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Preface

Building software often seems harder than it ought to be. It takes longer
than expected, the software’s functionality and performance are not as
wonderful as hoped, and the software is not particularly malleable or easy
to maintain. It does not have to be that way.

Thisbook isabout programming, and the role that formal specifications
can play in making programming easier and programs better. Theintended
audienceis practicing programmers and studentsin undergraduate or basic
graduate courses in software engineering or forma methods. To make
the book accessible to such an audience, we have not presumed that the
reader has formal training in mathematics or computer science. We have,
however, presumed some programming experience.

Theroles of formal specifications

Designing software is largely a matter of combining, inventing, and
planning the implementation of abstractions. The goal of design is to
describe a set of modules that interact with one another in simple, well-
defined ways. If thisisachieved, peoplewill be ableto work independently
on different modules, and yet the modules will fit together to accomplish
the larger purpose. In addition, during program maintenance it will be
possible to modify a module without affecting many others.

Abstractions are intangible. But they must somehow be captured and
communicated. That is what specifications are for. Specification gives
us a way to say what an abstraction is, independent of any of its
implementations.

The specifications in this book are written in formal specification
languages. We use formal languages because we know of no other way to
make specifications simultaneously as precise, clear, and concise. Anyone
who has attempted to write documentation for a subroutine library, drafted
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contracts, or studied the tax code, knows how difficult it isto achieve even
precision in anatural language—Iet alone clarity and brevity.

Mistakes from many sources will crop up in specifications, just as they
doin programs. A great advantage of formal specification isthat tools can
be used to help detect and isolate many of these mistakes.

Some programmers are intimidated by the mere idea of formal
specifications, which they fear may be too “mathematical” for them to
understand and use. Such fears are groundless. Anyone who can learn
to use a programming language can learn to use a formal specification
language. After al, programs themselves are formal texts. Programmers
cannot escape from formality and mathematical precision, even if they
want to.

Overview of the book

Chapter 1 discusses the use of formal specificationsin program develop-
ment, providing acontext for the technical material that follows. Chapter 2
contains a very short introduction to the notation of mathematical logic.
The chapter is aimed at those with no background in logic, and provides
all the logic background needed to understand the remainder of the book.

The rest of the book is an in-depth look at Larch, our approach to the
formal specification of program components.

Chapter 3 gives an overview of the Larch two-tiered approach to
specification. Each Larch specification has components written in two
languages: one that is designed for a specific programming language
(a Larch interface language) and another that is independent of any
progranming language (LSL, the Larch Shared Language). It also
introduces LP, atool used to reason about specifications. The descriptions
are al brief; details are reserved for later chapters.

The remaining chapters are relatively independent, and can be read in
any order. Chapter 4isatutorial onLSL. It isnot areference manual, but it
doescover al features of thelanguage. Chapter 5isanintroductionto LCL,
aLarch interface language for Standard C. It describes the basic structure
and semanticsof thelanguage, and it presents an extended example—along
with hints about how to use LCL to support a style of C programming that
emphasizes abstraction. Chapter 6 is an introduction to LM3, a Larch
interface language for Modula-3. Chapter 7 discusses how L P can be used
to analyze and help debug specifications written in LSL. It contains a
short review of LP's mgjor features, but is not comprehensive. Chapter 8
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presents a brief summary of what we believe to be the essence of Larch.

The book concludes with several appendices. Appendix A contains a
handbook of LSL specifications. Appendix B contains C implementations
of the abstractions specified in Chapter 5. Appendix C deals with Larch’s
customization of lexical conventions. Appendix D contains a bibliography
on Larch, and tells how to get more information about Larch, including
how to get some of the Larch tools.

Some history

This book has been a long time in the growing. The seed was planted
by Steve Zilles on October 3, 1973. During a programming language
workshop organized by Barbara Liskov, he presented three simple
equations relating operations on sets, and argued that anything that could
reasonably be called a set would satisfy these axioms, and that anything that
satisfied these axioms could reasonably be called a set. We developed this
idea, and showed that all computable functions over an abstract type could
be defined algebraically using equations of asimpleform, and considered
the question of when such a specifi cation constituted an adequate definition
[40].

As early as 1974, we redlized that a purely algebraic approach to
specification was unlikely to be practical. At that time, we proposed a
combination of algebraic and operational specificationswhich we referred
to as “dyadic specification” [39].

By 1980 we had evolved the essence of the two-tiered style of
specification used in thisbook [43], athough that term was not introduced
until 1983 [86]. An early version of the Larch Shared Language was
described in 1983 [44]. The first reasonably comprehensive description
of Larch was published in 1985 [50]. Many readers complained that the
contemporaneous Larch in Five Easy Pieces [51] should have been called
Larch in Five Pieces of Varying Difficulty. They were not wrong.

By 1990 some software tools supporting Larch were available, and
we began using them to check and reason about specifications. There
is now a substantial and growing collection of support tools. We used
them extensively in preparing this book. All of the forma proofs
presented have been checked using LP. With the exception of parts of the
LM3 specifications, all specifications have been subjected to mechanical
checking. This process did not guarantee that the specifications accurately
capture our intent; it did serve to help usfind and eliminate several errors.
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In the spring of 1990, we decided that it was time to make information
on Larch more widely available. We originally thought of an anthology.
The editors we contacted encouraged us to prepare a book, but urged us
to provide a more coherent and integrated presentation of the material. We
decided to take their advice. Had our families known how much of our
time this would take, they would surely have tried to talk us out of it. In
any event, we apologize to Andrea, David, Jane, Mark, Michael, and Olga
for al the attention that “ The Book” stole from them.
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Chapter 1

Specificationsin Program
Development

This book is about formal specification of programs and components of
programs. Weareinterested in using specificationsto helpintheproduction
and maintenance of high quality software.

We begin this chapter with a few remarks about programming and the
role of abstraction. We then move on to discuss how specificationsfit into
the picture.

1.1 Programming with abstractions

Building a software system is almost entirely a design activity. Unfor-
tunately, software is usually designed badly or barely designed at all. A
symptom of negligence during design is the number of software projects
that are seriously behind schedule, despite having had design phases that
were*" completed” right on schedule[10]. In practice, designisthe phase of
a software project that isdeclared “complete” when circumstances require
it. Part of the problem isthat there are few objective criteriafor evaluating
the quality and completeness of designs. Another part is the elapsed time
between producing a design and getting feedback from theimplementation
process.

This book describes how formal specifications can be used effectively
to structure and control the design process and to document the results.

The key to structuring and controlling the design process is, as
Machiavelli said, “Divide et impera.” Regrettably, he was not clear about
how to apply this stratagem to software devel opment.

Two primary tools for dividing a problem are decomposition and
abstraction. A good decomposition factors a problem into subproblems
that:

e are all at the same level of detail,
e can be solved independently, and

¢ have solutionsthat can be combined to solve the original problem.
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int sgrt(int x) {
requires x > 0;
modifies nothing;
ensures V i: int
( abs(x - (result*result)) < abs(x - (i*i)) );

FIGURE 1.1. A specification of aninteger square Root procedure

The last criterion is the hardest to satisfy. This is where abstraction
comes in. Abstraction involves ignoring details that are irrelevant for
some purpose. It facilitates decomposition by making it possible to focus
temporarily on simpler problems.

Consider, for example, the problem of designing a program to compile
asource language, say Modula-3, to atarget language, say Alphamachine
code. Much of the compiler can be designed without paying attention to
many of the detail sof either Modula-3 or the Alphaarchitecture. Onemight
well begin by abstracting to the problem of compiling a source language
with a deterministic context-free grammar to a reduced instruction (RISC)
set target language. One might then choose to model the compiler’s design
on the design of other compilers that solve the same abstract problem,
e.g., to decompose the problem into the separate problems of writing a
scanner, a parser, a static semantic checker, and severa code generation
and optimization phases.

This paradigm of abstracting and then decomposing is typica of the
program design process. Two important abstraction mechanisms are used:
abstraction by parameterization and abstraction by specification.

Abstraction by parameterization allows a single program text to
represent a potentially infinite set of computations or types. For example,
the C code

int twice(int x) {return x + x;}

denotes a procedure that can be used to double any integer.

Abstraction by specification allowsasingletext to represent apotentially
infinite set of programs. For example, the specification in Figure 1.1
describes any procedure that, given an appropriate argument, computes
an integer approximation to its square root. Notice that it specifies the
required result, not any particular algorithm for achieving it. Notice also
that it does not describe the result completely. For example, it does not
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constrain the result to be positive.

For the most part, software design is the process of inventing and
combining abstractions and planning their implementation.

There are several reasons why it is better to think about combining
abstractions than to think about combining their implementations:

e Abstractions are easier to understand than implementations, so
combining abstractionsis less work.

e Relying only on properties of the abstractions makes software easier
to maintain, because it is clear what properties must be preserved
when an implementation is changed.

e Because an abstraction can have several implementations with
different performance properties, it can be used in various contexts
with different performance requirements. Any implementation can
be replaced by another during performance tuning without affecting
correctness.

The key to good software design is inventing appropriate abstractions
around which to structure the software. Bad programmers typically don’t
even try to invent abstractions. M ediocre programmersinvent abstractions
sufficient to solve the current problem. Great programmers invent elegant
abstractions that get used again and again.

1.2 Finding abstractions

Structure is sometimes identified with hierarchy; hierarchical decomposi-
tion is sometimes preached as the only “ structured” programming method.
The problem with hierarchical decompositionisthat, asthe hierarchy gets
deeper, it leads to highly specialized components that assume a great deal
of context. This decreases the likelihood that components will be useful
elsewhere—either in the current system or in software that is built later. A
relatively flat structure usually encourages more reuse.

Important boundaries in the software should correspond to stable
boundaries in the problem domain. Such correspondence makes it more
likely that when customersask for asmall change in the observed behavior
of the software, the change can be accomplished by a small change to
the implementation. Stable boundaries in the problem domain frequently
involve data types, rather than individual operations, because the kinds of
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objects that long-lived software manipulates tend to change more slowly
than the operations performed on those objects. This leads to a style of
programming in which data abstraction plays a prominent role.

A data type (data abstraction) is best thought of as a collection of
related operations that manipulate a collection of related values [68]. For
example, one should think of thetype integer as providing operations,
such as 0 and +, rather than as an array of 32 (or perhaps 64) bits, whose
high-order bit is interpreted as its sign. Similarly, one should think of the
type bond as a collection of operations such as get_coupon_rate and
get_current_yield rather than as arecord containing variousfields.

An abstract type is a type that is presented to a client in terms
of its gpecification, rather than its implementation. To implement an
abstract type, one selects a representation (i.e., a storage structure and
an interpretation that says how values of the type are represented) and
implements the type’s operations in terms of that representation. Clients
of an abstract type invoke its operations, rather than directly accessing its
representation. When the representation is changed, programs that use the
type may have to be recompiled, but they needn’t be rewritten.!

Even inlanguages, such as C, that provide no direct support for abstract
types, there is a style of programming in which abstract types play
a prominent role. Programmers rely on conventions to ensure that the
implementation of an abstract type can be changed without affecting the
correctness of software that uses the abstract type. The key restriction is
that programs never directly access the representation of an abstract value.
All access is through the operations (procedures and functions) provided
initsinterface.

1.3 Themany roles of specification

Abstractions are intangible. But they must somehow be captured and
communicated. Specification gives us a way to say what an abstraction
is, independent of any of its implementations. Writing specifications can
serve to clarify and deepen designers’ understanding of whatever they are
specifying, by focusing attention on possibleinconsistencies, lacunae, and
ambiguities.

Once written, specifications are helpful to implementors, testers, and

For amore comprehensive discussion of the role of data abstraction in programming,
see[63].
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maintainers. Specifications provide “logical firewalls’ by documenting
mutual obligations. Implementors are to write software that meets its
specification. Clients, i.e., writers of programs that use the software
interface, areto rely only on properties of the software that are guaranteed
by its specification.

During module testing and quality assurance, specifications provide
information that can be used to generate test data, build stubs, and
analyze information flow. During system integration, specifications reduce
the number and severity of interface problems by reducing the number
of implicit assumptions. Finally, specifications aid in maintenance by
recording the properties that must be preserved and by delimiting the
changes that might affect clients.

All of these virtues can be attributed to the information hiding provided
by specifications. Specification makes it possible to completely hide the
implementation of an abstraction from its clients, and to completely hide
the uses made by clients from the implementor [70].

1.4 Stylesof specification

A good specification should be tight enough to rule out implementations
that are not acceptable. It should also be loose enough to allow the most
desirable (i.e., efficient and elegant) implementations. A specification that
fails to rule out undesired “solutions” is not sufficiently constraining;
one that places unnecessary constraints on implementations is guilty of
implementation bias.

A definitional specification explicitly lists properties that implemen-
tations must exhibit. The specification in Figure 1.1 is definitional. An
operational specification gives one recipe that has the required properties,
instead of describing them directly. Figure 1.2 contains an operational
specification of a square root procedure. It looks suspicioudly like a
program—it defines a function by showing how to compute it. In fact,
every program can be viewed as a specification. The converse is not true:
many specifications are not programs. Programs have to be executable,
but specifications don’t. This freedom can often be exploited to make
specifications simpler and clearer.

