee data base. We

� start with a couple of traits defining useful operators on strings,

� move to a simple interface using exposed types to represent
individual employee records,

� introduce an abstract data type for representing sets of employees,

� specify the database interface,

� present a small test program,

� specify some modules that will be used in the implementation, and

� comment on the implementations.

STRING TRAITS

The traits in Figures 5.1 and 5.2 present a collection of operators on strings.
They are used throughout the interface specifications in this section.

The trait cstring, Figure 5.1, specializes the strings of the String
trait in Appendix A (page 173) to the null-terminated strings conven-
tionally used in C programs. Note that this trait defines the operators
throughNull, sameStr and lenStr only when they are applied to
null-terminated strings.

The trait sprint was written for specifying functions that convert
values to strings. It is intentionally weak. It doesn’t say much about
the meanings of its operators. This allows considerable flexibility in
implementing the interface functions. The first equation guarantees that
different T values will have different string forms, without specifying
what those forms are. The second equation gives two important properties
of acceptable string forms. We could repeat these properties in the interface
specification of each such function, but it is better to get them right once,
and then reuse the trait.

EMPLOYEE

The interface specified in Figure 5.3,employee, exports two constants,
three types, and four functions to its clients.

64 5.3. A guided tour through an LCL specification

cstring: trait
includes String(char, String), Integer(int for Int)
introduces
null: � char
nullTerminated: String � bool
throughNull: String � String
sameStr: String, String � bool
lenStr: String � int

asserts
� s, s1, s2: String, c: char
�nullTerminated(empty);
nullTerminated(s � c) ==

c � null � nullTerminated(s);
nullTerminated(s)
� throughNull(s � c) � throughNull(s);

�nullTerminated(s)
� throughNull(s � null) � s � null;

sameStr(s1, s2) ==
throughNull(s1) � throughNull(s2);

lenStr(s) == len(throughNull(s)) - 1

FIGURE 5.1. cstring.lsl fragment

sprint(T, String): trait
includes cstring
introduces
parse: String � T
unparse: T � String
isSprint: String, T � bool

asserts � t: T, s: String
parse(unparse(t)) == t;
isSprint(s, t) ==

parse(s) � t � nullTerminated(s)
implies T partitioned by unparse

FIGURE 5.2. sprint.lsl

5. LCL: A Larch Interface Language for C 65

constant int maxEmployeeName;
constant int employeePrintSize;

typedef enum {MALE, FEMALE, gender_ANY} gender;
typedef enum {MGR, NONMGR, job_ANY} job;
typedef struct {int ssNum;

char name[maxEmployeeName];
int salary;
gender gen;
job j;} employee;

uses employeeConstants, sprint(employee, char[]);

void employee_sprint(char s[], employee e) {
requires maxIndex(s) � employeePrintSize;
modifies s;
ensures isSprint(s’, e)
� lenStr(s’) � employeePrintSize;

}
bool employee_equal(employee *e1, employee *e2) {

ensures result � sameStr(e1�nameˆ, e2�nameˆ)
� (e1�ssNumˆ � e2�ssNumˆ)
� (e1�salaryˆ � e2�salaryˆ)
� (e1�genˆ � e2�genˆ)
� (e1�jˆ � e2�jˆ);

}
bool employee_setName(employee *e, char na[]) {

requires nullTerminated(naˆ);
modifies e
�name;
ensures result � lenStr(naˆ) � maxEmployeeName

� (if result
then sameStr(e
�name’, naˆ)

� nullTerminated(e
�name’)
else e
�name’ � e
�nameˆ);

}
void employee_initMod(void) {

ensures true;
}

FIGURE 5.3. employee.lcl

66 5.3. A guided tour through an LCL specification

employeeConstants: trait
assumes CTrait
introduces
maxEmployeeName, employeePrintSize: � int

asserts equations
maxEmployeeName � 0 � maxEmployeeName � 20;
employeePrintSize � 0 � employeePrintSize � 80

FIGURE 5.4. employeeConstants.lsl

The constant declarations give symbolic names for values that are used
elsewhere in the specification and that may be used by clients of the
interface. The allowable values of the two constants are restricted by
axioms in the trait employeeConstants, Figure 5.4. LCL interface
constants may be implemented either by macro definitions or by C const
variables.

The interface defines, in the lines that look like C typedefs, three exposed
types, gender, job and employee. Clients of this interface are being
told exactly how these types are represented, and clients may deal with
values of these types in any way allowed by Standard C.

The uses clause in Figure 5.3 directly incorporates two LSL specifica-
tions. The trait employeeConstants, which was written specifically
for use in employee.lcl, constrains the values of the two exported
constants: any int from 1 to 20 is allowed for maxEmployeeName
and any int from 1 to 80 is allowed for employeePrintSize. The
trait sprint gives the meaning of operators such as isSprint and
nullTerminated (recall that sprint includes cstring) that are
used later in the specification. Notice that the use of sprint involves a
renaming. The sort T of sprint.lsl is to be replaced by the sort on
which the type employee is based and the sort String by the sort on
which the type char[] is based.

The specification for each function gives both the precondition that is
assumed to hold in the pre-state (when the function is called) and the
postcondition that is guaranteed to hold in the post-state (upon return).
The function employee sprint is typical of a kind found in many
interfaces. It converts employee values into a string form suitable for
printing, and stores this string in an array. Its specification begins with
its function prototype. LCL prototypes are more restricted than C’s; LCL
requires that each of the formal parameters be named, so that the body of the

5. LCL: A Larch Interface Language for C 67

specification can refer to any parameter by name. Since all functions in an
interface are exported, the keyword extern will be added automatically
when employee.lh is generated.

The body of the specification consists of three clauses.

� The requires clause says that the array s must be big enough to hold
the longest string that could ever be returned.

� The modifies clause says that only the contents of the array s can be
changed.

� The ensures clause constrains the new value of s.

A good rule of thumb is that each object in the modifies clause should
appear in primed form at least once in the ensures clause—unless it is
intentionally not being constrained.

Array parameters are passed as pointers in C; s is a pointer to an array.
The term s’ denotes the vector of characters contained by the actual
parameter corresponding to s upon return from employee sprint.
Since struct parameters are copied, e denotes a value of type employee,
rather than a pointer.

This specification does not say what string will be generated for each
employee value—only that it will have certain properties. We might
want such freedom, for example, in a module that will have different
implementations for different countries, languages, or output devices. This
specification does not even require an implementation to be deterministic.6

Althoughour implementationofemployee does not exploit this freedom,
later interfaces will have implementations that do exploit allowed non-
determinism.

The specification of employee equal may strike the reader as
surprisingly complicated. The questions arises, why didn’t we use one
of the following, simpler, ensures clauses?

ensures result � ((*e1) � (*e2))

ensures result � ((*e1)ˆ � (*e2)ˆ)

The first of these clauses asserts that result is true exactly when e1
and e2 point to the same struct. This is unlikely to be appropriate. The
second clause asserts that result is true exactly when e1 and e2 point
to structs containing the same values. Even this is likely to be too strong,

6A function is deterministic if its post-state is completely determined by its pre-state.

68 5.3. A guided tour through an LCL specification

since it requires that the arrays containing the names be the same beyond
the terminating null character.

The function employee setName returns a value of type bool, the
one built-in type of LCL that is missing from C. When LCL specifications
are checked, bool is treated as a distinct type.

The requires clause in employee setName says that the function
should be called only with null-terminated strings. The implementation
is entitled to rely on this. Indeed, it must. It is not generally possible to
determine at runtime the maxIndex of an array. Yet without a guarantee
that a string is null-terminated, it is not safe to search for its terminating
null character, because the search might run past the end of the allocated
storage and generate references to nonexistent memory. Completely
defensive programming just isn’t possible in C. The implementation
of employee setName in employee.c, Figure 5.8, relies on this
property from its specification. It may crash if naˆ isn’t null-terminated.

The modifies clause says that employee setName may change one
field of its first argument, e->name, but nothing else. Unlike requires and
ensures clauses, a modifies clause constrains everything it doesn’t mention.

The ensures clause says that employee setName will have one of
two outcomes. It will either:

� Make the name field of its first argument the same as its second
argument (when both are interpreted as strings), make the new value
of the name field be null-terminated, and return TRUE, or

� Change nothing and return FALSE.

Furthermore, the first outcome will occur exactly when the new name
fits (i.e., lenStr(naˆ) � maxEmployeeName). The use of result
in several subterms of an ensures clause is a frequent idiom. Since the
predicate in the ensures clause is just a logical formula, it makes no
semantic difference whether the equation for result is written first or
last. We are free to choose an order that helps the exposition or emphasizes
some particular aspect of the specification.

In this example, we include an initMod function as part of every
interface. Later we will discuss the way in which we use these functions.
The function employee initMod is required by its specification to
have no visible effect, since it modifies nothing and returns no value. The
absence of a requires clause (equivalent to requires true) says that
it must always terminate.

5. LCL: A Larch Interface Language for C 69

/*PASS Output from LCL Version 1.7 11-AUG-1992 */
#include "bool.h"
typedef enum {

MALE,
FEMALE,
gender_ANY} gender;

typedef enum {
MGR,
NONMGR,
job_ANY} job;

typedef struct {
int ssNum;
char name[maxEmployeeName];
int salary;
gender gen;
job j;

} employee;

extern void employee_sprint (char s[], employee e);

extern bool employee_equal (employee *e1, employee *e2);

extern bool employee_setName (employee *e, char na[]);

extern void employee_initMod (void);

FIGURE 5.5. employee.lh

#if !defined(EMPLOYEE_H)
#define EMPLOYEE_H

#define maxEmployeeName (20)
#define employeeFormat "%9d %-20s %-6s %-11s %6d.00"
#define employeePrintSize (63)

#include "employee.lh"

#define employee_initMod() bool_initMod()
#endif

FIGURE 5.6. employee.h

70 5.3. A guided tour through an LCL specification

#if !defined(BOOL_H)
#define BOOL_H
#define FALSE 0
#define TRUE (! FALSE)
typedef int bool;
#define bool_initMod()
#endif

FIGURE 5.7. bool.h

From the specification in employee.lcl the LCL Checker generates
the file employee.lh, Figure 5.5. In addition to the appropriate typedefs
and function prototypes, it #includes bool.h, Figure 5.7, for the
implicitly imported interface bool. This is used in the implementation of
employee.h, Figure 5.6, and indirectly, in employee.c, Figure 5.8.

By convention, we start each .h files with a #if that makes sure that its
body will only be included once into any module. Both employee.c
and all clients of employee will include employee.h. In turn,
employee.h includes employee.lh, which provides prototypes.
The implementation of the function employee initMod is also in
employee.h.

The file employee.h, Figure 5.6, contains macros defining the
constants maxEmployeeName and employeePrintSize. Because
of a restriction imposed by C, the definition of maxEmployeeName must
precede the inclusion of employee.lh, since it is used in the typedef
of employee. The #define cannot be automatically generated because
the LCL processor has no way of knowing what value the constant is to
have; the specification leaves that design decision to the implementation.

The file employee.h also implements employee initMod. Our
convention is that each module initializes every module it explicitly
imports. Thus employee initMod calls bool initMod.7

In general, M.h contains, in order:

� A test of whether M H is #defined in the current context. This
make sure that, for example, a client of M can safely include it, and
other clients can include them both without getting errors caused by
repeated type definitions.

7Since the specification of employee initMod guarantees that it modifies nothing,
calling it multiple times cannot have effects visible to clients.

5. LCL: A Larch Interface Language for C 71

#include <stdio.h>
#include "employee.h"

bool employee_setName(employee *e, char na []) {
int i;

for (i = 0; na[i] != ’\0’; i++)
if (i == maxEmployeeName) return FALSE;

strcpy(e->name, na);
return TRUE;

}
bool employee_equal(employee * e1, employee * e2) {

return ((e1->ssNum == e2->ssNum)
&& (e1->salary == e2->salary)
&& (e1->gen == e2->gen)
&& (e1->j == e2->j)
&& (strncmp(e1->name, e2->name,

maxEmployeeName) == 0));
}
void employee_sprint(char s[], employee e) {

static char *gender[] ={"male", "female", "?"};
static char *jobs[] = {"manager", "non-manager", "?"};

(void) sprintf(s,
employeeFormat,
e.ssNum,
e.name,
gender[e.gen],
jobs[e.j],
e.salary);

}

FIGURE 5.8. employee.c

72 5.3. A guided tour through an LCL specification

� A definition of M H.

� Definitions of all constants declared in M.lcl, either as macros or
as C const variables.

� Concrete representations (typedefs) for any abstract types declared
in M.lcl.

� A #include of M.lh.

� Macros, if any, for inline implementations of functions with
prototypes in M.lh.

EMPSET

Empset, in Figure 5.9, is a mutable abstract type. Values of the type are
objects that contain sets of employees. As we have seen, exposed types
are specified using C typedefs. Abstract types are specified as collections
of functions that manipulate values of the type. The representation of these
values is hidden within the implementation. Clients can create, modify and
examine empsets by calling the functions specified in the interface, but
they cannot directly access the representation of empsets.

Type checking for abstract types in both the LCL Checker and LCLint
is based on type names, not on their representations. However, within
the implementation of the module exporting an abstract type, LCLint
treats the abstract type and its representation as the same. This allows
the implementation to access the internal structure that is hidden from
clients.

The imports clause of empset.lcl says that the specification of
the empset interface depends on the specification of employee;
it gives empset and its clients access to the constants, types and
functions exported by employee. It also makes the trait associated
with the employee interface a part of the specification of the empset
interface. Such specification dependencies should not be confused with
implementation dependencies, where one module is used within the
implementation of another. Implementation dependencies are typically a
superset of the specification dependencies. Clients, however, should not
be concerned with implementation dependencies.

The uses clause brings in two traits. The trait sprint is used in exactly
the same way as it was inemployee. The invocation of the LSL handbook
traitSet (page 167) substitutes the sort on which typeemployee is based
for E and the sort on which type empset is based for C.

5. LCL: A Larch Interface Language for C 73

imports employee;
mutable type empset;
uses Set(employee, empset),

sprint(empset, char[]);

empset empset_create(void) {
ensures fresh(result) � result’ � { };
}

void empset_final(empset s) {
modifies s;
ensures trashed(s);
}

void empset_clear(empset s) {
modifies s;
ensures s’ � { };
}

bool empset_insert(empset s, employee e) {
modifies s;
ensures result � �(e 	 sˆ) � s’ � insert(e, sˆ);
}

void empset_insertUnique(empset s, employee e) {
requires �(e 	 sˆ);
modifies s;
ensures s’ � insert(e, sˆ);
}

bool empset_delete(empset s, employee e) {
modifies s;
ensures result � e 	 sˆ � s’ � delete(e, sˆ);
}

empset empset_union(empset s1, empset s2) {
ensures result’ � s1ˆ � s2ˆ � fresh(result);
}

FIGURE 5.9. empset.lcl, part 1

74 5.3. A guided tour through an LCL specification

empset empset_disjointUnion(empset s1, empset s2) {
requires s1ˆ � s2ˆ � { };
ensures result’ � s1ˆ � s2ˆ � fresh(result);
}

void empset_intersect(empset s1, empset s2) {
modifies s1;
ensures s1’ � s1ˆ � s2ˆ;
}

int empset_size(empset s) {
ensures result � size(sˆ);
}

bool empset_member(employee e, empset s) {
ensures result � e 	 sˆ;
}

bool empset_subset(empset s1, empset s2) {
ensures result � s1ˆ � s2ˆ;
}

employee empset_choose(empset s) {
requires sˆ �� { };
ensures result 	 sˆ;
}

char *empset_sprint(empset s) {
ensures isSprint(result[]’, sˆ)
� fresh(result[]);

}
void empset_initMod(void) {

ensures true;
}

FIGURE 5.9. empset.lcl, part 2

5. LCL: A Larch Interface Language for C 75

empset es1, es2;
es1 = empset_create();
es2 = es1;
empset_insert(es2, e);
if (empset_size(es1) == 1) printf("Sharing.");

else printf("No sharing.");

FIGURE 5.10. Code to test for sharing

empset es1, es2;
es1 = empset_create();
es2 = empset_create();
if (es1 == es2) printf("Same object.");
else printf("Different objects.");

FIGURE 5.11. Code to test meaning of ==

Clients may write assignment statements involving variables and values
of abstract types. Since the value of an object of a mutable abstract type is
itself an object, assignments produce sharing. Consider, for example, the
code fragment in Figure 5.10.
Because of the semantics associated with mutable abstract types, this

program code will print “Sharing.” As we shall see shortly, it is the
responsibility of the implementor of the type to ensure that assignment
has the proper semantics.

Clients may not write code that uses C’s==operator to compare values of
abstract types. The problem is that for mutable abstract types an expression
of the form x == y would return true exactly when x and y denote the
same object. For example, the code in Figure 5.11 would print “Different
objects.” For immutable abstract types, however, the result of a comparison
using==would be unpredictable, since the implementationhas the freedom
to have or not have multiple copies of the same value. We return to this
point in Section 5.3.

The first two functions exported by empset.lcl, empset create
andempset final, are typical of functions found in interfaces exporting
abstract types.

The first conjunct in the ensures clause of empset create says
that the function returns a fresh object of type empset. Saying that it is
fresh means that it is not aliased to any objects visible in the pre-state. The
second conjunct says that the value of the returned object is the empty set
of employees. This function will typically appear in a statement of the

76 5.3. A guided tour through an LCL specification

form es = empset create(). Since empsets are mutable, calls
to other functions exported by this interface, such as empset insert,
can then be used to change the value contained by the object.

A client of empset should call empset final when it is certain that
an empset object will never be referenced again. The clause ensures
trashed(s) says that upon return from empset final(es) nothing
can be assumed about the value of the object to which es is bound. The
assertion trashed(s) is not equivalent to

modifies s

ensures true

because referencing a trashed object can even cause the client program to
crash.

A good implementation of empset final will free storage that is no
longer needed, although this specification does not require it to. Since
a client has no information about how an empset is represented, it
cannot directly free the storage consumed by an empset. For example,
if empset were implemented as a pointer to a pointer to a data structure,
the call free(es) would free only the pointer, not the data structure.

The third function in the interface, empset clear, is provided for
reinitializing an existing empset. Unlike empset create, it does not
create a new empset but rather has a side effect on an existing object.

The functions empset insert and empset insertUnique both
add an employee to an empset. The chief difference is that the latter
requires that the employee to be added is not already present. This may
make it possible to implement the function more efficiently. However, if
the requirement is violated, the behavior of empset insertUnique
is totally unconstrained by the specification. The implementation we give
later does not check the requirement. If it is violated the implementation
returns without complaint, but it breaks a representation invariant—thus
leading to unpredictable behavior on subsequent uses of the empset.

The functions empset union and empset disjointUnion both
return the union of two empsets. Once again, the requires clause makes
it possible to implement one more efficiently than the other. Notice that
even though s1 and s2 are not modified, the specifications refer to s1ˆ
and s2ˆ. The ˆ is needed because s1 and s2 refer to objects. These must
be evaluated in some state to get a value. Here s1 and s2 contain the same
values in the pre- and post-states. By convention, we use ˆ rather than ’
for objects that are guaranteed to have the same values in both states.

Since both functions are required (by fresh(result)) to return sets

5. LCL: A Larch Interface Language for C 77

that are not aliased to any objects visible in the pre-state, the sets that
they return can be modified without affecting the values of other sets. For
example, knowing that the result empset is fresh allows the client to pass
it to empset final without worrying about having an effect on other
empsets.

One way of ensuring freshness is to allocate new storage. This raises
the question of what happens if there is no storage to allocate. In the
implementations of these functions (see Appendix B), this is handled by
printing a message and terminating the program.8 But such behavior seems
to violate the specification, which says that they should return. We could
have augmented the specification to take the possibility of running out
of storage into account, but it would have been tedious and not very
informative. Almost every function may fail for lack of storage in the stack
or heap. So the possibility of exiting the entire program, instead of returning
from the function, is implicit in every ensures clause. This allows any
function to terminate the program. Of course, responsible implementors
do not take wanton advantage of this. For some applications it may be
important to specify interfaces that preclude running out of storage.

The requires clause of empset choose is necessary to guarantee that
the ensures clause is satisfiable. If sˆ is empty, it is not possible to return
an employee that is a member. If sˆ contains more than one element, the
specification allows any member sˆ to be returned. The implementation
we present later gains efficiency by being abstractly non-deterministic:
A single abstract empset value may have many different representations
(depending on the order in which its elements were inserted), and the value
returned by empset choose is determined by the representation value
passed in.

Although the remaining functions are a necessary part of this interface,
they don’t illustrate any new LCL features. An implementation of the
interface is given in Appendix B.

DBASE

The next specification describes a simple data base of employees.
Up to now we have presented modules by first giving an interface

specification, then its auxiliary LSL specification, and finally, its imple-
mentation. This works well when the reader has good a priori intuition

8For simplicity, our implementation checks inline after each allocation. In practice, it is
better to isolate this by calling user-supplied allocation routines.

78 5.3. A guided tour through an LCL specification

about the meaning of the abstractions used in the interface specification.
When such intuition cannot be relied upon, it is often better to present the
auxiliary specification first, as we do here.

Figure 5.12 contains a trait that constrains the kinds of elements a
database may contain. Not coincidentally, it corresponds closely to the
trait associated with employee.lcl. It is assumed by the dbase trait.

Figure 5.13 starts by including Set. This inclusion tells us that
a db is a set of employees. Recall that employee is defined in
dbaseAssumptions to be a tuple with five fields. Notice that since
a db is merely a set of tuples, no invariant about the elements, e.g., that no

dbaseAssumptions: trait
includes Set(employee for E, empset for C)
gender enumeration of MALE, FEMALE, gender_ANY
job enumeration of MGR, NONMGR, job_ANY
employee tuple of ssNum: int,

name: employee_name,
salary: int,
gen: gender,
j: job

FIGURE 5.12. dbaseAssumptions.lsl

dbase: trait
assumes dbaseAssumptions
includes Set(db for C, employee for E, new for {},

hire for insert)
db_q tuple of g:gender, j: job, l: int, h: int
db_status enumeration of db_OK, salERR, genderERR,

jobERR, duplERR
introduces

query: db, db_q � empset
match: gender, gender � bool
match: job, job � bool
fire, promote: db, int � db
setSal: db, int, int � db
find: db, int � employee
employed: db, int � bool
numEmployees: db � int

FIGURE 5.13. dbase.lsl, part 1

5. LCL: A Larch Interface Language for C 79

asserts
� e: employee, k: int, g, gq: gender,

j, jq: job, q: db_q, sal: int, d: db
query(new, q) == { };
query(hire(e, d), q) ==
if match(q.g, e.gen) � match(q.j, e.j)

� q.l � e.salary � e.salary � q.h
then insert(e, query(d, q)) else query(d, q);

match(gq, g) == gq � gender_ANY � g � gq;
match(jq, j) == jq � job_ANY � j � jq;
fire(new, k) == new;
fire(hire(e, d), k) ==
if e.ssNum � k

then fire(d, k) else hire(e, fire(d, k));
promote(new, k) == new;
promote(hire(e, d), k) ==
if e.ssNum � k
then hire(set_j(e, MGR), promote(d, k))
else hire(e, promote(d, k));

setSal(new, k, sal) == new;
setSal(hire(e, d), k, sal) ==
if e.ssNum � k
then hire(set_salary(e, sal),

setSal(d, k, sal))
else hire(e, setSal(d, k, sal));

employed(d, k)
� (find(d, k).ssNum � k � find(d, k) 	 d);

employed(new, k) == false;
employed(hire(e, d), k) ==
e.ssNum � k � employed(d, k);

numEmployees(new) == 0;
numEmployees(hire(e, d)) == numEmployees(d)

+ (if employed(d, e.ssNum) then 0 else 1);

FIGURE 5.13. dbase.lsl, part 2

80 5.3. A guided tour through an LCL specification

two employees have the same ssNum, is implied. This is in contrast to
type db, whose specification, Figure 5.14, does imply such an invariant.

In addition to the operators inherited from Set, the trait introduces
a number of operators that will prove useful in writing dbase.lcl.
Understanding the meaning of these operators is the key to understanding
dbase.lcl, Figure 5.14.

The most interesting of these operators is query. The first two
axioms imply that the value of query(d, q) is the set containing all
employees in the data base that match the gender and job fields of q
and that have salaries between q.l and q.h.

The dbase interface encapsulates a database and a set of functions
to query and manipulate it. It exports two exposed types, db q and
db status, and a number of functions. It also contains our first use
of global variables. LCL uses the same scope rules as C. However, LCL
extends the function prototype by including a list of the global variables
referenced by the function. LCLint will check that each global variable
accessed by the function body appears in its globals list.

At first glance, it may seem a bit surprising that we have chosen to make
db an immutable type. The reason for this is that we don’t intend to have
formals of type db. Changes to the global variable d will be described as
changes to the binding of the variable, not as mutations to the object to
which the variable is bound in the pre-state.

As it happens, the global variable in dbase is a specification variable.
Such variables are declared solely to facilitate writing specifications.
Neither the specification variable d nor the specification type db is
exported by the interface. Client code cannot refer to either. Furthermore,
since they are not exported, specification types and variables need not be
implemented. In fact, neither the type db nor the variable d appears in our
implementation of this interface.

This example contains our first use of the an LCL claims clause. Such
clauses play a role analogous to the implies clauses of LSL. They assert
facts that the specifier believes should be derivable from the rest of the
specification. The claims clause here asserts that ssNums are unique
keys for employees. The term d� is analogous to dˆ and d’; it means “the
value of d in any state visible to clients of this interface.” Therefore, this
claim is an invariant that must hold in all states visible to clients. As we
shall see shortly, such invariants can be verified by data type induction.

The function hire is closely related to the operator hire of
dbase.lsl. The difference is that it does some error checking and returns

5. LCL: A Larch Interface Language for C 81

imports employee, empset, stdio;

typedef struct{gender g; job j; int l; int h;} db_q;
typedef enum {db_OK, salERR, genderERR, jobERR,

duplERR, missERR} db_status;
spec immutable type db;
spec db d;

uses dbase, sprint(ioStream, db);

claims UniqueKeys(employee e1, employee e2) db d; {
ensures
(e1 	 d� � e2 	 d� � e1.ssNum � e2.ssNum)
� (e1 � e2);

}

db_status hire(employee e) db d; {
modifies d;
ensures
(if result � db_OK
then d’ � hire(e, dˆ) else d’ � dˆ)
� result �

(if e.gen � gender_ANY then genderERR
else if e.j � job_ANY then jobERR
else if e.salary � 0 then salERR
else if employed(dˆ, e.ssNum) then duplERR
else db_OK);

}
void uncheckedHire(employee e) db d; {

requires e.gen �� gender_ANY � e.j �� job_ANY
� e.salary � 0 � �employed(dˆ, e.ssNum);

modifies d;
ensures d’ � hire(e, dˆ);
}

bool fire(int ssNum) db d; {
modifies d;
ensures result � employed(dˆ, ssNum)
� d’ � fire(dˆ, ssNum);

}

FIGURE 5.14. dbase.lcl, part 1

82 5.3. A guided tour through an LCL specification

int query(db_q q, empset s) db d; {
modifies s;
ensures s’ � sˆ � query(dˆ, q)

� result � size(query(dˆ, q));
}

bool promote(int ssNum) db d; {
modifies d;
ensures
result � (employed(dˆ, ssNum)

� find(dˆ, ssNum).j � NONMGR)
� (if result then d’ � promote(dˆ, ssNum)

else d’ � dˆ);
}

db_status setSalary(int ssNum, int sal) db d; {
modifies d;
ensures
result �

(if employed(dˆ, ssNum)
then (if sal � 0 then salERR else db_OK)
else missERR)

� (if result � db_OK
then d’ � setSal(dˆ, ssNum, sal)
else d’ � dˆ);

}
void db_print(void) db d; FILE *stdout; {

modifies *stdoutˆ;
ensures � s:ioStream (

(*stdoutˆ)’ � write((*stdoutˆ)ˆ, s)
� isSprint(dˆ, s));

}
void db_initMod(void) db d; {

modifies d;
ensures d’ � new;
}

FIGURE 5.14. dbase.lcl, part 2

5. LCL: A Larch Interface Language for C 83

a result indicating the outcome of this checking.
The functionuncheckedHire does no error checking. Of course, if it

is called when its requires clause does not hold, it is likely to do something
unfortunate that may not be detected for quite some time. Both functions
modify the specification variable d. Since d is a global variable rather than
a formal parameter, it can be accessed directly; there is no need to pass in
a pointer to it.

The function query is also closely related to the LSL operator query.
But the operator returns an empset and the function returns an int equal
to the number of employees added to s as the required side effect of calling
query. This is a common C idiom.

Now we can use data type induction, discussed in Chapter 3, to show
that the claims clause holds. The function dbase initMod ensures
that d starts out empty. The only functions that are allowed to add
employees to d are hire and uncheckedHire. If hire is called with
an employee whose ssNum is already in d, its specification says that it
must return duplERR and leave d unchanged. Finally, the requires clause
ofuncheckedHire forbids calling the function with an employee whose
ssNum is already in d.

The only thing of note about dbase.lh, Figure 5.15, is that the
specification variable and specification type do not appear in it.

An implementation of dbase is presented in Appendix B.

A TEST DRIVER FOR DBASE

Before looking at the abstractions used in the implementation of dbase,
we pause to take a look at some code that uses dbase. Figure 5.16 is part
of a program we used to test our implementations of the modules specified
earlier in this section.

The program drive begins with a series of #includes of the .h files
for the modules containing functions or types that it uses directly. It does
not include any subsidiary modules that they may use. While the included
.h files are necessary to compile the driver, to understand the code one
need look only at the corresponding .lcl files. If the implementation of
one of the used modules, such as empset, should change, drive would
have to be re-linked or re-compiled (depending upon whether the .h files
#included indrivewere modified), butdrive’s code would not have
to be changed.