There are strong arguments in favor of both the operational and
definitional stylesof specification. The strength of operational specification
lies in its similarity to programming. This reduces the time required for
programmersto learn to use specifications. Someoperational specifications
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int sqgrt(int x)
requires x > 0

effects
i = 0;
while i*i < x
i =1i+ 1 end
if abs(i*i - x) > abs((i - 1) * (i - 1) - x)
then return i - 1

else return i

FIGURE 1.2. An Operational Specification of Integer Square Root

are directly executable. By executing specifications as “rapid prototypes,”
specifiersandtheir clientscan get quick feedback about the software system
being specified.

On the other hand, definitional specifications are not bound by the
constraint of constructivity. They are often shorter and clearer than
operational specifications. They are also easier to modularize, because
propertiescan be stated separately and then combined. Because definitional
specifications are so different from programs, they provide a distinct
viewpoint on systems that is frequently helpful.

It isoften difficult to determine from an operational specification which
properties are necessary parts of the thing being specified and which are
unimportant. The specification in Figure 1.2, for example, allows fewer
implementationsthan the specification in Figure 1.1. Animplementationis
certainly not obligedto usethesimple, but horribly inefficient, specification
algorithm, but it must compute the same result, and therefore must not
return a negative number. This constraint might be essential in some
contexts and insignificant in others. Figure 1.2 does not say, and cannot
easily be modified to say, whether the sign of the result matters. Figure 1.1,
on the other hand, can easily be strengthened to specify the signiif that is
important.

1.5 Formal specifications

The specifications in this book are written in formal specification
languages. A formal specification language provides:
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e a syntactic domain—the notation in which the specifications are
written,

¢ asemantic domain—auniverse of thingsthat may be specified, and

¢ asatisfaction relation saying which things in the semantic domain
satisfy (implement) which specifications in the syntactic domain.

We use formal languages because it seemsto be the easiest way to write
specifications that are simultaneously precise, clear, and concise. Thisis
hardly surprising. It isno accident that such diverse activitiesas chemistry,
chess, knitting, and music al have their own formal notations.

Mistakes from many sources will crop up in specifications, just as they
doin programs. A great advantage of formal specification isthat tools can
be used to help detect and i solate many of these mistakes. Anyonewho has
used a strongly typed programming language knows that even something
assimpleasa syntax and type checker isinvaluable. Comparabl e checking
and diagnosis of formal specificationsis easy and worthwhile, but we can
do even better. Variouskindsof formal specifications can be checked more
thoroughly by toolsthat hel p explorethe consequences of design decisions,
detect logical inconsistencies, simulate execution, execute symbolically,
prove the correctness of implementation steps (refinements), etc.

Are formal specifications too “mathematical” to be used by typical
programmers? No. Anyone who can learn to read and write programs can
learn to read and write formal specifications. After all, each programming
language is a formal language.



Chapter 2
A LittleBit of Logic

Thischapter containsall thelogic one needs to know to understand Larch.

The mathematical formalism underlying the Larch family of languages
is multisorted first-order logic with equality. We use a few notations and
basic concepts from this logic quite freely in the rest of the book. If you
are dready familiar with logic, you should scan this chapter quickly to
see which of the many “standard” logical notations we have adopted. If
you have no acquaintance with logic, don't worry. Thisis a brief chapter,
and the parts of logic that we present are really quite simple—almost as
simple as basic arithmetic and much simpler than common programming
languages. If you want a fuller treatment of logic, you should consult one
of the many textbooks available, but there is no reason to do so before
continuing in this book.

To help the your intuition, we point out programming analogs of some
of the logical concepts. However, these analogies should not be pushed
too far; logic is not a programming language. We use logic to describe
properties that objects might or might not have (e.g., to describe what it
means to be the shortest path between two pointsin a graph), whereas we
use programming languages to describe how to produce certain objects
(e.g., to describe how to find a shortest path).

2.1 Basiclogical concepts

A logical language consists of a set of sorts and operators (function
symbols). Sorts are much like programming language types. An operator
(e.g., +) stands for a map from tuples of values to values; its signature
(eg., Int,Int—1Int) isatuple of sorts for its arguments (its domain
sorts, e.g., Int, Int) and asort for its result (its range sort, e.g., Int).
A relational operator is a binary operator with range sort Bool (eg.,
<:E,E—Bool). Operators are much like identifiers for value-returning
procedures in programming languages.

An application consists of an operator and a tuple of terms, each of
which has the same sort as the corresponding domain sort for the operator.
The sort of an application is the same as that of the operator’s range sort.
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Applications are much like procedure callsin programming languages.

Animportant special caseisan operator whose signature has no domain
sorts. We will write such applications without parentheses (e.g., empty
rather than empty () ). We refer to both the operator and its application as
a constant.

The application of an infix operator may be written with the operator
between thetwo operands (e.g., x+y rather than + (x, y)). For operators
that are associative, such as +, we a so alow more than two operands (e.g.,
x+y+z isequivalentto (x+y) +z andto+ (+(x, vy), z)).

A variable is an identifier standing for an arbitrary value of some
sort. Logical variables are different from programming language variables
because the value of alogical variable does not change over time.

A termisavariable, an application, or a parenthesized term.

An equation is a term of sort Bool, written as a pair of terms of the
same sort, joined by the the equality operator, =.

A predicate (also called aformula) is aterm of sort Bool. In order to
determine whether a given predicate is true or false, we must know how
to interpret the sorts and operators in the logical language. For example,
sqrt (5) = 2 isfaseif sqrt isinterpreted asthe square-root function
over thereal numbersand the constant operators 5 and 2 areinterpreted as
the real numbers five and two. Alternatively, the predicate istrueif sqrt
isinterpreted as the greatest-integer-less-than-or-equal-to-the-sguare-root
function. So it only makes sense to talk about whether a predicate is true
or false if we are given a structure (interpretation) that assigns

e anonempty set of valuesto each sort, and

¢ atota function (that maps tuples of values of its domain sorts to
values of its range sort) to each operator.

Most logics come with a set of operators whose meanings are fixed
a priori, for example, the equality operator for each sort. Others are the
propositional connectives < (if and only if), - (not), A (and), v (or), and
= (implies).

First-order logic provides several ways to form predicates. We describe
these, as well as what it means for each kind of predicate to be true in a
given structure under a given assignment of valuesto its variables.

¢ Asmentioned above, an equation is a predicate consisting of a pair
of terms of the same sort, joined by the equality operator, =. Itistrue
if itstwo operands have the same value in the given structure under
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the given assignment of values to variables. The predicate x = y
may be read as “x equals y.” The propositional connective < has
the same meaning as the equality operator for the sort Bool. The
predicate P < Q may beread as“P if and only if Q.”

A negation is a predicate preceded by the negation operator, —. Itis
true if the operand of — isfase. The predicate =P may be read as
“not p.”

A conjunction is a pair of predicates joined by the conjunction
connective, A. A conjunction is true if both its operands are true.
Thepredicate P A Q may beread as“both P and Q.”

A digunction is a pair of predicates joined by the digunction
connective, V. A disunctionistrue if at least one of its operandsis
true. The predicate P v Q may be read as“either p or Q or both.”

An implication is a pair of predicates joined by the implication
connective, =. An implication is true if its left operand is false or
itsright operand is true. Therefore, P = Q has the same meaning
as—-P V Q. ThepredicateP = Q may beread as“p impliesQ”
or “if pthenQ.”

A binding is a predicate preceded by a variable and its sort. All
occurrences of the variable in the predicate are said to be bound
(and to have that sort). The binding is said to have captured the
variable it binds. A variable is free in a predicate if there are any
instances of it anywhere in the predicate that are not bound.

A quantified predicateis abinding preceded by either the existential
quantifier, 3, or theuniversal quantifier, V. Bindingsareonly allowed
immediately following quantifiers. The binding Vx : S may be read
as“for all x of sort S.”

— A witness for a bound variable is a value that makes the
predicate in its binding true, in a structure under a given
assignment, when the assignment is modified to assign the
witnessto the bound variable.

— An existentially quantified predicate is true if there is at least
one witness for its bound variable. The predicate 3x:S (P)
may be read as “there existsan x of sort S such that p.”
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— A universally quantified predicate istrue if the predicate in its
bindingistruefor all valuesof itsbound variable. The predicate
V¥x:S (P) may beread as“for all x of sort s, P.”

If a predicate is true in all structures under all assignments to its free
variables, itissaid to bevalid or atautology. If there existsa structure and
an assignment to its free variables under which it istrue, it is said to be
satisfiable.

A sentence is a predicate with no free variables. By convention, we
consider a free-standing predicate with free variables as standing for
the sentence obtained by universally quantifying its free variables at the
outermost level. Since the truth of a predicate in a structure depends only
on the values assigned to its free variables, and since a sentence contains
no free variables, we talk about a sentence being true in a structure, rather
than in a structure under an assignment.

When asentenceistruein astructure, we say that the structureisamodel
of that sentence. Similarly, when each member of a set of sentencesistrue
in astructure, we say that the structure isamodel of that set. Consider, for
example, a language with a single non-Boo1l sort, E, with one operator,
the binary relation <, and with three variables x, y, and z of sort E. Any
structure that isamodel of the two sentences

V x:E = (x < x)

Vx:EVV:EY z2:E (( x <y Ay < z) =>x < z2)

is commonly known as a strict partial order, and we call these sentences
axiomsfor strict partial orders.

A sentence S isalogical consequence of aset T of sentences if every
model of T isalso amodel of s. For example, the sentence

VxX:EV y:E n(x <y Ay < x)

is a consequence of the axioms for strict partial orders, because it is true
inall strict partial orders.

A set of sentencesis closed under logical consequence if it contains all
itslogical consegquences. A theory isaset of sentencesclosed under logical
consequence. For example, the theory of strict partial ordersis the set of
all consequences of the axioms for strict partial orders; equivalently, it is
the set of sentencestruein all strict partial orders.

A theory is complete if for every sentence s, either S or =S isin
the theory. Most of the time, we find ourselves dealing with incomplete
theories. For example, there is no computable set of sentences whose
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logical consequences are exactly the sentences true about the natural
numbers under the usual operations of addition and multiplication.

A set of sentences is consistent if it has a model. It is easy to show
that a sentence S is a consequence of a set T of sentences if and only if
T U {=s}isinconsistent. Likewise, atheory isconsistent if and only if
it doesnot contain acontradiction, that is, the sentence true = false.

2.2 Proof and consequences

In the preceding section, we provided a semantic description of what it
means for a sentence S to be alogical consequence of a set of sentences
T, namely that every model of T aso be a model of s. Unfortunately,
this definition does not provide a practical means for determining when s
isalogical consequence of T. For example, T may have infinitely many
models, some of its models may have infinitely many elements, etc.

Fortunately, there is a syntactic characterization of what it means for S
to be alogical consequence of T. A formal deduction system consists of
a set of sentences (called logical axioms) together with a set of functions
(called deduction rules) that map finite sets of sentences (the premises of a
deduction) to asingle sentence (itsconclusion). For example, the deduction
rule

states that Q can be deduced from the premisespand P = Q.

A proof based on a set T of sentences is afinite sequence of sentences
each of whichis either alogical axiom, a member of T, or the conclusion
of a deduction rule applied to a set of sentences occurring earlier in the
proof. A sentence S isatheoremof T if it occursin some proof based on
T.

There arethree propertiesthat agood formal system of deduction should
pOSSESS:

e It should not allow any spurious proofs. A system is sound if, for
any T, every theorem of T isreally alogical consequence of T.

¢ It should provide enough proofs. A systemiscompleteif, for any T,
every logical consequence of T isalso atheorem of T.
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¢ It should be possible to recognize what is a proof and what is not. A
systemis effective if, for any computable set T of sentences, the set
of proofsbased on T is also computable.

There are several sound, complete, and effective formal systems of
deduction for first-order logic. For most of this book, the mere existence
of good formal systems of deduction is al that counts. The choice of
a particular system, or the details of that system (which we refer to as
“the usual rules of first-order logic”), do not really matter. What matters
is that the system is sound (because we do not want to prove anything
that isn't true) and effective (because we want to know when we have a
proof). Completeness of a deductive system matters less, since we often
find ourselves dealing with incomplete theories. Of course, the system of
deduction used in LP, Chapter 7, is sound and effective.

This concludes our whirlwind introduction to the vocabulary and
notation of mathematical logic used in the remainder of this book. We
rely primarily on the predicate-forming operators described on pages 9—
11.



Chapter 3

An Introduction to Larch

We begin thischapter by describing the Larch approach to specification and
illustrating it with a few small examples. Our intent is to give you a taste
of Larch. Details are reserved for later chapters. We then discuss LP, the
Larch proof assistant, a tool that supports al the Larch languages. Again,
we give only a taste. Finaly, we discuss the lexical and typographical
conventions used for preparing and presenting the Larch specificationsin
this book.

3.1 Two-tiered specifications

The Larch family of languages supports a two-tiered, definitional style of
specification. Each specification hascomponentswrittenin two languages:
one language that is designed for a specific programming language and
another language that is independent of any programming language. The
former kind are Larch interface languages, and the latter is the Larch
Shared Language (LSL).

Interface languages are used to specify the interfaces between program
components. Each specification provides the information needed to
use an interface. A critical part of each interface is how components
communicate acrosstheinterface. Communication mechanismsdiffer from
programming language to programming language. For example, some
languages have mechanisms for signalling exceptional conditions, others
do not. More subtle differences arise from the various parameter passing
and storage allocation mechanisms used by different languages.

It is easier to be precise about communication when the interface
specification language reflects the programming language. Specifications
written in such interface languages are generally shorter than those written
ina“universal” interface language. They are also clearer to programmers
who use components and to programmers who implement them.

Each interface language deals with what can be observed by client
programs written in a particular programming language. It provides away
to write assertions about program states, and it incorporates programming-
language-specific notations for features such as side effects, exception
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uses TaskQueue;
mutable type queue;
immutable type task;

task *getTask (queue q) {
modifies qg;
ensures
if isEmpty(q")
then result = NIL A unchanged(q)
else (*result)’ = first(gq') A g = tail(q");

FIGURE 3.1. An LCL interface specification

handling, iterators, and concurrency. Its simplicity or complexity depends
largely on the simplicity or complexity of its programming language.

Larch interface languages have been designed for a variety of
programming languages. The two that are discussed in this book are for
C and for Modula-3. Other interface languages have been designed for
Ada[15, 37], CLU [86], C++ [60, 90, 92], ML [93], and Smalltalk [17].
There are also “generic” Larch interface languages that can be specialized
for particular programming languagesor used to specify interfacesbetween
programsin different languages[16, 53, 61, 88].

Larch interface languages encourage a style of programming that
emphasizes the use of abstractions, and each provides a mechanism
for specifying abstract types. If its programming language provides
direct support for abstract types (as Modula3 does), the interface
language facility is modeled on that of the programming language; if
its programming language does not (as C does not), thefacility isdesigned
to be compatible with other aspects of the programming language.

Figure 3.1 contains a sampleinterface specification for asmall fragment
of ascheduler for an operating system. The specification iswrittenin LCL
(a Larch interface language for C, described in Chapter 5). This fragment
introduces two abstract types and a procedure for selecting a task from a
task queue. Briefly, * means pointer to (asin C), result refers to the
value returned by the procedure, the symbol ~ is used to refer to the value
in alocation when the procedure is called, and the symbol ’ torefer toits
value when the procedure returns.

The specification of getTask is not self-contained. For example,
looking only at this specification there is no way to know which task
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TaskQueue: trait
includes Nat
task tuple of id: Nat, important: Bool
introduces
new: — dJueue
4 __: task, queue — queue
isEmpty, hasImportant: queue — Bool
first: queue — task
tail: queue — queue
asserts
queue generated by new, -
V t: task, g: queue
isEmpty (new) ;
—igEmpty(t - q);
—hasImportant (new) ;
hasImportant (t 4 gq) ==
t.important V hasImportant (q) ;
first(t 4 q) ==
if t.important V —hasImportant (q)
then t else first(q);
tail(t 4 q) ==
if first(t 4 q) = t then g else t 4 tail(q)

FIGURE 3.2. LSL specification used by getTask
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getTask selects. Isit the one that has been in g the longest? Isit isthe
onein g with the highest priority?

Interface specificationsrely on definitionsfrom auxiliary specifications,
written in LSL, to provide semantics for the primitive terms they use.
Specifiers are not limited to a fixed set of notations, but can use
LSL to define specialized vocabularies suitable for particular interface
specifications or classes of specifications.

Figure 3.2 contains a portion of an LSL specification that specifies the
operators used in the interface specification of getTask. Based on the
informationinthisLSL specification, one can deduce that the task pointed
to by the result of getTask is the most recently inserted important
task, if such atask exists. Otherwiseit isthe most recently inserted task.

Many informal specifications have a structure similar to this. They
implicitly rely on auxiliary specifications by describing an interface in
terms of concepts with which readers are assumed to be familiar, such as
sets, lists, coordinates, and windows. But they don't define these auxiliary
concepts. Readers can misunderstand such specifications, unless their
intuitive understanding exactly matches the specifier’s. And there is ho
way to be sure that such intuitions do match. LSL specifications provide
unambiguous mathematical definitionsof the termsthat appear ininterface
specifications.

Larch encourages a separation of concerns, with basic constructsin the
LSL tier and programming details in the interface tier. We suggest that
specifiers keep most of the complexity of specificationsinthe LSL tier for
several reasons:

e LSL specifications are likely to be more reusable than interface
specifications.

e LSL has a simpler underlying semantics than most programming
languages (and hence than most interface languages), so specifiers
are lesslikely to make mistakes, and any mistakesthey do make are
more easily found.

¢ Itiseasier to makeand to check assertions about semantic properties
of LSL specifications than about semantic properties of interface
specifications.

Many programming errors are easily detected by running the program,
that is, by testing it. While some Larch specifications can be executed,
most of them cannot. The Larch style of specification emphasizes brevity
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and clarity rather than executability. To make it possible to validate
specifications before implementing or executing them, Larch permits
specifiers to make assertions about specifications that are intended to
be redundant. These assertions can be checked mechanicaly. Several
tools that assist specifiers in checking these assertions as they debug
specifications are aready in use, and others are under development.!

3.2 LSL,the Larch Shared Language

LSL specifications define two kinds of symbols, operators and sorts.
The concepts of operator and sort are the same as those used in
Chapter 2. They are similar to the programming language concepts of
procedure and type, but it is important not to confuse these two sets of
concepts. When discussingL SL specifications, wewill consistently usethe
words “operator” and “sort.” When talking about programming language
constructs, we will usethe words*“ procedure” (or “function,” “routine,” or
“method,” asappropriate) and “type.” Asdiscussedin Chapter 2, operators
stand for total functions from tuples of values to values. Sorts stand for
digoint non-empty sets of values, and are used to indicate the domainsand
ranges of operators. In each interface language, “procedure” and “type’
must mean what they mean in that programming language.

The trait is the basic unit of specification in LSL. A trait introduces
some operators and specifies some of their properties. Sometimes the trait
defines an abstract type. However, it is frequently useful to define a set of
properties that does not fully characterize atype.

Figure 3.3 shows a trait that specifies a class of tables that store values
in indexed places. It is similar to specifications in many “algebraic”
specification languages.

The specification begins by including another trait, Integer. This
specification, which can be found in the LSL handbook in Appendix A,
page 163, suppliesinformation about the operators +, 0, and 1, which are
used in defining the operators introduced in Table.

Theintroduces clause declares aset of operators, each with itssignature
(the sorts of itsdomain and range). Signatures are used to sort-check terms
in much the sameway as procedure callsare type-checked in programming
languages.

The body of the specification contains, following the reserved word

1See Appendix D for alist.
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Table: trait
includes Integer
introduces
new: — Tab
add: Tab, Ind, Val — Tab
€ __ : Ind, Tab — Bool
lookup: Tab, Ind — Val
size: Tab — Int
asserts V i, il: Ind, v: Val, t: Tab
- (1 € new);
i € add(t, i1,
lookup (add(t, i, v), 1il) ==
if 1 = il then v else lookup(t, il);

1, v) ==1 =11 v i € t;

size (new) == 0;
size(add(t, i, v)) ==
if 1 € t then size(t) else size(t) +

FIGURE 3.3. Table.1ls1l

1

19
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asserts, equations between terms containing operators and variables?
The third equation resembles a recursive function definition, since the
operator 1ookup appears on both the left and right sides. However, it
merely states a relation that must hold among lookup, add, and the
built-in operator if__then__else__; it does not fully define Lookup.
For example, it doesn't say anything about the value of the term
lookup (new, 1i).

Thetheory of atraitistheset of all logical consequences of itsassertions.
It is an infinite set of formulas in multisorted first-order logic with
equality. It contains everything that logically follows from its assertions,
but nothing else. The theory associated with Table contains equalities
and disequalities that can be proved by substitution of equals for equals.
LSL also providestwo constructsfor non-equational assertionsthat can be
used to generate stronger (larger) theories. These important constructs are
discussed in Chapter 4.

It isinstructive to note some of thethingsthat Table does not specify:

1. It does not say how tables are to be represented.
2. It does not give algorithms to manipul ate tables.

3. It does not say what procedures are to be implemented to operate on
tables.

4. It does not say what happensif onelooksup an Ind thatisnotina
Tab.

Thefirst two decisionsarein the province of theimplementation. Thethird
and fourth are recorded in interface specifications.

3.3 Interface specifications

An interface specification defines an interface between program compo-
nents, and is written in a programming-language-specific Larch interface
language. Each specification must providetheinformation needed tousean
interface and to write programsthat implement it. At the core of each Larch
interface language is a model of the state manipulated by the associated
programming language.

2The equation connectivein LSL, ==, has the same semantics as the equality symbol,
=. It is used only to introduce another level of precedenceinto the language.
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PROGRAM STATES

Sates are mappings from locs (abstract storage locations, also known as
objects) tovalues. Each variableidentifier hasatype and isassociated with
aloc of that type. The major kinds of valuesthat can be stored in locs are:

e basic values. These are mathematical constants, like the integer 3
and the letter A. Such values are independent of the state of any
computation.

e exposed types. These are data structures that are fully described
by the type constructors of the programming language (e.g., C's
int * or Modula-3's ARRAY [1..10] OF INTEGER). The
representation is visible to, and may berelied on by, clients.

¢ abstract types. Asmentioned in Chapter 1, datatypesare best thought
of ascollectionsof related operationson collectionsof related values.
Abstract types are used to hide representation information from
clients.

Each interface language provides operators (e.g., ~ and ) that can be
applied to locs to extract their values in the relevant states (usualy the
pre-state and the post-state of a procedure).

Each loc’stype defines the kind of valuesit can map to in any state. Just
as each loc hasauniquetype, each LSL term has a unique sort. To connect
the two tiers in a Larch specification, there is a mapping from interface
language types (including abstract types) to LSL sorts. Each type of basic
value, exposed type, and abstract type is based on an LSL sort. Interface
specificationsare written using typesand values. Properties of thesevalues
are defined in LSL, using operators on the corresponding sorts.

For each interface language, a standard L SL trait defines operators that
can be applied to values of the sorts that the programming language's
basic types and other exposed types are based on. Users familiar with
the programming language will already have an intuitive understanding of
these operators. Abstract typesare typically based on sortsdefined in traits
supplied by specifiers.

PROCEDURE SPECIFICATIONS

The specification of each procedure in an interface can be studied,
understood, and used without reference to the specifications of other
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procedures. A specification consists of a procedure header (declaring the
types of its arguments and results) followed by a body of the form:
requires reqgP
modifies modList
ensures ensP

A specification places constraintson both clientsand implementati onsof
the procedure. Therequires clause is used to state restrictions on the state,
including thevauesof any parameters, at thetime of any call. The modifies
and ensures clauses place constraints on the procedure’s behavior when it
is called properly. They relate two states, the state when the procedure is
caled, the pre-state, and the state when it terminates, the post-state.

A requiresclauserefersonly to valuesinthe pre-state. An ensures clause
may also refer to valuesin the post-state.

A modifies clause says what locs a procedure is allowed to change (its
target list). It says that the procedure must not change the value of any
locs visible to the client except for those in the target list. Any other loc
must have the same value in the pre and post-states. If there is no modifies
clause, then nothing may be changed.

For each cdll, it is the responsibility of the client to make the requires
clause true in the pre-state. Having done that, the client may assume that:

¢ the procedure will terminate,
e changeswill be limited to the locsin the target list, and
¢ the postcondition will be true on termination.

The client need not be concerned with how this happens.

The implementor of a procedure is entitled to assume that the
precondition holds on entry, and is only responsible for the procedure’s
behavior if it is. A procedure’s behavior is totally unconstrained if its
precondition isn’t satisfied, so it is good style to keep the requires clause
weak. An omitted requires clauseis equivalentto requires true (the
weakest possible requirement).

TWO INTERFACE LANGUAGE EXAMPLES

Figure 3.4 contains a fragment of a specification writtenin LCL (aLarch
interface language for Standard C). Figure 3.5 contains a fragment of
a similar specification written in LM3 (a Larch interface language for
Modula-3). They use the same Table trait of Figure 3.3. We present
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mutable type table;

uses Table(table for Tab, char for Ind,
char for Val, int for Int);

constant int maxTabSize;

table table create(void) {
ensures result’ = new A fresh(result) ;

}

bool table add(table t, char i, char c) {
modifies t;

ensures result = (size(t”) < maxTabSize V i € t7)
A (if result then t’ = add(t™, i, c)
else t' = t7);

}

char table read(table t, char i) ({
requires i € t7;
ensures result = lookup(t™, i);

}

FIGURE 3.4. A Sample LCL Interface Specification
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INTERFACE Table;
<* TRAITS Table (CHAR FOR Ind, CHAR FOR Val,
INTEGER FOR Int) *>
TYPE T < : OBJECT
METHODS
Add(i: CHAR; c: CHAR) RAISES {Full};
Read (i: CHAR): CHAR;
END;
PROCEDURE Create( ): T;
CONST MaxTabSize: INTEGER = 100;
EXCEPTION Full;
<*
FIELDS OF T
val : Tab;
METHOD T.Add (i, c)
MODIFIES SELF.val
ENSURES SELF.val’ = add(SELF.val, i, c)
EXCEPT size(SELF.val) > MaxTabSize
A - (i € SELF.val)
=> RAISEVAL = Full A UNCHANGED (ALL)
METHOD T.Read (i)
REQUIRES i € SELF.val
ENSURES RESULT = lookup (SELF.val, i)
PROCEDURE Create
ENSURES RESULT.val = new A FRESH(RESULT)
*
Eﬁb Table.