After declaring some variables, drive initializes the included modules.
LCLint will issue a warning if this initialization is not done immediately

84 5.3. A guided tour through an LCL specification

/*PASS Output from LCL Version 1.7 11-AUG-1992 */
#include "bool.h"
#include "employee.h"
#include "empset.h"
#include "stdio.h"
typedef struct {

gender g;
job j;
int l;
int h;

} db_q;

typedef enum {
db_OK,
salERR,
genderERR,
jobERR,
duplERR,
missERR} db_status;

extern db_status hire (employee e);

extern void uncheckedHire (employee e);

extern bool fire (int ssNum);

extern int query (db_q q, empset s);

extern bool promote (int ssNum);

extern db_status setSalary (int ssNum, int sal);

extern void db_print (void);

extern void db_initMod (void);

FIGURE 5.15. dbase.lh

5. LCL: A Larch Interface Language for C 85

/* Include those modules that export */
/* things used explicitly here */
#include <stdio.h>
#include "bool.h"
#include "employee.h"
#include "empset.h"
#include "dbase.h"

int main(int argc, char *argv[]) {
employee e;
empset es;
char na[10000];
char * sprintResult;
int i, j;
db_status stat;
db_q q;

/* Initialize the LCL-specified modules */
/* that were included */

bool_initMod();
employee_initMod();
empset_initMod();
db_initMod();

/* Perform tests */
for (i = 0; i < 20; i++) {

e.ssNum = i;
e.salary = 1000 * i;
if (i < 10) e.gen = MALE; else e.gen = FEMALE;
if (i < 15) e.j = NONMGR; else e.j = MGR;
(void) sprintf(na, "J. Doe %d", i);
employee_setName(&e, na);
if (i%2 == 0) hire(e);

else {
uncheckedHire(e);
stat = hire(e);
if (stat != duplERR)

printf("Error 1: Duplicate not found\n");
}

}
printf("Should print 20 employees:\n");
db_print();

/* ... */

FIGURE 5.16. Fragment of test driver

86 5.3. A guided tour through an LCL specification

following the declarations of the function main. Since the author of main
has no way of knowing what modules are used in the implementations of
the included modules, the various initMod functions must themselves
call the initMod functions of the modules they use. This could result in
some initMod functions being called more than once, which is why their
specifications typically require them to be idempotent.

The driver then calls some of the specified functions. Effects that are fully
constrained by specifications, such as the result returned by fire, are
checked internally. Where the specification allows a variety of acceptable
effects, output is printed so it can be checked by eye or by a test harness
that compares it with the output of a previous run.

We now move down a level of abstraction and specify three interfaces
that are useful in implementing the modules specified above. In order to
avoid storing more than one copy of an employee, the implementations
of db andempset use handles that “point” to objects of typeemployee.
These handles are defined in eref.lcl. The functions specified in
ereftab.lcl are used to ensure that the mapping from employees
to erefs is one-to-one. The interface erc.lcl exports a type that is
basically a bag of erefs. Objects of type erc are used both to represent
empsets and within the implementation of db.

EREF

Figure 5.17, introduces an immutable abstract type. Values of typeeref
can be thought of as abstract pointers to employees. They can be used
in much the same way as pointers, except that no functions corresponding
to pointer arithmetic have been supplied. Using erefs rather than actual
pointers offers several advantages:

� It provides a level of abstraction. The implementor can change the
implementation, e.g., from an index into an array to a pointer, without
worrying about invalidating client code.

� It allows private storage management. For example, a compacting
storage manager can be written, since all access must be through
functions in the module.

� It is more general, allowing references to data that is in another
address space, on another machine, on a disk, etc.

5. LCL: A Larch Interface Language for C 87

imports employee;

immutable type eref;
spec immutable type map;

spec map m;
constant eref erefNIL � nil;

uses refTable(eref, employee, map);

eref eref_alloc(void) map m; {
modifies m;
ensures newInd(result, mˆ, m’);
}

void eref_free(eref er) map m; {
requires er 	 domain(mˆ);
modifies m;
ensures m’ � delete(mˆ, er);
}

void eref_assign(eref er, employee e) map m; {
requires er 	 domain(mˆ);
modifies m;
ensures m’ � assign(mˆ, er, e);
}

employee eref_get(eref er) map m; {
requires er 	 domain(mˆ);
ensures result � mˆ[er];
}

bool eref_equal(eref er1, eref er2) {
ensures result � (er1 � er2);
}

void eref_initMod(void) map m; {
modifies m;
ensures m’ � new;
}

FIGURE 5.17. eref.lcl

88 5.3. A guided tour through an LCL specification

refTable(Ind, Val, Tab): trait
includes Set(Ind, IndSet)
introduces

new: � Tab
assign: Tab, Ind, Val � Tab
delete: Tab, Ind � Tab
__[__]: Tab, Ind � Val
domain: Tab � IndSet
nil: � Ind
newInd: Ind, Tab, Tab � Bool

asserts
Tab generated by new, assign
Tab partitioned by __[__], domain
� i, i1, i2: Ind, v: Val, t,t1,t2: Tab
delete(new, i) == new;
delete(assign(t, i1, v), i2) ==

if i1 � i2
then delete(t, i2)
else assign(delete(t, i2), i1, v);

assign(t, i1, v)[i2] ==
if i1 � i2 then v else t[i2];

domain(new) � {};
domain(assign(t, i, v)) ==

insert(i, domain(t));
newInd(i, t1, t2) == �(i 	 domain(t1))

� domain(t2) � insert(i, domain(t1))
� �(i � nil)

FIGURE 5.18. refTable.lsl

5. LCL: A Larch Interface Language for C 89

#if !defined(EREF_H)
#define EREF_H

#include "employee.h"

typedef int eref;

/* Private typedefs used in macros */
typedef enum {used, avail} eref_status;
typedef struct {employee *conts;

eref_status *status;
int size;} eref_ERP;

/* Declared here so that macros can use it */
extern eref_ERP eref_Pool;

#include "eref.lh"

#define erefNIL -1
#define eref_free(er) (eref_Pool.status[er] = avail)
#define eref_assign(er, e) (eref_Pool.conts[er] = e)
#define eref_get(er) (eref_Pool.conts[er])
#define eref_equal(er1, er2) (er1 == er2)
#endif

FIGURE 5.19. eref.h

90 5.3. A guided tour through an LCL specification

#include <stdio.h>
#include "eref.h"

eref_ERP eref_Pool; /* private */
static bool needsInit = TRUE; /* private */

eref eref_alloc(void) {
int i, res;

for (i=0;
(eref_Pool.status[i] == used)

&& (i < eref_Pool.size);
i++);

res = i;
if (res == eref_Pool.size) {

eref_Pool.conts =
(employee*) realloc(eref_Pool.conts,

2*eref_Pool.size*sizeof(employee));

if (eref_Pool.conts == 0) {
printf("Malloc returned null in eref_alloc\n");
exit(1);

}
eref_Pool.status =
(eref_status*)realloc(eref_Pool.status,

2*eref_Pool.size*sizeof(eref_status));
if (eref_Pool.status == 0) {
printf("Malloc returned null in eref_alloc\n");
exit(1);

}
eref_Pool.size = 2*eref_Pool.size;
for (i = res+1; i < eref_Pool.size; i++)

eref_Pool.status[i] = avail;
}
eref_Pool.status[res] = used;
return (eref) res;

}

FIGURE 5.20. eref.c, part 1

5. LCL: A Larch Interface Language for C 91

void eref_initMod(void) {
int i;
const int size = 16;

if (needsInit == FALSE) return;
needsInit = FALSE;
bool_initMod();
employee_initMod();
eref_Pool.conts =

(employee *) malloc(size*sizeof(employee));
if (eref_Pool.conts == 0) {

printf("Malloc returned null in eref_initMod\n");
exit(1);

}
eref_Pool.status =

(eref_status *) malloc(size*sizeof(eref_status));
if (eref_Pool.status == 0) {

printf("Malloc returned null in eref_initMod\n");
exit(1);

}
eref_Pool.size = size;
for (i = 0; i < size; i++) eref_Pool.status[i] = avail;

}

FIGURE 5.20. eref.c, part 2

92 5.3. A guided tour through an LCL specification

In eref.lcl, the specification variable m is used to keep track of the
set of extanterefs (so that the specificationeref alloc can say that the
result is a new eref) and of the mapping from erefs to employees.
Trait refTable, Figure 5.18, specifies the operators on the values of
objects of type map.

Figures 5.19 and 5.20 contain an implementation of eref.
The implementation variable eref Pool has much the same role in

the implementation as the specification variable m did in eref.lcl.
However, there are other implementations that would not have anything
corresponding to m, for example, one that used the C type employee *
to represent erefs. Because the implementation variable eref Pool is
used in macro definitions, C requires it to be declaredextern ineref.h,
even though clients of eref should not reference it—or even know about
its existence.

In this implementation of eref, the function eref equal is
implemented by a macro that uses ==. However, one can imagine
implementations of eref for which this would not work. Suppose, for
example, the implementation used a gratuitous level of indirection and
made int * the representation of eref. Theneref equal would have
to be implemented as *er1 == *er2. This illustrates why LCLint will
generate a warning if clients use the== operator directly, rather than calling
eref equal.

ERC

Figures 5.21 and 5.22 together specify a set of functions operating on the
mutable abstract types,erc (for “employee ref collection”) andercIter.
These types and functions are used in the implementation of both empset
and dbase.

An erc is essentially a bag.9 Most of the functions on erc’s are
unremarkable.; the unusual functions in this specification are those that
deal with ercIters.

Objects of type ercIter are used by clients to iterate over all the
elements of an erc. In the specification, Figure 5.21, (though not in the
implementation, discussed on page 99) ercIter’s are modeled as a pair
consisting of the erc to be iterated over and a bag containing those erefs
that have not been yielded to the client. The function erc iterStart

9Trait Bag can be found in Appendix A, page 169.

5. LCL: A Larch Interface Language for C 93

erc: trait
assumes CTrait
includes Bag(eref, ercElems)
erc tuple of val:ercElems, activeIters: int
ercIter tuple of toYield: ercElems, eObj: ercObj
introduces
{}: � erc
yielded: eref, ercIter, ercIter � bool
startIter: erc � erc
endIter: erc � erc

asserts
� e: eref, it1, it2: ercIter, c: erc
{} == [{}, 0];
yielded(e, it1, it2) == e 	 it1.toYield

� it2 � [delete(e, it1.toYield), it1.eObj];
startIter(c) == [c.val, c.activeIters + 1];
endIter(c) == [c.val, c.activeIters - 1]

FIGURE 5.21. erc.lsl

94 5.3. A guided tour through an LCL specification

imports eref;

mutable type erc;
mutable type ercIter;

uses erc(obj erc for ercObj), sprint(erc, char[]);

erc erc_create(void) {
ensures fresh(result) � result’ � { };
}

void erc_clear(erc c) {
requires cˆ.activeIters � 0;
modifies c;
ensures c’ � { };
}

void erc_insert(erc c, eref er) {
requires cˆ.activeIters � 0 � er �� erefNIL;
modifies c;
ensures c’ � [insert(er, cˆ.val), 0];
}

bool erc_delete(erc c, eref er) {
requires cˆ.activeIters � 0;
modifies c;
ensures result � er 	 cˆ.val
� c’ � [delete(er, cˆ.val), 0];

}
bool erc_member(eref er, erc c) {

ensures result � er 	 cˆ.val;
}

FIGURE 5.22. erc.lcl, part 1

5. LCL: A Larch Interface Language for C 95

eref erc_choose(erc c) {
requires size(cˆ.val) �� 0;
ensures result 	 cˆ.val;
}

int erc_size(erc c) {
ensures result � size(cˆ.val);
}

ercIter erc_iterStart(erc c) {
modifies c;
ensures fresh(result) � result’ � [cˆ.val, c]
� c’ � startIter(cˆ);

}
eref erc_yield(ercIter it) {

modifies it, itˆ.eObj;
ensures if itˆ.toYield �� { }
then yielded(result, itˆ, it’)
� (itˆ.eObj)’ � (itˆ.eObj)ˆ

else result � erefNIL � trashed(it)
� (itˆ.eObj)’ � endIter((itˆ.eObj)ˆ);

}
void erc_iterFinal(ercIter it) {

modifies it, itˆ.eObj;
ensures trashed(it)
� (itˆ.eObj)’ � endIter((itˆ.eObj)ˆ);

}
void erc_join(erc c1, erc c2) {

requires c1ˆ.activeIters � 0;
modifies c1;
ensures c1’ � [c1ˆ.val � c2ˆ.val, 0];
}

char *erc_sprint(erc c) {
ensures isSprint(result[]’, cˆ) � fresh(result[]);
}

void erc_final(erc c) {
modifies c;
ensures trashed(c);
}

void erc_initMod(void) {
ensures true;
}

FIGURE 5.22. erc.lcl, part 2

96 5.3. A guided tour through an LCL specification

maps an erc into an ercIter in which all the elements remain to be
yielded. Each time erc yield is called with this object, it returns an
eref and updates the ercIter by deleting the returned eref from the
bag of erefs that remain to be yielded. When each eref has been yielded
as many times as it occurs in the erc, erc yield returns erefNIL.

Iterator functions are typically used in code of the form

eref er;
erc c;
ercIter it;
. . .
for_ercElems(er, it, c) {
Body of loop
}

where for ercElems is defined by the macro

#define for_ercElems(er, it, c)\
for (er = erc_yield(it = erc_iterStart(c));\

er != erefNIL;\
er = erc_yield(it))

It is often the case that the body of an iteration itself uses an iterator.
The introduction of ercIters makes it possible to have nested iterations
over the same erc.

One question that arises with this programming paradigm concerns what
happens if the erc is modified within the body of the loop. Writing
specifications that give a precise semantics for such a situation is not
difficult. However, building an efficient implementation is. For that reason,
our specification forbids modification of an erc that is being iterated over.

In erc.lsl, Figure 5.21, an erc is modeled as a pair of a bag of
ercElems and an int. The bag is used to contain the elements of the
erc and the int is used, in erc.lcl, to keep track of the number of
active iterators. This makes it possible to write requires clauses that prohibit
calling a function that might modify an erc while that erc is being
iterated over. Conceptually, the function erc iterStart increments
the number of active iterators. The function erc yield decrements the
number of active iterators when it has yielded the last element. The function
erc iterFinal also decrements the number of active iterators. This
function should be called before exiting prematurely (e.g., by break or
return) from the body of an iteration.10

10The function erc iterFinal can be used in macros to define versions of return
and break that are appropriate for use within iterations. An example of this appears in
Appendix B.

5. LCL: A Larch Interface Language for C 97

imports employee, eref;

mutable type ereftab;

uses ereftab;

ereftab ereftab_create(void) {
ensures result’ � empty;
}

void ereftab_insert(ereftab t, employee e, eref er) {
requires getERef(tˆ, e) � erefNIL;
modifies t;
ensures t’ � add(tˆ, e, er);
}

bool ereftab_delete(ereftab t, eref er) {
modifies t;
ensures result � in(tˆ, er) � t’ � delete(tˆ, er);
}

eref ereftab_lookup(employee e, ereftab t) {
ensures result � getERef(tˆ, e);
}

void ereftab_initMod(void) {
ensures true;
}

FIGURE 5.23. ereftab.lcl

Again, the implementation is not presented here, but appears in
Appendix B.

EREFTAB

The last module in our example is ereftab, Figures 5.23 and 5.24. It
is used to create a one-to-one mapping from employees to erefs. It
makes it unnecessary to store multiple copies of the same employee
record within the implementation of empset.

The intended use of ereftab insert is to put an employee in
an ereftab only after a lookup has failed to find an eref for that
employee. The requires clause of ereftab insert formalizes this
property, and allows the implementation not to duplicate a test that has just
been made by the client.

The implementationof ereftab is unremarkable, and is not presented.

98 5.3. A guided tour through an LCL specification

ereftab: trait
assumes CTrait
introduces
empty: � ereftab
add: ereftab, employee, eref � ereftab
delete: ereftab, eref � ereftab
getERef: ereftab, employee � eref
erefNIL: � eref
in: ereftab, eref � bool
size: ereftab � int

asserts
ereftab generated by empty, add
ereftab partitioned by getERef
� e, e1: employee, er, er1: eref, t: ereftab
delete(empty, er) == empty;
delete(add(t, e, er), er1) ==

if er � er1 then t
else add(delete(t, er1), e, er);

in(empty, er) == false;
in(add(t, e, er), er1) == er � er1 � in(t, er);
getERef(empty, e1) == erefNIL;
getERef(add(t, e, er), e1) ==

if e � e1 then er else getERef(t, e1);
size(empty) == 0;
size(add(t, e, er)) ==

1 + (if in(t, er) then 0 else 1)

FIGURE 5.24. ereftab.lsl

5. LCL: A Larch Interface Language for C 99

typedef struct _elem
{eref val; struct _elem *next;} ercElem;

typedef ercElem *ercList;
typedef struct {ercList vals; int size;} ercInfo;
typedef ercInfo *erc;
typedef ercList *ercIter;

FIGURE 5.25. erc’s representation

IMPLEMENTATION NOTES

Here we take the opportunity to make some comments about the
relationship of these specifications to the implementations presented in
Appendix B.

In erc.lcl, Figure 5.22, the value of an object of type erc was
modeled as a pair of a bag and an integer. The integer was used to keep track
of the number of active iterators. Figure 5.25 contains the representation
used in the implementation of erc and ercIter. The representation of
erc is a pair, but the integer is not used to keep track of the number of
active iterators. Rather it contains the number of elements in the erc. In
fact, the implementation has no need to keep track of the number of active
iterators. It is the responsibility of the clients of this interface to ensure
that the requires clause holds whenever a function is called. It might be an
appropriate application of defensive programming for the implementor of
erc.lcl to keep track of the number of active iterators and check that
requires clauses hold on entry to functions, but it is not required by the
specification.

The implementation of empset uses an erc to represent an empset.
(Recall that thevalfield of anerc is a bag.) The implementationalso uses
a non-exported module-level variable, known, to avoid allocating space
for the same employee more than once. The first time an employee
is inserted into any empset, it is also inserted into known and a newly
allocated eref is inserted into the erc. On subsequent inserts of the same
employee into any empset, the old eref is reused. This auxiliary data
structure is shared by the implementation of all objects of type empset,
but this sharing is not visible to clients.

Figure 5.26 contains a representation invariant for the implementation
of empset. The implementation ensures that this invariant is established
by empset create and preserved by all other functions in the empset
interface. The first conjunct of the invariant asserts that no eref occurs

100 5.3. A guided tour through an LCL specification

� s:empset
(� er:eref (count(er, s.val) � 1)
� s.activeIters � 0
� � er:eref
(count(er, s.val) � 1 � er 	 known)

FIGURE 5.26. Representation invariant for empset

#define firstERC mMGRS
#define lastERC fNON
#define numERCS (lastERC - firstERC + 1)

typedef enum {mMGRS, fMGRS, mNON, fNON} employeeKinds;

erc db[numERCS];

FIGURE 5.27. dbase.c fragment

more than once in the val part of an erc used to represent an empset.
The second conjunct corresponds to the requires clause of many of the
functions of type erc, and therefore must be maintained so that the
implementation of empset can use those functions. The third conjunct
gives a relationship that must always hold between the module specification
variable known and any erc representing an empset.

The implementation of dbase is considerably longer than that of the
other modules specified here. It is also somewhat different in structure.
Unlike empset.h and erc.h, dbase.h contains no typedef (although
it does inherit typedefs of exposed types fromdbase.lh). This is because
dbase.lcl exports no abstract types and the implementation of dbase
doesn’t use any macros that depend on locally defined types. Information
pertinent only to compiling the implementation itself is restricted to
dbase.c, Figure 5.27.

The specification variable d in dbase.lcl is implemented by
the variable db. We chose a different name for the variable in the
implementation to emphasize that there is no necessary correspondence
between module-level variables appearing in the implementation and
specification variables appearing in the specification. It is purely accidental
that our specification variable corresponds to a single implementation
variable; one of our earlier implementations of the interface used four
distinct ercs to represent d.

5. LCL: A Larch Interface Language for C 101

The correctness of the implementations of the functions in dbase.c
depends upon the maintenance of the representation invariant given in
Figure 5.26. That this holds can be shown by an inductive argument:

� It is established by dbase initMod.

� For each exported function, if the invariant and the requires
clause hold on entry, the invariant will hold upon termination. In
discharging this step of the proof, it is necessary to examine even
those functions whose specification does not allow them to modify
d, since they might still modify the representation of d, i.e., the array
db.

The implementation of dbase includes several functions that do not
appear in dbase.lcl and therefore are not accessible to clients. It
would be acceptable for these functions to break the invariant temporarily
(although, in fact, they don’t).

Chapter 6

LM3: A Larch Interface Language
for Modula-3

This chapter describes much of LM3, version 1.1, and gives an informal
description of its semantics. It skims somewhat rapidly over the role of the
LSL specification tier, which is quite similar to that for LCL, as discussed
in the previous chapter.

Because Modula-3 is structured around the definition and use of explicit
interfaces, LM3 specifications are more intimately related to Modula-3
programs than LCL specifications are to C programs. Because Modula-3’s
opaque types and revelations provide direct support for abstract types, LM3
doesn’t need to add much in that area. Because Modula-3’s REF types are
more disciplined than C’s pointer types, LM3’s storage model is somewhat
simpler. Because Modula-3 provides garbage collection, specifications
don’t have to say as much about storage management; for example, there
is no need for anything corresponding to trashed in LCL. But subtyping
and concurrency raise issues that make LM3 complicated in other ways.

LM3 provides constructs for specifying:

� types, both fully exposed and abstract (opaque);

� procedures and object methods (collectively, routines);

� invariants, for both types and modules;

� concurrency and synchronization.

This chapter is intended for Modula-3 programmers—practicing or
potential. We assume some familiarity with Modula-3. If you are not
acquainted with Modula-3, you may wish to consult a Modula-3 text
[52, 69].

6.1 The relation between LM3 and Modula-3

Modula-3 has well-defined notions of interface and implementation:

� An interface file (.i3 file or .ig file) declares the components of
the module’s interface and documents the intended uses of exported

6. LM3: A Larch Interface Language for Modula-3 103

types and the actions of exported procedures. LM3 specifications
are incorporated in interface files; we will often call such augmented
files interface specifications.

� An implementation file (.m3 file or .mg file) supplies the
representations of the types and the bodies of the procedures and
object methods declared in the interface, as well as code that is
private to the module.

Clients of a module should look at its interface, not its implementation.
LM3 is used to provide clients with a precise description of the functionality
of the interface.1 An LM3 specification also provides implementors a
contract with precise information about what they are to implement.

There are two kinds of information in an LM3 interface specification:

� Modula-3 declarations. Each Modula-3 interface file is also an LM3
specification. There is a built-in association of Modula-3 base types
and type constructors with LSL sorts, and there is a standard set of
traits for Modula-3 that provides operators on these sorts.

� LM3 pragmas. As will be discussed in the rest of this chapter, LM3
annotations are incorporated in Modula-3 as pragmas, set off by
the brackets <* and *>. Pragmas embedded in interface files can
introduce abstract types and give constraints on types, variables,
and routines. Since the compiler ignores pragmas that it does not
recognize, they provide a convenient way of embedding specification
information in the program text. LM3 annotations may be thought
of as formalized comments within the interface file.

6.2 The LM3 semantic model

The LM3 and LSL tiers of a specification are connected as described
in Chapter 3. LM3 annotations are written using LSL terms plus some
syntactic sugar to make specifications more Modula-3-like in appearance.

Since LM3, like Modula-3, is statically typed, the kind of values that a
variable can contain in any state is fixed. Similarly, each LSL value has a
unique sort. To connect the two languages, there is a mapping from LM3

1LM3 is also used to annotate implementations for program verification. This aspect of
LM3 is not addressed in this book.

104 6.2. The LM3 semantic model

types to LSL sorts. Each built-in type of Modula-3, each type built from
Modula-3 type constructors (e.g., ARRAY [1..100] OF INTEGER),
and each abstract type defined in LM3 is based on an LSL sort. The sort
on which a type is based does not appear explicitly in LM3 specifications.
Instead, an LM3 type name or other type expression stands for its associated
sort. LM3 follows Modula-3’s type checking rules [69].

Standard LSL traits define operators of the sorts upon which Modula-3
built-in types (e.g., INTEGER and TEXT) are based. Users familiar with
Modula-3 will already have some intuitionabout these operators. Specifier-
supplied traits are used to introduce application-specific operators. A traits
clause is used to incorporate specifier-supplied traits and to connect user-
defined types to LSL sorts.

An LM3 interface specification defines the functional behavior of a
collection of exported routines (procedures and methods), variables, and
constants. From a semantic point of view, there is no significant difference
between procedures and methods; methods are just procedures with an
implicit SELF parameter and a slightly different syntax.

A routine may communicate with its callers by returning a result, by
accessing variables accessible to the caller, by modifying such variables,
or by raising an exception. The specification of each routine in an interface
can be studied, understood, and used without reference to the specifications
of other routines.

Each routine is specified by a predicate on a pair of states—the pre-state
and the post-state—that defines the set of state transformations (actions)
the routine is allowed to perform.2

A state is a repository for entities that can be changed by routines. It is a
mapping from entire variables to values. Each program and specification
variable is a coordinate of the state space; entire variables are the orthogonal
coordinates. Each entire variable can be assigned a value without affecting
the value of any other entire variable. For example, if A is an array variable,
A is entire, butA[i] andA[j] are not, since assigning to one might change
the other, depending on the values of i and j. Each field of an object type
is an entire variable, indexed by objects. However, t.f is analogous to
f[t] and is not entire.

� The global state for an interface specification is defined by its
type, variable and constant declarations, and the global states of the

2In our discussion of concurrency, we will generalize the predicate to apply to a sequence
of pairs of states, rather than just a single pair; see page 116.

6. LM3: A Larch Interface Language for Modula-3 105

interfaces it imports. It may include auxiliary variables and fields
introduced in pragmas purely for the purposes of the specification.

� The local state for a routine specification is given by its formal
parameter list,RESULT (which represents the returned value, if any),
RAISEVAL (which represents the normal or exceptional outcome),
RAISEARG (which represents the value of the argument to RAISE,
if any), CURRENT (which represents the identity of the thread that
called the routine), and the components of the global state that the
routine is allowed to access.

� The target variables of a routine are those variables to which it is
allowed to assign new values. They are a subset of its local state,
and are explicitly listed in its specification.

� Within a specification, an immutable value (constant) is represented
directly by its name. The value of a variable in the pre-state is also
represented by its name; the value of a target variable in the post-state
is represented by its name followed by a prime (’).

As discussed in Chapter 3, a routine specification consists of a routine
declaration augmented by a body containing REQUIRES, MODIFIES,
and ENSURES clauses. It effectively separates the obligations of clients
and implementations. The requires clause gives the obligations of the
client, which the implementor is entitled to presume. The modifies and
ensures clauses give the obligations of the implementor, which (along with
termination) the client is entitled to presume.

6.3 A guided tour through an LM3 specification

To show how LM3 is used, we present and discuss an example that makes
use of most of its features. The example is only superficially realistic; it
was structured to use language constructs in the order that we want to
discuss them.

AN EMPLOYEE DATABASE

Our example is a simple database that holds information about employees.
If you have already looked at the example in Chapter 5, you should note
that this is not the same design. For example, this database stores sharable
Employee objects; Chapter 5’s database stores values of records about

106 6.3. A guided tour through an LM3 specification

employees. Some of the differences are due to differences between the
styles that are natural in C and in Modula-3; some are arbitrary.

An interesting feature of this database is that these routines may be
invoked concurrently and therefore require mutually exclusive access
to the shared data. How this mutual exclusion is ensured is up to the
implementation; the specification does not say. However, it does say which
routines are allowed to be non-atomic; all the rest must appear atomic to
their users.

We start with simple interfaces and build up to more complex ones:

� EmployeeData contains no specification pragmas, but shows how
Modula-3 declarations are interpreted as LM3 specifications.

� Employee introduces some explicit LM3 type specifications and
illustrates the specification of methods of an exposed type.

� GenericSet specifies a type that is generic and opaque, and has
a nondeterministic method.

� EmployeeSet shows the instantiation of a generic interface.

� EmployeeGroup illustrates simple subtyping and a non-atomic
routine.

� EmployeeDatabase uses a combination of previously-discussed
features.

� EmployeeSetFriends illustrates the use of a partial revelation
to give access to part of the representation of an abstract type.

We specify each interface, and describe the meaning of the LM3
constructs it introduces.

EMPLOYEEDATA

The interface specification in Figure 6.1 declares some simple types
that we use in later interfaces, but contains no specification pragmas. It
illustrates exposed types, whose full specification is given by the semantics
of their Modula-3 declarations. The specification states that:

� MaxSal is a constant of sort Int.

6. LM3: A Larch Interface Language for Modula-3 107

INTERFACE EmployeeData;
CONST MaxSal � 1000000;
TYPE
Gender � {Male, Female};
Job � {NonMgr, Manager};
Salary � [1 .. MaxSal];
SSnum � INTEGER;

END EmployeeData.

FIGURE 6.1. EmployeeData.i3

� In any state, the value of a variable of type Salary has sort Int
from the trait Integer, (since INTEGER is the base type of any
integer subrange). Furthermore, the value will be between 1 and
MaxSal. SSnum is simply a renaming of INTEGER.

� Gender and Job are enumeration types with the constants
Gender.Male and Gender.Female and Job.NonMgr and
Job.Manager. These constants may be used in specifications just
as they are in programs.

EMPLOYEE

Figure 6.2 defines a data type used to hold information about individual
employees.

The imports clause of Employee says that its interface specifi-
cation depends on EmployeeData’s interface specification; it gives
Employee and its clients access to the constants, variables, types, and
routines specified in EmployeeData. It also makes the trait associated
with EmployeeData a part of Employee’s associated trait. This
specification dependency should not be confused with an implementation
dependency, where an interface is used within the implementation of a
module.

Following a common convention in Modula-3, the principal type of the
Employee interface is named T, for easy reference within the interface
specification and implementation. Outside the module, it is referred to as
Employee.T.
T is an exposed object type.3 It doesn’t introduce any abstraction, and

3Unfortunately, “object” means different things in different programming languages. In
Modula-3, an object type is an explicit reference type with fields and methods.

108 6.3. A guided tour through an LM3 specification

INTERFACE Employee;
IMPORT EmployeeData;
TYPE
T � OBJECT

ssnum : EmployeeData.SSnum;
name : TEXT;
salary: EmployeeData.Salary;
gender: EmployeeData.Gender;
job : EmployeeData.Job;

METHODS
promote (increase: EmployeeData.Salary)

RAISES {AlreadyManager};
END;

EXCEPTION AlreadyManager;
�* METHOD T.promote(increase)

REQUIRES
(SELF.salary + increase) � EmployeeData.MaxSal

MODIFIES SELF.job, SELF.salary
ENSURES SELF.job’ � EmployeeData.Job.Manager
� SELF.salary’ � SELF.salary + increase

EXCEPT SELF.job � EmployeeData.Job.Manager
�� (RAISEVAL � AlreadyManager � UNCHANGED(ALL))

*�
END Employee.

FIGURE 6.2. Employee.i3

6. LM3: A Larch Interface Language for Modula-3 109

its data representation is fully defined by Modula-3. The implicit operators
for an object type allow access to its fields, so that, for example, t.name’
refers to the value in the post-state of the name field of the object t.

This interface provides our first example of a specification that goes
beyond what is provided by Modula-3 itself. In the specification of the
method T.promote

� the requires clause says that promote should be called with a value
of increase that results in a valid raise; the raise will be positive
because of the type ofincrease. If the raise is too big, the behavior
of promote is unconstrained.