FIGURE 3.5. A Sample LM3 Interface Specification
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void choose (int x, int y) int z; {
modifies z;
ensures z’' = x V z' = vy;

FIGURE 3.6. A specification of choose

these examples here simply to convey an impression of how programming
language dependencies influence Larch interface languages. At this point,
you should not be concerned with their exact meaning; the notations used
are described in detail in Chapters 5 and 6.

3.4 Relating implementations to specifications

In this book we emphasize using specifications as a communication
medium. Programmers are encouraged to become clients of well-specified
abstractions that have been implemented by others. This book does not
discuss the process of implementing specifications; there is already a
copious literature on the subject.

One of the advantages of Larch's two-tiered approach to specification
is that the relationship of implementations to specifications is relatively
straightforward. Consider, for example, the LCL specificationinFigure 3.6
and the C implementation in Figure 3.7.

The specification defines a relation between the program state when
choose is caled and the state when it returns. This relation contains all
pairs of states <pre, post> in which

e the states differ only in the value of the global variable z, and

e inpost the value of z isthat of one of the two arguments passed to
choose.

The implementation also defines a relation on program states. This
relation contains all pairs of states <pre, post> in which

e thestates differ only in the value of the variable z, and

e inpost the value of z isthe maximum of the two arguments passed
to choose.
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void choose (int x, int y) {
if (x > vy) z = x;
else z = vy;

FIGURE 3.7. An implementation of choose

We say that the implementation of choose in Figure 3.7 satisfies the
specificationin Figure 3.6—or isacorrect implementation of Figure 3.65—
becausetherelation defined by theimplementation isasubset of therelation
defined by the specification. Every possible behavior that can be observed
by aclient of the implementation is permitted by the specification.

The definition of satisfaction we have just given is not directly useful.
In practice, formal arguments about programs are not usualy made by
building and comparing relations. Instead, such proofs are usually done by
pushing predicates through the program text, in ways that can be justified
by appeal to the definition of satisfaction. A description of how to do this
appears in the books [21, 36].

The notion of satisfactionisabit more complicated for implementations
of abstract types, because the implementor of an abstract type is working
simultaneoudly at two levels of abstraction. To implement an abstract type,
one chooses data structures to represent values of the type, then writes the
procedures of the type in terms of that representation. However, since the
specifications of those procedures are in terms of abstract values, one must
be able to relate the representation data structures to the abstract values
that they represent. Thisrelationisan essentia (but too often implicit) part
of the implementation.

Figure 3.8 shows an implementation of the LCL specification in
Figure 3.4. A value of the abstract type table isrepresented by a pointer
to a struct containing two arrays and an integer. You need not look at the
detailsof the code to understand the basi c idea behind thisimplementation.
Instead, you should consider the abstraction function and representation
invariant.

The abstraction function is the bridge between the data structure used

3«Correct” is a dangerous word. It is not meaningful to say that an implementation
is “correct” or “incorrect” without saying what specification it is claimed to satisfy. The
technical senseof “correct” that is used in the formal methods community does not imply
“good,” or “useful,” or even “not wrong,” but merely “consistent with its specification.”
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#include "bool.h"
#define maxTabSize (10)

typedef struct {char ind[maxTabSize];
char val [maxTabSize];
int next;} tableRep;
typedef tableRep * table;

table table create(void) {

table t;

t = (table) malloc(sizeof (tableRep)) ;

if (¢ == 0) {
printf ("Malloc returned null in table create\n");
exit (1) ;

}

t->next = 0;

return t;

}
bool table add(table t, char i, char c) {
int j;
for (j = 0; j < t-s>next; j++)
if (t->ind[j] == i) {
t->vall[j] = c
return TRUE;

I

if (t->next == maxTabSize) return FALSE;
t->val[t->next++] = c;
return TRUE;

char table read(table t, char i) {

int j;
for (j = 0; TRUE; j++)
if (t->ind[j] == 1) return t->valljl;

FIGURE 3.8. Implementing an abstract type

27
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in the implementation of an abstract type and the abstract values being
implemented. It maps each value of the representation type to a value of
the abstract type. Here, we represent a table by a pointer, cal it t, to
a struct. If the triple <ind, wval, next> contains the values of the
fields of that struct in some state s, then we can define the abstract value
represented by t instate s astoTab (<ind, val, nexts),where
toTab (<ind, val, next>) ==
if next = 0 then empty

else insert (toTab(<next - 1, ind, val>),
ind[next], wval [next])

Abstraction functions are often many-to-one. Here, for example, if
t-s>next = 0, t represents the empty table, no matter what the
contentsof t->ind and t->val.

The typedefsin Figure 3.8 define a data structure sufficient to represent
any value of type table. However, it is not the case that any value
of that data structure represents a value of type table. In defining the
abstraction function, we relied upon some implicit assumptions about
which data structures were valid representations. For example, toTab
is not defined when t->next is negative. A representation invariant
is used to make such assumptions explicit. For this implementation, the
representation invariant is

¢ Thevalueof next liesbetween 0 and maxTabSize:

0 < t—>next A t—>next < maxTabSize

¢ and no index may appear more than once in the fragment of ind
that liesbetween 0 and next:

V i,9:int
0 <iAi<]

A Jj < t—>next)
= (t—>ind) [1] # (

t—>1ind) [j]

To show that that this representation invariant holds, we use a proof
technique called data type induction. Since table is an abstract type,
we know that clients cannot directly access the data structure used to
represent atable. Therefore, al values of type table that occur during
program execution will have been generated by the functions specified
in the interface. So to show that the invariant holds it suffices to show,
reasoning from the code implementing the functions on tables, that
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e thevalue returned by table_create satisfies the invariant (this
isthe basis step of the induction),

e whenever table_add is called, if the invariant holds for £~ then
theinvariant will also hold for t ", and

e whenever table_read iscdled, if theinvariant holdsfor £~ then
theinvariant will also hold for t *.

A dlightly different data type induction principle can be used to reason
about clients of abstract types. To prove that a property holds for all
instances of the type, i.e., that it is an abstract invariant, one inducts over
all possible sequences of callsto the procedures that create or modify locs
of thetype. However, onereasonsusing the specifications of the procedures
rather than their implementations. For example, to show that thesize (t)
isnever greater than maxTabSize one shows that

e the specification of table_create impliesthat the size of the
table returned isnot greater than maxTabSize, and

¢ the gpecification of table_add combined with the hypothesis
t” < maxTabSize impliesthatt’ < maxTabSize.

Given the abstraction function, it is relatively easy to define what it
means for the procedure implementations in Figure 3.8 to satisfy the
specifications in Figure 3.4. For example, we say that the implementation
of table_read satisfies its specification because the image under the
abstraction function of the relation between pre and post-states defined by
theimplementation(i.e., what one getsby applying the abstraction function
to al values of type table intherelation defined by the implementation)
isasubset of the relation defined by the specification. Notice, by the way,
that any argument that the implementation of table read satisfies its
specification will rely on both the requires clause of the specification
and on the representation invariant.

3.5 LP, the Larch proof assistant

The discussionsof LSL, LCL, and LM3 have alluded to tools supporting
those languages. LP is atool that is used to support al three. Chapter 7,
which is about reasoning about LSL specifications, contains a brief
description of LP. Here we give merely a glimpse of its use.
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LPisaproof assistant for a subset of multisorted first-order logic with
equality, thelogic—described in Chapter 2—onwhichthe Larch languages
are based. It is designed to work efficiently on large problems and to be
used by specifiers with relatively little experience with theorem proving.
Its design and development have been motivated primarily by our work
on LSL, but it also has other uses, for example, reasoning about circuit
designs [75, 79], algorithmsinvolving concurrency [25], data types[92],
and algebraic systems[65].

LP is intended primarily as an interactive proof assistant or proof
debugger, rather than as a fully automatic theorem prover. Its design is
based on the assumption that initial attemptsto state and prove conjectures
usually fail. So LP is designed to carry out routine (but possibly lengthy)
proof steps automatically and to provide useful information about why
proofs fail. To keep users from being surprised and confused by its
behavior, LP does not employ complicated heuristics for finding proofs
automatically. It makes it easy for users to employ standard techniques
such as proof by cases, by induction, or by contradiction, but the choice
among such strategiesisleft to the user.

THE LIFE CYCLE OF PROOFS

Proving issimilar to programming: proofs are designed, coded, debugged,
and (sometimes) documented.

Before designing a proof it is necessary to formalize the things being
reasoned about and the conjecture to be proved. The design of the proof
proper starts with an outline of its structure, including key lemmas and
methods of proof. The proof itself must be given in sufficient detail to be
convincing. What it means to be convincing depends on who (or what) is
to be convinced. Experience shows that humans are frequently convinced
by unsound proofs, so we look for a mechanical “skeptic” that isjust hard
enough (but not too hard) to convince.

Once part of aproof has been coded, LP can be used to debug it. Proofs
of interesting conjectures hardly ever succeed the first time. Sometimes
the conjecture is wrong. Sometimes the formalization is incorrect or
incomplete. Sometimesthe proof strategy isflawed or not detailed enough.
LPprovidesavariety of facilitiesthat can beused to understand the problem
when an attempted proof fails.

While debugging proofs, users frequently reformulate axioms and
conjectures. After any change in the axiomatization, it is necessary to
recheck not only the conjecture whose proof attempt uncovered the
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Nat: trait

includes AC(+, Nat)
introduces

0: — Nat

s: Nat — Nat

< __ : Nat, Nat — Bool
asserts

Nat generated by 0, s

V i, j, k: Nat

1+ 0 == 1;

i+ 8(3) ==s(i + J);

—|(l < 0),’

0 < s(i);

s(i) < s(j) ==1 < j
implies V i, j, k: Nat

i< j=i (7 + k)

FIGURE 3.9. A trait containing a conjecture

problem, but al so the conjectures previously proved using the old axioms.
LP hasfacilities that support such regression testing.

LPwill, uponrequest, record asessioninascript filethat can bereplayed.
LP “prettyprints’ script files, using indentation to reflect the structure of
proofs. It also annotates script files with information that indicates when
subgoalsare introduced (e.g., in a proof by induction), and when subgoals
and theorems are proved. On request, as L P replaysascript file, it will halt
replay at the first point where the annotations and the new proof diverge.
This checking makesit easier to keep proof attempts from getting “out of
sync” with their author’s conception of their structure.

A SMALL PROOF

Figure 3.9 contains a short LSL specification, including a simple
conjecture (following the reserved word implies) that is supposed to
follow from the axioms. Figure 3.10 showsa script for an LP proof of that
conjecture.

The declare commands introduce the variables and operators in
the LSL specification. The assert commands supply the LSL axioms
relating the operators; the Nat generated by assertion provides an
induction scheme for Nat. The prove command initiates a proof by
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set name nat
declare sort Nat
declare variables i, j, k: Nat
declare operators
0: — Nat
s: Nat — Nat
+: Nat, Nat — Nat
< : Nat, Nat — Bool

assert Nat generated by 0, s
assert ac +

assert .
1+ 0 ==1
i+ s(3) ==s(i1 + 3J)
—|(l < 0)
0 < s(i)
s(i) < s(j) ==1 < j

set name lemma
prove i < j = i < (j + k) by induction on j
<> 2 subgoals for proof by induction on j
[] basis subgoal
resume by induction on i
<> 2 subgoals for proof by induction on i
[] basis subgoal
[] induction subgoal
[] induction subgoal

[] conjecture
ged

FIGURE 3.10. Sample L P proof script
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induction of the conjecture. The diamond (<>) annotations are provided
by LP; they indicate the introduction of subgoals for the inductions. The
box ([1) annotations are also provided by L P; they indicate the discharge
of subgoals and, finally, of the main proof. The resume command starts
a nested induction. No other user intervention is needed to complete this
proof. The ged command on the last line asks L P to confirm that there are
no outstanding conjectures.

3.6 Lexica and typographic conventions

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may have its own lexical conventions and capabilities. To
avoid conflicts, LSL assigns fixed meanings to only a small number of
characters. To conformtolocal conventionsand to exploitlocally available
capabilities, LSL's character and token classes are extensible, and can be
tailored for particular purposes by initialization files. Since LSL terms
appear in interface specifications, corresponding extensibility is a part of
each interface language. Appendix C explains the structure of these files
and givestheinitialization files used in checking the specifications in this
book.

There are several semantically equivalent formsof each Larch language.
Any of these forms can be trand ated mechanically into any other without
losing information.

e Presentation forms are used in environments, such as this book, that
haverich character setswith symbolssuch asV, 3, A, Vv, €.

¢ Interchange form is an encoding of the language using a widely
available subset of the 1SO Latin* character set. Characters outside
this subset are represented by extended characters—sequences of
characters from the subset, preceded by a backslash (or other
designated character). Interchange form is the “lowest common
denominator” for each Larch language. Each Larch tool can parseit
and generate it on demand.

¢ Interactiveformsmay be used by Larch editors, browsers, checkers,
etc., for interaction with users. Many such formswill not be limited

4Thisisalso asubset of the older ASCI| subset.
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to character strings for input and output (e.g., they will use menus
and pointing), and some may impose additional constraints and
equivalences (e.g., case folding, operator precedence).



Chapter 4
LSL: ThelLarch Shared Language

Thischapter providesatutorial introduction thetheLarch Shared L anguage
(LSL). It begins by systematically working through the features of the
language, illustrating each with a short example. It concludes with a
dightly longer example, designed to illustrate how the various features
of the language can be used in concert.

4.1 Equational specifications

LSL's basic unit of specification is a trait. Consider, for example, the
specification of tablesthat store valuesin indexed places, Figure4.1. This
issimilar to a conventional algebraic specification, as it would be written
in many languages [4, 20, 24, 96].

The trait can be referred to by its name, Tablel. This should not be

Tablel: trait
introduces
new: — Tab

add: Tab, Ind, Val — Tab
€ __ : Ind, Tab — Bool
lookup: Tab, Ind — Val
isEmpty: Tab — Bool
size: Tab — Int
0,1: — Int
4+ __ : Int, Int — Int
asserts V i, i1: Ind, val: Val, t: Tab
- (i € new);
i € add(t, i1, wval) ==1 = 11 V 1i € t;
lookup (add(t, i, val), il) ==
if i = i1 then val else lookup(t, il);
size (new) == 0;
size(add(t, i, val)) ==
if i € t then size(t)
isEmpty(t) == size(t) =

else size(t) + 1;
0

FIGURE 4.1. A tabletrait
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confused withthe name of adataabstraction (e.g., the sort Tab) or operator
(e.g., Lookup). Thenameof atrait isindependent of the namesthat appear
withinit.

Thepart of thetrait following int roduces declaresalist of operators,
each with its signature (the sorts of its domain and range). As discussed
in Chapter 2, an operator stands for a total function that maps a tuple of
values of its domain sorts to its range sort. Every operator used in atrait
must be declared; signaturesare used to sort-check termsin much the same
way as expressions are type-checked in programming languages. Sorts are
denoted by identifiers and are declared implicitly by their appearance in
signatures.

The remainder of this trait constrains the operators by means of
equations. An equation consists of two terms of the same sort, separated
by = or ==. The operators = and == are semantically equivalent, but havea
different precedence, asdiscussed bel ow. We use == asthe main connective
in equations. Equations of theformterm== true can be abbreviated by
simply writing term; thus the first equation in Tablel is an abbreviation
for

- (i € new) == true

Double underscores (-_) in an operator declaration indicate that the
operator will be used in mixfix terms. For example, € is declared as a
binary infix operator. Infix, prefix, postfix, and distributed operators (such
as_+ -, 1, {},_[.],andif__then else__)areintegra parts
of many familiar mathematical and programming notations, and their use
can contribute substantially to the readability of specifications.

LSL’s grammar for mixfix termsis intended to ensure that legal terms
parse as readers expect—even without studying the grammar.! LSL has a
simple precedence scheme for operators:

e postfix operatorsthat consist of a dot followed by an identifier (asin
field selectors, e.g., . f£irst) bind most tightly;

e other user-defined operators and the built-in Boolean negation
operator - bind more tightly than

e the built-in equality operators (= and #), which bind more tightly
than

"However, writers of specifications should take pity on readers and study the grammar.
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e the built-in propositional connectives (A, Vv, and =), which bind
more tightly than

e the built-in conditional connective (if__then__else__), which
binds more tightly than

e the equation connective (==).

For example, the equation v == x + w.a.b = y V z iSequiv-
denttothetermv = (((x + ((w.a).b)) = vy) V z).LSL d-
lows unparenthesized infix terms with multiple occurrences of an operator
at the same precedence level, but not different operators; it associates such
terms from left to right. Fully parenthesized terms are always acceptable.
Thusx A y A zisequivdlentto(x A y) A z, butx V y A z
must bewrittenas (x V y) A zorasx V (y A z),dependingon
which is meant.

Each well-formed trait defines a theory (a set of sentences closed
under logical consequence, see Chapter 2) in multisorted first-order logic
with equality. Each theory contains the trait’s assertions, the conventional
axiomsof first-order logic, everything that followsfrom them, and nothing
else. This loose semantic interpretation guarantees that formulas in the
theory follow only from the presence of assertionsin the trait—never from
their absence. Thisisin contrast to algebraic specification languages based
oninitial algebras[34] or final algebras[85]. Using thelooseinterpretation
ensuresthat all theorems proved about an incompl ete specification remain
valid when it is extended.

Each trait should be consistent: it must not define atheory containing the
equationtrue == false. Consistency isoften difficult to proveandis
undecidable in general. Inconsistency is often easier to detect and can be
a useful indication that there is something wrong with a trait. Detecting
inconsistenciesis discussed in Chapter 7.

4.2 Stronger theories

Equational theories are useful, but a stronger theory is often needed, for
example, when specifying an abstract type. The constructs generated
by andpartitioned by providetwowaysof strengthening equational
specifications.

A generated by clause asserts that a list of operators is a complete set
of generatorsfor asort. That is, each value of the sort isequal to one that
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can be written as a finite number of applications of just those operators,
and variables of other sorts. This justifies a generator induction schema
for proving things about the sort. For example, the natural numbers are
generated by 0 and succ, and theintegers are generated by 0, succ, and
pred.

The assertion

Tab generated by new, add

if added to Table1, could be used to prove theorems by induction over
new and add, since, according to thisassertion, any value of sort Tab can
be constructed from new by a finite number of applications of add. For
example, to prove

V t:Tab, 1:Ind (i € t = size(t) > 0)
one can do an inductive proof with the structure

e Basisstep:
V i:Ind (i € new = size(new) > 0)

e Induction step:

YV t:Tab, il:ind, vl:Val
(V 1i:Ind (1 € t = size(t) > 0)
= (V i:Ind (1 € add(t, i1, wv1)
= size(add(t, i1, v1)) > 0)))

A partitioned by clause asserts that a list of operators constitutes a
complete set of observers for a sort. That is, al distinct values of the
sort can be distinguished using just those operators. Terms that are not
distinguishable using any of them are therefore equal. For example, sets
are partitioned by €, because setsthat contain the same elementsare equal.
Each partitioned by clause is a new axiom that justifies a deduction rule
for proofs about values of the sort. For example, the assertion

Tab partitioned by €, lookup

adds the deduction rule

V il:ind (i1 € tl1l = il € t2),
V il:ind (lookup(tl, il) = lookup(t2, il1)))
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If added to Tablel this partitioned by clause could be used to derive
theorems that do not follow from the equations alone. For example, to
prove the commutativity of add of the same value,

V t:Tab, 1,1i1:Ind, v Val
(add(add(t, i, v), i1, v)
= add(add(t, i1, v), i, v))

one discharges the two subgoals

V i2:ind
(i2 € add(add(t, i, v), i1, v)
= 12 € add(add(t, i1, v), i, v))
V i2:ind
(lookup(add(add(t, 1, v), i1, v), 1i2)
= lookup(add(add(t, i1, v), i, v), 1i2))

4.3 Combining traits

Tablel contains three operators that it does not define: 0, 1, and +.
Without more information about these operators, the definition of size
is not particularly useful. We could add assertions to Tablel to define
these operators. However, it is often better to specify such operatorsin a
separate trait that is included by reference. This makes the specification
more structured and makesit easier to reuse existing specifications, such as
thetraitsgivenin Appendix A. We might remove the explicit introductions
of these operatorsin Tablel, and instead add an external reference to the
trait Integer (page 163):

includes Integer

which not only introduces the operators, but also defines their properties.

The theory associated with an including trait is the theory associated
with the union of its introduces and asserts clauses with those of
itsincluded traits.

It is often convenient to combine several traits dealing with different
aspects of the same operator. Thisis common when specifying something
that is not easily thought of as a data type. Consider, for example,
the specifications of properties of relations in Figure 4.2. The trait
equivalencel has the same associated theory as the less structured
trait equivalence2.
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reflexive: trait
introduces _ ¢ : T, T — Bool
asserts V x: T
X o X

symmetric: trait

introduces _ ¢ _ : T, T — Bool
asserts V x, y: T
Xoy==Y 90X

transitive: trait
introduces _ ¢ _ : T, T — Bool

asserts V x, vy, z: T
(x oy ANy o z) => X0z

equivalencel: trait
includes reflexive, symmetric, transitive

equivalence2: trait

introduces = ¢ : T, T — Bool
asserts V x, vy, z: T

X ¢ X;

X Oy ==Y ¢ X;

(x 0oy AN yoz) => X0z

FIGURE 4.2. Specificationsof kinds of relations
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equivalence: trait

includes
(reflexive, symmetric, transitive) (= for ¢)
FIGURE 4.3. An example of renaming
4.4 Renaming

Thetrait equivalencel relies heavily on the use of the same operator
symbol, ¢, and the same sort identifier, T, in the three included traits. In
the absence of such happy coincidences, renaming can be used to make
names coincide, to keep them from coinciding, or smply to replace them
with more suitable names, asin Figure 4.3, where ¢ isreplaced by a more
customary symbol for an equivalence relation.

Ingeneral, thephrase Tr (namel for name2) standsfor thetrait Tr with
every occurrence of hame2 (which must be either a sort or an operator)
replaced by namel. If name2 isasort, thisrenaming changesthe signatures
of al of the operatorsin Tr in whose signatures name2 appears.

The two specifications in Figure 4.4 have the same theory. Note that
the infix operator __€__ was replaced by the operator defined, and that
the operator 1ookup was replaced by the mixfix operator __[__1. All
renamings preserve the order of operands.

Any sort or operator in atrait can be renamed whenthat trait isreferenced
in another trait. Some, however, are more likely to be renamed than others.
It is often convenient to single these out so that they can be renamed
positionally. For example, if the header for the trait had been

SparseArray (Val, Arr): trait
thereference
includes SparseArray (Int, IntArr)

would be equivalent to

includes SparseArray (Int for Val, IntArr for Arr)

45 Stating intended consequences

It is not possible to prove the “correctness’ of a specification, because
there is no absolute standard against which to judge correctness. But since
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SparseArray: trait
includes Tablel (Arr for Tab, defined for €,
assign for add, _ [ 1 for lookup, Int for Ind)

SparseArrayExpanded: trait
introduces
new: — Arr
assign: Arr, Int, Val — Arr
defined: Int, Arr — Bool
[ 1: Arr, Int — Val
isEmpty: Arr — Bool
size: Arr — Int
0,1: — Int
___+ __ : Int, Int — Int
asserts V i, il: Int, val: Val, t: Arr
—defined (i, new);
defined (i, assign(t, =
i = i1 V defined (i, t);
assign(t, i, wval) [i1]
if i = i1 then wval else t[il];
size (new) == 0;
size(assign(t, 1, wval)) ==
if defined (i, t) then size(t) else size(t) + 1;
isEmpty(t) == size(t) = 0

FIGURE 4.4. Two specifications of sparsearrays
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specifications can contain errors, specifiersneed helpinlocatingthem. LSL
specifications cannot, in general, be executed, so they cannot be tested in
the way that programs are commonly tested. L SL sacrifices executability
in favor of brevity, clarity, flexibility, generality, and abstraction. To
compensate, it provides other ways to check specifications.

This section briefly describes ways in which specifications can be
augmented with redundant information to be checked during validation.
Chapter 7 discussesthe use of LP, the Larch proof assistant, in specification
debugging.

Checkable properties of LSL specifications fall into three categories:
consistency, theory containment, and completeness. As discussed earlier,
the requirement of consistency means that any trait whose theory contains
theeguation true == falseisillegal.

Implies clauses make claims about theory containment. Suppose we
think that a consequence of the assertions of SparseArray is that no
array with a defined element is empty. To formalize this claim, we could
add to SparseArray

implies V a: Arr, i: Int
defined (i, a) = —-isEmpty(a)

The theory to be implied can be specified using the full power of LSL,
including equations, generator clauses, partitioning clauses, and references
to other traits. Attempting to verify that such a theory actually isimplied
can be helpful in error detection, as discussed in Chapter 7. Implications
also help readers confirm their understanding. Finaly, they can provide
useful lemmas that will smplify reasoning about specifications that use
thetrait.

L SL doesnot require that each trait define acompl ete theory, that is, one
in which each sentenceis either true or false. Many finished specifications
(intentionally) do not fully define all their operators. Furthermore, it can be
useful to check the completeness of some definitionslong before finishing
the specification they are part of. Therefore, instead of buildinginasingle
test of completeness that is applied to all traits, LSL provides a way to
include within atrait specific checkable claims about completeness, using
converts clauses.

Adding the claim

implies converts isEmpty

to Tablel saysthat thetrait’'saxiomsfully define i sEmpty. Thismeans
that, if the interpretations of al the other operators are fixed, thereisonly
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oneinterpretation of i sEmpty that satisfiestheaxioms. (A more complete
discussion of the meaning of converts iscontained in Section 7.1.)
The stronger claim

implies converts isEmpty, lookup

however, cannot be verified, because the meaning of terms of the form
lookup (new, i) isnot defined by the trait. This incompleteness in
Tablel could be resolved by adding another axiom to the trait, perhaps

lookup (new, i) == errorVal

But it isgenerally better not to add such axioms. The specifier of Tablel
should not be concerned with whether the sort val has an errorval
and should not be required to introduceirrelevant constraintson 1 ookup.
Extra axioms give readers more details to assimilate; they may preclude
useful speciaizations of a general specification; sometimes there simply
is no reasonable axiom that would make an operator convertible (consider
division by 0).