� the modifies clause (target list) says that promote may not alter the
values of any client-visible variables except the object’s own job
and salary fields.

� the ensures clause says that promote must change the job and
salary fields in particular ways. This postcondition is written in
two parts:

– The first part describes the normal result of an invocation of
promote: the job field will be changed to Manager and the
salary field will be incremented by increase.

– The second part describes the exceptional behavior. If
SELF.job is already Manager then promote must raise
the exception AlreadyManager and change nothing.

There are several more things to note about the constructs used in this
specification:

� An except clause consists of one or more guarded predicates. If
any guard (a predicate before =>) is true, then the method must
ensure the postcondition given after one of the true guards, rather
than the normal postcondition. If more than one guard is true, the
implementation may satisfy any of the associated postconditions,
nondeterministically.

� RAISEVAL is a special component of the state; a value other than
RETURNS in the post-state represents the raising of an exception. If
there is no except clause, RAISEVAL = RETURNS is implicit.

110 6.3. A guided tour through an LM3 specification

� We do not follow RESULT and RAISEVAL with primes; since they
are meaningful only in the post-state, there is no ambiguity.

� The UNCHANGED operator is a shorthand for saying that the values
of a list of variables may not change between the pre-state and the
post-state, even though they are in the target list. It is equivalent to
saying x’= x for each x in the list. ALL is a further shorthand for
the complete target list.

GENERICSET

The interface in Figure 6.3 provides a generic set abstraction. This is our
first type that is not exposed. T is an abstract type whose representation is
hidden from clients. In Modula-3, this is called an opaque type.
T <: Public says that T is a subtype of the type Public. It is a

common convention in Modula-3 to use an auxiliary type named Public
to declare the methods and fields exported by an opaque type.

Since we have chosen not to make the representation of T visible, we
have to provide some way to represent its values in specifications. We
declare a specification field, T.set to denote the value represented by
the hidden components. Within the specification, we treat it as though it

GENERIC INTERFACE GenericSet(E);
EXCEPTION NotFound;
TYPE
T �: Public;
Public � OBJECT
METHODS
init ();
copyTo (newCopy: T);
freshCopy (): T;
size (): CARDINAL;
insert (e: E.T);
remove (e: E.T);
union (s: T);
disjointUnion (s: T);
intersect (s: T);
member (e: E.T): BOOLEAN;
choose (): E.T;

END;

FIGURE 6.3. GenericSet.ig, part 1

6. LM3: A Larch Interface Language for Modula-3 111

�* TRAITS Set(E.T FOR E, ETSet FOR C);
TYPE ETSet;
FIELDS OF T set: ETSet
METHOD T.init()
MODIFIES SELF.set
ENSURES SELF.set’ � {}

METHOD T.copyTo(newCopy)
MODIFIES newCopy.set
ENSURES newCopy.set’ � SELF.set

METHOD T.freshCopy()
ENSURES RESULT.set’ � SELF.set � FRESH(RESULT)

METHOD T.size()
ENSURES RESULT � size(SELF.set)

METHOD T.insert(e)
MODIFIES SELF.set
ENSURES SELF.set’ � insert(e, SELF.set)

METHOD T.remove(e)
MODIFIES SELF.set
ENSURES SELF.set’ � delete(e, SELF.set)

METHOD T.union(s)
MODIFIES SELF.set
ENSURES SELF.set’ � SELF.set � s.set

METHOD T.disjointUnion(s)
REQUIRES SELF.set � s.set � {}
MODIFIES SELF.set
ENSURES SELF.set’ � SELF.set � s.set

METHOD T.intersect(s)
MODIFIES SELF.set
ENSURES SELF.set’ � SELF.set � s.set

METHOD T.member(e)
ENSURES RESULT � e 	 SELF.set

METHOD T.choose()
REQUIRES SELF.set �� {}
MODIFIES SELF.set
ENSURES RESULT 	 SELF.set
� SELF.set’ � delete(RESULT, SELF.set)

*�
END GenericSet.

FIGURE 6.3. GenericSet.ig, part 2

112 6.3. A guided tour through an LM3 specification

INTERFACE EmployeeSet � GenericSet(Employee)
END EmployeeSet.

FIGURE 6.4. EmployeeSet.i3

were declared as an ordinary field of T. We don’t have to include it in
the implementation, but any revelation of hidden fields of T must have
an associated abstraction relation that shows how the specification and
implementation values are related.

In our earlier examples, the trait associated with each interface has been
implicit, entirely composed of built-in traits associated with Modula-3 and
with the types and type constructors appearing in declarations. Here, the
traits clause explicitly includes Set, page 167, into the trait associated
with the GenericSet interface, renaming the formal parameters of the
trait to the sorts on which the types E.T and ETSet are based. E.T is a
program type, andETSet is a specification type, introduced in this pragma
as the type for the specification field, set.

Most of the method specifications follow the same pattern as our
previous example, using the specification fields of T rather than actual
fields. T.init, for example, ensures that the abstract field SELF.set
has the value fg when it returns. The specification of T.copyTo ensures
that the set field of the object passed in as a parameter becomes equal to
SELF.set. This is quite different from saying that SELF is assigned to a
VAR parameter, which would be specified as follows:

METHOD T.assign(target)
MODIFIES target

ENSURES target’ � SELF

The choose method is an example of a specification of a non-
deterministic routine. The method is required to remove and return some
value from the set. No information is given about which element is to be
chosen; the implementation may use this freedom to improve efficiency,
so clients must not rely on any particular choice.

EMPLOYEESET

EmployeeSet is a simple interface that instantiates the interface
GenericSet passing the Employee interface for the formal pa-
rameter E. The instantiated program type EmployeeSet.T has an

6. LM3: A Larch Interface Language for Modula-3 113

instantiated specification field set with instantiated specification type
EmployeeSet.ETSet that holds a set of Employee.Ts.

EMPLOYEEGROUP

Figure 6.5 introduces a specialization of EmployeeSet that has an extra
component, manager. Informally, a group is a set of employees with one
distinguished member. The only extra operation we add to a group is a
method to make an employee (who may or may not already be a member
of the group) the manager of the group.

In this interface, we illustrate the interaction between specification and
subtyping, show a type invariant, and specify a non-atomic method.

Here, we have a partially opaque type. The type has one visible field,
EmployeeGroup.T.manager, but there may also be hidden fields
used by the implementation. Since T is a subtype of EmployeeSet.T,
both the exposed and specification fields of EmployeeSet.T can be
used in the specification of T. We use the local manager field and the
inherited set specification field.

INTERFACE EmployeeGroup;
IMPORT EmployeeData, Employee, EmployeeSet;
TYPE
T �: Public;
Public � EmployeeSet.T OBJECT

manager: Employee.T;
METHODS
copyTo (newCopy: T);
freshCopy(): T;
makeManager(e: Employee.T);

END;
PROCEDURE Subordinates (t: T): EmployeeSet.T;

�* TYPE_INVARIANT t: T
t.manager � NIL
� (t.manager.job � EmployeeData.Job.Manager

� t.manager 	 t.set)
PROCEDURE Subordinates(t)
ENSURES RESULT.set’ � delete(t.manager, t.set)
� FRESH(RESULT)

*�

FIGURE 6.5. EmployeeGroup.i3, part 1

114 6.3. A guided tour through an LM3 specification

�* STRENGTHEN T.init()
MODIFIES SELF.manager
ENSURES SELF.manager � NIL

STRENGTHEN T.remove(e)
MODIFIES SELF.manager
ENSURES IF e � SELF.manager

THEN SELF.manager’ � NIL
ELSE UNCHANGED(SELF.manager)

STRENGTHEN T.intersect(s)
MODIFIES SELF.manager
ENSURES IF SELF.manager 	 SELF.set’

THEN UNCHANGED(SELF.manager)
ELSE SELF.manager � NIL

STRENGTHEN T.choose()
MODIFIES SELF.manager
ENSURES IF RESULT � SELF.manager

THEN SELF.manager � NIL
ELSE UNCHANGED(SELF.manager)

METHOD T.copyTo(newCopy)
MODIFIES newCopy.manager, newCopy.set
ENSURES newCopy.manager’ � SELF.manager
� newCopy.set’ � SELF.set

METHOD T.freshCopy()
ENSURES RESULT.manager � SELF.manager
� RESULT.set � SELF.set
� FRESH(RESULT)

METHOD T.makeManager(e)
MODIFIES e.job, SELF.manager, SELF.set
COMPOSITION OF promote; add_to_group; install END
ACTION promote
ENSURES e.job’ � EmployeeData.Job.Manager
� UNCHANGED(SELF.manager, SELF.set)

ACTION add_to_group
ENSURES SELF.set’ � insert(e, SELF.set)
� UNCHANGED(e.job, SELF.manager)

ACTION install
ENSURES SELF.manager’ � e
� UNCHANGED(e.job, SELF.set)

*�
END EmployeeGroup.

FIGURE 6.5. EmployeeGroup.i3, part 2

6. LM3: A Larch Interface Language for Modula-3 115

The first new construct in this specification is a type invariant. The
meaning of this clause is that, in any state visible to a client, each instance
of T either has no manager or has a manager field whose job field
has the value Manager and that manager will always be a member of
its set. This invariant is conjoined to the precondition of each routine
and action in the interface that may read something of type T, and to the
postconditionof each routine and action in the interface that may modify or
return something of type T. Variable names in the invariant are implicitly
primed for postconditions.

The procedure in the interface, subordinates, returns the members
of a given group, excluding the manager. It could, of course, have been
specified as a method on T, but it is also perfectly valid to do it this way.
The only item of interest in the specification of is the use of the set field
of a T as a value for the equivalent field in an EmployeeSet.T. This is
permitted since the set field was inherited from the supertype.

Each of the methods that T inherits from EmployeeSet.T has an
inherited specification. A subtype method always inherits the specification
of the corresponding method for the supertype; otherwise it would not
be sensible to use values of the subtype in contexts where values of
the supertype is expected. Since the subtype is more specialized, it is
often appropriate to give it a stronger specification. This is done using a
strengthen clause.

For example, because an EmployeeGroup.T has a manager field,
and an EmployeeSet.T does not, most methods that modify values of
type EmployeeGroup.T should have strengthened specifications.

For some of the methods, such as size, manager is simply
irrelevant. Generalizing the principle that an omitted modifies clause means
modifies nothing, the absence of any further specification of size
means that it leaves themanager field unchanged. This interpretation also
suffices for the specifications of insert, union, disjointUnion,
and member.

The incremental specifications of init, remove, intersect and
choose are simple: they just say what value manager is to have in the
post-state. This extra clause is conjoined onto the specification inherited
from the supertype.

The treatment of the methods copyTo and freshCopy is more
complex, but not unusual. In Modula-3, only the implicitSELF parameter
to a method gets the subtype by inheritance. So both inherited methods
produce an EmployeeSet.T, rather than an EmployeeGroup.T. To

116 6.3. A guided tour through an LM3 specification

get around this, we use a standard trick. We introduce new methods that
produce EmployeeGroup.T values, intentionally giving them the same
names, so they obscure the inherited methods. Since the new methods
have different signatures, STRENGTHEN is not appropriate and we give
full specifications for the new methods.4

The method makeManager introduces another feature. Modula-3 has
built-in support for threads, which are lightweight units of concurrency
that may share a state space. When specifying routines that may be called
from multiple threads, we have to be concerned about the possibility of
interference among these threads. LM3 provides constructs to specify
each non-atomic routine as a sequence of atomic actions.5 To clients of
an interface, atomic actions must always appear to have executed in some
particular order; any concurrency in the implementation must be hidden.

The behavior of makeManager is specified as three atomic actions.
Consider the elements of its specification:

� The modifies clause is the same as for an atomic routine. It restricts
each of the actions to a subset of its target list. None of the
actions can modify non-target variables. An action specification may
further limit the changes to a subset of the target list, by indicating
components that are not to be changed by that action.

� Rather than a single ensures clause, the method is specified as
a composition of a three actions. Each action has an associated
specification that can be read as if it were a routine specification
without a requires clause:

1. promote—must change the job component of the e
parameter toManager, and must not alter either themanager
field or the set specification field;

2. add to group—must insert e into the group;

3. install—must make e the manager of the group.

4The signature of inherited methods sometimes confusesnoviceModula-3 programmers
and they make the mistake of expecting all parameters of the supertype to be converted
to the subtype. The same misunderstanding will lead to the detectable mistake of using
STRENGTHEN when it is inappropriate.

5This section only touches the tip of the concurrency iceberg. It does not discuss
synchronization operations or the general case where routines may have action sequences
of arbitrary length. A more complete example is contained in Chapter 5 of Systems
Programmingwith Modula-3 [69], which uses an earlier versionof LM3 to specifyModula-
3’s synchronization primitives.

6. LM3: A Larch Interface Language for Modula-3 117

So the overall effect of the method is to make e the manager of
the group, while ensuring that each action preserves the invariant on T.
Preserving the invariant between actions is important because other actions
might be interleaved between promote and add to group or between
add to group and install.

EMPLOYEEDATABASE

An EmployeeDatabase, Figure 6.6, provides a collection of routines,
including both queries and updates, over a set of EmployeeGroups and
their employees.

INTERFACE EmployeeDatabase;
IMPORT EmployeeData, Employee, EmployeeSet,
EmployeeGroup;

TYPE
T �: Public;
Public � OBJECT
METHODS
init ();
query (q: Query): EmployeeSet.T;
hire (e: Employee.T; g: EmployeeGroup.T)
RAISES {AlreadyEmployee};

getGroup (e: Employee.T): EmployeeGroup.T
RAISES {NotEmployee};

createGroup (man: Employee.T):
EmployeeGroup.T;

removeGroup (g: EmployeeGroup.T);
END;

Query � RECORD
g :� EmployeeData.Gender.Male;
j :� EmployeeData.Job.NonMgr;
testGender, testJob: BOOLEAN :� FALSE;
low :� FIRST(EmployeeData.Salary);
high :� LAST(EmployeeData.Salary);

END;
EXCEPTION AlreadyEmployee;
EXCEPTION NotEmployee;

FIGURE 6.6. EmployeeDatabase.i3, part 1

118 6.3. A guided tour through an LM3 specification

�* TRAITS Set(EmployeeGroup.T FOR E, EGSet FOR C);
TYPE EGSet;
FIELDS OF T set: EGSet;
METHOD T.init
MODIFIES SELF.set
ENSURES SELF.set’ � {}

METHOD T.query(q)
ENSURES � e:Employee.T;

e 	 RESULT.set’
�

(� gr:EmployeeGroup.T;
gr 	 SELF.set
� e 	 gr.set
� (q.testGender � q.g � e.gender)
� (q.testJob � q.j � e.job)
� q.low � e.salary
� e.salary � q.high)

METHOD T.hire(e, g)
REQUIRES g 	 SELF.set
MODIFIES g.set
ENSURES g.set’ � insert(e, g.set)
EXCEPT � gr:EmployeeGroup.T;

(gr 	 SELF.set � e 	 gr.set)
�� RAISEVAL � AlreadyEmployee

METHOD T.getGroup(e)
ENSURES e 	 RESULT.set � RESULT 	 SELF.set
EXCEPT � gr:EmployeeGroup.T;

�(gr 	 SELF.set � e 	 gr.set)
�� RAISEVAL � NotEmployee

METHOD T.createGroup(man)
MODIFIES SELF.set
ENSURES RESULT.manager � man

� RESULT.set’ � {man}
� FRESH(RESULT)
� SELF.set’ � insert(RESULT, SELF.set)

METHOD T.removeGroup(g)
MODIFIES SELF.set
ENSURES SELF.set’ � delete(g, SELF.set)

*�
END EmployeeDatabase.

FIGURE 6.6. EmployeeDatabase.i3, part 2

6. LM3: A Larch Interface Language for Modula-3 119

INTERFACE EmployeeSetFriend;
IMPORT Employee, EmployeeSet, List;

REVEAL EmployeeSet.T �: EmployeeSet.Public
OBJECT
cont: List.T

END;

PROCEDURE Sort (s: EmployeeSet.T);

�*
TYPE_INVARIANT s: EmployeeSet.T
size(s.set) � length(s.cont.l)
� � e:Employee.T;
e 	 s.set � � i:Int;
0 � i � i � size(s.set)
� s.cont.l[i] � e

STRENGTHEN EmployeeSet.T.insert(e)
ENSURES
e �	 SELF.set
� SELF.cont.l’[size(SELF.set)] � e

PROCEDURE Sort(s)
MODIFIES s.cont.l
ENSURES

� i:Int;
(0 � i � i � (size(s.set)-1))
� (s.cont.l’[i]).ssnum
� (s.cont.l’[i+1]).ssnum

*�

END EmployeeSetFriend.

FIGURE 6.7. EmployeeSetFriend.i3

As before, the actual representation of a T is hidden, so we provide a
specification field set, of abstract type EGSet.

EMPLOYEESETFRIEND

The type EmployeeSet.T, Figure 6.7, illustrates a Modula-3 partial
revelation of an opaque type. It allows clients to know some of the detail
of an EmployeeSet.T without exposing all of it.

In Figure 6.7, we expose the fact that an EmployeeSet.T has a
field that is a List.T. We do not show the specification of the List

120 6.3. A guided tour through an LM3 specification

interface here, but it has a specification field l that represents an abstract
list. The TYPE INVARIANT provides the abstraction relation, by relating
this concrete field to the abstract fields visible from EmployeeSet. We
strengthen theinsert method specification in a consistent way, requiring
that each new element be added at the end of the list.

Finally, we specify a procedure, Sort, that only makes sense in the
presence of the revelation: the set abstraction does not have an order, but
the list representation does. Since the modifies clause doesn’t allow Sort
to modify s.set, the specification can dispense with the usual clause
saying that the final value must be a permutation of the initial value.

For more extensive use of partial revelation, see Chapter 6 of [69].

Chapter 7

Using LP to Debug LSL Specifications

In earlier chapters, we have attempted to show how Larch can be used to
write precise specifications. However, it is not sufficient for specifications
to be precise; they should also accurately reflect the specifier’s intentions.
Mistakes from many sources will crop up in specifications. Any practical
methodology that relies on specifications must provide means for detecting
and correcting their flaws, in short, for debugging them.

Parsing and type-checking are useful and easy to do, but don’t go
far enough. Unfortunately, we cannot prove the “correctness” of a
specification, because there is no absolute standard against which to judge
correctness. So we seek methods and tools that will be helpful in detecting
and localizing the kinds of errors that we commonly observe.

Since the Larch style of specification emphasizes brevity and clarity
rather than executability, it is usually not possible to evaluate Larch
specifications by testing. Instead, LSL allows specifiers to state precise
claims about specifications. If these claims are true, they can be verified
statically. Such a verification won’t guarantee that a specification meets a
specifier’s intent, but it is a powerful debugging technique. Once the flaws
verification reveals are removed, there should be fewer doubts about the
specification’s accuracy.

The claims allowed in LSL specifications are undecidable in the general
case. Hence we can’t hope to build a tool that will automatically certify
an arbitrary specification. However, tools can assist specifiers in checking
claims during debugging.

This chapter describes how two such tools fit into our work on LSL.
Our principal debugging tool is LP [30], the Larch proof assistant.1 LP’s
design and development have been motivated primarily by our work on
LSL, but it also has other uses (cf. Appendix E). Because of these other
uses, and because we also intend to use LP to analyze Larch interface
specifications, we have tried not to make LP too LSL-specific. Instead, we
have chosen to build and use a second tool, the LSL Checker, as a front-end
to LP. The LSL Checker checks the syntax and type consistency of LSL

1The version of LP described in this book is that released in November, 1991. A version
with increased logical power is currently under development.

122 7.1. Semantic checks in LSL

specifications, then generates LP proof obligations from their claims.
Sections 7.1 and 7.2 describe the checkable claims that can be made in

LSL specifications. Sections 7.3 through 7.6 describe how LP is used to
check these claims. Section 7.7 contains an extended example.

7.1 Semantic checks in LSL

We begin by reviewing the kinds of semantic claims that can be made in
LSL. As mentioned in Chapter 4, semantic claims about LSL traits fall
into three categories:

� consistency (that a specification does not contradict itself),

� theory containment (that a specification has intended consequences),
and

� relative completeness (that a set of operators is adequately defined).

Consistency is an assertion about what is not in the theory of trait, and
is therefore not expressible in LSL. Instead, it is implicitly required of
all traits: no legal LSL trait’s theory contains the inconsistent equation
true == false. Claims in the other two categories are stated explicitly
using the LSL constructs implies and assumes.

CHECKING IMPLICATIONS

An implies clause adds nothing to the theory of a trait. Instead, it makes a
claim about theory containment. It enables specifiers to include information
they believe to be redundant, either as a check on their understanding or
to call attention to something that a reader might otherwise miss. The
redundant information is of two kinds: statements like those in asserts
clauses, which are claimed to be in the theory of the trait, and converts
clauses, which describe the extent to which a specification is claimed to be
complete.

The initial design of LSL incorporated a built-in notion of completeness.
We quickly concluded, however, that requirements of completeness are
better left to the specifier’s discretion. It useful to check certain aspects
of completeness long before a specification is finished. Furthermore, most
finished specifications are left intentionally incomplete in places. LSL
allows specifiers to make checkable claims about how complete they

7. Using LP to Debug LSL Specifications 123

LinearContainer(E, C): trait
introduces
empty: � C
insert: E, C � C
head: C � E
tail: C � C
isEmpty: C � Bool
__ 	 __: E, C � Bool

asserts
C generated by empty, insert
C partitioned by head, tail, isEmpty
� c: C, e, e1: E
head(insert(e, empty)) == e;
tail(insert(e, empty)) == empty;
isEmpty(empty);
�isEmpty(insert(e, c));
�(e 	 empty);
e 	 insert(e1, c) == e � e1 � e 	 c

implies
� c: C, e: E
isEmpty(c) � �(e 	 c)

converts 	, isEmpty

FIGURE 7.1. Sample LSL specification

intend specifications to be. These claims are usually most valuable during
specification maintenance. Specifiers don’t usually make erroneous claims
about completeness when first writing a specification. On the other hand,
when editinga specification, they often delete or change somethingwithout
realizing its impact on completeness.

The first part of the implies clause of the trait LinearContainer,2

Figure 7.1, asserts that if isEmpty of a container is true, no element is
in that container. By checking that this assertion follows from the axioms
of the trait, we can gain confidence that the axioms describing isEmpty
and � are appropriate.

2This trait is similar to the trait Container that appears in Figure 4.13 and in
Appendix A: its theory is contained in that of Container. Many of the traits in this
chapter are adapted from traits appearing in Appendix A. However, in order to better
illustrate how traits are checked, we have changed them in small ways. In particular, we
have often added implications and suppressed details that do not affect the points we wish
to make.

124 7.1. Semantic checks in LSL

PQ(E, Q): trait
assumes TotOrd(E)
includes LinearContainer(E, Q)
asserts � q: Q, e: E

head(insert(e, q)) ==
if isEmpty(q) then e
else if e � head(q) then e
else head(q);

tail(insert(e, q)) ==
if isEmpty(q) then empty
else if e � head(q) then q
else insert(e, tail(q))

implies
� q: Q, e: E
e 	 q � �(e � head(q))

converts isEmpty, head, tail, 	
exempting head(empty), tail(empty)

FIGURE 7.2. LSL specification for a priority queue

The converts clause in LinearContainer claims that the trait
contains enough axioms to define � and isEmpty; that is, given any
fixed interpretations for the other operators, all interpretations of � and
isEmpty that satisfy the trait’s axioms are the same.

The converts clause in PQ, Figure 7.2, involves more subtle check-
ing. The exempting clause indicates that the lack of equations for
head(empty) and tail(empty) is intentional: the operators head
andtail are only claimed to be defined uniquely relative to interpretations
for the terms head(empty) and tail(empty). Section 7.5 describes
the checking entailed by the converts clause in more detail.

CHECKING ASSUMPTIONS

There are two mechanisms for combining LSL specifications. Both are
defined as operations on the texts of specifications. For both, the theory of
a combined specification is axiomatized by the union of the axiomatizations
for the individual specifications; each operator is constrained by the axioms
of all traits in which it appears. Trait inclusion and trait assumption differ
only in the checking they entail.

The trait PQ, Figure 7.2, which includes LinearContainer, further
constrains the interpretations of head, tail, and insert. The assumes

7. Using LP to Debug LSL Specifications 125

TotOrd(E): trait
introduces
__ � __: E, E � Bool
__ � __: E, E � Bool

asserts forall x, y, z: E
�(x � x);
(x � y � y � z) � x � z;
x � y � x � y � y � x;
x � y == y � x

implies
TotOrd(E, � for �, � for �)
� x, y: E
�(x � y � y � x)

FIGURE 7.3. LSL specification for total orders

clause of PQ indicates that PQ’s theory also contains the theory of the trait
TotOrd, Figure 7.3.

The use of assumes rather than includes entails additional
checking. The assumption must be discharged wheneverPQ is incorporated
into another trait. For example, checking the trait

NumericPQ: trait
includes PQ(N, NumericQ), Numeric

involves checking that the assertions in the trait TotOrd(N) are implied
by those in the traits PQ, LinearContainer, and Numeric taken
together. Sometimes these assumptions can be syntactically discharged for
example, if Numeric explicitly includes TotOrd(N).

Figure 7.4 summarizes the checking that LSL requires for the sample
traits introduced in this section.

7.2 Proof obligations for LSL specifications

An LSL specification generally consists of a hierarchy of traits, some of
which include, assume, or implyothers. We use the LSL Checker to syntax-
check and type-check the traits, to extract the proof obligations required
to check the semantic claims in the traits, and to discharge some of these
proof obligations. This section describes how the LSL Checker extracts
the proof obligations. The next several sections describe how we use LP to

126 7.2. Proof obligations for LSL specifications

NumericPQ
Check consistency of NumericPQ.
Check assumption of TotOrd(N) by PQ.
Use the assertions of all traits except for those of TotOrd.

PQ
Check consistency of PQ.
Check implications
Use the assertions of PQ and the theories of
LinearContainer and TotOrd.

Numeric
Check � � �

Use � � �

LinearContainer TotOrd
Check consistency. Check consistency.
Check implications. Check implications.
Use local assertions. Use local assertions.

FIGURE 7.4. Summary of required checking

7. Using LP to Debug LSL Specifications 127

discharge those proof obligations that the LSL Checker cannot discharge
syntactically.

To extract proof obligations, the LSL Checker computes the following
sets of propositions (equations, generated by clauses, and partitioned by
clauses) for each trait T in a trait hierarchy.

� The assertions of T consist of the propositions in the asserts clauses
of T and of all traits (transitively) included in T.

� The assumptions of T consist of the assertions of all traits
(transitively) assumed by T.

� The axioms of T consist of its assertions and its assumptions.

� The immediate consequences of T consist of the propositions in T’s
implies clause and the axioms of all traits that T explicitly implies.

The LSL Checker places the axioms for each trait T in a file
named T Axioms.lp. It also generates a file named T Checks.lp,
which contains the proof obligations associated with showing that T’s
axioms entail its immediate consequences, its converts clauses, and the
assumptions of each trait explicitly included in or assumed by T. The LSL
Checker does not generate an explicit proof obligation for showing thatT’s
axioms are consistent. In fact, such a proof obligation is not expressible in
LP. Like LSL, LP contains no mechanisms for making statements about
what is not in a theory.

The LSL Checker can discharge some proof obligations syntactically, for
example, because a proposition to be proved occurs textually among the
axioms available for use in the proof. When it cannot do this, it places
commands in T Checks.lp that initiate a proof of the proposition.
Sometimes LP will be able to carry out the required proof automatically;
sometimes it will require user assistance.

Consider the traitNumericPQ, which includes bothPQ and Numeric.
Because PQ assumes TotOrd, it is necessary to check that the axioms of
NumericPQ imply those of TotOrd. If Numeric explicitly includes or
implies TotOrd, or if the assertions of TotOrd are among the axioms of
Numeric, then the LSL Checker can discharge the assumption required
for including PQ in NumericPQ. On the other hand, if Numeric simply
asserts some properties of the binary relations � and �, the LSL Checker
will formulate LP commands that initiate a proof of the conjecture that
these properties imply the assertions of TotOrd.

128 7.2. Proof obligations for LSL specifications

LSL Traits
T0.lsl, � � � , Tn.lsl

�

The LSL Checker � Diagnostics

�

Ti Axioms.lp, Ti Theorems.lp
Ti Checks.lp

�

User� LP

�

Diagnostics

FIGURE 7.5. Using the LSL checker and LP to check LSL traits

LEMMAS FOR PROOF OBLIGATIONS

When checking the semantic claims in a hierarchy of traits, it is generally
desirable to use lemmas that have been (or can be) shown separately
to follow from the axioms of those traits. The theorems of a trait
T consist of its axioms supplemented by all appropriately renamed
propositions (transitively) implied by T or by some trait below T in the
inclusion/assumption hierarchy.3 The LSL Checker places the theorems
for each trait T in a file named T Theorems.lp, and refers to this file
instead of T Axioms.lp in T Checks.lp when it is sound to do so.
In general, soundness is guaranteed as long as there is a partial order for
checking proof obligations in which each theorem is (or can be) checked
before it is used as a lemma to discharge another proof obligation.

By providing a small set of axioms for a trait T, a specifier can make it
easier to check traits that imply T or that include a trait that assumes T. By
providing a large set of implications for T, a specifier can make it easier to
reason about T and, in particular, to check traits that include or assume T,
without at the same time making it harder to check traits that imply T or
that include a trait that assumes T.

Figure 7.5 shows how the LSL Checker and LP are used together to
check LSL traits.

3Some generated by and partitioned by clauses will not qualify as theorems of T when
a renaming identifies the generated or partitioned sort with some other sort.

7. Using LP to Debug LSL Specifications 129

declare sorts
C, E
..

declare operators
head: C � E
insert: E, C � C
isEmpty: C � Bool
tail: C � C
empty: � C
	: E, C � Bool
..

declare variables
e: E
c: C
e1: E
..

FIGURE 7.6. LP declarations produced from LinearContainer

7.3 Translating LSL traits into LP

LP is a proof assistant for a subset of multisorted first-order logic with
equality. The basis for proofs in LP is called a logical system. This section
contains an overview of the components of a logical system in LP and
discusses their relation to the components of an LSL trait. The following
sections discuss how these components are used by LP to discharge proof
obligations associated with LSL traits.

A logical system in LP consists of a signature (given by declarations)
plus equations, rewrite rules, operator theories, induction rules, and
deduction rules. Logical systems are closely related to LSL theories, but
are handled somewhat differently. Axioms in LP have operational as well
as semantic content, and they can be presented to LP incrementally, rather
than all at once.

DECLARATIONS

Sorts, operators, and variables play the same roles in LP as they do in LSL.
As in LSL, operators and variables must be declared, and operators can be
overloaded. There are a few minor differences: sorts must be declared in
LP, and LP doesn’t provide scoping for variables.

The LSL Checker produces the declarations in Figure 7.6 from the

130 7.3. Translating LSL traits into LP

introduces and 	 clauses in the trait LinearContainer.

EQUATIONS AND REWRITE RULES

Equations play a prominent role in LP. Some of LP’s inference mechanisms
work directly with equations. Most, however, require that equations be
oriented into rewrite rules, which LP uses to reduce terms to normal
forms. It is usually essential that the rewriting relation be terminating,
that is, no term can be rewritten infinitely many times. LP provides
several mechanisms that automatically orient many sets of equations into
terminating rewriting systems. For example, in response to the commands

set name group
declare sort G
declare variables x, y, z: G
declare operators e: � G, i: G � G, *: G, G � G
assert
(x*y)*z == x*(y*z)
e == i(x)*x
e*x == x
..

which enter the usual axioms for groups, LP produces the rewrite rules

group.1: (x * y) * z � x * (y * z)
group.2: i(x) * x � e
group.3: e * x � x

LP automatically reverses the second equation to prevent nonterminating
rewriting sequences such as

e � i(e) * e � i(e) * i(e) * e � ...

A system’s rewriting theory consists of the propositions that can be
proved by reduction to normal form. This theory is always a subset of its
equational theory, which consists of the propositions that can be proved
from its equations and from its rewrite rules considered as equations.
A system’s rewriting theory does not usually include all of its equational
theory. The proof mechanisms discussed in Section 7.4 help to compensate
for this incompleteness. In the case of group theory, for example, the
equation e == i(e) follows logically from the axioms, but is not in
the rewriting theory of the three rewrite rules: it is irreducible, but not an
identity.

LP provides built-in rewrite rules to simplify predicates involving the
connectives�,�,�,�, and�, the equality operator=, and the conditional

7. Using LP to Debug LSL Specifications 131

operator if. These rewrite rules are sufficient to prove many identities
involving these operators, but not all. Unfortunately, the sets of rewrite
rules that are known to be complete for propositional calculus require
exponential time and space. Furthermore, they tend to expand, rather
than simplify, propositions that do not reduce to identities. These are
serious drawbacks when we are debugging specifications, because we often
attempt to prove conjectures that are not true. So none of the complete sets
of rewrite rules is built into LP. Instead, LP provides proof mechanisms
that can be used to overcome incompleteness in a rewriting system. It also
allows users to add any of the complete sets they choose to use.

LP treats the equations true == false and x = t == false,
where t is a term not containing the variable x, as inconsistent. (The
second equation rules out empty sorts.) Inconsistencies can be used to
establish subgoals in proofs by cases and contradiction. If they arise in
other situations, they indicate that the axioms in the logical system are
inconsistent.

OPERATOR THEORIES

LP provides special mechanisms for handling some equations that cannot
be oriented into terminating rewrite rules. LP recognizes two operator
theories: the commutative theory and the associative-commutative (ac)
theory. For example, the command assert ac + says that + is
associative and commutative. Logically, this assertion is an abbreviation
for two equations:

x + (y + z) == (x + y) + z
x + y == y + x

Operationally, it causes LP to match and unify terms modulo associativity
and commutativity. This increases the number of theories that LP can
reason about. It also reduces the number of axioms required to describe
various theories, the number of reductions necessary to derive identities,
and the need for certain kinds of user interaction, such as case analysis. Its
main drawback is that it can be much slower than ordinary rewriting.4

4A secondary drawback is that ordering equations that contain commutative and ac
operators into terminating sets of rewrite rules is, in principle, more difficult. In practice,
however, this is not a problem.

132 7.3. Translating LSL traits into LP

INDUCTION RULES

LP uses induction rules to generate subgoals in proofs by induction. The
syntax for induction rules is the same in LP as in LSL.5

Users can specify multiple induction rules for a single sort and can use
the appropriate rule when attempting to prove an equation by induction.
For example, assuming appropriate declarations, the LP commands

set name setInduction1
assert S generated by empty, insert
set name setInduction2
assert S generated by empty, singleton, �

allow
prove x � x by induction using setInduction2

In LSL, the axioms of a trait typically have only one generated by for a
sort. It is often useful, however, to put others in the trait’s implications.

DEDUCTION RULES

LP subsumes the logical power of the partitioned by construct of LSL in
deduction rules, which LP uses to deduce equations from other equations
and rewrite rules. Like other formulas in LP, deduction rules may be
asserted as axioms or proved as theorems. While the partitioned by clause
in the trait LinearContainer can be expressed by an equation, in
general a partitioned by clause is equivalent to a universal-existential
axiom, which can only be expressed as a deduction rule in LP. For example,
the LP commands

assert S partitioned by 	
assert
when (� e) e 	 x == e 	 y
yield x == y

are equivalent and define a deduction rule equivalent to the axiom of set
extensionality

�	x� y : S�
�
�	e : E��e � x� e � y�� x � y

�

This deduction rule enables LP to deduce equations such asx == x
 x
automatically from equations such as e � x == e � (x
 x).

5The semantics of induction is somewhat stronger in LSL than in LP, since arbitrary
first-order formulas cannot be written in this version of LP.

7. Using LP to Debug LSL Specifications 133

Deduction rules can have multiple hypotheses and/or multiple conclu-
sions. For example, the transitivity of � can be formulated as a deduction
rule with two hypotheses:

when i � j, j � k yield i � k

The built-in �-splitting law is a deduction rule with two conclusions:

when p � q yield p, q

Such deduction rules serve to improve the performance of LP and to reduce
the need for user interaction.

LP automatically applies deduction rules to equations and rewrite rules
whenever they are normalized. The sample proof in Section 7.5 illustrates
the logical power of deduction rules, as well as the benefits of applying
them automatically to the case and induction hypotheses in a proof.

7.4 Proof mechanisms in LP

This section provides a brief overview of the proof mechanisms in LP. The
next two sections discuss how they are used to check LSL semantic claims.

LP provides mechanisms for proving theorems using both forward and
backward inference. Forward inferences produce consequences from a
logical system; backward inferences produce subgoals whose proof will
suffice to establish a conjecture. There are four methods of forward
inference in LP.

1. Automatic normalization produces new consequences when a
rewrite rule is added to a system. LP keeps rewrite rules, equations,
and deduction rules in normal form.

If an equation or rewrite rule normalizes to an identity, it is discarded,
because it is logically and operationally superfluous. If all hypotheses
of a deduction rule normalize to identities, the deduction rule is
replaced by the equations in its conclusions. If all conclusions
of a deduction rule normalize to identities, the deduction rule is
discarded.

Users can “immunize” equations, rewrite rules, and deduction rules
to protect them from automatic normalization, both to enhance the
performance of LP and to preserve a particular form for use in a
proof. Users can also “deactivate” rewrite rules and deduction rules
to prevent them from being applied automatically.

134 7.4. Proof mechanisms in LP

2. Automatic application of deduction rules produces new conse-
quences after equations and rewrite rules in a system are normalized.
Deduction rules can also be applied by explicit command, for
example, to immune equations.

3. The computation of critical-pair equations and the Knuth-Bendix
completion procedure [58, 72] produce equational consequences
(such as i(e) == e) from incomplete rewriting systems (such
as the three rewrite rules for groups, page 130). We often compute
critical-pair equations from selected sets of rewrite rules. Sometimes
we run the completion procedure to find the last few consequences
to finish off a proof or, as discussed in Section 7.7, to look for
inconsistencies.However, we rarely complete our rewriting systems,
because a complete set of rewrite rules with a given equational theory
may not exist, may be too expensive to obtain, or may lead to normal
forms that are hard to read [28].

4. Explicit instantiation of variables in equations, rewrite rules, and
deduction rules also produces consequences. For example, in a
system that contains the deduction rule

when (� e) e 	 x == e 	 y yield x == y

and the rewrite rule e � (x
 y) � e � x � e � y, we
can instantiate y in the deduction rule by x
 x to produce the
conclusion x == x
 x.

There are seven methods of backward inference for proving theorems in
LP. These methods are invoked by the prove and resume commands. In
each method, LP generates a set of subgoals to be proved, that is, lemmas
that together are sufficient to imply the conjecture. For some methods,
LP generates additional hypotheses that may be used to prove particular
subgoals.

1. Normalization rewrites conjectures. If a conjecture normalizes to
an identity, it is a theorem. Otherwise the normalized conjecture
becomes the subgoal to be proved.

2. Proofs by cases can further normalize a conjecture. The command
prove e by cases t1, � � �, tn, where t1, � � � , tn are
predicates, directs LP to prove an equation e by division into cases

7. Using LP to Debug LSL Specifications 135

t1, � � � , tn (or into two cases, t1 and �t1, if n � 1). When n � 1,
one subgoal is to prove that the cases are exhaustive, i.e.,t1 � � � ��
tn. In addition, for each case ti, LP substitutes new constants for
the variables of ti in both ti and e to form ti’ and ei’, which
it uses to creates the subgoal ei’ with the additional hypothesis
ti’ � true. If an inconsistency results from adding the case
hypothesis ti’, that case is impossible, and ei’ is vacuously true.
Otherwise, the subgoalei’must be shown to follow from the axioms
supplemented by the case hypothesis.

Case analysis has two primary uses. If the conjecture is a theorem, a
proof by cases may circumvent a lack of completeness in the rewrite
rules. If the conjecture is not a theorem, an attempted proof by cases
may simplify the conjecture and make it easier to understand why
the proof is not succeeding.

3. Proofs by induction are based on the induction rules described in
Section 7.3. For example, a proof by induction of

isEmpty(c) � �(e 	 c)

from the axioms of LinearContainer involves two steps. The
basis step involves showing that

isEmpty(empty) � �(e 	 empty)

This follows from the axioms by normalization. The induction step
involves picking a new constant cc, assuming

isEmpty(cc) � �(e 	 cc)

as an induction hypothesis, and showing that

isEmpty(insert(e1, cc)) �
�(e 	 insert(e1, cc))

This follows by normalization from the axioms supplemented by
this induction hypothesis.

4. Proofs by contradiction provide an indirect method of proof. If an
inconsistency follows from adding the negation of the conjecture to
LP’s logical system, then the conjecture is a theorem.

136 7.4. Proof mechanisms in LP

5. Proofs of implications can be carried out using a simplified form of
proof by cases. The command prove t1 � t2 by � directs
LP to prove the subgoal t2’ using the hypothesis t1’ � true,
where t1’ and t2’ are obtained as in a proof by cases. This suffices
because the implication is vacuously true when t1’ is false.

6. Proofs of conditionals can also be carried out using a simplified form
of proof by cases. The command

prove if(t1, t2, t3) == t4 by if

directs LP to prove the subgoal t2’ == t4’ using the hypothesis
t1’, and to prove the subgoal t3’ == t4’ using the hypothesis
�t1’, where t1’, � � � , t4’ are obtained as in a proof by cases.

7. Proofs of conjunctions provide a way to reduce the expense of
rewriting modulo the associativity and commutativity of �. The
command prove t1 � � � �� tn by � directs LP to prove each
of t1, � � � , tn as a separate subgoal.

LP allows users to specify which methods of backward inference are
applied automatically and in what order. This is done by using the set
proof-methods command. For example, the LP command

set proof-methods if, �, normalization

tells LP that whenever it is given a conjecture to prove, it should
automatically try to apply these three methods, in the given order.

LP also provides automatic methods of backward inference for proving
induction and deduction rules. In each method, LP generates a set of
subgoals to be proved, as well as additional hypotheses that may be used
to prove particular subgoals. (See the next section for examples.)

Proofs of interesting conjectures hardly ever succeed on the first try.
Sometimes the conjecture is wrong. Sometimes the formalization is
incorrect or incomplete. Sometimes the proof strategy is flawed or not
detailed enough. When an attempted proof fails, we use a variety of LP
facilities (e.g., case analysis) to try to understand the problem. Because
many proof attempts fail, LP is designed to fail relatively quickly and
to provide useful information when it does. It is not designed to find
difficult proofs automatically. Unlike the Boyer-Moore prover [8], it does
not perform heuristic searches for a proof. Unlike LCF [71], it does not
allow users to define complicated search tactics. Strategic decisions, such
as when to try induction, must be supplied as explicit LP commands.

7. Using LP to Debug LSL Specifications 137

declare sorts
E
..

declare operators
�: E, E � Bool
�: E, E � Bool
..

declare variables
x: E
y: E
z: E
..

set name TotOrd
assert
�(x � x)
(x � y � y � z) � x � z
x � y � x � y � y � x
x � y == y � x
..

FIGURE 7.7. TotOrd Axioms.lp

On the other hand, LP is more than a “proof checker,” since it does not
require proofs to be described in minute detail. In many respects, LP is
best described as a “proof debugger.”

7.5 Checking theory containment

The proof obligations triggered by implies and assumes clauses in an
LSL trait require us to check theory containment, that is to check that
claims follow from axioms. This section discusses how the LSL Checker
formulates the proof obligations for theory containment for LP, as well as
how we use LP to discharge these obligations. The next section discusses
checking consistency.

PROVING AN EQUATION

The proof obligation for an equation is easy to formulate. Consider, for
example, the proof obligations that must be discharged to check the trait
TotOrd shown in Figure 7.3. Figure 7.7 displays the LP commands
that the LSL Checker extracts from this trait in order to axiomatize

138 7.5. Checking theory containment

execute TotOrd_Axioms
set name TotOrdTheorem
% Prove implication of TotOrd(E, � for �, � for �)
prove �(x � x)

qed
prove (x � y � y � z) � x � z
qed

prove x � y � x � y � y � x
qed

prove x � y == y � x
qed

% Prove implied equation
prove �(x � y � y � x)
qed

FIGURE 7.8. TotOrd Checks.lp

its theory, and Figure 7.8 displays the LP commands that the LSL
Checker extracts from this trait in order to discharge its proof obligations.
The execute command obtains the axioms for TotOrd from the file
TotOrd Axioms.lp. The prove commands initiate proofs of the five
immediate consequences of TotOrd.

LP can discharge all proof obligations except the first without user
assistance. The user is alerted to the need to supply assistance in this
proof by a diagnostic (“Proof suspended”) printed in response to the qed
command. At this point, the user can complete the proof by entering the
complete command or the command

critical-pairs TotOrd with TotOrd

Proofs of equations require varying amounts of assistance. For example,
when checking that LinearContainer implies

isEmpty(c) � �(e 	 c)

the single LP command resume by induction suffices to finish the
proof.

When checking that PQ, Figure 7.2, implies

e 	 q � �(e � head(q))

more guidance is required. This proof proceeds by induction on q. LP
proves the basis subgoal without assistance. For the induction subgoal, LP

7. Using LP to Debug LSL Specifications 139

introduces a new constantqc to take the place of the universally-quantified
variable q, adds

e 	 qc � �(e � head(qc))

as the induction hypothesis, and attempts to prove

e 	 insert(e1, qc) �
�(e � head(insert(e1, qc)))

which normalizes to
(e1 � e � e 	 qc) �
�(e � (if isEmpty(qc) then e1

else if e1 � head(qc) then e1
else head(qc)))

LP now automatically applies the � proof method, i.e., it assumes
the hypothesis of the implication, introducing new constants ec and e1c
to take the place of the variables e and e1, and attempts to prove the
conclusion of the implication from this hypothesis. At this point, further
guidance is required. The command

resume by case isEmpty(qc)

directs LP to divide the proof into two cases based on the predicate
in the first if. In the first case, isEmpty(qc), the desired conclu-
sion normalizes to �(ec < e1c). The complete command leads
LP to deduce �(e � qc), using the implied equation in the trait
LinearContainer, which is available for use in the proof because
LinearContainer precedes PQ in the trait hierarchy. With this fact,
LP is able to finish the proof in the first case automatically. The second
case, �isEmpty(qc), requires more user assistance.

Figure 7.9 shows the entire proof, as recorded and annotated by LP
in a script file. In addition to recording user input, LP has indented the
script to reveal the structure of the proof, and it has annotated the proof by
adding lines (beginning with <>) to indicate when it introduced subgoals
and lines (beginning with []) to indicate when each of these subgoals and
the theorem itself were proved. Such an annotated proof provides the user
with a means of regression testing after changing the axioms for a trait.
On request, when LP executes the annotated proof (using the new set of
axioms), it will halt execution and print an error message if the annotations
do not match the execution. These checks help pinpoint the source of
a problem when changes in the axioms cause some step in the proof to
succeed with less user guidance than expected or to require more guidance.
Without the check, LP might, for example, apply a tactic intended for a

140 7.5. Checking theory containment

set proof-methods �, normalization
prove e 	 q � �(e � head(q)) by induction
� � 2 subgoals for proof by induction on ‘q’
� � 1 subgoal for proof of �
[] � subgoal

[] basis subgoal
� � 1 subgoal for proof of �
resume by case isEmpty(qc)
� � 2 subgoals for proof by cases
% Handle case isEmpty(qc)
complete
[] case isEmpty(qc)
% Handle case �isEmpty(qc)
resume by case e1c � head(qc)
�� 2 subgoals for proof by cases
% Handle case e1c � head(qc)
resume by contradiction
�� 1 subgoal for proof by contradiction
complete
[] contradiction subgoal

[] case e1c � head(qc)
% Handle case �(e1c � head(qc))
resume by contradiction
�� 1 subgoal for proof by contradiction
complete
[] contradiction subgoal

[] case �(e1c � head(qc))
[] case �(isEmpty(qc))

[] � subgoal
[] induction subgoal

[] conjecture
qed

FIGURE 7.9. LP-annotated proof of PQ implication

7. Using LP to Debug LSL Specifications 141

FinSet: trait
introduces
empty: � S
insert: S, E � S
singleton: E � S
__ � __: S, S � S
__ 	 __: E, S � Bool
__ � __: S, S � Bool

asserts
S generated by empty, insert
S partitioned by 	
forall s, s1: S, e, e1: E
singleton(e) == insert(empty, e);
s � empty == s;
s � insert(s1, e) == insert(s � s1, e);
�(e 	 empty);
e 	 insert(s, e1) == e 	 s � e � e1;
empty � s;
insert(s, e) � s1 == s � s1 � e 	 s1

implies
S partitioned by �
S generated by empty, singleton, �

FIGURE 7.10. An LSL trait for finite sets

particular case in a proof to the wrong case, thereby causing the proof to
fail in mysterious ways. This checking helps prevent proofs from getting
“out of sync” with their author’s conception of how they should proceed.

PROVING A “PARTITIONED BY”

Proving a partitioned by clause amounts to proving the validity of the
associated deduction rule in LP. For example, the LSL Checker formulates
the proof obligations associated with the partitioned by in the implies
clause of Figure 7.10 using the LP commands

execute FinSet_Axioms
prove S partitioned by �

and LP translates the partitioned by into the deduction rule

when (� s3) s1 � s3 == s2 � s3,
s3 � s1 == s3 � s2

yield s1 == s2

142 7.5. Checking theory containment

LP initiates a proof of this deduction rule by introducing two new constants,
s1c and s2c of sort S, assuming s1c � s3 == s2c � s3 and
s3 � s1c == s3 � s2c as additional hypotheses, and attempting
to prove the subgoal s1c == s2c. LP cannot prove s1c == s2c
directly, because the equation is irreducible. The user can guide LP by
typing complete, which yields the lemma e � s1c == e � s2c,
after which LP automatically finishes the proof by applying the deduction
rule associated with the assertion S partitioned by �.

PROVING A “GENERATED BY”

Proving a generated by clause involves proving that the set of elements
generated by the given operators contains all elements of the sort. For
example, the LSL Checker formulates the proof obligation associated with
the generated by in the implies clause of Figure 7.10 as

execute FinSet_Axioms
prove S generated by empty, singleton, �

LP then introduces a new operator isGenerated:S�Bool, adds the
hypotheses

isGenerated(empty)
isGenerated(singleton(e))
(isGenerated(s1) � isGenerated(s))

� isGenerated(s1 � s)

and attempts to prove the subgoal isGenerated(s). User guidance is
required to complete the proof, for example, by entering the commands

resume by induction
complete

directing LP to use the induction scheme obtained from the assertion

S generated by empty, insert

and then to run the completion procedure to draw the necessary inferences
from the additional hypotheses.

PROVING A “CONVERTS”

Proving that a trait converts a set of operators involves showing that the
axioms of the trait define the operators in the set relative to the other
operators in the trait. For example, to show that LinearContainer

7. Using LP to Debug LSL Specifications 143

execute LinearContainer_Theorems
declare operators
isEmpty’: C � Bool
	’: E, C � Bool
..

assert C partitioned by head, tail, isEmpty’
assert
isEmpty’(empty)
�(isEmpty’(insert(e, c)))
�(e 	’ empty)
e 	’ insert(e1, c) == e � e1 � e 	’ c
isEmpty’(c) � �(e 	’ c)
..

set name conversionChecks
prove e 	 c == e 	’ c

qed
prove isEmpty(c) == isEmpty’(c)
qed

FIGURE 7.11. Proof obligations for converts in LinearContainer

converts isEmpty and �, one must show that, given any interpre-
tations for empty and insert, there are unique interpretations for
isEmpty and � that satisfy the axioms of LinearContainer.
Equivalently, we must show that the theories of LinearContainer and
LinearContainer(isEmpty’ for isEmpty, �� for �) to-
gether imply the two equations isEmpty(c) == isEmpty’(c) and
e � c == e �� c.

The LSL Checker formulates these proof obligations with the LP
commands in Figure 7.11.6 The only user guidance required to discharge
these proof obligations is a command to proceed by induction.

The proof obligation for the converts clause in PQ is similar. Here we
must show that given any interpretations for empty and insert, as well
as for the exempted terms head(empty) and tail(empty), there
are unique interpretations for head, tail, isEmpty, and � that satisfy
the theory of PQ. The proof obligations for this are shown in Figure 7.12.
Again, the only user guidance needed to complete the proofs are commands
to proceed by induction.

6The figure’s last assertion comes from the implies clause in LinearContainer.

144 7.5. Checking theory containment

execute PQ_Theorems
% Declarations, axioms, and theorems for
% head’, tail’, isEmpty’, 	’ occur here
set name exemptions
assert
head(empty) == head’(empty)
tail(empty) == tail’(empty)
..

set name conversionChecks
prove isEmpty(q) == isEmpty’(q)
qed

prove head(q) == head’(q)
qed

prove tail(q) == tail’(q)
qed

prove e 	 q == e 	’ q
qed

FIGURE 7.12. Proof obligations for converts in PQ

7. Using LP to Debug LSL Specifications 145

7.6 Checking consistency

Checks for theory containment fall into the typical pattern of use of
a theorem prover. The check for consistency is harder to formulate
because it involves nonconsequence rather than consequence. Techniques
for detecting when this check fails are more useful than techniques for
certifying that it succeeds.

A standard approach in logic to proving consistency involves inter-
preting the theory being checked in another theory whose consistency is
assumed (e.g., Peano arithmetic) or has been established previously [77].
In this approach, user assistance is required to define the interpretation. The
proof that the interpretation satisfies the axioms of the trait being checked
then becomes a problem of showing theory containment, for which LP
is well suited. This approach is cumbersome and unattractive in practice.
More promising approaches are based on metatheorems in first-order logic
that can be used for restricted classes of specifications. For example, any
extension by definitions (see [77]) of a consistent theory is consistent.

For equational traits (i.e., traits with purely equational axiomatizations,
of which there are relatively few), questions about consistency can be
translated into questions about critical pairs. In some cases, we can use
LP to answer these questions by running the completion procedure or by
computing critical pairs. If these actions generate an inconsistency, the
axioms are inconsistent; if they complete the axioms without generating
the equation true == false, then the trait is consistent. This proof
strategy will not usually succeed in proving consistency, because many
equational theories cannot be completed at all, or cannot be completed in
an acceptable amount of time and space. However, it has proved useful in
finding inconsistencies among equations.

We can use all of LP’s forward inference mechanisms to search for
inconsistencies in a specification. The completion procedure searches for
inconsistencies automatically, and we can instantiate axioms by “focus
objects” (in the sense of McAllester [64]) to provide the completion
procedure with a basis for its search. Even though unsuccessful searches
do not certify that a specification is consistent, they increase our confidence
in a specification, just as testing increases our confidence in a program.

146 7.7. Extended example

Coordinate: trait
introduces
origin: � Coord
__ - __: Coord, Coord � Coord

asserts � cd: Coord
cd - cd == origin

Region(R): trait
assumes Coordinate
introduces
__ 	 __: Coord, R � Bool
% cd 	 r is true if point cd is in region r
% Nothing is assumed about the contiguity
% or shape of regions

Displayable(T): trait
assumes Coordinate
includes Region(T)
introduces
__[__]: T, Coord � Color
% t[cd] represents appearance of object t
% at point cd

FIGURE 7.13. Prototype traits for windowing abstraction

7.7 Extended example

To illustrate our approach to checking specifications in a slightly more
realistic setting, we show how one might construct and check some traits
to be used in the specification of a simple windowing system [43]. These
are preliminary versions of traits that would likely be expanded as the
specifications (including the interface parts) were developed.

The first three traits, Figure 7.13, declare the signatures of some basic
operators.

The proof obligations associated with these traits are easily discharged.
When LP’s completion procedure is run on Coordinate, it terminates
without generating any critical pairs. Since Coordinate has no
generated by or partitioned by clauses, this is sufficient to guarantee that it is
consistent. When checking the inclusion of Region by Displayable,
Region’s assumption of Coordinate is discharged syntactically, using
Displayable’s assumption of the same trait.

7. Using LP to Debug LSL Specifications 147

Window(W): trait
assumes Coordinate
includes Region, Displayable(W)
W tuple of cont, clip: R, fore, back: Color, id: WId
asserts � w: W, cd: Coord

cd 	 w == cd 	 w.clip;
w[cd] == if cd 	 w.cont then w.fore else w.back

implies converts __[__], 	:Coord,W�Bool

FIGURE 7.14. Window.lsl

The Window trait, Figure 7.14, defines a window as an object composed
of content and clipping regions, foreground and background colors, and a
window identifier. The operator � is qualified by a signature in the last line
of the trait because it is overloaded, and it is necessary to say which � is
converted.

There are three proof obligations associated with this trait. The
assumptions of Coordinate in Region and Displayable are
syntactically discharged usingWindow’s assumption. The converts clause
is discharged by LP without user assistance. The other proof obligation is
consistency. As discussed in the previous section, we use the completion
procedure to search for inconsistencies. Running it for a short time neither
uncovers an inconsistency nor proves consistency.

The View trait, Figure 7.15, defines a view as an object composed of
windows at locations. There are several proof obligations associated with
this trait. Once again, the assumptions of Window and Displayable
are discharged syntactically by the assumption in View. Once again,
using the completion procedure to search for inconsistencies uncovers no
problems. However, checking the converts clause does turn up a problem.
The conversion of inW and both �’s is easily proved by induction over
objects of sort V. However, the inductive base case for � � does not
reduce at all, because emptyV[cd] is not defined. This problem can be
solved either by defining emptyV[cd] or by adding

exempting � cd: Coord emptyV[cd]

to the converts clause. We choose the latter because there is no obvious
definition for emptyV[cd]. With the added exemption, the inductive
proof of the conversion of [] goes through without further interaction.

When we attempt to prove the first of the explicit equations in the implies
clause of View, we run into difficulty. After automatically applying its

148 7.7. Extended example

View: trait
assumes Coordinate
includes Window, Displayable(V)
introduces
emptyV: � V
addW: V, Coord, W � V
__ 	 __: W, V � Bool
inW: V, WId, Coord � Bool

asserts
V generated by emptyV, addW
� cd, cd1: Coord, v: V, w, w1: W, wid: WId
�(cd 	 emptyV);
cd 	 addW(v, cd1, w) ==

(cd - cd1) 	 w � cd 	 v;
�(w 	 emptyV);
w 	 addW(v, cd1, w1) == w.id � w1.id � w 	 v;
addW(v, cd1, w)[cd] ==
if (cd - cd1) 	 w

then w[cd - cd1] else v[cd];
% In view only if in a window, offset by origin
�inW(emptyV, wid, cd);
inW(addW(v, cd, w), wid, cd1) ==

(w.id � wid � (cd - cd1) 	 w)
� inW(v, wid, cd1)

implies
� cd, cd1: Coord, v,v1: V, w: W
% New window does not affect the appearance
% of parts of the view lying outside the window
�inW(addW(v, cd, w), w.id, cd1)
� addW(v, cd, w)[cd1] � v[cd1];

% Appearance within newly added window is
% independent of the view to which it is added
inW(addW(v, cd1, w), w.id, cd)
� addW(v, cd1, w)[cd] � addW(v1, cd1, w)[cd]

converts inW, 	:Coord,V�Bool, 	:W,V�Bool,
__[__]:V,Coord�Color

FIGURE 7.15. Preliminary version of View.lsl

7. Using LP to Debug LSL Specifications 149

proof method for implications, LP reduces the conjecture to

if (cd1c - cdc) 	 wc.clip
then if (cd1c - cdc) 	 wc.cont

then wc.fore else wc.back
else vc[cd1c]

== vc[cd1c]

and reduces the assumed hypothesis of the implication to

�((cdc - cd1c) 	 wc.clip)

At this point, we ask ourselves why the hypothesis is not sufficient to
reduce the conjecture to an identity. The problem seems to be the order of
the operands of -. This leads us to look carefully at the second equation for
inW in trait View. There we discover that we have written cd - cd1
when we should have written cd1 - cd, or, to be consistent with the
form of the other equations, reversed the role of cd and cd1 in the left
side of the equation. After changing this axiom to

inW(addW(v, cd1, w), wid, cd) ==
(w.id � wid � (cd - cd1) 	 w)
� inW(v, wid, cd)

the proof of the first implication goes through without interaction.
The second conjecture, after LP applies its proof method for implica-

tions, reduces to

if (cdc - cd1c) 	 wc.clip
then if (cdc - cd1c) 	 wc.cont

then wc.fore else wc.back
else vc[cdc]

==
if (cd - cd1c) 	 wc.clip

then if (cdc - cd1c) 	 wc.cont
then wc.fore else wc.back

else v’[cdc]

We resume the proof by dividing it into two cases based on the predicate
in the outermost if’s. When this predicate is true, the conjecture reduces
to true; when it is false, the conjecture reduces to

vc[cdc] == v’[cdc]

Since v’ is a variable and vc a new constant, we know that we are not
going to be able to reduce this to true. This does not necessarily mean
that the proof will fail, since we could be in an impossible case (i.e., the

150 7.7. Extended example

current hypotheses could lead to a contradiction). However, examining the
current hypotheses,

inW(vc, wc.id, cdc) % Hypothesis of �
�((cdc - cd1c) 	 wc.clip) % Case hypothesis

gives us no obvious reason to believe that a contradiction exists.
This leads us to wonder about the validity of the conjecture we are trying

to prove, and to ask ourselves why we thought it was true when we added
it to the trait. Our informal reasoning had been:

1. The hypothesis inW(addW(v, cd1, w), w.id, cd) of the
conjecture guarantees that coordinate cd is in window w in the view
addW(v, cd1, w).