LSL providesan exempt ing clausethat liststermsthat are not claimed
to be defined.? Theclaim

implies converts isEmpty, lookup
exempting V i: Ind lookup (new, i)

meansthat i sEmpty and 1lookup are fully defined by the trait’s axioms
plus interpretations of the other operators and of all terms of the form
lookup (new, 1i). Thisisprovablefrom the specification of Tablel.

4.6 Recording assumptions

Many traits are suitable for use only in certain contexts. Just as we write
preconditions that document when a procedure may properly be called,
we write assumptionsin traits that document when atrait may properly be
included. As with preconditions, assumptions impose a proof obligation
on the client, and may be presumed within the trait containing them.

It isuseful to construct general specifications that can be specialized in
avariety of ways. Consider, for example, the specification in Figure 4.5.
We might specialize this to IntegerBag by renaming E to Int and

2Thisisdifferent from “that are claimed not to be defined.”
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Bag0 (E) : trait

introduces
{}: =B
insert, delete: E, B — B
€ _: E, B — Bool
asserts

B generated by {}, insert
B partitioned by delete, €
YV b: B, e, el, e2: E
delete(e, {}) == {};
delete(el, insert(e2, b)) ==
if el = e2 then b
else insert (e2, delete(el, b)) ;
-(e € {});
el € insert(e2, b) ==el = e2 V el € Db

FIGURE 4.5. A specification of bags

45
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Bagl(E) : trait
includes Bag0, Integer

introduces
rangeCount: E, E, B — Int
< : E, E —- Bool

asserts V el, e2, e3: E, b: B
rangeCount (el, e2, {}) == 0;
rangeCount (el, e2, insert(e3, b)) ==
rangeCount (el, e2, b)
+ (if el < e3 A e3 < e2 then 1 else 0)

FIGURE 4.6. A specialization of Bag0

including it in a trait in which operators dealing with Int are specified,
for example,

IntegerBag: trait
includes Integer, BagO (Int)

The interactions between Integer and Bag0 are limited. Nothing in
Bag0 depends on any particular operators being introduced in including
traits, let alone their having any special properties. Therefore Bag0o needs
no assumptions.

Consider, however, extending Bag0 to Bagl by adding an operator,
rangeCount, to count the number of entriesin a B that lie between two
values, asin Figure 4.6.

Aswritten, Bag1 saysnothing about the propertiesof the < operator. But
it probably doesn’t make sense in any specialization unless < providesan
ordering onthevalues of sort E. We cannot define < withinBag1l, because
it will depend onthetrait using Bagl. What we need isan assumes clause,
asinFigure4.7.

Since Bag2 may presume its assumptions, its (local) theory isthe same
asif Totalorder (E), page 194, had beenincluded rather than assumed;
Bag2 inherits al the introductions and assertions of TotalOrder.
Therefore, the assumption of TotalOrder can be used to derive various
properties of Bag2, for example, that rangeCount is monotonic in its
second argument, as claimed in theimplies clause.

Thedifference between assumes and includes appearswhenBag?2
is used in another trait. Whenever atrait with assumptionsisincluded or
assumed, its assumptions must be discharged. For example, in
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Bag2 (E) : trait
assumes TotalOrder (E)
includes Bag0, Integer
introduces rangeCount: E, E, B — Int
asserts V el, e2, e3: E, b: B
rangeCount (el, e2, {}) == 0;
rangeCount (el, e2, insert(e3, b)) ==
rangeCount (el, e2, b)
+ (if el < e3 A e3 < e2 then 1 else 0)
implies V el, e2, e3: E, b: B
el < e2 =
rangeCount (e3, el, b) < rangeCount (e3, e2, b)

FIGURE 4.7. An example of an assumption

IntegerBagl: trait
includes Integer, Bag2 (Int)

the assumption to be discharged is that the (renamed) theory associated
with TotalOrder is a subset of the theory associated with the rest
of IntegerBagl (i.e, Integer). When a trait includes a trait with
assumptions, it is often possible to confirm that these assumptions are
syntactically discharged by noticing that the same traits are assumed or
included by theincluding trait. For example, the Integer trait, page 163
directly includes TotalOrder. A more complete discussion of how
assumptions are discharged is contained in Chapter 7.

4.7 Built-in operators and overloading

In our examples, we have freely used the predicate connectives defined
in Chapter 2. We have aso used some heavily overloaded and apparently
unconstrained operators. if__then__else__, =, and #. These operators
are built into the language. Thisallowsthem to have appropriate syntactic
precedence. More importantly, it guarantees that they have consistent
meaningsin all LSL specifications, so readers can rely on their intuitions
about them.

Similarly, LSL recognizes decimal numbers, such as 0, 24, and 1992,
without explicit declarations and definitions. In principle, each litera
could be defined within LSL, but such definitions are not likely to
advance anyone'sunderstanding of the specification. DecimalLiteral,
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OrderedString (E, Str): trait
assumes TotalOrder (E)
includes DerivedOrders (Str)
introduces

empty: — Str

-] : E, Str — Str

< __: 8tr, Str — Bool
asserts

Str generated by empty, -|

YV e, el: E, s, sl: Str

empty < (e -| s);
- (s < empty);
(e -] s8) < (el -| s1) ==

e < el VvV (e==¢el AN s < sl)
implies TotalOrder (Str)

FIGURE 4.8. An example of overloading

page 164 is a predefined quasi-trait that implicitly defines all the numerals
that appear in a specification.

In addition to the built-in overloaded operators and numbers, LSL
provides for user-defined overloadings. Each operator must be declared
in an introduces clause and consists of an identifier (e.g., empty)
or operator symbol (e.g., --<__) and a signature. The signatures of most
occurrences of overloaded operators are deduciblefrom context. Consider,
for example, Figure 4.8.3 Theoperator symbol < isused inthelast equation
to denote two different operators, one relating terms of sort Str, and the
other, terms of sort E, but their contexts determine unambiguously which
iswhich.

L SL providesnotationsfor disambiguating an overl oaded operator when
context does not suffice. Any subterm of aterm can be qualified by its sort.
For example, a:S ina:S = b explicitly indicates that a is of sort S.
Furthermore, since the two operands of = must have the same sort, this
qualification also implicitly defines the signatures of = and b. The last
axiom in Figure 4.8 could also be written as

(e -| s):8tr < (el -| sl):Str ==
e:E < el:E V (e = el A s:Str < gl1:Str)

®DerivedOrders isin Appendix A, pagel95. It relates the ordering relations <, >,
<, and > to each other.
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introduces
cold, warm, hot: — Temp

succ: Temp — Temp
asserts
Temp generated by cold, warm, hot

equations
cold # warm;
cold # hot;
warm # hot;
succ (cold) == warm;
succ (warm) == hot

FIGURE 4.9. Expansion of an enumeration shorthand

Outside of terms, overloaded operators can be disambiguated by directly
affixing their signatures, for example

implies converts < :Str,Str—Bool

4.8 Shorthands

Enumerations, tuples, and unions provide compact, readable representa-
tions for common kinds of theories. They are syntactic shorthands for
thingsthat could be written in LSL without them.

ENUMERATIONS

The enumeration shorthand defines a finite ordered set of distinct
constants and an operator that enumerates them. For example,

Temp enumeration of cold, warm, hot

isequivalent to including atrait with the body appearing in Figure 4.9.

TUPLES

The tuple shorthand is used to introduce fixed-length tuples, similar to
records in many programming languages. For example,

C tuple of hd: E, tl: S

is equivalent to including a trait with the body appearing in Figure 4.10.
Each field name (e.g., hd) isincorporated in two distinct operators (e.g.,
_.hd:C—E and set_hd:C,E—CQC).
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introduces
_, _1:E, s —=2C
__.hd: ¢ — E
__.tl: C — s
set_hd: C, E —- C
set_ tl: ¢, S —= C
asserts

C generated by [,

C partitioned by .hd, .tl
YV e,el: E, s,8l1: S
([e, s]).hd == e;
(e, s]).tl == s;
set _hd([e, s], el) == [el, s];
set_tl([e, s], sl) == [e, sl1]

FIGURE 4.10. Expansion of atuple shorthand

S _tag enumeration of atom, cell
introduces

atom: A — S

cell: ¢ — S

___.atom: S — A

__.cell: s — C

tag: S — S_tag
asserts

S generated by atom, cell

S partitioned by .atom, .cell, tag
YV a: A, c: C
atom(a) .atom == a;
cell(c) .cell == c;
tag(atom(a)) == atom;
tag(cell(c)) == cell

FIGURE 4.11. Expansion of a union shorthand

UNIONS

The union shorthand corresponds to the tagged unions found in many
programming languages. For example,

S union of atom: A, cell: C

is equivalent to including a trait with the body appearing in Figure 4.11.
Each field name (e.g., atom) isincorporated in three distinct operators
(eg., atom: —S_tag, atom:A—S, and__.atom:S—A).
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InsertGenerated (E, C): trait
introduces
empty: — C
insert: E, C — C
asserts
C generated by empty, insert

FIGURE 4.12. InsertGenerated.|s

4.9 Further examples

We have now covered all thefacilities of the Larch Shared Language. The
next series of examplesillustratestheir coordinated use.

The trait InsertGenerated, Figure 4.12, abstracts the common
properties of data structures that contain elements, such as sets, bags,
gueues, stacks, and strings. InsertGenerated is useful both as a
starting point for specifications of many different data structures and as an
assumption when defining generic operators over such data structures.

Thegenerated by clausein InsertGenerated assertsthat each value
of sort C can be constructed from empty by repeated applications of
insert (i.e, empty and insert constitute acomplete set of generators
for C). This assertion is carried aong when InsertGenerated is
included in or assumed by other traits, even if those traits introduce
additional operators with range C.

The trait Container, Figure 4.13, includes InsertGenerated.
It constrains the operators introduced in InsertGenerated, as well
as the operatorsit introduces. The axioms defining count guarantee that
insertionsare not lost. Thisimplies, for example, that sets do not satisfy this
definition of container. The last axiom asserts that, when applied to a non-
empty container, tail removes an element equal to the element returned
by head. Notice that these axioms do not imply the stronger property
—isEmpty(c) = insert (head(c), tail(c)) = c.

The converts clause adds checkabl e redundancy to the specification. The
implied formula follows from the last axiom and the two axioms defining
count. If head were to return something that was not in c, inserting it
back in would change the count for that value.

PQueue, Figure 4.14, specializes Container by constraining head
and tail in a way that is consistent with the last two axioms of
Container. The first implication states a fact that may be helpful in
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Container (E, C): trait
includes InsertGenerated, Integer
introduces
igEmpty: C — Bool
count: E, C — Int
€ _:E, C— Bool
head: ¢ — E
tail: ¢ — C
asserts
C partitioned by isEmpty, head, tail
YV e, el: E, c: C
isEmpty (empty) ;
- isEmpty (insert (e, c));
count (e, empty) == 0;
count (e, insert(el, c)) ==
count (e, ¢) + (if e = el then 1 else 0);
e € ¢ == count (e, c) > 0;
- isEmpty(c) =
count (e, insert (head(c), tail(c)))
= count (e, c¢)
implies
V c: C
- isEmpty(c) = count (head(c), c) > 0;
converts isEmpty, count, €

FIGURE 4.13. Container.ld
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PQueue (E, Q): trait

assumes TotalOrder (E)
includes Container (Q for C)
asserts V e, el: E, g: Q
head (insert (e, q)) ==
if isEmpty(g) V e > head(q)
then e else head(qg
tail (insert (e, q)) ==
if isEmpty(g) V e > head(q)
then q else insert (e, tail(q))
implies
V g: Q, e: E
e € g = —(e < head(q))
converts head, tail, isEmpty, count, €
exempting head (empty), tail (empty)

FIGURE 4.14. PQueue.ld

53
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reasoning about PQueue and may help readerssolidify their understanding
of thetrait. The second implication states that the trait fully defineshead
and tail (except when applied to empty), isEmpty, count, and €.
The axioms that convert isEmpty, count, and € are inherited from
Container.

Unlike the preceding traitsin thissection, PQueue specifiesacomplete
abstract type constructor. In such a trait there is a distinguished sort,
sometimes called the type of interest [40] or data sort. An abstract type's
operators can be categorized as generators, observers, and extensions
(sometimes in more than one way). A set of generators produces al the
valuesof thedistinguished sort. The extensionsare the remaining operators
whose range is the distinguished sort. The observers are the operators
whose domain includes the distinguished sort and whose range is some
other sort. An abstract type specification usually has axioms sufficient to
convert the observers and extensions. The distinguished sort is usually
partitioned by at least one subset of the observers and extensions.

In the example of PQueue, Q is the distinguished sort, empty and
insert form agenerator set, tail isan extension, head, isEmpty,
count and € arethe observers, and head, tail, and isEmpty form a
partitioning set.