2. If w is added at the same place in v’ as in v, cd must also be in
addW(v’, cd1, w).

3. Furthermore cd - cd1 will be the same relative coordinate in w
in both addW(v, cd1, w) and addW(v’, cd1, w).

4. Therefore the equation

addW(v, cd1, w)[cd] ==
if (cd - cd1) 	 w

then w[cd -cd1] else v[cd]

in trait View should guarantee the conclusion.

The first step in formalizing this informal argument is to attempt to prove

inW(addW(v, cd1, w), w.id, cd) � (cd - cd1) 	 w

as a lemma. LP reduces the conclusion of this implication to

(cdc - cd1c) 	 wc.clip

using the normalized implication hypothesis

(cdc - cd1c) 	 wc.clip � inW(vc, wc.id, cdc)

Casing on the first disjunct of the hypothesis reduces the conjecture to
false under the same implication and case hypotheses as above.

We are thus stuck in the same place as in our attempted proof of the
original conjecture. This leads us to question the validity of the first step
in our informal proof, and we discover a flaw there: when v contains a
window with the same id as w, the implication is not sound. The problem

7. Using LP to Debug LSL Specifications 151

is that we implicitly assumed the invariant that no view would contain two
windows with the same id, and our specification does not guarantee this.

There are several ways around this problem, among them:

1. Trait View could be changed so that addW chooses a unique id
whenever a window is added.

2. Trait View could be changed so that addW is the identity function
when the id of the window to be added is already associated with a
window in the view.

3. The preservation of the invariant could be left to the interface level.

We choose the third alternative and weaken the second implication of
trait View to:

� cd, cd1: Coord, v, v’: V, w: W
% Appearance within a newly added window is
% independent of the view to which it is added,
% provided that the window id is not already
% present in the view.
(�(w 	 v) � �(w 	 v’)

� inW(addW(v, cd1, w), w.id, cd))
� addW(v, cd1, w)[cd] � addW(v’, cd1, w)[cd]

which is proved with a small amount of user interaction after proving the
lemma

�(w 	 v) � �inW(v, w.id, cd)

by induction on v.
Finally, we introduce a coordinate system.

CartesianView: trait
includes View, Natural
Coord tuple of x, y: N
asserts � cd, cd1: Coord

origin == [0, 0];
cd - cd1 == [cd.x � cd1.x, cd.y � cd1.y]

implies converts origin, -

LP uses the facts of the trait Natural (see Appendix A) to automatically
discharge the assumption of Coordinate that has been carried from
level to level. LP requires no assistance to complete the proof that the
coordinate operators are indeed converted.

Of course, for expository purposes, we have used an artificially
simplified example. We also deliberately seeded some errors for LP to

152 7.8. Perspective

find. However, most of the errors discussed above occurred unintentionally
as we wrote the example, and we did not notice them until we actually
attempted the mechanical proofs.

7.8 Perspective

The Larch Shared Language includes several facilities for introducing
checkable redundancy into specifications. These facilities were chosen to
expose common classes of errors. They give specifiers a better chance of
receiving diagnostics about specifications with unintended meanings, in
much the same way that type systems give programmers a better chance
of receiving diagnostics about erroneous programs.

A primary goal of Larch is to provide useful feedback to specifiers when
there is something wrong with a specification. Hence we designed LP
primarily as a debugging tool. We are not overly troubled that detecting
inconsistencies is generally quicker and easier than certifying consistency.

We expect to discover flaws in specifications by having attempted proofs
fail. LP does not automatically apply backwards inference techniques, and
it requires more user guidance than some other provers. Much of this
guidance is highly predictable, e.g, proving the hypotheses of deduction
rules as lemmas. Although it is tempting to supply LP with heuristics
that would generate such lemmas automatically, we feel that it is better to
leave the guidance to the user. At many points in a proof, many different
heuristics could apply. In our experience, choosing the next step in a proof
(e.g., a case split or proof by induction)—or deciding that the proof attempt
should be abandoned—often depends upon knowledge of the application.
LP cannot reasonably be expected to possess this knowledge, especially
when we are searching for a counterexample to a conjecture, rather than
attempting to prove it. However, in some cases, the LSL Checker may
be able to use the structure of LSL specifications to generate some of the
guidance (e.g., using induction to prove a converts clause) that users must
currently provide to LP.

The checkable redundancy that LSL encourages in specifications also
supports regression testing as specifications evolve. When we change part
of a specification (e.g., to strengthen or weaken the assertions of one
trait), it is important to ensure that the change does not have unintended
side-effects. LP’s facilities for detecting inconsistencies help us discover
grossly erroneous changes. Claims about other traits in the specification,
which imply or assume the changed trait, can help us discover more

7. Using LP to Debug LSL Specifications 153

subtle problems. If some of these claims have already been checked, LP’s
facilities for replaying proof scripts make it easy to recheck their proofs
after a change—an important activity, but one that is likely to be neglected
without mechanical assistance.

Chapter 8

Conclusion

Larch is still very much a “work in progress.” New Larch interface
languages are being designed, new tools are being built, and the existing
languages and tools are in a state of evolution. Most significantly,
specifications are being written.

But Larch has reached a divide, what Churchill might have called “the
end of the beginning.” Until now, most of the work on Larch has been done
by the authors of this book and their close associates. We hope that the
First International Workshop on Larch [66] and the publication of this book
mark the beginning of the period when most Larch research, development,
and application will be done by people we do not yet know.

THE ESSENCE OF LARCH

Over the years, we have spent many pages describing Larch languages,
tools, and applications. However, the essence of Larch rests in a few
principles that have guided our efforts:

� The most important use for specification is as a tool for helping
to understand and document interfaces. Therefore, clarity is more
important than any other property.

� Specifications should not just describe mathematical abstractions,
but real interfaces supplied by programs. They should be written at
the level of abstraction at which clients program. This usually means
sinking to the level of a programming language.

� Structuring specifications into two tiers, which we have called
the interface tier and the LSL tier, makes specifications easier to
understand and facilitates reuse of parts of specifications.

– The interface tier describes the observable behavior of program
components. Since what a client can observe is likely to depend
in fundamental ways on the client programming language,
much can be gained by designing interface specification lan-
guages that are optimized for specific programming languages.

8. Conclusion 155

Specifications in this tier can be rather simple, provided that
the right abstractions are provided in the LSL tier.

– The LSL tier describes mathematical abstractions that are
independent of the details of any programming model. These
are the principal reusable components of specifications. While
we have used only one language (LSL) to write specifications
in this tier, there is no fundamental reasons other languages
could not be used. Languages used in this tier should have a
simple semantics; they need not deal with messy issues such
as runtime errors, which are better handled in the interface tier.

� Specification languages should be carefully designed. Having an
elegant semantics is not enough. Careful attention to syntax and
static semantic checking is crucial.

� Tool support is vital. One of the great virtues of using a formal
notation is that tools can be used to help detect and isolate a variety
of errors. Whenever we have improved our tools to detect a new
class of errors, we have found more errors in existing specifications.

� Tools for checking interface specifications should be integrated with
other programming language tools, e.g., preprocessors that enforce
programming conventions.

� Specification must not be viewed as an isolated activity. It must
be integrated with good programming practice. The goal is not to
specify arbitrary programs, but to use specifications to help design,
implement, document, and maintain good programs. Specifications
can help in structuring these activities.

A CAUTIONARY NOTE

Throughout this book we have stressed ways in which formal specification
can be used to help in building high quality software. However, we have
tried not lose sight of the fact that formal specification is not a panacea.
Good engineering practice is essential. To quote an anonymous referee of
an early draft of this book,

� � �bullishness about formal methods must be strongly tem-
pered by the following important realization: Formalization
should be aimed at achieving conceptual clarity, rather than

156 8. Conclusion

as a mere exercise in encoding pieces of mathematics. No
notation or toolset, however fancy and elaborate, can be a
substitute for clear thought. At best, formalization can help
clarify ideas and concepts by making them more tangible. At
worst, poor or faulty formalization can cloud and confuse
issues beyond repair.

Appendix A

An LSL Handbook

A.1 Introduction

This handbook supersedes Piece IV of Larch in Five Easy Pieces [51] and
“A Larch Shared Language Handbook” [46].

READING THE HANDBOOK

This handbook contains a collection of traits written in LSL 2.4 that can
be studied to learn more about LSL. Many traits are also suitable for use
as specification components. They constitute a library for the LCL and
LM3 tools; we hope that they will save others from reinventing wheels—
especially polygonal ones. Other traits are more likely to be used as models
for the development of similar specialized specification components.

This handbook is representative rather than complete. The LSL tier
is open-ended because we believe that no handbook or library will ever
include everything that will be needed. Users are encouraged to augment
this handbook with additional traits, and to prepare their handbooks for
particular applications.

This is not a textbook on discrete mathematics. If you already understand
a collection of concepts (e.g., integer arithmetic), their formalization should
make sense to you. If you don’t, you should still be able to understand
precisely what the definitions say (or don’t say), but you probably won’t
get many clues as to why the particular definitions in (say) Lattice or
AbelianMonoid are interesting and useful. Think of this handbook as
the “collected formulas” that might appear as an appendix to a mathematics
text.

There are many trade-offs in developing this kind of handbook:

� simplicity versus completeness,

� structure (include trait by reference) versus explicitness (copy trait),

� brevity versus explicit indication of consequences,

� concise versus mnemonic names,

158 A.1. Introduction

� stylistic consistency versus an illustrative range of valid styles,

� standardization (for communication) versus flexibility (for efficiency
in particular cases),

� selection among competing notations and definitions for concepts,

� conceptual elegance versus practical utility.

We expect that, in the not-too-distant future, specification handbooks
will most often be used in their online forms, with browsing tools that
enable readers to make many of these choices dynamically, according to
their needs and preferences. Unfortunately, this book is still a hostage to
the tyranny of paper, so we’ve had to make these choices in advance. There
are general tendencies in the choices exhibited here, but we haven’t applied
any of our own guidelines slavishly. Many of the stylistic variations are
intentional, but there are probably others that we simply didn’t notice.

This handbook does not have to be read front-to-back. There is
no “correct” order in which to study the traits. Feel free to browse
and skip according to your interests and needs. Early sections tend to
deal with specific constructs that occur frequently in program interface
specifications, while later sections are somewhat more abstract, providing
mathematical building blocks that can be used to define, classify, or
generalize such constructs. When there didn’t seem to be any natural order
for things, we fell back on alphabetical order.

Traits in sections labeled data types or data structures are quite likely
to be used directly in interface specifications. Traits in sections labeled
assumptions and implications or operator definitions are more likely to be
used in other traits.

Traits are listed in the index. If you don’t know exactly what a referenced
trait contains, you can always look it up. However, we have tried to use
familiar names for familiar concepts. Particularly on first reading, it is
probably better to assume that traits such as Integer and TotalOrder
mean what you expect, than to flip continually from trait to trait and section
to section.

An implies clause does not contribute to the meaning (i.e., the theory)
of a legal trait. It is perfectly acceptable to ignore them, and it is often best
to do so on first reading. However, they do offer you a chance to check
your understanding, by giving examples of facts that are consequences of
the definitions in the trait. They may also include alternative (and perhaps

Appendix A. An LSL Handbook 159

more familiar) definitions, or show connections that may not be obvious
from looking at just the definitions in the traits.

Both includes and assumes clauses add axioms from referenced
traits. They both have the same semantics within a trait in which they
appear, so it’s fine to ignore the distinction on first reading. But assumes
clauses impose an additional proof obligationwhenever the trait containing
them is referenced in another trait, so they become very relevant when using
traits to compose specifications.

Many abstract types are defined in two traits, one of which defines only
the essential operators that characterize the type, while the other includes
definitions for a richer set of operators in terms of the essential operators.
The former kind of trait tends to be used in assumes and implies
clauses; the latter, in includes clauses and in interface specifications.
Compare, for example, SetBasics and Set, or RelationBasics
and Relation.

Many traits includeInteger and use sortIntwhere it might seem that
Natural and Nat would be more natural choices—and, in some cases,
would lead to somewhat simpler specifications. This is a consequence of
the decision in the interface languages to base all the whole-number types
on Int. The trait IntegerPredicates defines predicates to test for
several commonly-used subsets of the integers. The alternative was a large
amount of sort-conversion that would severely distract from the clarity of
interface specifications. So we pay a small price in the LSL tier for greater
simplicity in the interface tier.

If a definition seems “unnatural” to you, you will find it instructive to
try to construct a more natural definition yourself. If you find one, you will
have gained some experience in writing LSL specifications; if you don’t,
you may have gained some insight into the reason for the “unnatural”
definition.

The traits in this handbook have passed the scrutiny of the LSL Checker,
which parses, expands trait references, resolves overloading, and sort-
checks. Most of them have not yet been subjected to additional checking
of the kind described in Chapter 7.

The online version of this handbook is still evolving. The authors would
appreciate all kinds of feedback from readers and users. Are there errors or
sources of confusion? Have we omitted something that would be widely
useful? Are there better ways to define some of the concepts?

160 A.1. Introduction

NAMING AND LEXICAL CONVENTIONS

Sort names:

� Numeric types: Int for integers, P for positive numbers, Q for
rationals, F for floating point, and N otherwise.

� T if there is only one “interesting” sort in the trait.

� Container traits: E for elements, C for containers.

Operator names:

� � for a generic infix operator and also for the composition of maps
and relations.

� � for a generic relation.

For convenience in manipulating the online form of the handbook, we
have chosen a sequence of ISO Latin characters to represent each non-ISO
Latin symbol used in the handbook. Some of them are chosen for visual
similarity (e.g., � is written as -> and � is written as <=); others have
been modeled on TeX’s choices (e.g., � is written as \circ and � is
written as \in). A complete list is given in Section C.

Each Larch interface language defines its own notation for literals, based
on the programming language’s notation; numerical types will generally
include the trait schema DecimalLiterals.

Many traits have a size or count operator whose value is always
non-negative. For reasons given in the previous section, except within
Section A.15, Number theory, we have given their range as Int, from trait
Integer, rather than as N, from trait Natural.

Appendix A. An LSL Handbook 161

A.2 Foundations

DATA TYPE: BOOLEAN

Boolean: trait
% This trait is given for documentation only.
% It is implicit in LSL.
introduces
true, false: � Bool
�__: Bool � Bool
__� __, __�__, __�__: Bool, Bool � Bool

asserts
Bool generated by true, false
� b: Bool
� true == false;
� false == true;
true � b == b;
false � b == false;
true � b == true;
false � b == b;
true � b == b;
false � b == true

implies
AC (� , Bool),
AC (�, Bool),
Distributive (� for +, � for *, Bool for T),
Distributive (� for +, � for *, Bool for T),
Involutive (�__, Bool),
Transitive (� for �, Bool for T)
� b1, b2, b3: Bool
�(b1 � b2) == �b1 � �b2;
�(b1 � b2) == �b1 � �b2;
b1 � (b1 � b2) == b1;
b1 � (b1 � b2) == b1;
b2 � �b2;
(b1 � b2) � (b1 � b3) � (b2 � b3);
b1 � b2 == �b1 � b2

162 A.2. Foundations

OPERATOR DEFINITION: IF THEN ELSE

Conditional (T): trait
% This trait is given for documentation only.
% It is implicit in LSL.
introduces if__then__else__: Bool, T, T � T
asserts
� x, y, z: T
if true then x else y == x;
if false then x else y == y

implies � b: Bool, x: T
if b then x else x == x

Appendix A. An LSL Handbook 163

A.3 Integers

DATA TYPE

Integer (Int): trait
% The usual (unbounded) integers operators
includes
DecimalLiterals (Int for N),
TotalOrder (Int)

introduces
0, 1: � Int
succ, pred, -__, abs: Int � Int
__+__, __-__, __*__: Int, Int � Int
div, mod, min, max: Int, Int � Int

asserts
Int generated by 0, succ, pred
� x, y: Int
succ(pred(x)) == x;
pred(succ(x)) == x;
-0 == 0;
-succ(x) == pred(-x);
-pred(x) == succ(-x);
abs(x) == max(-x, x);
x + 0 == x;
x + succ(y) == succ(x + y);
x + pred(y) == pred(x + y);
x - y == x + (-y);
x * 0 == 0;
x*succ(y) == (x*y) + x;
x*pred(y) == (x*y) - x;
y � 0 � mod(x, y) + (div(x, y) * y) � x;
y � 0 � mod(x, y) � 0;
y � 0 � mod(x, y) � y;
min(x, y) == if x � y then x else y;
max(x, y) == if x � y then y else x;
x � succ(x)

implies
AC (+, Int),
AC (*, Int),
AC (min, Int),
AC (max, Int),
RingWithUnit (Int for T)
Int generated by 1, +, -__:Int�Int

164 A.3. Integers

� x, y: Int
x � y == succ(x) � succ(y);
x � y == x � succ(y)

converts
1, -__:Int�Int, __-__:Int,Int�Int,
abs, +, *, div, mod, min, max, �, �, �, �

LITERALS

DecimalLiterals (N): trait
% A built-in trait schema given here
% for documentation only
introduces
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 %, ...
: � N

succ: N � N
asserts equations
1 == succ(0);
2 == succ(1);
3 == succ(2);

% ... as far as needed for any literals
% of sort N appearing in the including trait

OPERATOR DEFINITIONS

IntegerPredicates (Int): trait
% Frequently used subranges of the integers
assumes Integer
introduces
InRange: Int, Int, Int � Bool
Natural, Positive, Signed, Unsigned: Int � Bool
maxSigned, maxUnsigned: � Int

asserts forall n, low, high: Int
InRange(n, low, high) == low � n � n � high;
Natural(n) == n � 0;
Positive(n) == n � 0;
Signed(n) ==
InRange(n, -succ(maxSigned), maxSigned);

Unsigned(n) == InRange(n, 0, maxUnsigned)
implies � n: Int

Positive(n) � Natural(n);
Unsigned(n) � Natural(n)

Appendix A. An LSL Handbook 165

A.4 Enumerations

Enumeration (T): trait
% Enumeration, comparison, and ordinal position
% operators, often used with "enumeration of"
assumes Integer
includes DerivedOrders
introduces
first, last: � T
succ, pred: T � T
ord: T � Int
val: Int � T

asserts
T generated by first, succ
T generated by last, pred
� x, y: T
ord(first) == 0;
x �� last � ord(succ(x)) � ord(x) + 1;
x �� last � pred(succ(x)) � x;
val(ord(x)) == x;
x � y == ord(x) � ord(y);
x � last

implies
TotalOrder
T generated by val
T partitioned by ord
� x: T
x �� first � succ(pred(x)) � x;
x �� last � x � succ(x);
first � x;
ord(x) � 0

converts
first:�T, succ:T�T, pred:T�T, ord,
�:T,T�Bool, �:T,T�Bool,
�:T,T�Bool, �:T,T�Bool

exempting succ(last), pred(first)

166 A.5. Containers

A.5 Containers

Throughout this section we use E for the element sort, and C for the
container sort. This simplifies comparisons among data structures and
makes it easier to write generic operator definitions that work for several
kinds of containers. Since variable names are local to traits, we imposed
no such uniformity on them.

UNORDERED DATA STRUCTURES

SetBasics (E, C): trait
% Essential finite-set operators
introduces
{}: � C
insert: E, C � C
__	 __: E, C � Bool

asserts
C generated by {}, insert
C partitioned by 	
� s: C, e, e1, e2: E
�(e 	 {});
e1 	 insert(e2, s) == e1 � e2 � e1 	 s

implies
InsertGenerated ({} for empty)
� e, e1, e2: E, s: C
insert(e, s) �� {};
insert(e, insert(e, s)) == insert(e, s);
insert(e1, insert(e2, s)) ==
insert(e2, insert(e1, s))

converts 	

Appendix A. An LSL Handbook 167

Set (E, C): trait
% Common set operators
includes
SetBasics,
Integer,
DerivedOrders (C, � for �, � for �,

� for �, � for �)
introduces
__�	 __: E, C � Bool
delete: E, C � C
{__}: E � C
__ � __, __ � __, __-__: C, C � C
size: C � Int

asserts
� e, e1, e2: E, s, s1, s2: C
e �	 s == �(e 	 s);
{ e } == insert(e, {});
e1 	 delete(e2, s) == e1 �� e2 � e1 	 s;
e 	 (s1 � s2) == e 	 s1 � e 	 s2;
e 	 (s1 � s2) == e 	 s1 � e 	 s2;
e 	 (s1 - s2) == e 	 s1 � e �	 s2;
size({}) == 0;
size(insert(e, s)) ==
if e �	 s then size(s) + 1 else size(s);

s1 � s2 == s1 - s2 � {}
implies
AbelianMonoid (� for �, {} for unit, C for T),
AC (�, C),
JoinOp (�, {} for empty),
MemberOp ({} for empty),
PartialOrder (C, � for �, � for �,

� for �, � for �)
C generated by {}, {__}, �
� e: E, s, s1, s2: C
s1 � s2 � (e 	 s1 � e 	 s2);
size(s) � 0

converts
	, �	, {__}, delete, size, �, �, -:C,C�C,
�, �, �, �

168 A.5. Containers

BagBasics (E, C): trait
% Essential bag operators
includes Integer
introduces
{}: � C
insert: E, C � C
count: E, C � Int

asserts
C generated by {}, insert
C partitioned by count
� b: C, e, e1, e2: E
count(e, {}) == 0;
count(e1, insert(e2, b)) ==
count(e1, b) + (if e1 � e2 then 1 else 0)

implies
InsertGenerated ({} for empty)
� e: E, b: C
insert(e, b) �� {};
count(e, b) � 0

converts count

Appendix A. An LSL Handbook 169

Bag (E, C): trait
% Common bag operators
includes
BagBasics,
DerivedOrders (C, � for �, � for �,

� for �, � for �)
introduces
delete: E, C � C
{__}: E � C
__	 __, __�	 __: E, C � Bool
size: C � Int
__� __, __-__: C, C � C

asserts
� e, e1, e2: E, b, b1, b2: C
count(e1, delete(e2, b)) ==
if e1 � e2 then max(0, count(e1, b) - 1)
else count(e1, b);

{ e } == insert(e, {});
e 	 b == count(e, b) � 0;
e �	 b == count(e, b) � 0;
size({}) == 0;
size(insert(e, b)) == size(b) + 1;
count(e, b1 � b2) ==

count(e, b1) + count(e, b2);
count(e, b1 - b2) ==
max(0, count(e, b1) - count(e, b2));

b1 � b2 == b1 - b2 � {};
implies
AbelianMonoid (� for �, {} for unit, C for T),
JoinOp (�, {} for empty),
MemberOp ({} for empty),
PartialOrder (C, � for �, � for �,

� for �, � for �)
� e, e1, e2: E, b, b1, b2: C
insert(e, b) �� {};
count(e, b) � 0;
count(e, b) � size(b);
b1 � b2 � count(e, b1) � count(e, b2)

converts count, 	, �	, {__}, �, -:C,C�C,
delete, size, �, �, �, �

170 A.5. Containers

INSERTION ORDERED DATA STRUCTURES

StackBasics (E, C): trait
% Essential LIFO operators
includes Integer
introduces
empty: � C
push: E, C � C
top: C � E
pop: C � C

asserts
C generated by empty, push
� e: E, stk: C
top(push(e, stk)) == e;
pop(push(e, stk)) == stk;

implies converts top, pop
exempting top(empty), pop(empty)

Stack (E, C): trait
% Common LIFO operators
includes StackBasics, Integer
introduces
count: E, C � Int
__ 	 __: E, C � Bool
size: C � Int
isEmpty: C � Bool

asserts
� e: E, stk: C
size(empty) == 0;
size(push(e, stk)) == size(stk) + 1;
isEmpty(stk) == stk � empty

implies
Container (push for insert, top for head,

pop for tail)
C partitioned by top, pop, isEmpty
� stk: C
size(stk) � 0

converts top, pop, count, 	, size, isEmpty
exempting top(empty), pop(empty)

Appendix A. An LSL Handbook 171

Queue (E, C): trait
% FIFO operators
includes Integer
introduces
empty: � C
append: E, C � C
count: E, C � Int
__ 	 __: E, C � Bool
head: C � E
tail: C � C
len: C � Int
isEmpty: C � Bool

asserts
C generated by empty, append
� q: C, e, e1: E
count(e, empty) == 0;
count(e, append(e1, q)) ==
count(e, q) + (if e � e1 then 1 else 0);

e 	 q == count(e, q) � 0;
head(append(e, q)) ==
if q � empty then e else head(q);

tail(append(e, q)) ==
if q � empty then empty
else append(e, tail(q));

len(empty) == 0;
len(append(e, q)) == len(q) + 1;
isEmpty(q) == q � empty

implies
Container (append for insert)
C partitioned by head, tail, isEmpty
� q: C
len(q) � 0

converts head, tail, len
exempting head(empty), tail(empty)

172 A.5. Containers

Deque (E, C): trait
% Double ended queue operators
includes Integer
introduces
empty: � C
__ a __: E, C � C
__ � __: C, E � C
count: E, C � Int
__ 	 __: E, C � Bool
head, last: C � E
tail, init: C � C
len: C � Int
isEmpty: C � Bool

asserts
C generated by empty, �
� e, e1, e2: E, d: C
count(e, empty) == 0;
count(e, e1 a d) ==

count(e, d) + (if e � e1 then 1 else 0);
e 	 d == count(e, d) � 0;
e a empty == empty � e;
(e1 a d) � e2 == e1 a (d � e2);
head(e a d) == e;
last(d � e) == e;
tail(e a d) == d;
init(d � e) == d;
len(empty) == 0;
len(d � e) == len(d) + 1;
isEmpty(d) == d � empty

implies
Stack (head for top, tail for pop,

a for push, len for size),
Queue (a for append, last for head,

init for tail)
C generated by empty, a
C partitioned by len, head, tail
C partitioned by len, last, init
� d: C
d �� empty
� (head(d) a tail(d) � d

� init(d) � last(d) � d)
converts head, last, tail, init, len
exempting head(empty), last(empty),
tail(empty), init(empty)

Appendix A. An LSL Handbook 173

List (E, C): trait
% Add singleton and concatenation
includes Deque
introduces
{__}: E � C
__ k __: C, C � C

asserts � e: E, ls, ls1, ls2: C
{e} == empty � e;
ls k empty == ls;
ls1 k (ls2 � e) == (ls1 k ls2) � e

implies
C generated by empty, {__}, k
converts head, last, tail, init, len, {__}, k
exempting head(empty), last(empty),

tail(empty), init(empty)

String (E, C): trait
% Index, substring
includes List
introduces
__[__]: C, Int � E
prefix: C, Int � C
removePrefix: C, Int � C
substring: C, Int, Int � C

asserts � e: E, s: C, i, n: Int
tail(empty) == empty;
init(empty) == empty;
s[0] == head(s);
n � 0 � s[n + 1] � tail(s)[n];
prefix(empty, n) == empty;
prefix(s, 0) == empty;
n � 0
� prefix(e a s, n + 1) � e a prefix(s, n);

removePrefix(s, 0) == s;
n � 0
� removePrefix(s, n + 1)

� removePrefix(tail(s), n);
substring(s, 0, n) == prefix(s, n);
i � 0
� substring(s, i + 1, n)

� substring(tail(s), i, n)
implies
IndexOp (a for insert)
C partitioned by len, __[__]
converts tail, init

174 A.5. Containers

Sequence (E, C): trait
% Comparison, subsequences
assumes StrictPartialOrder (�, E)
includes
LexicographicOrder,
String

introduces
isPrefix, isSubstring, isSubsequence: C, C � Bool
find: C, C � Int

asserts � e, e1, e2: E, s, s1, s2: C
isPrefix(s1, s2) == s1 � prefix(s2, len(s1));
isSubstring(s1, s2) ==
isPrefix(s1, s2) � isSubstring(s1, tail(s2));

isSubsequence(empty, s);
�isSubsequence(e a s, empty);
isSubsequence(e1 a s1, e2 a s2) ==
(e1 � e2 � isSubsequence(s1, s2))
� isSubsequence(e1 a s1, s2);

find(s1, s2) ==
if isPrefix(s1, s2) then 0
else find(s1, tail(s2)) + 1

implies
IsPO (isPrefix, C),
IsPO (isSubstring, C),
IsPO (isSubsequence, C)
� s, s1, s2: C, i, n: Int
isPrefix(prefix(s, n), s);
isSubstring(substring(s, i, n), s);
isSubstring(s1, s2) � isSubsequence(s1, s2)

converts
isPrefix, isSubstring, isSubsequence, find

exempting � s: C, e: E find(e a s, empty)

Appendix A. An LSL Handbook 175

CONTENT ORDERED DATA STRUCTURES

PriorityQueue (�:E,E�Bool, E, C): trait
% Enumerate by order on elements
assumes TotalOrder (E for T)
includes Integer
introduces
empty: � C
add: E, C � C
count: E, C � Int
__ 	 __: E, C � Bool
head: C � E
tail: C � C
len: C � Int
isEmpty: C � Bool

asserts
C generated by empty, add
C partitioned by head, tail, isEmpty
� e, e1: E, q: C
count(e, empty) == 0;
count(e, add(e1, q)) ==
count(e, q) + (if e � e1 then 1 else 0);

e 	 q == count(e, q) � 0;
head(add(e, q)) ==
if q � empty � e � head(q) then e
else head(q);

tail(add(e, q)) ==
if q � empty � e � head(q) then q
else add(e, tail(q));

len(empty) == 0;
len(add(e, q)) == len(q) + 1;
isEmpty(q) == q � empty

implies
Container (add for insert)
� e, e1, e2: E, q: C
add(e1, add(e2, q)) � add(e2, add(e1, q));
len(q) � 0;
add(e, q) �� empty

converts count, 	, head, tail, len, isEmpty
exempting head(empty), tail(empty)

176 A.5. Containers

ChoiceSet (E, C): trait
% A set with a weakly-specified choose operator
includes Set
introduces
choose: C � E
rest: C � C
isEmpty: C � Bool

asserts � e, e1: E, s: C
s �� {} � choose(s) 	 s;
s �� {} � rest(s) � delete(choose(s), s);
isEmpty(s) == s � {}

implies
C partitioned by choose, rest, isEmpty
� e: E, s: C
s �� {} � s � insert(choose(s), rest(s))

ChoiceBag (E, C): trait
% A bag with a weakly-specified choose operator
includes Bag
introduces
choose: C � E
rest: C � C
isEmpty: C � Bool

asserts � e, e1: E, b: C
b �� {} � choose(b) 	 b;
b �� {} � rest(b) � delete(choose(b), b);
isEmpty(b) == b � {}

implies
Container (choose for head, rest for tail,

{} for empty)
C partitioned by choose, rest, isEmpty
� e: E, b: C
b �� {} � b � insert(choose(b), rest(b))

Appendix A. An LSL Handbook 177

ASSUMPTIONS AND IMPLICATIONS

InsertGenerated (E, C): trait
% C’s contain finitely many E’s
introduces
empty: � C
insert: E, C � C

asserts
C generated by empty, insert

Container (E, C): trait
% head and tail enumerate contents of a C
includes InsertGenerated, Integer
introduces
isEmpty: C � Bool
count: E, C � Int
__ 	 __: E, C � Bool
head: C � E
tail: C � C

asserts
C partitioned by isEmpty, head, tail
� e, e1: E, c: C
isEmpty(empty);
�isEmpty(insert(e, c));
count(e, empty) == 0;
count(e, insert(e1, c)) ==
count(e, c) + (if e � e1 then 1 else 0);

e 	 c == count(e, c) � 0;
�isEmpty(c) �
count(e, insert(head(c), tail(c)))
� count(e, c)

implies
� c: C
�isEmpty(c) � count(head(c), c) � 0;

converts isEmpty, count, 	

178 A.5. Containers

OPERATOR DEFINITIONS

MemberOp: trait
assumes InsertGenerated
introduces
__ 	 __, __ �	 __: E, C � Bool

asserts � e, e1, e2: E, c: C
e �	 c == �(e 	 c);
e �	 empty;
e1 	 insert(e2, c) == e1 � e2 � e1 	 c

implies converts 	, �	

JoinOp (�): trait
% Container combining operator
% e.g., union, concatenation
assumes InsertGenerated
introduces __� __: C, C � C
asserts � e: E, c, c1, c2: C
empty � c == c;
insert(e, c1) � c2 == insert(e, c1 � c2)

implies
Associative (�, C)
converts �

ReverseOp: trait
% An operator on lists commonly used
% to demonstrate theorem provers.
assumes List
introduces reverse: C � C
asserts � e: E, l, l1, l2: C

reverse(empty) == empty;
reverse(e a l) == reverse(l) � e

implies � e: E, l, l1, l2: C
reverse(reverse(l)) == l;
l �� empty � head(reverse(l)) � last(l);
l �� empty
� tail(reverse(l)) � reverse(init(l));

len(reverse(l)) == len(l);
reverse(l1 k l2) == reverse(l2) k reverse(l1)

converts reverse

Appendix A. An LSL Handbook 179

IndexOp: trait
% Select the i-th element in the container
% (in enumeration order).
assumes Integer, Container
introduces __[__]: C, Int � E
asserts � c: C, i: Int

c[0] == head(c);
i � 0 � c[i+1] � tail(c)[i]

CoerceContainer (DC, RC) defines an operator to convert from
a term of one container sort, DC, to a term of another container sort, RC,
with the same elements inserted in the same order. For example, a stack can
be mapped to a queue. More interestingly, a list can be mapped to a bag, or
a bag to a set; these mappings lose information on order and on multiplicity,
respectively, so the inverse mappings would introduce inconsistencies.

CoerceContainer (DC, RC): trait
% Insert each element of DC in a new RC
assumes
InsertGenerated (DC for C),
InsertGenerated (RC for C)

introduces coerce: DC � RC
asserts � dc: DC, e: E

coerce(empty) == empty;
coerce(insert(e, dc)) == insert(e, coerce(dc))

implies converts coerce

Permutation (E, C): trait
% Test for having the same elements
assumes Container
includes
Bag (B for C),
CoerceContainer (C for DC, B for RC)

introduces isPermutation: C, C � Bool
asserts � c1, c2: C

isPermutation(c1, c2) == coerce(c1) � coerce(c2)
implies � e: E, c1, c2: C

isPermutation(c1, c2)
� count(e, c1) � count(e, c2)

180 A.5. Containers

The following traits “promote” various operators on elements to
corresponding operators on containers.

ElementTest (pass, E, C, T): trait
% filter collects elements accepted by pass
assumes InsertGenerated
introduces
pass: E, T � Bool
filter: C, T � C
allPass: C, T � Bool
somePass: C, T � Bool

asserts � c: C, e: E, t: T
filter(empty, t) == empty;
filter(insert(e, c), t) ==

if pass(e, t) then insert(e, filter(c, t))
else filter(c, t);

allPass(empty, t);
allPass(insert(e, c), t) ==
pass(e, t) � allPass(c, t);

somePass(c, t) == filter(c, t) �� empty
implies converts filter, somePass, allPass

PairwiseExtension (�, �, E, C): trait
% Induce a binary operator on containers
% from a binary operator on elements.
assumes Container (E, C)
introduces
__� __: E, E � E
__� __: C, C � C

asserts � e1, e2: E, c1, c2: C
empty � empty == empty;
(c1 �� empty � c2 �� empty)
� c1 � c2 � insert(head(c1) � head(c2),

tail(c1) � tail(c2));
implies converts �
exempting � e: E, c: C
empty � insert(e, c), insert(e, c) � empty

Appendix A. An LSL Handbook 181

PointwiseImage: trait
% Apply elemOp to each element
assumes
InsertGenerated (DE for E, DC for C),
InsertGenerated (RE for E, RC for C)

introduces
elemOp: DE � RE
containerOp: DC � RC

asserts � dc: DC, de: DE
containerOp(empty) == empty;
containerOp(insert(de, dc)) ==
insert(elemOp(de), containerOp(dc))

implies converts containerOp

ReduceContainer (unit, �): trait
% Insert the operator in enumeration order.
assumes Container
introduces
unit: � E
__ � __: E, E � E
reduce: C � E

asserts � c: C
reduce(c) ==
if c � empty then unit
else head(c) � reduce(tail(c))

implies converts reduce

182 A.6. Branching structures

A.6 Branching structures

DATA STRUCTURES

The following trait defines the operators on a list (of sort C), each of whose
elements (of sort E) is either an atom (of sort A) or a list.

ListStructure (A, E, C): trait
% Classical LISP
includes List
E union of list: C, atom: A

BinaryTree (E, T): trait
% One of the many interesting tree structures
introduces
[__]: E � T
[__, __]: T, T � T
content: T � E
first, second: T � T
isLeaf: T � Bool

asserts
T generated by [__], [__, __]
T partitioned by content, first, second, isLeaf
� e: E, t1, t2: T
content([e]) == e;
first([t1, t2]) == t1;
second([t1, t2]) == t2;
isLeaf([e]);
�isLeaf([t1, t2])

implies converts isLeaf

Appendix A. An LSL Handbook 183

OPERATOR DEFINITIONS

ListStructureOps (A, E, C): trait
% Operators frequently used in
% theorem proving demonstrations.
assumes ListStructure
introduces
flatten, reverseAll: C � C
countAtoms: C � Int

asserts � a: A, l, l1, l2: C
flatten(empty) == empty;
flatten(atom(a) a l) == atom(a) a flatten(l);
flatten(list(l1) a l2) ==
flatten(l1) k flatten(l2);

reverseAll(empty) == empty;
reverseAll(atom(a) a l) ==
reverseAll(l) � atom(a);

reverseAll(list(l1) a l2) ==
reverseAll(l2) � list(reverseAll(l1));

countAtoms(l) == len(flatten(l))
implies
� l, l1, l2: C
flatten(l1 k l2) == flatten(l1) k flatten(l2);
flatten(flatten(l)) == flatten(l);
reverseAll(l1 k l2) ==
reverseAll(l2) k reverseAll(l1);

reverseAll(flatten(l)) ==
flatten(reverseAll(l));

reverseAll(reverseAll(l)) == l;
countAtoms(l1 k l2) ==

countAtoms(l1) + countAtoms(l2);
countAtoms(flatten(l)) == countAtoms(l);
countAtoms(reverseAll(l)) == countAtoms(l)

converts flatten, reverseAll, countAtoms

184 A.7. Maps

A.7 Maps

DATA STRUCTURES

Arrays are heavily-used data structures; programming languages often
provide a large number of operators. The following definitions are only a
sample.

Array1 (E, I, A): trait
% Basic one-dimensional array operators
introduces
assign: A, I, E � A
__[__]: A, I � E

asserts
� a: A, i, j: I, e: E
assign(a, i, e)[j] ==
if i � j then e else a[j]

Array2 (E, I1, I2, A): trait
% Basic two-dimensional array operators
introduces
assign: A, I1, I2, E � A
__[__, __]: A, I1, I2 � E

asserts
� a: A, i1, j1: I1, i2, j2: I2, e: E
assign(a, i1, i2, e)[j1, j2] ==
if i1 � j1 � i2 � j2 then e else a[j1, j2]

ArraySlice2 (E, I1, I2, A): trait
% A two-dimensional array
% treated as a vector of vectors
includes
Array1 (E, I2, A1),
Array1 (A1, I1, A)

introduces
assign: A, I1, I2, E � A
__[__, __]: A, I1, I2 � E

asserts
� a: A, i1: I1, i2: I2, e: E
a[i1, i2] == (a[i1])[i2];
assign(a, i1, i2, e) ==
assign(a, i1, assign(a[i1], i2, e))

Appendix A. An LSL Handbook 185

The maps of the following trait are finitely generated by fg andupdate.

FiniteMap (M, D, R): trait
% An M is a map from D’s to R’s.
introduces
{}: � M
update: M, D, R � M
apply: M, D � R
defined: M, D � Bool

asserts
M generated by {}, update
M partitioned by apply, defined
� m: M, d, d1, d2: D, r: R
apply(update(m, d2, r), d1) ==
if d1 � d2 then r else apply(m, d1);

�defined({}, d);
defined(update(m, d2, r), d1) ==
d1 � d2 � defined(m, d1)

implies
Array1 (update for assign, apply for __[__],

M for A, D for I, R for E)
converts apply, defined
exempting � d: D apply({}, d)

OPERATOR DEFINITION

ComposeMaps (M1, M2, D, T, R): trait
% If m1 is a map from D to T
% and m2 is a map from T to R,
% m1 � m2 is a map from D to R.
assumes
FiniteMap (M1, T, R),
FiniteMap (M2, D, T)

includes FiniteMap
introduces __ � __: M1, M2 � M
asserts � m1: M1, m2: M2, d: D

apply(m1 � m2, d) == apply(m1, apply(m2, d));
defined(m1 � m2, d) ==
defined(m2, d) � defined(m1, apply(m2, d))

186 A.8. Relations

A.8 Relations

DATA STRUCTURE

The following traits do not presume that the domain sort, E, is generated
by any fixed set of operators. Subsets of E are represented by subrelations
of the identity relation.

Relation (E, R): trait
includes
RelationBasics,
RelationOps,
RelationPredicates

RelationBasics (E, R): trait
% e1 h r i e2 means e1 is related to e2 by r.
introduces
__ h __ i __: E, R, E � Bool
�, �, I: � R
[__, __]: E, E � R
-__, __�1: R � R
__ � __: R, R � R

asserts
R partitioned by __ h __ i __
� e, e1, e2, e3, e4: E, r, r1, r2: R
�(e1 h � i e2);
e1 h � i e2;
e1 h I i e2 == e1 � e2;
e1 h [e2, e3] i e4 == e1 � e2 � e3 � e4;
e1 h -r i e2 == �(e1 h r i e2);
e1 h r�1 i e2 == e2 h r i e1;
e1 h r1 � r2 i e2 == e1 h r1 i e2 � e1 h r2 i e2

implies
AbelianMonoid (� for unit, � for �, R for T),
Involutive (__�1, R),
Involutive (-__, R)
equations
-� == �;
-� == �;
��1 == �;
��1 == �

converts �, -__, __�1

Appendix A. An LSL Handbook 187

OPERATOR DEFINITIONS

The skolem operator is introduced solely to get around the absence of
existential quantifiers in LSL.

RelationOps: trait
% Useful non-primitive operators on relations.
assumes RelationBasics
includes
DerivedOrders (R, � for �, � for �,

� for �, � for �)
introduces
__ 	 __, __ �	 __: E, R � Bool
set, dom, range, __�, __�: R � R
__ � __, __ � __, __ - __, __ � __: R, R � R
domRestrict, rangeRestrict, image: R, R � R
skolem: E, R, R, E � E

asserts
� e, e1, e2, e3: E, r, r1, r2: R
e 	 r == e h r i e;
e �	 r == �(e 	 r);
set(r) == r � I;
dom(r) == set(r � �);
range(r) == set(� � r);
e1 h r1 � r2 i e2 == e1 h r1 i e2 � e1 h r2 i e2;
(e1 h r1 i e2 � e2 h r2 i e3)
� e1 h r1 � r2 i e3;

e1 h r1 � r2 i e2
� (e1 h r1 i skolem(e1, r1, r2, e2)
� skolem(e1, r1, r2, e2) h r2 i e2);

r� == r � (r�);
r� == I � (r�);
(r1 � I � r2 � r2 � r � r1) �
((r�) � r1 � (r�) � r2);

r1 - r2 == r1 � (-r2);
r1 � r2 == set(r1) � � � set(r2);
r1 � r2 == r1 - r2 � �;
domRestrict(r1, r2) == r1 � (r2 � �);
image(r1, r2) == set(r1) � r2;
rangeRestrict(r1, r2) == r1 � (� � r2)

188 A.8. Relations

implies
AbelianMonoid (� for unit, � for �, R for T),
Distributive (� for +, � for *, R for T),
Distributive (� for +, � for *, R for T),
Idempotent (set, R),
Monoid (I for unit, R for T),
Lattice (R for T, � for t, � for u,
� for �, � for �, � for �, � for �),

PartialOrder (R, � for �, � for �, � for �,
� for �)

� e: E, r, r1, r2: R
e 	 r == e 	 set(r);
-(r1 � r2) == (-r1) � (-r2);
-(r1 � r2) == (-r1) � (-r2);
(r1 � r2)�1 == (r2�1) � (r1�1)

converts
	, �	, set, dom, range, __�, __�, __-__, �,
�, �, �, -:R�R, �1, �, �, �, �,
domRestrict, image, rangeRestrict

SetToRelation: trait
% Map a (finitely generated) set
% to the relation that represents it.
assumes SetBasics, RelationBasics
introduces
relation: C � R

asserts
� e: E, s: C
relation({}) == �;
relation(insert(e, s)) == [e, e] � relation(s)

implies
� e: E, s: C
e 	 s == e h relation(s) i e

converts relation

Appendix A. An LSL Handbook 189

The predicates in the next trait are closely related to the theories defined
in Section A.11, but they define the properties of relations treated as values,
whereas Section A.11 defines properties of relations treated as operators.
This duplication is a price of not using a higher-order logic in LSL.

RelationPredicates: trait
% Tests for useful properties
% of individual relations.
assumes
RelationBasics,
RelationOps

introduces
antisymmetric, asymmetric, equivalence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive: R � Bool

into, onto: R, R � Bool
asserts
� r, r1, r2: R
antisymmetric(r) == (r � (r�1)) � I;
asymmetric(r) == r � (r�1) � �;
equivalence(r) ==
reflexive(r) � symmetric(r) � transitive(r);

functional(r) == ((r�1) � r) � I;
irreflexive(r) == r � I � �;
oneToOne(r) == r � (r�1) � I;
reflexive(r) == I � r;
symmetric(r) == r � r�1;
total(r) == dom(r) � I;
transitive(r) == r � r�;
into(r1, r2) == range(r1) � set(r2);
onto(r1, r2) == set(r2) � range(r1);

implies converts
antisymmetric, asymmetric, equivalence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive, into, onto

190 A.9. Graph theory

A.9 Graph theory

Graph (N, G): trait
% n1 h g i n2 means that there is
% an edge from n1 to n2 in g
includes Relation (N for E, G for R)
introduces
nodes, undirected: G � G
isPath: N, N, G � Bool
stronglyConnected, weaklyConnected: G � Bool

asserts � n1, n2: N, g: G
undirected(g) == g � (g�1);
nodes(g) == dom(g) � range(g);
isPath(n1, n2, g) == n1 h g� i n2;
stronglyConnected(g) == g� � nodes(g) � nodes(g);
weaklyConnected(g) ==
stronglyConnected(undirected(g))

implies
� n1, n2: N, g: G
(stronglyConnected(g) � n1 	 nodes(g)

� n2 	 nodes(g))
� isPath(n1, n2, g)

Appendix A. An LSL Handbook 191

A.10 Properties of single operators

Associative (�, T): trait
introduces __ � __: T, T � T
asserts � x, y, z: T

(x � y) � z == x � (y � z)

Commutative (�, T, Range): trait
introduces __ � __: T, T � Range
asserts � x, y: T

x � y == y � x

AC (�, T): trait
introduces __ � __: T, T � T
asserts � x, y, z: T

(x � y) � z == x � (y � z);
x � y == y � x

implies
Associative,
Commutative (T for Range)

Idempotent (op, T): trait
introduces op: T � T
asserts � x: T

op(op(x)) == op(x)

Involutive (op, T): trait
introduces op: T � T
asserts � x: T

op(op(x)) == x

192 A.11. Properties of relational operators

A.11 Properties of relational operators

Compare with RelationPredicates, page 189

Antisymmetric (�): trait
introduces __ � __: T, T � Bool
asserts � x, y: T
(x � y � y � x) � x � y

Asymmetric (�): trait
introduces __ � __: T, T � Bool
asserts � x, y: T
x � y � �(y � x)

Functional (�): trait
introduces __ � __: T, T � Bool
asserts � x, y, z: T
(x � y � x � z) � y � z;

Irreflexive (�): trait
introduces __ � __: T, T � Bool
asserts � x: T
�(x � x)

OneToOne (�): trait
introduces __ � __: T, T � Bool
asserts � x, y, z: T
(x � y � x � z) � y � z;
(x � z � y � z) � x � y;

Reflexive (�): trait
introduces __ � __: T, T � Bool
asserts � x: T
x � x

Symmetric (�): trait
introduces __ � __: T, T � Bool
asserts � x, y: T
x � y == y � x

implies Commutative (� for �, Bool for Range)

Appendix A. An LSL Handbook 193

Transitive (�): trait
introduces __ � __: T, T � Bool
asserts � x, y, z: T

(x � y � y � z) � x � z

Equivalence: trait
includes
(Reflexive, Symmetric, Transitive)(
 for �)

Equality (T): trait
% This trait is given for documentation only.
% It is implicit in LSL.
introduces __ � __, __ �� __: T, T � Bool
asserts
T partitioned by �

� x, y, z: T
x � x;
x � y == y � x;
(x � y � y � z) � x � z;
x �� y == �(x � y)

implies Equivalence (� for
)

194 A.12. Orderings

A.12 Orderings

PARTIAL AND TOTAL ORDERS

IsPO (�, T): trait
% � is a partial order on T
introduces __�__: T, T � Bool
asserts � x, y, z: T
x � x;
(x � y � y � z) � x � z;
x � y � y � x == x � y

implies
Antisymmetric (�),
PreOrder,
Reflexive (�),
Transitive (�)
T partitioned by �

PartialOrder (T): trait
includes IsPO, DerivedOrders
implies
PartialOrder (� for �, � for �,

� for �, � for �),
StrictPartialOrder (�, T)

IsTO (�, T): trait
% � is a total order on T
introduces __�__: T, T � Bool
asserts � x, y, z: T
x � x;
(x � y � y � z) � x � z;
x � y � y � x == x � y;
x � y � y � x

implies IsPO, TotalPreOrder

TotalOrder (T): trait
includes IsTO, DerivedOrders
implies
PartialOrder,
StrictTotalOrder (�, T),
TotalOrder (� for �, � for �,

� for �, � for �)
T partitioned by �

Appendix A. An LSL Handbook 195

ASSUMPTIONS AND IMPLICATIONS

PreOrder (�, T): trait
includes Reflexive (�), Transitive (�)
implies � x, y, z: T

x � x;
(x � y � y � z) � x � z

TotalPreOrder (�, T): trait
includes PreOrder
asserts � x, y: T

x � y � y � x

StrictPartialOrder (�, T): trait
includes Irreflexive (�), Transitive (�)
implies
Asymmetric (�)
� x, y, z: T
�(x � x);
(x � y � y � z) � x � z

StrictTotalOrder (�, T): trait
includes StrictPartialOrder
asserts � x, y: T

x � y � y � x � x � y

OPERATOR DEFINITIONS

DerivedOrders (T): trait
% Define any three of the comparison operators,
% given the fourth
introduces
__�__, __�__, __�__, __�__: T, T � Bool

asserts � x, y: T
x � y == x � y � x � y;
x � y == x � y � �(x � y);
x � y == y � x;
x � y == y � x

implies
converts �, �, �
converts �, �, �
converts �, �, �
converts �, �, �

196 A.12. Orderings

MinMax (T): trait
assumes TotalOrder
introduces
min, max: T, T � T

asserts � x, y: T
min(x, y) == if x � y then x else y;
max(x, y) == if x � y then x else y

implies
AC (min, T),
AC (max, T)
converts min, max

LexicographicOrder (E, C): trait
% "Dictionary" order on C
assumes
Container,
StrictTotalOrder (�, E)

includes DerivedOrders (C)
asserts � c1, c2: C

c1 � c2 ==
c2 �� empty
� (c1 � empty

� (if head(c1) � head(c2)
then tail(c1) � tail(c2)
else head(c1) � head(c2)))

implies
TotalOrder (C)
converts �:C,C�Bool, �:C,C�Bool,
�:C,C�Bool, �:C,C�Bool

Appendix A. An LSL Handbook 197

A.13 Lattice theory

GreatestLowerBound (T): trait
introduces
__ � __: T, T � Bool
__ u __: T, T � T

asserts � x, y, z: T
(x u y) � x;
(x u y) � y;
(z � x � z � y) � z � (x u y)

Semilattice (T): trait
assumes PartialOrder
includes GreatestLowerBound
introduces
�: � T
__t __: T, T � T

asserts � x, y, z: T
� � x;
x t y == y t x;
x u y == y u x;
x � (x t y);
(x � z � y � z) � (x t y) � z

implies
AbelianMonoid (t for �, � for unit),
AbelianSemigroup (u for �)

Lattice (T): trait
assumes PartialOrder
includes Semilattice
introduces �: � T
asserts � x: T

x � �
implies
Lattice (t for u, u for t, � for �, � for �,

� for �, � for �, � for �, � for �)

198 A.14. Group theory

A.14 Group theory

Semigroup: trait
introduces __� __: T, T � T
asserts � x, y, z: T
(x � y) � z == x � (y � z)

implies Associative

LeftIdentity: trait
introduces
__ � __: T, T � T
unit: � T

asserts � x: T
unit � x == x

RightIdentity: trait
introduces
__ � __: T, T � T
unit: � T

asserts � x: T
x � unit == x

Identity: trait
includes LeftIdentity, RightIdentity

Monoid: trait
introduces

__� __: T, T � T
unit: � T

asserts � x, y, z: T
(x � y) � z == x � (y � z);
unit � x == x;
x � unit == x

implies Semigroup, Identity

LeftInverse: trait
assumes LeftIdentity
introduces __�1: T � T
asserts � x: T

(x�1) � x == unit

Appendix A. An LSL Handbook 199

RightInverse: trait
assumes RightIdentity
introduces __�1: T � T
asserts � x: T

x � (x�1) == unit

Inverse: trait
assumes Identity, Semigroup
includes LeftInverse, RightInverse
implies
Involutive (__�1 for op)
� x, y: T
unit�1 == unit;
(x � y)�1 == (y�1) � (x�1)

Group: trait
introduces
__� __: T, T � T
unit: � T
__�1: T � T

asserts � x, y, z: T
(x � y) � z == x � (y � z);
unit � x == x;
(x�1) � x == unit;

implies Monoid, Inverse

Abelian: trait
introduces __ � __: T, T � T
asserts � x, y: T

x � y == y � x
implies Commutative (T for Range)

AbelianSemigroup: trait
includes Abelian, Semigroup
implies AC

AbelianMonoid: trait
includes Abelian, Monoid

AbelianGroup: trait
includes Abelian, Group

200 A.14. Group theory

LeftDistributive (+, *, T): trait
introduces
__+__, __*__: T, T � T

asserts � x, y, z: T
x * (y + z) == (x * y) + (x * z)

RightDistributive (+, *, T): trait
introduces
__+__, __*__: T, T � T

asserts � x, y, z: T
(y + z) * x == (y * x) + (z * x)

Distributive (+, *, T): trait
includes LeftDistributive, RightDistributive

Ring: trait
includes
AbelianGroup (+ for �, 0 for unit, -__ for �1),
Semigroup (* for �),
Distributive (+, *, T)

RingWithUnit: trait
includes Ring, Monoid (* for �, 1 for unit)

Field: trait
includes
RingWithUnit,
Abelian (* for �)

introduces __�1: T � T
asserts � x: T

x �� 0 � x * (x�1) � 1

Appendix A. An LSL Handbook 201

A.15 Number theory

This section presents a series of traits dealing with operators on whole
numbers. The following section deals with operators on rational and
floating point numbers.

DATA TYPES

Natural (N): trait
% The usual operators on the natural numbers,
% starting from 0.
includes
ArithOps (N),
DecimalLiterals,
Exponentiation (N),
MinMax (N),
TotalOrder (N)

introduces
__ � __: N, N � N

asserts
N generated by 0, succ
� x, y: N
succ(x) �� 0;
succ(x) � succ(y) == x � y;
x � succ(x);
0 � x == 0;
x � 0 == x;
succ(x) � succ(y) == x � y

implies
NaturalOrder
N generated by 0, 1, +
� x, y: N
x � x == 0;
x � y == x � y � 0

converts 1:�N, +, �, *, div, mod,
**, min, max, �, �, �, �

exempting � x: N
div(x, 0), mod(x, 0)

202 A.15. Number theory

Positive (P): trait
% Basic operators on natural numbers,
% starting from 1
includes DecimalLiterals (P for N), TotalOrder (P)
introduces
1: � P
succ: P � P
__+__, __*__: P, P � P

asserts
P generated by 1, succ
� x, y: P
x + 1 == succ(x);
x + succ(y) == succ(x + y);
x*1 == x;
x*succ(y) == x + (x*y);
x � succ(x)

implies
NaturalOrder (P for N, 1 for 0)
P generated by 1, +
converts +, *, �, �, �, �

Appendix A. An LSL Handbook 203

IntCycle (first, last, N): trait
% A finite subrange of the integers that includes 0,
% and wraps at succ(last)
includes
ArithOps (N),
DecimalLiterals,
MinMax (N),
TotalOrder (N)

introduces
first, last: � N
pred, -__, abs: N � N
__-__: N, N � N

asserts
N generated by 0, succ
� x, y: N
succ(last) == first;
pred(succ(x)) == x;
succ(pred(x)) == x;
-0 == 0;
-succ(x) == pred(-x);
abs(x) == if x � 0 then -x else x;
x - y == x + (-y);
x �� last � x � succ(x)

implies
Distributive (+, *, N),
RingWithUnit (N for T)
N generated by 0, pred
� x: N
pred(first) == last;
first � x;
x � last;
-(-x) == x

converts
pred, -__:N�N, abs, __-__:N,N�N,
1:�N, +, *, max, min, �, �, �, �

SignedInt (maxSigned, N): trait
% Typical machine arithmetic, signed complement.
includes IntCycle (minSigned, maxSigned, N)
asserts equations
succ(minSigned) == -maxSigned

implies equations
minSigned + maxSigned == -1;
abs(minSigned) == minSigned

204 A.15. Number theory

UnsignedInt (maxUnsigned, N): trait
% Typical machine arithmetic, unsigned.
includes IntCycle (0, maxUnsigned, N)

ASSUMPTIONS AND IMPLICATIONS

Enumerable requires only that each value of sortNmust be reachable by
applying succ to 0 a finite number of times. Infinite requires that the
values yielded by succ are all distinct. The inclusion of TotalOrder
in NaturalOrder ensures that succ(x) is always greater than x, and
hence that there are infinitely many distinct values of sort N.

Enumerable (N): trait
introduces
0: � N
succ: N � N

asserts
N generated by 0, succ

Infinite (N): trait
introduces
0: � N
succ: N � N

asserts � x, y: N
succ(x) �� 0;
succ(x) � succ(y) == x � y

NaturalOrder (N): trait
% The natural numbers with an ordering
includes
Enumerable (N),
TotalOrder (N)

asserts � x: N
x � succ(x)

implies
Infinite (N)
� x, y: N
0 � x;
x � succ(y) == x � y;
succ(x) � succ(y) == x � y

converts �, �, �, �

Appendix A. An LSL Handbook 205

OPERATOR DEFINITIONS

Addition (N): trait
% Define the operator + in terms of 0 and succ
includes AbelianMonoid(+ for �, 0 for unit, N for T)
introduces
0: � N
succ: N � N
__+__: N, N � N

asserts � x, y: N
x + 0 == x;
x + succ(y) == succ(x + y)

Multiplication (N): trait
% Define the operator * in terms of 0, succ, and +
includes
AbelianMonoid (* for �, 1 for unit, N for T),
Addition (N)

introduces
1: � N
__*__: N, N � N

asserts � x, y: N
1 == succ(0);
x * 0 == 0;
x * succ(y) == x + (x * y)

ArithOps (N): trait
% Defines operators div and mod relative to + and *
% for positive denominators
assumes TotalOrder (N)
includes Multiplication (N)
introduces
div, mod: N, N � N

asserts � x, y: N
y � 0
� (0 � mod(x, y)

� mod(x, y) � y
� (mod(x, y) + (div(x, y) * y)) � x)

206 A.15. Number theory

Exponentiation (T): trait
% Repeatedly apply an infix * operator
assumes
Enumerable (N),
Monoid (* for �, 1 for unit)

introduces __**__: T, N � T
asserts � x: T, y: N

x**0 == 1;
x**succ(y) == x * (x**y)

implies � x: T
x**succ(0) == x

IntegerAndNatural (Int, N): trait
% Conversions between Int’s and N’s
includes
Integer (Int),
Natural (N)

introduces
int: N � Int
nat: Int � N

asserts � n: N
int(0) == 0;
int(succ(n)) == succ(int(n));
nat(int(n)) == n

IntegerAndPositive (Int, P): trait
% Conversions between Int’s and P’s
includes
Integer (Int),
Positive (P)

introduces
int: P � Int
pos: Int � P

asserts � p: P
int(1) == 1;
int(succ(p)) == succ(int(p));
pos(int(p)) == p

Appendix A. An LSL Handbook 207

A.16 Floating point arithmetic

The trait Rational provides enough of a theory of rational arithmetic to
specify the properties of floating point arithmetic.