A good heuristic for writing enough equations to adequately define an
abstract type is to write an equation defining the result of applying each
observer or extension to each generator. For PQueue, this rule suggests
writing equations for

[

isEmpty (empty)

count (e, empty)

e € empty

head (empty)

tail (empty)

isEmpty (insert (e, q))
count (e, insert(el, q))
e € insert(el, q)

head (insert (e, q))

O W 0w J 0o Ul b WN

[

tail (insert (e, q))

PQueue containsexplicit equationsfor only thelast two of these; itinherits
equations for five more from Container. Thethird and eighth termsin
the list do not appear explicitly in eguations. Instead, € is defined by
relating it directly to count. The remaining two terms, head (empty)
and tail (empty), are explicitly exempted.
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PairwiseExtension (o, ®, E, C): trait
assumes Container (E, C)

introduces
o _:E, E— E
& _:C, C—>C

asserts V el, e2: E, cl, c2: C
empty © empty == empty;
(misEmpty(cl) A - isEmpty(c2))
= cl ® c¢2 = insert (head(cl) o head(c2),
tail (cl) ® tail(c2));
implies
converts ©
exempting V e: E, c: C
empty ® insert (e, c),
insert (e, c) ® empty

PairwiseSum(C) : trait
assumes Container (Int, C)
includes Integer, PairwiseExtension(+, &, Int, C)
implies Associative (¢, C),
Commutative (& for o, C for T, C for Range)

FIGURE 4.15. Specification of generic operators

The traits PairwiseExtension and PairwiseSum, Figure 4.15,
specify generic operators that can be used with variouskinds of containers.

PairwiseExtension isagenerictrait that may beinstantiated using
a variety of data structures and operators. Given a container sort and a
binary operator, o, on elements, it defines a new binary operator, ©, on
containers. The result of applying ® to a pair of containersisa container
whose elements are the results of applying o to corresponding pairs of
their elements. The exempt ing clause indicates that, although the result
of applying  to containers of unequal size is not specified, thisis not an
oversight.

The trait PairwiseSum specidlizes PairwiseExtension by
binding o to an operator, +, whose definition is to be taken from the trait
Integer (page 163). Thevalidity of theimplicationsthat & isassociative
and commutative stems from the replacement of o by +, whose axioms
in the trait Integer imply its associativity and commutativity. These
implications can be proved by induction over empty and insert.



Chapter 5

LCL: A Larch Interface
Languagefor C

LCL isaLarch interface language for Standard C. LCL isnot a C diaect.
Programs specified and developed with LCL are C programs, accepted by
ordinary C compilers. Use of LCL will tend to encourage some styles of
development, but it does not change the programming language.

This chapter isintended to serve three purposes:

e Present amost al of LCL in enough detail to permit interested
readersto start writing their own specifications. If you areinterested
in doing this, we strongly urge you to get the LCL tools first. The
tools are available at no cost, as described in Appendix D.

e Provide examples of how two-tiered specifications are used in
practice, not just for C, but for any implementation language. While
the syntax for incorporating traits may differ, all Larch interface
specifications build upon LSL specifications in approximately the
same way.

o lllustrate a style of C programming in which abstract types play a
major role. While LCL can be used to specify interfacesin which al
types are exposed, that is not the style of programming for which it
is best suited. It is certainly not one we would wish to encourage.

Before presenting any interface specifications, we discuss the intended
rel ation between L CL specificationsand C programs, how namesappearing
in LCL specifications are related to values in C computations, and the
overal structure of LCL function specifications.

This chapter is intended for C programmers—practicing or potential.
We assume some familiarity with C. Readers unfamiliar with C may wish
to consult one of the numerous bookson C.

5.1 Therelation between LCL and C

Cisagenera and flexible language that is used in many different ways. A
common style for organizing a program is as a set of program units, often
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called modules. A module consists of an interface and an implementation.
The interface is a collection of types, functions, variables, and constants
for use in other modules, called its clients.

A C module M istypically represented by threefiles:

e M.c contains most of its implementation, including function
definitions and private data declarations.

¢ M.h contains a description of its interface, plus parts of its
implementation. Comments provide an informal specification of the
module. Typedeclarations, function prototypes, constant definitions,
declarations of external variables, and macro definitions provide all
the information about M that is needed to compileits clients.

e M.o contains its compiled form. Such files are linked together to
create executable files.

C modules specified using LCL have two additional files:

e M.1cl containsits LCL interface specification—aformal descrip-
tion of the types, functions, variables, and constants provided for
clients—together with comments providing informa documenta
tion. It replaces M . h as documentation for client programmers. The
extra information it provides will also be exploited by a planned
LCLint tool to perform more extensive checking than an ordinary C
lint.

e M.1h is a header file derived automaticaly from M.1c1 to be
included in M . h. Mechanical generation of . 1h files savesthe user
from having to repeat information in the . h file, saving work and
avoiding an opportunity for error. The implementation portion of
M. h must still be provided by the implementor.

M. 1cl may aso refer to another kind of file:

e .1s1 filescontain auxiliary specificationsin theform of LSL traits
to precisely define operatorsused in . 1c1 files.

THE LCL STORAGE MODEL

The LCL and LSL tiers of a specification are connected as described in
Chapter 3.
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Since LCL, like C, isstatically typed, the kind of values that an object?
can be boundto in astateisfixed. Similarly, each LSL value has a unique
sort. To connect the two languages, there is a mapping from LCL typesto
LSL sorts. Each built-intype of C, each typebuilt from C type constructors
(e.g., int *), and each abstract type defined in LCL is based on an LSL
sort. If an expression, e, denotes an object of type T and T is based on sort
S then the values of € and e’ are of sort S The sort on which atypeis
based does not appear explicitly in LCL specifications. Instead, an LCL
type specifier (a type name or an expression denoting a type) is used to
stand for its associated sort.

A standard LSL trait defines operators of the sorts upon which C built-
in types, eg., int and double, are based. Users familiar with C will
aready know what these operators mean. Specifier-supplied traits are
used to introduce application-specific operators. Users familiar with the
operators involved may not need to examine such traits closely, but most
users are expected to read them. A uses clause is used to incorporate
specifier-supplied traits and to make the connection between types and
sorts.

Consider, for example, the specification fragment:

uses Vector (int for elem, int[] for vec);

void vMult (int i, int all) {
modifies a;
ensures a’ = i * a“;

}

The uses clause incorporates the trait vector (not shown here) with two
renamings, the sort of the values contained by objects of type int for
elem and the sort of the values contained by objects of type int [] for
vec. The operator * used in the ensures clause is defined in that trait.
The equation containing this operator sort checks because the formal i
denotes an int, the formal a an array object, and the expressionsa™ and
a’ vectorsof integers.

VARIABLES, TYPES, OBJECTS AND STATES

Associated with each scope in a C program is an environment that maps
variables to typed objects. A type, as we said in Chapter 1, is most

lUnfortunately, “object” means several different things in different programming
languages. In this chapter, we use it in its C sense: memory locations that can contain
values; in the next chapter, in its Modula-3 sense.
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conveniently thought of as a set of values and a set of operations that
can be applied to those values.

LCL provides two different kinds of types. Exposed types correspond
exactly to typesin C; abstract types® do not correspond to anything in C.

Although C provides no direct support for abstract types, thereisastyle
of C programming in which they play a prominent role. The programmer
relies on conventions to ensure that the implementation of an abstract
type can be changed without affecting the correctness of clients. The key
restriction is that clients never directly access the representation of an
abstract value. All accessisthrough the functions provided initsinterface.
LCL supports this style of programming by providing both mutable and
immutable abstract types. Values of immutable types are used in much the
same way as values of exposed types. Values of mutable types are used to
support a more object-oriented style of programming.

In LCL, type checking for exposed types follows the usual C rules.
For abstract types, however, type checking is done strictly on the basis of
names.

Abstractly, an abject isa container for values of aparticular type. More
concretely, it can be thought of as region of storage. The mgjor kinds of
values are:

¢ basic values. These are mathematical abstractions, like the integer
3, the letter A, and the set {3}. Such values are independent of the
state of any computation. LSL traits are used to give meaning to
basic values.

e structs. These are (possibly heterogeneous) collections of objects,
each denoted by a field name. For example, given the variable
declaration

struct {int fielda; char fieldB;} s;

s.fielda denotes an object of type intObj and s.fieldB an
object of type charObj.

e unions. These are somewhat similar to the variant records of other
programming languages. They are like structs, except that their
objects overlap in memory.

2See Chapter 3 for amore thorough discussion of abstract types.
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e pointers. These point to an object in a homogeneous sequence of
objects. If pisapointer, * (p + minIndex (p)) denotesthefirst
object of the sequence and * (p + maxIndex (p)) denotesthe
last object, whereminIndex (p) < 0 < maxIndex (p).3

Theinfix operator - > isasyntactic shorthand to dereference apointer
to a struct and then select one of its members. For example, a->b
isequivalentto (*a) .b.

e arrays. These are homogeneous sequences of objects. If a is
an array, al[0] denotes the first object in the sequence and
a [maxIndex (a)] thelast object.

Although C makes little distinction between pointer and array
parameters, LCL treats them rather differently. In a C function
prototype, for example, char *s and char s[] areequivaent.
In an LCL prototype, however, char *s alows access to
al of the characters from * (s + minIndex (s)) (recal that
minIndex IS non-positive) to * (s + maxIndex(s)), while
char s[] alows access only to the characters from s[0] to
s [maxIndex (s)].

¢ objects. Thevalue of an abject may itself be an object. For example,
the value of afield of a struct may itself be a struct. The value of an
object of a mutable abstract type is always an object. Therefore, if
x isaformal parameter of a mutable abstract type, x” stands for the
value contained in the pre-state by the object to which x is bound.

A function call may change the values of objectsaccessibleto the caler,
but it cannot change the caller’s environment. Therefore, for our purposes,
the state of a C computation can be thought of as a mapping from objects
to values.

Since parameters are passed by value in C, formal parameters should
be thought of as denoting values.* In the case of formals that are of type
array or of amutableabstract type, thisvalue isan object. Global variables
always denote objects.

3C does not make the values of maxIndex and minIndex available at runtime, but
they are useful for specifying and reasoning about programs.

4within the body of a function, an object is associated with a formal parameter, but
since that object does not exist in the environment of the caler, it is not relevant to the
specification.
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In LCL, the postfix operators ™ and ’ are used to refer to the values
contained by objects in the pre-state and post-state of a function. They
can be applied to expressions denoting objects, collections of objects, or
seguences of objects.

e When applied to an object, ~ and ' yield the value stored in that
object. For example, if x isaglobal variable of type int, x~ = 3
asserts that in the pre-state the value contained by the object to
which the variable x is bound is 3. On the other hand, if x isa
formal parameter of type int, x~ = 3 doesnot sort check, since”
cannot be applied to abasic value.

e Whenappliedtoanarray, " and ' yieldavector containing thevalues
stored in the sequence of objects denoted by the array.

¢ When applied to astruct, " and ’ yield a tuple containing the values
stored in the collection of objects denoted by the struct. Here again,
we make a distinction between pointers and arrays. If afield of the
struct has an array type, the tuple contains a vector. If thefield hasa
pointer type, the tuple contains a pointer.

5.2 Function specifications

A C function may communicate with its callers by returning a result, by
accessing objects accessibleto the caller, by modifying such objects, or by
returning control to a different place. The specification of each functionin
an interface can be studied, understood, and used without reference to the
specifications of other functions. Asdiscussed in Chapter 3, aspecification
consists of afunction header (similar to a C function prototype) followed
by a body. Recall that the specification places constraints on both clients
and implementations of the function.

e Therequires clause (precondition) restricts the state and arguments
withwhich theclientisallowedto call the function; theimplementor
may presume it on entry. An omitted requires clauseis equivalent to
the weakest possible requirement, requires true.

e The modifies clause says what a function is alowed to change. If
there is no modifies clause, then nothing may be changed.
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e The ensures clause (postcondition) places constraints on the
function’s behavior when it is called properly. It relates the state
when the function is called, the pre-state, and the state when it
terminates, the post-state. The object result containsthevalue (if
any) returned by the function, and the object cont rol containsthe
point to which control will be transferred.®

e The client is expected to establish the precondition before each
cal; having done so, the client may presume that the function will
terminatein astate satisfying the postcondition, with changeslimited
to the modifieslist.

¢ The implementor may presume the precondition upon each entry.
Under that presumption, theimplementation must terminatein astate
satisfying the postcondition, without changing any client-visible
object not in the modifieslist.

5.3 A guided tour through an LCL specification

To illustrate the use of most of LCL's features, we present and discuss
a small specification. This example is only superficialy redistic; it was
structured to use language constructsin the order we want to discussthem.
It isnot really atypical specification or an especially wonderful program
design. Asyou study this tutorial, you will probably find it instructive to
consider aternative designs and how they would be specified.

The example in this section uses various conventions for names,
formatting, comments, etc. These are not mandated by L CL ; specifications
should be written using the conventions of the organization for which they
areintended. Because theexampleisbeing used to document L CL features,
rather than areal interface, the density of comments embedded within the
formal text is low, and most of the comments are in the accompanying
prose.

Thisexample hasbeen machine-checked for syntax and type correctness.
The .1c1 and .1sl files have been checked by the LCL and LSL
Checkers, respectively. The .1h files were automatically generated by
the LCL Checker. The .1h, .h, and . c fileswere compiled by gcc (this

5In the pre-state, the value of control is the return address of the invocation.
Constructslike abort and longjmp can be specified as modifications of control.
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took longer than all the Larch checking). Finally, the compiled code was

exercised by atest driver. Although we tried to be careful at each stage of

devel opment, each of the mechanical checks caught errors that we had not.
The example isavery simplified employee data base. We

e start with a couple of traits defining useful operators on strings,

e move to a simple interface using exposed types to represent
individual employee records,

¢ introduce an abstract data type for representing sets of employees,
¢ specify the database interface,

e present asmall test program,

¢ specify some modulesthat will be used in the implementation, and

e comment on the implementations.