Rational: trait
% For use in the trait FloatingPoint.
includes
Exponentiation (Q for T, P for N),
IntegerAndPositive (Int, P),
MinMax (Q),
TotalOrder (Q)

introduces
__/__: Int, P � Q
0, 1: � Q
-__, __�1, abs: Q � Q
__+__, __*__, __-__, __/__: Q, Q � Q

asserts
Q generated by __/__:Int,P�Q
� i, i1, i2: Int, p, p1, p2, p3: P, q, q1, q2: Q
0/p == 0;
int(p)/p == 1;
i1/p1 � i2/p2 == i1 * int(p2) � i2 * int(p1);
-(i/p) == (-i)/p;
(int(p1)/p2)�1 == int(p2)/p1;
(-q)�1 == -(q�1);
abs(i/p) == abs(i)/p;
(i1/p) + (i2/p) == (i1 + i2)/p;
(i1/p1) * (i2/p2) == (i1 * i2)/(p1 * p2);
q1 - q2 == q1 + (-q2);
q1/q2 == q1 * (q2�1);
(i1/p) � (i2/p) == i1 � i2

implies
AC (+, Q),
AC (*, Q),
Field (Q for T)
� i, i1, i2: Int, p, p1, p2, p3: P, q: Q
q + 0 == q;
-q == 0 - q;
(i1/p) - (i2/p) == (i1 - i2)/p;
q * 0 == 0;
q * 1 == q;
q�1 == 1/q;
(i/p1)/(int(p2)/p3) == (i * int(p3))/(p1 * p2)

208 A.16. Floating point arithmetic

converts
0:�Q, 1:�Q, -:Q �Q, �1, abs:Q �Q,
+:Q,Q�Q, -:Q,Q�Q, *:Q,Q�Q, /:Q,Q�Q,
**:Q,P�Q, min:Q,Q�Q, max:Q,Q�Q,
�:Q,Q�Bool, �:Q,Q�Bool,
�:Q,Q�Bool, �:Q,Q�Bool

exempting 0�1

The following traits define a theory of floating point arithmetic that is
weak enough to be satisfied by many floating point implementations, yet
strong enough to allow reasoning about floating point arithmetic. Careful
analysis of any particular floating point system should lead to tighter
bounds on the errors due to inexact arithmetic, and might even lead to
some useful identities, such as �f1 � f2� � f3 � f1 � �f2 � f3�.

The basic idea is this: Every floating point number exactly represents
some rational number, returned by the operator rational. Each floating
point operator approximates a corresponding rational operator, but cannot
always be be exact. The exact answer may not even be representable.
Furthermore, floating point arithmetic does not generally guarantee to
produce even the closest representable value. So each floating point
operator may introduce an error that depends on:

� the magnitude of the operand(s),

� the magnitude of the exact and approximate results,

� properties of the floating point representation used.

Three parameters characterize the representation: smallest and
largest denote the least and the greatest representable positive values,
respectively, and gap, the largest relative difference between any pair of
consecutive representable positive values. FPAssumptions specifies
relations that must hold among these parameters and the operator
rational (which converts floating point numbers to their exact rational
values) in order for FloatingPoint to characterize a valid floating
point number system.

Appendix A. An LSL Handbook 209

FPAssumptions (smallest, largest,
gap, rational): trait

includes Rational
introduces
smallest, largest, gap: � Q
rational: F � Q
float: Q � F
0, 1: � F

asserts � f: F
smallest � 0;
largest � smallest;
rational(0) == 0;
rational(1) == 1;
rational(f) �� 0 � abs(rational(f)) � smallest;
rational(f) � largest;
gap � 0;
float(rational(f)) == f;

210 A.16. Floating point arithmetic

The predicate approx(f, q, t) compares the result f of a floating
point operation to the exact rational value q of that operation; the predicate
is true if the result is “close enough” to the exact value (i.e., within a
tolerance t), or if the exact value is too big to be represented.

We have not axiomatized the properties of the IEEE standard’s non-
numeric floating point values (NaN’s). We leave that as an exercise for
numerical analysts, in the expectation that an accurate characterization is
separable from the numerical properties. It might be more complex than
anything we have specified in this handbook.

FloatingPoint (smallest, largest,
gap, rational): trait

assumes FPAssumptions
includes
Rational,
TotalOrder (F)

introduces
mag: F � Q
approx: F, Q, Q � Bool
-__, abs, __�1: F � F
__+__, __*__, __-__, __/__: F, F � F

asserts
F generated by float
� f, f1, f2: F, q, t: Q
f1 � f2 == rational(f1) � rational(f2);
mag(f) == abs(rational(f));
approx(f, q, t) ==
abs(q) � largest
� abs(rational(f) - q)

� (smallest +
(gap*(mag(f) + abs(q) + t)));

approx(-f, -rational(f), 0);
f �� 0 � approx(f�1, rational(f)�1, 0);
approx(abs(f), mag(f), 0);
approx(f1 + f2, rational(f1) + rational(f2),

mag(f1) + mag(f2));
approx(f1 * f2, rational(f1) * rational(f2), 0);
approx(f1 - f2, rational(f1) - rational(f2),

mag(f1) + mag(f2));
f2 �� 0
� approx(f1/f2, rational(f1)/rational(f2), 0)

Appendix B

Implementations of Example LCL
Interfaces

This appendix contains the implementations of the interfaces erc,
empset, and dbase specified in Chapter 5. We present them here not
because they are intrinsically interesting, but for completeness.

ERC.H
#if !defined(ERC_H)
#define ERC_H

#include "eref.h"

typedef struct _elem{eref val; struct _elem *next;} ercElem;
typedef ercElem *ercList;
typedef struct {ercList vals; int size;} ercInfo;
typedef ercInfo *erc;
typedef ercList *ercIter;

#include "erc.lh"

#define erc_size(c) ((c)->size)
#define erc_choose(c) ((c->vals)->val)
#define erc_initMod()\

do {bool_initMod(); employee_initMod();\
eref_initMod();} while (0)

#define erc_iterFinal(it) (free(it))
#define erc_iterReturn(it, result)\

do {erc_iterFinal(it); return result;} while (0)
#define for_ercElems(er, it, c)\

for(er = erc_yield(it = erc_iterStart(c));\
!eref_equal(er, erefNIL);\
er = erc_yield(it))

#endif

212 Appendix B. Implementations of Example LCL Interfaces

ERC.C
#include "erc.h"

erc erc_create(void) {
erc c;
c = (erc) malloc(sizeof(ercInfo));
if (c == 0) {

printf("Malloc returned null in erc_create\n");
exit(1);

}
c->vals = 0;
c->size = 0;
return c;

}

void erc_clear(erc c) {
ercList elem;
ercList next;
for (elem = c->vals; elem != 0; elem = next) {

next = elem->next;
free(elem);

}
c->vals = 0;
c->size = 0;

}

void erc_final(erc c) {
erc_clear(c);
free(c);

}

bool erc_member(eref er, erc c) {
ercList tmpc;

for (tmpc = c->vals; tmpc != 0; tmpc = tmpc->next)
if (tmpc->val == er) return TRUE;

return FALSE;
}

void erc_insert(erc c, eref er) {
ercList newElem;
newElem = (ercElem *) malloc(sizeof(ercElem));
if (newElem == 0) {

printf("Malloc returned null in erc_insert\n");
exit(1);

}
newElem->val = er;
newElem->next = c->vals;
c->vals = newElem;
c->size++;

}

bool erc_delete(erc c, eref er) {
ercList elem;

Appendix B. Implementations of Example LCL Interfaces 213

ercList prev;

for (prev = 0, elem = c->vals;
elem != 0;
prev = elem, elem = elem->next) {

if (elem->val == er) {
if (prev == 0)

c->vals = elem->next;
else {prev->next = elem->next;}

free(elem);
c->size--;
return TRUE;

}
}
return FALSE;

}

ercIter erc_iterStart(erc c) {
ercIter result;
result = (ercIter) malloc(sizeof(ercList));
if (result == 0) {

printf("Malloc returned null in erc_iterStart\n");
exit(1);

}
*result = c->vals;
return result;

}

eref erc_yield(ercIter it) {
eref result;
if (*it == 0) {

return erefNIL;
free(it);

}
result = (*it)->val;
*(it) = (*it)->next;
return result;

}

void erc_join(erc c1, erc c2) {
ercList tmpc;
for(tmpc = c2->vals; tmpc != 0; tmpc = tmpc->next)

erc_insert(c1, tmpc->val);
}

char * erc_sprint(erc c) {
int len;
eref er;
ercIter it;
char *result;
result = (char*)malloc(erc_size(c)

*(employeePrintSize+1)+1);
if (result == 0) {

214 Appendix B. Implementations of Example LCL Interfaces

printf("Malloc returned null in erc_sprint\n");
exit(1);

}
len = 0;
for_ercElems (er, it, c) {

employee_sprint(&(result[len]), eref_get(er));
len += employeePrintSize;
result[len++] = ’\n’;

}
result[len] = ’\0’;
return result;

}

EMPSET.H
#if !defined(EMPSET_H)
#define EMPSET_H

#include "eref.h"
#include "erc.h"
#include "ereftab.h"

typedef erc empset;

ereftab known;

/*
Abstraction function, toEmpSet:

e \in toEmpSet(s) ==
exists er (count(er, s.val) = 1

/\ getERef(known, e) = er)

Rep invariant:
forall s: empset
(forall er: eref (count(er, s.val) <= 1)
/\ s.activeIters = 0
/\ forall er: eref (count(er, s.val) = 1

=> in(known, er)))
*/

#include "empset.lh"

#define empset_create() (erc_create())
#define empset_final(s) (erc_final(s))
#define empset_member(e, s)\

(!(eref_equal(_empset_get(e, s), erefNIL)))
#define empset_size(es) (erc_size(es))
#define empset_choose(es) (eref_get(erc_choose(es)))
#define empset_sprint(es) (erc_sprint(es))
#endif

Appendix B. Implementations of Example LCL Interfaces 215

EMPSET.C
#include "empset.h"

static bool initDone = FALSE;

eref _empset_get(employee e, erc s) {
eref er;
ercIter it;
employee e1;
for_ercElems(er, it, s) {

e1 = eref_get(er);
if (employee_equal(&e1, &e))
erc_iterReturn(it, er);

}
return erefNIL;

}

void empset_clear(empset s) {
erc_clear(s);

}

bool empset_insert(empset s, employee e) {
eref er;
if (!eref_equal(_empset_get(e, s), erefNIL)) return FALSE;
empset_insertUnique(s, e);
return TRUE;

}

void empset_insertUnique(empset s, employee e) {
eref er;
er = ereftab_lookup(e, known);
if (eref_equal(er, erefNIL)) {

er = eref_alloc();
eref_assign(er,e);
ereftab_insert(known, e, er);

}
erc_insert(s, er);

}

bool empset_delete(empset s, employee e) {
eref er;
er = _empset_get(e, s);
if (eref_equal(er, erefNIL)) return FALSE;
return erc_delete(s, er);

}

empset empset_disjointUnion(empset s1, empset s2) {
erc result;
ercIter it;
eref er;
empset tmp;
result = erc_create();
if (erc_size(s1) > erc_size(s2)) {

216 Appendix B. Implementations of Example LCL Interfaces

tmp = s1;
s1 = s2;
s2 = tmp;

}
erc_join(result, s1);
for_ercElems(er, it, s2)

empset_insertUnique(result, eref_get(er));
return result;

}

empset empset_union(empset s1, empset s2) {
eref er;
ercIter it;
erc result;
empset tmp;
result = erc_create();
if (erc_size(s1) > erc_size(s2)) {

tmp = s1;
s1 = s2;
s2 = tmp;

}
erc_join(result, s2);
for_ercElems(er, it, s1)
if (!empset_member(eref_get(er), s2))

erc_insert(result, er);
return result;

}

void empset_intersect(empset s1, empset s2) {
eref er;
ercIter it;
erc toDelete;
toDelete = erc_create();
for_ercElems(er, it, s1)

if (!empset_member(eref_get(er), s2))
erc_insert(toDelete, er);

for_ercElems(er, it, toDelete)
erc_delete(s1, er);

erc_final(toDelete);
}

bool empset_subset(empset s1, empset s2) {
employee e;
eref er;
ercIter it;

for_ercElems(er, it, s1)
if (!empset_member(eref_get(er), s2))
erc_iterReturn(it, FALSE);

return TRUE;
}

void empset_initMod(void) {

Appendix B. Implementations of Example LCL Interfaces 217

if (initDone) return;
bool_initMod();
employee_initMod();
eref_initMod();
erc_initMod();
ereftab_initMod();
known = ereftab_create();
initDone = TRUE;

}

DBASE.H
#if !defined(DBASE_H)
#define DBASE_H

#include "eref.h"
#include "erc.h"

#include "dbase.lh"

#endif

DBASE.C
#include <strings.h>
#include "dbase.h"

#define firstERC mMGRS
#define lastERC fNON
#define numERCS (lastERC - firstERC + 1)

typedef enum {mMGRS, fMGRS, mNON, fNON} employeeKinds;

erc db[numERCS];

bool initDone = FALSE;

void db_initMod(void) {
int i;
if (initDone) return;
bool_initMod();
employee_initMod();
eref_initMod();
erc_initMod();
empset_initMod();
for (i = firstERC; i <= lastERC; i++)

db[i] = erc_create();
initDone = TRUE;

}

eref _db_ercKeyGet(erc c, int key) {
eref er;

218 Appendix B. Implementations of Example LCL Interfaces

ercIter it;
for_ercElems(er, it, c)

if (eref_get(er).ssNum == key) erc_iterReturn(it, er);
return erefNIL;

}

eref _db_keyGet(int key) {
int i;
eref er;
for (i = firstERC; i <= lastERC; i++) {

er = _db_ercKeyGet(db[i], key);
if (!eref_equal(er, erefNIL)) return er;

}
return erefNIL;

}

int _db_addEmpls(erc c, int l, int h, empset s) {
eref er;
ercIter it;
employee e;
int numAdded;
numAdded = 0;
for_ercElems (er, it, c) {

e = eref_get(er);
if ((e.salary >= l) && (e.salary <= h)) {
empset_insert(s, e);
numAdded++;

}
}
return numAdded;

}

db_status hire(employee e) {
if (e.gen == gender_ANY) return genderERR;
if (e.j == job_ANY) return jobERR;
if (e.salary < 0) return salERR;
if (!eref_equal(_db_keyGet(e.ssNum), erefNIL))

return duplERR;
uncheckedHire(e);
return db_OK;

}

void uncheckedHire(employee e) {
eref er;
er = eref_alloc();
eref_assign(er, e);
if (e.gen == MALE)

if (e.j == MGR)
erc_insert(db[mMGRS], er);
else erc_insert(db[mNON], er);

else if (e.j == MGR)
erc_insert(db[fMGRS], er);

Appendix B. Implementations of Example LCL Interfaces 219

else erc_insert(db[fNON], er);
}

bool fire(int ssNum) {
int i;
eref er;
ercIter it;
for (i = firstERC; i <= lastERC; i++)

for_ercElems(er, it, db[i])
if (eref_get(er).ssNum == ssNum) {
erc_iterFinal(it);
erc_delete(db[i], er);
return TRUE;

}
return FALSE;

}

bool promote(int ssNum) {
eref er;
employee e;
gender g;
g = MALE;
er = _db_ercKeyGet(db[mNON], ssNum);
if (eref_equal(er, erefNIL)) {

er = _db_ercKeyGet(db[fNON], ssNum);
if (eref_equal(er, erefNIL)) return FALSE;
g = FEMALE;
}

e = eref_get(er);
e.j = MGR;
eref_assign(er, e);
if (g == MALE) {

erc_delete(db[mNON], er);
erc_insert(db[mMGRS], er);
}

else {
erc_delete(db[fNON], er);
erc_insert(db[fMGRS], er);
}

return TRUE;
}

db_status setSalary(int ssNum, int sal) {
eref er;
employee e;
if (sal < 0) return salERR;
er = _db_keyGet(ssNum);
if (eref_equal(er, erefNIL)) return missERR;
e = eref_get(er);
e.salary = sal;
eref_assign(er, e);
return db_OK;

}

220 Appendix B. Implementations of Example LCL Interfaces

int query(db_q q, empset s) {
eref er;
employee e;
int numAdded;
int l, h;
int i;
l = q.l;
h = q.h;
switch(q.g) {

case gender_ANY:
switch(q.j) {

case job_ANY:
numAdded = 0;
for (i = firstERC; i <= lastERC; i++)

numAdded += _db_addEmpls(db[i], l, h, s);
return numAdded;

case MGR:
numAdded = _db_addEmpls(db[mMGRS], l, h, s);
numAdded += _db_addEmpls(db[fMGRS], l, h, s);
return numAdded;

case NONMGR:
numAdded = _db_addEmpls(db[mNON], l, h, s);
numAdded += _db_addEmpls(db[fNON], l, h, s);
return numAdded;
}

case MALE:
switch(q.j) {

case job_ANY:
numAdded = _db_addEmpls(db[mMGRS], l, h, s);
numAdded += _db_addEmpls(db[mNON], l, h, s);
return numAdded;

case MGR:
return _db_addEmpls(db[mMGRS], l, h, s);

case NONMGR:
return _db_addEmpls(db[mNON], l, h, s);

}
case FEMALE:
switch(q.j) {

case job_ANY:
numAdded = _db_addEmpls(db[fMGRS], l, h, s);
numAdded += _db_addEmpls(db[fNON], l, h, s);
return numAdded;
case MGR:

return _db_addEmpls(db[fMGRS], l, h, s);
case NONMGR:

return _db_addEmpls(db[fNON], l, h, s);
}

}
}

void db_print(void) {
int i;

Appendix B. Implementations of Example LCL Interfaces 221

char * printVal;
printf("Employees:\n");
for (i = firstERC; i <= lastERC; i++) {

printVal = erc_sprint(db[i]);
printf("%s", printVal);
free(printVal);

}
}

Appendix C

Lexical Forms and Initialization Files

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may have its own lexical conventions and capabilities. To conform
to local conventions and to exploit locally available capabilities, character
and token classes are extensible and can be tailored for particular purposes
by initialization files.

In this appendix we give the LSL and LCL initialization files used for
the examples in this book. We also give the ISO Latin codes used for typing
the special symbols appearing in specifications in this book.

The book was produced using LATEXwith a Larch style file. That allowed
us to type specifications using the ISO Latin codes given here, and have
them appear in the text as special symbols.

LCL init file

commentSym //

opChar ˜!#$&?@|

selectSym .

synonym \and /\
synonym \or \/
synonym \implies =>
synonym \marker __
synonym \eq ==
synonym \neq !=
synonym \not !
synonym \not not
synonym \not ˜
synonym \pre ˆ
synonym \post ’
synonym \arrow ->
synonym \arrow \ra

Appendix C. Lexical Forms and Initialization Files 223

LSL init file

commentSym %

idChar ’
opChar ˜!#$&?@|
singleChar ;

openSym [{ \< \langle
closeSym] } \> \rangle
selectSym .

simpleId \bot \top

synonym \and /\
synonym \and &
synonym \or \/
synonym \or |
synonym \implies =>
synonym \not !
synonym \not not
synonym \not ˜
synonym \eq =
synonym \neq !=
synonym \neq ˜=
synonym \arrow ->
synonym \marker __
synonym \equals ==
synonym \forall forall
synonym \eqsep ;

% Following used for checking LCL

synonym Bool bool
synonym Int int
synonym Int signed_char
synonym Int unsigned_char
synonym Int short_int
synonym Int long_int
synonym Int unsigned_short_int
synonym Int unsigned_int
synonym Int unsigned_long_int
synonym double float
synonym double long_double

224 Appendix C. Lexical Forms and Initialization Files

ISO Latin codes for special characters

� is written as ->
� is written as <=
� is written as >=

� is written as �=
� is written as �
� is written as \/
� is written as /\
� is written as =>
	 is written as \forall
� is written as \exists
� is written as \any
� is written as *
� is written as \+
�1 is written as \inv
h is written as \<
i is written as \>
� is written as \in
�� is written as \notin
� is written as \I

 is written as \U
� is written as \subset
� is written as \subseteq
� is written as \supset
� is written as \supseteq
a is written as -|
� is written as |-
k is written as ||
� is written as \cdot
� is written as \circ
a is written as \precat
� is written as \postcat
� is written as \bot
� is written as \top
u is written as \glb
t is written as \lub
� is written as \ominus
� is written as \rel
� is written as \times

Appendix D

Further Information and Tools

This appendix contains a list of currently available Larch tools.
Readers interested in keeping up with new developments should sub-

scribe to the electronic mailing listlarch-interest@src.dec.com.
This list is used for announcements andqueries of general interest. Requests
to be added to (or deleted from) this list, as well as more specialized queries,
should be sent to larch-interest-request@src.dec.com.

All information in this section is current as of October 1992. An updated
version will be kept online on the internet hostgatekeeper.dec.com.
It will be available for anonymous ftp as

/pub/DEC/Larch/Information.tex

1. lsl. Larch Shared Language Checker. Syntax and sort checks LSL
specifications. Translates LSL into lp input. Contact: Stephen
Garland, MIT.

2. lcl. Syntax and type checker for LCL. Interfaces with lsl. Contact:
Stephen Garland, MIT.

3. lm3. Syntax and type checker for Modula-3 interface specifications
written in LM3. Interfaces with lsl. Contact: Kevin Jones, DEC.

4. lp. Larch Prover. Proof checker for fragment of first-order logic with
equality. Contact: Stephen Garland, MIT.

5. gcil. Generic Concurrent Interface Language (GCIL) Checker.
Syntax and type checks GCIL specifications. Interfaces with lsl.
Contact: Jeannette Wing, CMU.

6. Penelope. Verification tool for Larch/Ada specifications and Ada
programs. Contact: M. Stillman, ORA.

7. Larch/Smalltalk Browser. Syntax and sort/type checker and
browser for Larch/Smalltalk and LSL specifications. Contact: Gary
Leavens, ISU.

226 Appendix D. Further Information and Tools

CONTACT ADDRESSES

MIT/LCS

Dr. Stephen J. Garland
Massachusetts Institute of Technology
Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139, USA
Internet:garland@lcs.mit.edu

DEC/SRC

Dr. James J. Horning
Dr. Kevin D. Jones
Digital Equipment Corporation
Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301-1044, USA
Internet: horning@src.dec.com, kjones@src.dec.com

ISU/DCS

Professor Gary Leavens
229 Atanasoff Hall
Department of ComputerScience
Iowa State University
Ames, Iowa 50011-1040, USA
Internet: leavens@cs.iastate.edu.

ORA

M. Stillman
Odyssey Research Associates
301A Harris B. Dates Drive
Ithaca, NY 14850-1313, USA.

Appendix D. Further Information and Tools 227

CMU/SCS

Professor Jeannette M. Wing
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213-3890, USA
Internet: Jeannette.Wing@cs.cmu.edu

Appendix E

Classified Bibliography

This bibliography was started by Jeannette Wing and augmented by
Yang Meng Tan. It is available by anonymous ftp from Internet node
larch.lcs.mit.edu as /pub/larch-bib/larch-bib.tex.
Suggested additions for the online version should be sent to
ymtan@lcs.mit.edu. Full citations for all references are given in the
next section.

Papers about Larch

CURRENT WORK

Reports about the current status of several Larch-related projects are
contained in [66].

LARCH LANGUAGES

Larch Interface Languages: generic [16, 53, 61, 88]; Ada [37]; C [26, 80];
C++ [60]; CLU [86]; ML [93]; Modula-3 [55, 56, 57]; Smalltalk [17].
Larch and other methods: [95].

LARCH TOOLS

LP, the Larch proof assistant: [30]; a beginner’s strategy guide [81]; an
extension [83]; [5, 11, 18, 19, 76, 84].
For LSL [7, 59]; for LCL [26]; for LM3 [57].

Example specifications

Apple MAC Toolbox: [13].
Avalon built-in classes, examples (queue, directory, counter): [92], [89],
and [61].
Display: [43].
Finite element analysis library: [3, 1].
Garbage collection: [22].

Appendix E. Classified Bibliography 229

IOStreams: [55].
Larch/Ada: [15, 37].
Library: [87].
Miro languages and editor: [94, 99].
Thread synchronization primitives: [6, 69].
Using specifications to search software libraries: [73].

Proofs using LP

Ada programs: [38]
Avalon queue example: [92, 35, 91].
Circuit examples: [18, 32, 78, 75, 79].
Mathematical Theorems: [65].
Temporal Logic of Actions: [25].

References

* Entries marked with an asterisk have been superseded by material in this
book; they are included for historical reference only.

[1] J.W. Baugh, Jr. “Formal specification of engineering analysis
programs,” Expert Systems for Scientific Computing, E.N. Houstis,
J.R. Rice, and R. Vichnevetsky (eds.), North-Holland, 1992.

[2] John W. Baugh, Jr. “Is engineering software amenable to formal
specification?,” in [66].

[3] J.W. Baugh, Jr., and D.R. Rehak. Computational Abstractions
for Finite Element Programming, TR 89-182, Dept. of Civil
Engineering, Carnegie Mellon University, 1989.

[4] Michel Bidoit. Pluss, un langage pour le développement de
spécifications algébriques modulaires. Thèse d’Etat, Université de
Paris-Sud, Orsay, May 1989.

[5] Michel Bidoit and Rolf Hennicker, “How to prove observational
theorems with LP,” in [66].

[6] A.D. Birrell, J.V. Guttag, J.J. Horning, and R. Levin. “Synchro-
nization primitives for a multiprocessor: a formal specification.”
Operating Systems Review 21(5), Nov. 1987. Revised version in
[69].

[7] Robert H. Bourdeau and Betty H.C. Cheng. “An Object-oriented
Toolkit for Constructing Specification Editors,” Proc. COMP-
SAC’92: Computer Software and Applications Conf., Sept. 1992.

[8] Robert S. Boyer and J S. Moore. A Computational Logic, Academic
Press, 1979.

References 231

[9] Robert S. Boyer and J S. Moore. A Computational Logic Handbook,
Academic Press, 1988.

[10] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, 1975.

[11] Manfred Broy. Experiences with Software Specification and Veri-
fication Using LP, the Larch Proof Assistant, TR 93, DEC/SRC,
Oct. 1992.

[12] R.M. Burstall and J.A. Goguen. “Semantics of CLEAR, a speci-
fication language,” Proc. Advanced Course on Abstract Software
Specifications, D. Bjorner (ed.), Springer-Verlag, LNCS 86, 1980.

[13] C.T. Burton, S.J. Cook, S. Gikas, J.R. Rowson, and S.T. Som-
merville. “Specifying the Apple Macintosh toolbox event manager,”
Formal Aspects of Computing 1(2), 1989.

[14] Karl-Heinz Buth. “Using SOS definitions in term rewriting proofs,”
in [66].

[15] S.R. Cardenas and H. Oktaba. Formal Specification in Larch
Case Study: Text Manager. Interface Specification, Implementation,
in Ada and Validation of Implementation, TR 511, Instituto
de Investigaciones en Matematicas Aplicadas y en Sistemas,
Universidad Nacional Autonoma de Mexico, 1988.

[16] Jolly Chen. The Larch/Generic Interface Language, S.B. Thesis,
Dept. of Electrical Engineering and Computer Science, MIT, 1989.

[17] Yoonsik Cheon. Larch/Smalltalk: A Specification Language for
Smalltalk, M.Sc. Thesis, Iowa State University, 1991.

[18] Boutheina Chetali and Pierre Lescanne. “An exercise in LP: the
proof of a nonrestoring division circuit,” in [66].

[19] Christine Choppy and Michel Bidoit. “Integrating ASSPEGIQUE
and LP,” in [66].

[20] O.-J. Dahl, D.F. Langmyhr, and O. Owe. Preliminary Report on
the Specification and Programming Language ABEL, Research
Report 106, Institute of Informatics, University of Oslo, Norway,
1986.

232 References

[21] Ole-Johan Dahl. Verifiable Programming, Prentice Hall Interna-
tional Series in Computer Science, 1992.

[22] David L. Detlefs. Concurrent, Atomic Garbage Collection, Ph.D.
Thesis, Dept. of Computer Science, Carnegie Mellon University,
TR CS-90-177, Oct. 1990.

[23] H.-D. Ehrich. “Extensions and implementations of abstract data
type specifications,” Proc. Mathematical Foundations of Computer
Science, Zakopane, Sept. 1978. Springer-Verlag, LNCS 64.

[24] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification
1: Equations and Initial Semantics, EATCS Monographs on
Theoretical Computer Science, vol. 6, Springer-Verlag, 1985.

[25] Urban Engberg, Peter Grønning, and Leslie Lamport. “Mechanical
verification of concurrent systems with TLA,” Proc. Workshop on
Computer Aided Verification, 1992. Revised version in [66].

[26] G. Feldman and J. Wild. “The DECspec project: tools for
Larch/C,” Proc. Fifth Int. Workshop on Computer-Aided Software
Engineering, Montreal, Jul. 1992. Revised version in [66].

[27] Stephen J. Garland and John V. Guttag. “Inductive methods for
reasoning about abstract data types,” Proc. 15th ACM Symp.
Principles of Programming Languages, Jan. 1988.

[28] Stephen J. Garland and John V. Guttag. “An overview of LP, the
Larch Prover,” Proc. Third Intl. Conf. Rewriting Techniques and
Applications, Chapel Hill, 1989. Springer-Verlag, LNCS 355.

[29] * Stephen J. Garland and John V. Guttag. “Using LP to debug
specifications,” Proc. IFIP Work. Conf. Programming Concepts and
Methods, Tiberias, Apr. 1990. North-Holland.

[30] Stephen J. Garland and John V. Guttag. A Guide to LP, The Larch
Prover, TR 82, DEC/SRC, Dec. 1991.

[31] * Stephen J. Garland, John V. Guttag, and James J. Horning.
“Debugging Larch Shared Language specifications,” IEEE Trans.
Software Engineering 16(9), Sept. 1990.

References 233

[32] S.J. Garland, J.V. Guttag, and J. Staunstrup. “Verification of VLSI
circuits using LP,” Proc. IFIP Work. Conf. Fusion of Hardware
Design and Verification, North Holland, 1988.

[33] Narain Gehani and Andrew McGettrick (eds.). Software Specifica-
tion Techniques, Addison-Wesley, 1986.

[34] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. “An initial algebra
approach to the specification, correctness and implementation of
abstract data types,” Current Trends in Programming Methodology
IV: Data Structuring, R. Yeh (ed.), Prentice-Hall, 1978.

[35] C. Gong and J.M. Wing. Raw Code, Specification, and Proofs of
the Avalon Queue Example, Carnegie Mellon University, TR CMU-
CS-89-172, Aug. 1989.

[36] David Gries. The Science of Programming, Springer-Verlag, 1981.

[37] David Guaspari, Carla Marceau, and Wolfgang Polak. “Formal
verification of Ada,” IEEE Trans. Software Engineering 16(9),
Sept. 1990.

[38] David Guaspari, Carla Marceau, and Wolfgang Polak. “Formal
verification of Ada programs,” in [66].

[39] John V. Guttag. “Dyadic specification and its Impact on reliability,”
in Three Approaches to Reliable Software: Language Design
Dyadic Specification, Complementary Semantics, J.E. Donahue,
J.D. Gannon, J.V. Guttag, and J.J. Horning, University of Toronto,
TR CSRG-45, Dec. 1974.

[40] John V. Guttag. The Specification and Application to Programming
of Abstract Data Types, Ph.D. Thesis, Dept. of Computer Science,
University of Toronto, 1975.

[41] John Guttag. “Notes on type abstraction,” Proc. Conf. Specifications
of Reliable Software, 1979. Reprinted in [33].

[42] J.V. Guttag and J.J. Horning. “The Algebraic Specification of
Abstract Data Types,” Acta Informatica 10(1), 1978.

[43] John Guttag and J.J. Horning. “Formal Specification as a Design
Tool,” Seventh ACM Symp. Principles of Programming Languages,
Las Vegas, Jan. 1980. Reprinted in [33].

234 References

[44] * J.V. Guttag and J.J. Horning. “An Introduction to the Larch Shared
Language,” Proc. IFIP Ninth World Computer Congress, Paris,
Sept. 1983.

[45] * J.V. Guttag and J.J. Horning. “Report on the Larch Shared
Language,” Science of Computer Programming 6(2), Mar. 1986.

[46] * J.V. Guttag and J.J. Horning. “A Larch Shared Language
Handbook,” Science of Computer Programming 6(2) Mar. 1986.

[47] * J.V. Guttag and J.J. Horning. LCL: A Larch Interface Language
for C, TR 74, DEC/SRC, Jul. 1991.

[48] * John V. Guttag and James J. Horning. “A Tutorial on Larch
and LCL, a Larch/C Interface Language,” Proc. VDM91: Formal
Software Development Methods, S. Prehn and W.J. Toetenel (eds.),
Delft, Oct. 1991. Springer-Verlag, LNCS 551.

[49] * John V. Guttag, James J. Horning, and Andrés Modet. Report
on the Larch Shared Language: Version 2.3, TR 58, DEC/SRC,
Apr. 1990.

[50] * John V. Guttag, James J. Horning, and Jeannette M. Wing. “The
Larch Family of Specification Languages,” IEEE Software 2(5),
1985.

[51] * J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in Five Easy
Pieces, TR 5, DEC/SRC, Jul. 1985.

[52] Samuel P. Harbison. Modula-3, Prentice Hall, 1992.

[53] David Hinman. On the Design of Larch Interface Languages, S.M.
Thesis, Dept. of Electrical Engineering and Computer Science, MIT,
Jan. 1987.

[54] * J.J. Horning. “Combining Algebraic and Predicative Specifica-
tions in Larch,” Proc. Intl. Joint Conf. on Theory and Practice
of Software Development, TAPSOFT, Berlin, Mar. 1985. Springer-
Verlag, LNCS 186.

[55] Kevin D. Jones. LM3: A Larch Interface Language for Modula-
3: A Definition and Introduction: Version 1.0, TR 72, DEC/SRC,
Jun. 1991.

References 235

[56] Kevin D. Jones. “A semantics for a Larch/Modula-3 interface
language,” in [66].

[57] Kevin D. Jones. LM3 Reference Manual, (in preparation).

[58] Donald E. Knuth and Peter B. Bendix. “Simple word problems in
universal algebras,” Computational Problems in Abstract Algebra,
John Leech (ed.), Pergamon Press, Oxford, 1970.

[59] Michael R. Laux, Robert H. Bourdeau, and Betty H.C. Cheng.
An Integrated Environment Supporting the Reuse of Formal
Specifications, Michigan State University, Dept. of Computer
Science, TR MSU-CPS-ACS-70, Sept. 1992.

[60] Gary T. Leavens and Yoonsik Cheon. “Preliminary design of
Larch/C++,” in [66].

[61] Richard Allen Lerner. Specifying Objects of Concurrent Systems,
Ph.D. Thesis, Dept. of Computer Science, Carnegie Mellon
University, TR CS-91-131, May 1991.

[62] Pierre Lescanne. “Computer experiments with the REVE term
rewriting system generator,” Proc. Tenth ACM Symp. Principles
of Programming Languages, 1983.

[63] Barbara Liskov and John Guttag. Abstraction and Specification in
Program Development, MIT EECS Series, MIT Press, 1986.

[64] D.A. McAllester. Ontic: A Knowledge Representation System for
Mathematics, MIT Press.

[65] U. Martin and T. Nipkow. “Automating Squiggol,” Proc. IFIP Work.
Conf. Programming Concepts and Methods, Tiberias, Apr. 1990.
North-Holland.

[66] U. Martin and J.M. Wing. Proc. First Intl. Workshop on Larch,
Dedham, Jul. 1992, Springer-Verlag.

[67] Niels Mellergaard and Jørgen A. Staunstrup. “Generating proof
obligations for circuits,” in [66].

[68] James H. Morris, Jr. “Types are Not Sets,” First ACM Symp.
Principles of Programming Languages, Boston, Oct. 1973.

236 References

[69] Greg Nelson (ed.). Systems Programming with Modula-3, Prentice
Hall, 1991.

[70] D.L. Parnas. “Information distribution aspects of design methodol-
ogy,” Proc. IFIP Congress 71, Ljubljana, Aug. 1971.

[71] Laurence C. Paulson. Logic and Computation: Interactive Proof
with Cambridge LCF, Cambridge University Press, 1987.

[72] Gerald E. Peterson and Mark E. Stickel. “Complete sets of
reductions for some equational theories,” J. ACM 28:2, Apr. 1981.

[73] Eugene J. Rollins and Jeannette M. Wing. “Specifications as search
keys for software libraries,” Proc. Intl. Conf. Logic Programming,
Paris, Jun. 1991.

[74] Donald Sannella and Andrzej Tarlecki. “On observational equiva-
lence and algebraic specification,” Proc. Intl. Joint Conf. Theory and
Practice of Software Development, TAPSOFT, Berlin, Mar. 1985.
Springer-Verlag, LNCS 185.

[75] James B. Saxe, Stephen J. Garland, John V. Guttag, and James
J. Horning. “Using Transformations and Verification in Circuit
Design,” in [66].

[76] E. A. Scott and K. J. Norrie. “Using LP to study the language PL,”
in [66].

[77] Joseph R. Shoenfield. Mathematical Logic, Addison-Wesley, 1967.

[78] J. Staunstrup, S.J. Garland, and J.V. Guttag. “Compositional
verification of VLSI circuits,” Proc. Intl. Workshop on Automatic
Verification Methods for Finite State Systems, Grenoble, Jun. 1989,
Springer-Verlag, LNCS 407.

[79] Jørgen Staunstrup, Stephen J. Garland, and John V. Guttag.
“Mechanized verification of circuit descriptions using the Larch
Prover,” Proc. IFIP Work. Conf. Theorem Provers in Circuit Design:
Theory, Practice, and Experience, Nijmegen, Jun. 1992. North-
Holland.

[80] Yang Meng Tan. “Semantic analysis of Larch interface specifica-
tions,” in [66].

References 237

[81] David S. Taylor. A Beginner’s Strategy Guide to the Larch Prover,
S.B. Thesis, Dept. of Electrical Engineering and Computer Science,
MIT, May 1990.

[82] Mark T. Vandevoorde. “Optimizing programs with partial specifi-
cations,” in [66].

[83] Mary A. Vogt. Extension of the Larch Prover by a Method of
Inference Using Linear Arithmetic, S.B. Thesis, Dept. of Electrical
Engineering and Computer Science, MIT, Sept. 1990.

[84] Frederic Voisin. “A new front-end for the Larch Prover,” in [66].

[85] M. Wand. “Final algebra semantics and data type extensions,”
Journal of Computer and System Sciences, Aug. 1979.

[86] Jeannette Marie Wing. A Two-Tiered Approach to Specifying
Programs, Ph.D. Thesis, Dept. of Electrical Engineering and
Computer Science, MIT, TR MIT/LCS/TR-299, May 1983.

[87] Jeannette M. Wing. “A Larch specification of the library problem,”
Proc. Fourth Int. Workshop on Software Specification and Design,
Monterey, Apr. 1987.

[88] Jeannette M. Wing. “Writing Larch Interface Language Specifica-
tions,” ACM Trans. Programming Languages and Systems 9(1),
Jan. 1987.

[89] J.M. Wing. “Specifying recoverable objects,” Proc. Sixth Annual
Northwest Software Quality Conf., Portland, Sept. 1990.

[90] J.M. Wing. “Using Larch to Specify Avalon/C++ Objects,” Proc.
Intl. Joint Conf. Theory and Practice of Software Development,
TAPSOFT, Barcelona, Mar. 1989. Springer-Verlag, LNCS 352.
Revised version in [90]

[91] Jeannette M. Wing and Chun Gong. Machine-Assisted Proofs
of Properties of Avalon Programs, Carnegie Mellon University,
TR CMU-CS-89-171, Aug. 1989.

[92] Jeannette M. Wing and Chun Gong. “Experience with the Larch
Prover,” Proc. ACM Intl. Workshop on Formal Methods in Software
Development, May 1990.

238 References

[93] J.M. Wing, Eugene Rollins, and Amy Moormann Zaremski.
“Thoughts on a Larch/ML and a new application for LP,” in [66].

[94] Jeannette M. Wing and Amy Moormann Zaremski. “A formal
specification of a visual language editor,” Proc. Sixth Intl. Workshop
on Software Specification and Design, Como, Oct. 1991.

[95] Jeannette M. Wing and A. Moormann Zaremski. “Unintrusive
ways to integrate formal specifications in practice,” Proc. VDM91:
Formal Software Development Methods, S. Prehn and W.J. Toetenel
(eds.), Delft, Oct. 1991. Springer-Verlag, LNCS 551.

[96] M. Wirsing. Algebraic Specification, Technical Report MIP-8914,
University of Passau, Germany, 1989.

[97] Katherine Anne Yelick. Using Abstractions in Explicitly Parallel
Programs, Ph.D. Thesis, Dept. of Electrical Engineering and
Computer Science, MIT, TR MIT/LCS/TR-507, Jul. 1990.

[98] Katherine A. Yelick and Stephen J. Garland. “A parallel completion
procedure for term rewriting systems,” Proc. 11th Intl. Conf.
Automated Deduction, Saratoga Springs, Jun. 1992. Springer-
Verlag, LNCS 607.

[99] Amy Moormann Zaremski. A Larch Specification of the Miro Editor,
Carnegie Mellon University, TR CMU-CS-91-111, Feb. 1991.

Index

’ (post-state value), 58, 61
ˆ (pre-state value), 58, 61, 76
��(in C), 60
� (in signature), 8, 18, 36
=, 36, 47
==, 36, 75, 92

�, 47
[] (LP box), 33, 139
[] (in C), 58, 60
<> (LP diamond), 33, 139
� (logical implies), 10
� (there exists), 10
	 (for all), 10, 11
� (logical equivalence), 9
� (logical not), 10
� (logical or), 10
� (logical and), 10

Abelian, 199
AbelianGroup, 199
AbelianMonoid, 199
AbelianSemigroup, 199
abstract field, 112
abstract invariant, 29, 78, 80
abstract type, 3–4, 15

assignment, 75
collection of related opera-

tions, 4, 21, 72, 92
constructor, 54
creation and finalization, 75
implementation, 4, 26–29,

72

in C, 58–60
in Modula-3, 104, 110, 119
reasoning about, 29
type checking, 59, 72

abstract value, 110
abstraction function, 26–29
abstraction relation, 112
abstractions, programming with,

1–5
AC, 191
action, 104
Addition, 205
addresses of Larch contacts, 225
adequate definition, 54, 122
algebra, 37
algebraic specification, 18, 35
aliasing, 77
ALL, 110
announcements, 225
Antisymmetric, 192
ArithOps, 205
array, 60, 67, 68
Array1, 184
Array2, 184
ArraySlice2, 184
asserts, 20
assignment, abstract type, 75
Associative, 191
associativity, 55, 131
assumes

discharge of, 125, 127, 137,
146

240 Index

examples, 51, 55, 78
purpose, 44, 124
vs. includes, 46, 125

assumptions, 44–47
Asymmetric, 192
atomic action, 116
auxiliary specifications, 17, 57,

77

backward inference, 134
Bag, 169
bag, 86
Bag0, 45
Bag1, 46
Bag2, 47
BagBasics, 168
based on, 21, 58, 104
basic value, 59
basis of induction, 28, 38, 135
BinaryTree, 182
binding, 10
bool, type, 68
Boolean, 161
bound and free variables, 10
break, 96
built-in operator, 36, 47–49

C and Modula-3, 102
.c file, 57
call by value, 60
CartesianView, 151
case analysis, 134
character set, 33, 222
checking

allocation failure, 77
assumption, 124–125, 127,

137
avoidance of, 83
based on redundancy, 18, 31,

43–44, 152

completeness, 122
composition, 124–125
consistency, 127, 145
conversion, 123–124
defensive, 80, 99
examples, 146–152
generators, 142
hardware design, 30
implementation, 86
implication, 122–125, 137
interface specification, 17
LCLint, 57, 72, 80, 83, 92
LSL specification, 17, 43,

121–153
made easier, 128
of book, 62
precondition, 76
proof script, 30, 31
sort-, 18, 58, 61
specification, 7, 17, 121
specifications, iii
theory containment, 137–143
type-, 7, 18, 72, 104, 121,

125
understanding, 43, 80, 122

chemistry, 7
chess, 7
ChoiceBag, 176
ChoiceSet, 176
claims, 80, 83
client, 5, 22, 25, 57, 103
CoerceContainer, 179
combining

abstractions, 3
implementations, 3
solutions, 1, 2
specifications, 18, 39, 124

comments, 62
Commutative, 191

Index 241

commutativity, 55, 131
comparison, of abstract type value,

75, 92
completeness, 43, 54, 122

checking, 122
of deduction system, 12
of theory, 11

completion (Knuth Bendix), 139
completion (Knuth-Bendix), 134,

142, 145–146
ComposeMaps, 185
composition of actions, 116
concrete value, 110
concurrency, 116
Conditional, 162
conjunction, 10
consequences, 12–13
consistency, 12, 37, 43, 122, 127

checking, 126, 145–146
constants

in C, 57, 63, 66, 70
in LM3, 105
in LSL, 49
in Modula-3, 104, 106, 107
logical, 9
mathematical, 21
new, 135, 139, 142

contact addresses, 225
Container, 52, 177
container traits, 166–181
contradiction, 135
control object, 62
conventions, 4, 62, 75

lexical and typographic, 33–
34, 222–224

converts
checking, 142–143
purpose, 43
semantics, 43, 44, 123

Coordinate, 146
correctness

of implementation, 4, 7, 25,
59, 101

of specification, 7, 41, 121
crash, 68
create function, 75
critical pairs, 134, 138, 145
cstring, 63, 64

data abstraction, 3–4
data type induction, 28, 29, 83
dbase implementation, 100
dbase.c, 217–221
dbase.h, 217
debugging

LSL specifications, 121–153
proof, 30

DecimalLiterals, 164
declaration

in C, 57, 92
in LCL, 80
in LP, 129–130
in LSL, 18, 31, 36, 48, 146
in Modula-3, 102–104, 106,

110
decomposition, 1–3
deduction

rule, 12, 38, 132–134, 141
system, 12

default proof methods, 136
defensive programming, 68, 80,

99
definitional specifications, 5
Deque, 172
DerivedOrders, 195
design

decision, 7, 70
of proof, 30
of software, 1–4

242 Index

determinism, 67, 77
disambiguation, 48, 49
discharging

assumption, 46, 101, 125,
127, 137

proof obligation, 127
subgoal, 31

disjunction, 10
Displayable, 146
distinguished sort, 54
Distributive, 200
domain, 8, 18, 36
driver program, 83

effective deduction system, 12
efficiency, 76, 77
ElementTest, 180
empset.c, 215–217
empset.h, 214
ENSURES, 105, 109
ensures, 22, 62, 67, 68
Enumerable, 204
Enumeration, 165
enumeration, 49
enumeration type, 107
environment, 58
Equality, 193
equation, 9, 36

checking, 137–141
in LP, 130–131

equational specification, 35–37
equational theory, 37, 130, 145
Equivalence, 193
equivalence, 41
equivalence1, 40
equivalence2, 40
erc.c, 212–214
erc.h, 211
error

avoidance, 57

in specification, 43
examples

LCL, 22, 62–101
LM3, 22, 105–120
LSL, 18, 40–42, 51–55, 157–

210
checking, 146–152

proof, 31–33, 146–152
EXCEPT, 108, 109
exception, 109
exempting, 44, 54, 55, 124
existential quantifier (�), 10
Exponentiation, 206
exposed fields, 113
exposed type, 21

in C, 58, 59, 66, 72, 80, 100
in Modula-3, 103, 106, 109

extension operators, 54
extern, 67, 92

failure
of proof, 136, 147, 149–150,

152
of storage allocation, 77

Field, 200
field specification, 119
field (in C), 59
final algebra, 37
FiniteMap, 185
first-order logic, 8–13
first-order theory, 20, 37
FloatingPoint, 210
formal method, 155, 156
formal parameter, 58, 60, 61, 66,

105
LSL, 41

formal specification, 6–7
formalization, caution, 155–156
formula, 9
forward inference, 133, 145

Index 243

FPAssumptions, 209
free and bound variables, 10
fresh, 75–77
function (in C)

prototype, 57, 66, 70, 72, 80
specification, C, 61–62

Functional, 192

gcc, 62
GCIL, 225
generated by, 37, 51, 132

checking, 142
generator set, 54
generators, 142
generic

interface, 110, 112
operator, 51, 55

global state
in LM3, 104

global variable, 80, 104
Graph, 190
GreatestLowerBound, 197
Group, 199
group theory traits, 198–200

.h file, 57, 70
handbook, 63

errors, 159
LSL, 157–210
online, 158, 159

hiding, 5, 21, 110, 113, 116
hierarchy, 3
history, iii–iv

.i3 file, 102
Idempotent, 191
Identity, 198
if then else , 20, 36, 37,

47, 162
.ig file, 102

immutable type, 59, 75, 80, 86
immutable value, 105
implementation

bias, 5
dependency, 72
notes, 99
of abstract type, 4, 26–29,

59, 72, 99, 112
of function, 72, 92, 101
of interface, 57, 92, 100–102
of iterator, 96, 99
of procedure, 22, 25, 29
of software, 1, 3
of specification, 7, 25–29,

56–57
storage allocation, 77

implications, 41–44
implication (�), 10
implies, 43, 51, 122, 137
IMPORTS, 107
imports, 72
includes, 18, 39–40, 51, 124,

127
vs. assumes, 46, 125

inconsistency, 12, 131, 135, 145
detection, 4, 37, 134, 145,

147, 152
IndexOp, 179
induction, 37, 55, 101, 132, 135,

138, 142–143
data type, 83
hypothesis, 135

Infinite, 204
infix operator, 36, 37
information hiding, 5
inheritance, 115
initial algebra, 37
initialization, 70, 75, 76, 83
InsertGenerated, 51, 177

244 Index

instantiation, 134
IntCycle, 203
Integer, 163
IntegerAndNatural, 206
IntegerAndPositive, 206
IntegerPredicates, 164
intended consequences, 41–44
interface, 14, 57, 102–104

language, 14–18
specification, 20–22

Internet mailing lists, 227
introduces, 18, 36
invariant, 100, 151

abstract, 29, 78, 80
representation, 26–29, 76,

99–101
type, 113, 115, 117

Inverse, 199
Involutive, 191
Irreflexive, 192
IsPO, 194
IsTO, 194
iterator, 92

JoinOp, 178

knitting, 7
Knuth-Bendix completion, 134

larch-interest, 225
Larch/Smalltalk Browser, 225
Lattice, 197
LCL, 15–17, 22–26, 56–101

and LM3, 102
and LSL, 57–58

LCL Checker, 62, 72
availability of, 225

.lcl file, 57
LCLint, 57, 72, 80, 83, 92
LeftDistributive, 200

LeftIdentity, 198
LeftInverse, 198
lemma, 128
lexical conventions, 33–34, 160,

222–223
LexicographicOrder, 196
.lh file, 57, 62
LinearContainer, 123
Liskov, Barbara, iii
List, 173
ListStructure, 182
ListStructureOps, 183
LM3, 22, 102–120

and LCL, 102
and LSL, 102–105

LM3 Checker, availability of,
225

loc, 21
local state, 105
logic, 8–13
logical consequence, 11, 12
logical system, 129
loose semantics, 37
LP, 29–33, 121

availability of, 225
LSL, 18–20, 35–55

and LCL, 57–58
and LM3, 102–105
debugging, 121–153
handbook, 157–210
semantic checks, 122–125

LSL Checker, 62, 125–133
availability of, 225

.lsl file, 57

.m3 file, 103
Machiavelli, 1
macros, 66, 72
maxIndex, 60, 68
MemberOp, 178

Index 245

members (of structs), 59
method specification, 109, 112,

113, 115, 116
.mg file, 103
minIndex, 60
MinMax, 196
mixfix operator, 36, 41
MODIFIES, 105, 109
modifies, 22, 61, 67, 68
Modula-3 and C, 102
module, 57, 102, 103
Monoid, 198
monotonicity, 46
Multiplication, 205
music, 7
mutable type, 59, 60, 72, 92

sharing, 75
mutable value, 105

Natural, 201
NaturalOrder, 204
negation, 10
non-atomic routine, 116–117
non-determinism, 67, 77, 112
non-equational specification, 37–

39
normal result, 109
normalization, 133, 134
null-terminated, 68
number theory traits, 201–206

object
field in Modula-3, 109, 112
in C, 58–61
type in Modula-3, 109

observer set, 38, 54
OneToOne, 192
opaque type, 110, 113, 119
operational specifications, 5
operator

in LSL, 18
interface language, 17, 21
LCL, 57–58, 63
LM3, 103, 104
logical, 8–9
LP, 129, 130
LSL, 18, 36–50, 54, 57–58,

103, 104, 122–124
theory, 129, 131

OrderedString, 48
overloading, 47–49, 147

PairwiseExtension, 180
PairwiseSum, 55
parameter, 41
parameterization, 2
partial revelation, 119
partially opaque type, 113
PartialOrder, 194
partitioned by, 38, 132,

141
checking, 141–142

Penelope, 225
Permutation, 179
pointer, 60
PointwiseImage, 181
Positive, 202
post-state, 22, 61, 62, 66, 104,

109
postcondition, 62, 66, 109
postfix operator, 36
PQueue, 53
pragma, 103
pre-state, 22, 61, 66, 104, 109
precedence, operator, 36, 37
precondition, 61, 66
predicate, 9–11, 68
predicate connective, 47
prefix operator, 36
PreOrder, 195

246 Index

PriorityQueue, 175
procedure, 102
procedure header, 22
procedure specification, 2, 5, 21–

22, 26, 29
program variable, 58–61, 104
proof, 12–13, 30

failure of, 136
mechanisms in LP, 133–137
obligation, 125–128, 143, 146
of converts, 142–143
of equation, 137–141
of generated by, 142
of implication, 139
ofpartitioned by, 141–

142
replay, 31

proof script, 139, 152
propositional connective, 9
prototype, function, 57, 66, 70,

72, 80

qualification of terms, 48
quantified predicate, 10, 11
query, 225
Queue, 171

RAISEVAL, 109
range, 8, 18, 36
Rational, 207
ReduceContainer, 181
redundancy, 18, 31, 43–44, 51,

122, 152
Reflexive, 192
reflexive, 40
Region, 146
regression testing, 152
Relation, 186
relation, 8
RelationBasics, 186

RelationOps, 187
RelationPredicates, 189
renaming, 41
representation, 66, 72, 76–77, 86,

92, 100, 110
abstract type, 4, 21, 26–29
invariant, 26–29

representation invariant, 76, 99–
101

REQUIRES, 105, 109
requires, 22, 61, 67, 68
result, 62, 68
return, 96
RETURNS, 109
reuse, 3, 39, 63
revelation, 106, 112, 119
ReverseOp, 178
rewrite rule, 130–131
RightDistributive, 200
RightIdentity, 198
RightInverse, 199
Ring, 200
RingWithUnit, 200
routine, 102

non-atomic, 116–117
routine specification, 104–105,

109

satisfaction, 7, 25, 26, 29, 145
satisfiable, 11, 77
scoping, 80
script file, LP, 139, 152
semantic checks

LSL, 122–125
semantic claim, 125
semantic domain, 7
semantics, 12, 17, 37, 109
Semigroup, 198
Semilattice, 197
sentence, 11

Index 247

Sequence, 174
Set, 167
set proof-methods, 136
SetBasics, 166
SetToRelation, 188
sharing, 75, 99
shorthand, 49–50, 60, 110
side effect, 76, 83
signature, 8, 18, 36, 41, 48, 49,

129
SignedInt, 203
sort, 8–10, 18, 21, 36, 48, 58, 66,

72, 103, 104, 129
sound deduction system, 12
SparseArray, 42
specialization, 55, 113
specification

abstraction by, 2
dependency, 72, 107
equational, 35–37
field, 104, 110, 113, 119
for communication, 25
formal, 6–7
inheritance, 115
non-equational, 37–39
reuse, 63
roles of, 4–5
styles, 5–6
type, 80, 100
variable, 80, 100, 104, 110

sprint, 63, 67, 72
square root, 2, 5, 9
Stack, 170
StackBasics, 170
state, 21, 66, 76

in C, 58–61
in Modula-3, 104–105

storage management, 76, 77
STRENGTHEN, 115

strict partial order, 11
StrictPartialOrder, 195
StrictTotalOrder, 195
String, 173
string, 63
struct, 59–61
structure, logical, 9, 11
structured programming, 3
subtype, 113, 115
supertype, 115
Symmetric, 192
symmetric, 40
syntactic domain, 6

Table1, 35
target list, 22, 105, 109–110, 116
tautology, 11
term, 8–9, 17, 18, 20, 21, 36, 37,

103
termination, 22, 68
test harness, 86
theorem, 12, 128
theory, 11, 20, 124

assumption, 46
consistency, 12, 43
containment, 43, 122, 137–

143
equational, 37, 130
implication, 43
inclusion, 39, 41, 46
non-equational, 37, 38
of a trait, 39
of trait, 37–41

threads, 116
tools, iii, 225
TotalOrder, 194
TotalPreOrder, 195
trait, 18, 35, 57–59, 63, 103, 104,

112
AC, 191

248 Index

AbelianGroup, 199
AbelianMonoid, 199
AbelianSemigroup, 199
Abelian, 199
Addition, 205
Antisymmetric, 192
ArithOps, 205
Array1, 184
Array2, 184
ArraySlice2, 184
Associative, 191
Asymmetric, 192
Bag0, 45
Bag1, 46
Bag2, 47
BagBasics, 168
Bag, 169
BinaryTree, 182
Boolean, 161
CartesianView, 151
ChoiceBag, 176
ChoiceSet, 176
CoerceContainer, 179
Commutative, 191
ComposeMaps, 185
Conditional, 162
Container, 52, 177
Coordinate, 146
DecimalLiterals, 164
Deque, 172
DerivedOrders, 195
Displayable, 146
Distributive, 200
ElementTest, 180
Enumerable, 204
Enumeration, 165
Equality, 193
Equivalence, 193
Exponentiation, 206

FPAssumptions, 209
Field, 200
FiniteMap, 185
FloatingPoint, 210
Functional, 192
Graph, 190
GreatestLowerBound, 197
Group, 199
Idempotent, 191
Identity, 198
IndexOp, 179
Infinite, 204
InsertGenerated, 51, 177
IntCycle, 203
IntegerAndNatural, 206
IntegerAndPositive, 206
IntegerPredicates, 164
Integer, 163
Inverse, 199
Involutive, 191
Irreflexive, 192
IsPO, 194
IsTO, 194
JoinOp, 178
Lattice, 197
LeftDistributive, 200
LeftIdentity, 198
LeftInverse, 198
LexicographicOrder, 196
LinearContainer, 123
ListStructureOps, 183
ListStructure, 182
List, 173
MemberOp, 178
MinMax, 196
Monoid, 198
Multiplication, 205
NaturalOrder, 204
Natural, 201

Index 249

OneToOne, 192
OrderedString, 48
PQueue, 53
PairwiseExtension, 180
PairwiseSum, 55
PartialOrder, 194
Permutation, 179
PointwiseImage, 181
Positive, 202
PreOrder, 195
PriorityQueue, 175
Queue, 171
Rational, 207
ReduceContainer, 181
Reflexive, 192
Region, 146
RelationBasics, 186
RelationOps, 187
RelationPredicates, 189
Relation, 186
ReverseOp, 178
RightDistributive, 200
RightIdentity, 198
RightInverse, 199
RingWithUnit, 200
Ring, 200
Semigroup, 198
Semilattice, 197
Sequence, 174
SetBasics, 166
SetToRelation, 188
Set, 167
SignedInt, 203
SparseArray, 42
StackBasics, 170
Stack, 170
StrictPartialOrder, 195
StrictTotalOrder, 195
String, 173

Symmetric, 192
Table1, 35
TotalOrder, 194
TotalPreOrder, 195
Transitive, 193
UnsignedInt, 204
View, 148
Window, 147
cstring, 63, 64
equivalence1, 40
equivalence2, 40
equivalence, 41
reflexive, 40
symmetric, 40
transitive, 40

TRAITS, 104
Transitive, 193
transitive, 40
translation, LSL to LP, 129–133
trashed, 76
truth, 9, 11
tuple, 61
tuple, 49
two-tiered approach, iii, 14–18,

21, 25, 57, 103
type, 4, 8, 21, 26

abstract, 3–4, 15, 58, 104,
110, 119

checking, 18, 59, 72, 104
constructor, 58, 104
exposed, 58, 104
in C, 58–61, 66
in Modula-3, 102–119
initialization, 75
invariant, 113, 115
opaque, 110, 113, 119
specification, 80
subtype, 115
supertype, 115

250 Index

typedef, 66, 70, 72
typographic conventions, 33–34,

224
tyranny of paper, 158

UNCHANGED, 110
union, 50, 59
universal quantifier (), 10–11
UnsignedInt, 204
user guidance, 138, 143, 152
uses, 58, 66, 72

valid, 11
value, 9, 21, 26, 37, 38, 58–60,

72, 75, 104, 105, 110
variable, 129

bound or free, 10
entire, 104
global, 80, 104
logical, 9, 10
program, 58–61, 104
specification, 80
target, 109, 110, 116

vector, 61
View, 148

Window, 147
witness, 10

yield, 92

Zilles, Steve, iii