STRING TRAITS

Thetraitsin Figures 5.1 and 5.2 present a collection of operators on strings.
They are used throughout the interface specifications in this section.

The trait cstring, Figure 5.1, specializes the strings of the String
trait in Appendix A (page 173) to the null-terminated strings conven-
tionally used in C programs. Note that this trait defines the operators
throughNull, sameStr and lenStr only when they are applied to
null-terminated strings.

The trait sprint was written for specifying functions that convert
values to strings. It is intentionally weak. It doesn't say much about
the meanings of its operators. This allows considerable flexibility in
implementing the interface functions. The first equation guarantees that
different T values will have different string forms, without specifying
what those forms are. The second equation gives two important properties
of acceptable string forms. We could repeat these propertiesin theinterface
specification of each such function, but it is better to get them right once,
and then reuse the trait.

EMPLOYEE

Theinterface specifiedin Figure 5.3, employee, exportstwo constants,
three types, and four functionsto its clients.
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cstring: trait
includes String(char, String), Integer(int for Int)
introduces
null: — char
nullTerminated: String — bool
throughNull: String — String
sameStr: String, String — bool
lenStr: String — int
asserts
V s, 81, s2: String, c: char
—nullTerminated (empty) ;
nullTerminated(s F c¢) ==

¢ = null V nullTerminated(s) ;
nullTerminated(s)

= throughNull (s F ¢) = throughNull (s) ;
—nullTerminated(g)

= throughNull (s F null) = s F null;
sameStr (sl, s2) ==

throughNull (s1) = throughNull (s2) ;

lenStr(s) == len(throughNull(s)) - 1

FIGURE 5.1. cstring.Isl fragment

sprint (T, String): trait
includes cstring
introduces
parse: String — T
unparse: T — String
isSprint: String, T — bool
asserts V t: T, s: String

parse (unparse(t)) == t;
isSprint (s, t) ==
parse(s) = t A nullTerminated(s)

implies T partitioned by unparse

FIGURE 5.2. sprint.Idl
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constant int maxEmployeeName;
constant int employeePrintSize;

typedef enum {MALE, FEMALE, gender ANY} gender;
typedef enum {MGR, NONMGR, job ANY} job;
typedef struct {int ssNum;
char name [maxEmployeeName] ;
int salary;
gender gen;
job j;} employee;
uses employeeConstants, sprint (employee, charl(]);
void employee sprint (char s[], employee e)
requires maxIndex(s) > employeePrintSize;
modifies s;
ensures isSprint(s’, e)
A lenStr(s’) = employeePrintSize;
}

bool employee equal (employee *el, employee *e2) {

ensures result = sameStr (el—name”, e2—name”)
A (el—ssNum~ = e2—ssNum’)
A (el—salary” = e2—salary’)
A (el—gen” = e2—gen’)
A (el—3 " = e2—37);
}
bool employee setName (employee *e, char nall) ({

requires nullTerminated (na”) ;
modifies e—>name;
ensures result = lenStr(na”) < maxEmployeeName
A (if result
then sameStr (e—>name’, na’)
A nullTerminated (e—>name’)
else e—>name’ = e—>name’) ;
}
void employee initMod(void)
ensures true;

}

FIGURE 5.3. employee.lcl

65
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employeeConstants: trait
assumes CTrait
introduces
maxEmployeeName, employeePrintSize: — int
asserts equations
maxEmployeeName > 0 A maxEmployeeName < 20;
employeePrintSize > 0 A employeePrintSize < 80

FIGURE 5.4. employeeConstants.|sl

The constant declarations give symbolic names for values that are used
elsewhere in the specification and that may be used by clients of the
interface. The allowable values of the two constants are restricted by
axioms in the trait employeeConstants, Figure 5.4. LCL interface
constants may be implemented either by macro definitionsor by C const
variables.

Theinterface defines, inthelinesthat look like C typedefs, three exposed
types, gender, job and employee. Clients of thisinterface are being
told exactly how these types are represented, and clients may deal with
values of these typesin any way allowed by Standard C.

The uses clause in Figure 5.3 directly incorporates two LSL specifica-
tions. The trait employeeConstants, which was written specifically
for use in employee.1lcl, constrains the values of the two exported
constants: any int from 1 to 20 is allowed for maxEmployeeName
and any int from 1 to 80 isalowed for employeePrintSize. The
trait sprint gives the meaning of operators such as isSprint and
nullTerminated (recal that sprint includes cstring) that are
used later in the specification. Notice that the use of sprint involves a
renaming. The sort T of sprint.1sl isto be replaced by the sort on
which the type employee is based and the sort String by the sort on
which the type char [] isbased.

The specification for each function gives both the precondition that is
assumed to hold in the pre-state (when the function is caled) and the
postcondition that is guaranteed to hold in the post-state (upon return).
The function employee_sprint is typical of a kind found in many
interfaces. It converts employee vaues into a string form suitable for
printing, and stores this string in an array. Its specification begins with
its function prototype. LCL prototypes are more restricted than C's; LCL
requiresthat each of theformal parametersbenamed, so that the body of the
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specification can refer to any parameter by name. Since all functionsin an
interface are exported, the keyword extern will be added automatically
when employee. 1h isgenerated.

The body of the specification consists of three clauses.

e Therequires clause saysthat the array s must be big enough to hold
the longest string that could ever be returned.

¢ Themodifies clause saysthat only the contents of the array s can be
changed.

e The ensures clause constrains the new value of s.

A good rule of thumb is that each object in the modifies clause should
appear in primed form at least once in the ensures clause—unless it is
intentionally not being constrained.

Array parameters are passed as pointersin C; s isa pointer to an array.
The term s’ denotes the vector of characters contained by the actua
parameter corresponding to s upon return from employee_sprint.
Since struct parameters are copied, e denotes avalue of type employee,
rather than a pointer.

This specification does not say what string will be generated for each
employee vaue—only that it will have certain properties. We might
want such freedom, for example, in a module that will have different
implementationsfor different countries, languages, or output devices. This
specification does not even require an implementationto be deterministic.®
Althoughour implementationof employee doesnot exploit thisfreedom,
later interfaces will have implementations that do exploit allowed non-
determinism.

The specification of employee_equal may strike the reader as
surprisingly complicated. The questions arises, why didn’'t we use one
of the following, simpler, ensures clauses?

ensures result = ((*el) = (*e2))

ensures result = ((*el)” = (*e2)")

The first of these clauses asserts that result is true exactly when el
and e2 point to the same struct. This is unlikely to be appropriate. The
second clause asserts that result istrue exactly when el and e2 point
to structs containing the same values. Even thisislikely to be too strong,

8A function is deterministic if its post-stateis completely determined by its pre-state.
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sinceit requires that the arrays containing the names be the same beyond
the terminating null character.

The function employee_setName returnsavalue of typebool, the
one built-intype of LCL that ismissing from C. When LCL specifications
are checked, bool istreated as adistinct type.

The requires clause in employee_setName says that the function
should be called only with null-terminated strings. The implementation
is entitled to rely on this. Indeed, it must. It is not generally possible to
determine at runtime the maxIndex of an array. Yet without a guarantee
that a string is null-terminated, it is not safe to search for its terminating
null character, because the search might run past the end of the allocated
storage and generate references to nonexistent memory. Completely
defensive programming just isn’'t possible in C. The implementation
of employee_setName in employee.c, Figure 5.8, relies on this
property from its specification. It may crash if na” isn't null-terminated.

The modifies clause says that employee_setName may change one
field of itsfirst argument, e - >name, but nothing else. Unlike requires and
ensures clauses, amodifiesclause constrainseverything it doesn’t mention.

The ensures clause says that employee_setName will have one of
two outcomes. It will either:

¢ Make the name field of its first argument the same as its second
argument (when both areinterpreted as strings), make the new value
of the name field be null-terminated, and return TRUE, or

e Change nothing and return FALSE.

Furthermore, the first outcome will occur exactly when the new name
fits(i.e, lenStr (na”) < maxEmployeeName). Theuseof result
in several subterms of an ensures clause is a frequent idiom. Since the
predicate in the ensures clause is just a logical formula, it makes no
semantic difference whether the equation for result iswritten first or
last. We are free to choose an order that hel ps the exposition or emphasizes
some particular aspect of the specification.

In this example, we include an initMod function as part of every
interface. Later we will discuss the way in which we use these functions.
The function employee_initMod is required by its specification to
have no visible effect, since it modifies nothing and returns no value. The
absence of arequires clause (equivalent to requires true) saysthat
it must always terminate.
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/*PASS Output from LCL Version 1.7 11-AUG-1992 */
#include "bool.h"
typedef enum {

MALE,

FEMALE,

gender ANY} gender;

typedef enum {
MGR,
NONMGR,
job ANY} job;

typedef struct
int ssNum;
char name [maxEmployeeName] ;
int salary;
gender gen;
job Jj;
} employee;

extern void employee sprint (char s[], employee e);
extern bool employee equal (employee *el, employee *e2);
extern bool employee setName (employee *e, char nal]l);

extern void employee initMod (void) ;

FIGURE 5.5. employee.lh

#if !defined(EMPLOYEE H)
#define EMPLOYEE_H

#define maxEmployeeName (20)
#define employeeFormat "%$9d %-20s
#define employeePrintSize (63)

o\°

-6s %-1ls %6d.00"
#include "employee.lh"
#define employee initMod() bool initMod ()

#endif

FIGURE 5.6. employee.h
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#if !defined(BOOL_H)
#define BOOL_H
#define FALSE 0
#define TRUE (! FALSE)
typedef int bool;
#define bool initMod ()
#endif

FIGURE 5.7. bool.h

From the specificationin employee. 1cl the LCL Checker generates
thefileemployee. 1h, Figure5.5. In addition to the appropriate typedefs
and function prototypes, it #includes bool .h, Figure 5.7, for the
implicitly imported interface bool. Thisisused in the implementation of
employee.h, Figure 5.6, and indirectly, in employee. ¢, Figure 5.8.

By convention, we start each . h fileswitha#1if that makessurethat its
body will only be included once into any module. Both employee. ¢
and al clients of employee will include employee.h. In turn,
employee.h includes employee.1lh, which provides prototypes.
The implementation of the function employee_initMod is aso in
employee. h.

The file employee.h, Figure 5.6, contains macros defining the
constants maxEmployeeName and employeePrintSize. Because
of arestrictionimposed by C, the definition of maxEmployeeName must
precede the inclusion of employee. 1h, since it is used in the typedef
of employee. The #def ine cannot be automatically generated because
the LCL processor has no way of knowing what value the constant is to
have; the specification leaves that design decision to the implementation.

The file employee.h aso implements employee_initMod. Our
convention is that each module initializes every module it explicitly
imports. Thus employee_initMod calsbool_initMod.’

In general, M. h contains, in order:

e A test of whether M_H is #defined in the current context. This
make sure that, for example, a client of M can safely includeit, and
other clients can include them both without getting errors caused by
repeated type definitions.

"Since the specification of employee_initMod guaranteesthat it modifies nothing,
calling it multiple times cannot have effects visible to clients.
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#include <stdio.h>
#include "employee.h"

bool employee setName (employee *e, char na [])

int 1i;
for (1 = 0; nali] != "\0’'; 1i++)
if (i == maxEmployeeName) return FALSE;

strcpy (e->name, na);
return TRUE;

}

bool employee equal (employee * el, employee * e2) {

return ((el->ssNum == e2->ssNum)
&& (el->salary == e2->salary)
&& (el->gen == e2->gen)
&& (el->j == e2->7j)
&& (strncmp (el->name, e2->name,
maxEmployeeName) == 0));

}
void employee sprint (char s[], employee e) {
static char *gender[] ={"male", "female", "?"};

static char *jobs[] = {"manager", "non-manager", "?"};

(void) sprintf (s,
employeeFormat,
e.ssNum,
e.name,
gender [e.gen],
jobs[e.j],
e.salary) ;

FIGURE 5.8. employee.c

71
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e A definition of M_H.

e Definitionsof all constantsdeclared inM. 1c1, either as macros or
asC const variables.

¢ Concrete representations (typedefs) for any abstract types declared
inM.1lcl.

e A#include of M. 1h.

e Macros, if any, for inline implementations of functions with
prototypesinM. 1h.

EMPSET

Empset, inFigure 5.9, isamutable abstract type. Values of thetype are
objects that contain sets of employees. Aswe have seen, exposed types
are specified using C typedefs. Abstract types are specified as collections
of functionsthat manipul ate values of thetype. The representation of these
valuesishidden within theimplementation. Clients can create, modify and
examine empsets by calling the functions specified in the interface, but
they cannot directly access the representation of empsets.

Type checking for abstract types in both the LCL Checker and LCLint
is based on type names, not on their representations. However, within
the implementation of the module exporting an abstract type, LCLint
treats the abstract type and its representation as the same. This allows
the implementation to access the internal structure that is hidden from
clients.

The imports clause of empset.lcl says that the specification of
the empset interface depends on the specification of employee;
it gives empset and its clients access to the constants, types and
functions exported by employee. It also makes the trait associated
with the employee interface a part of the specification of the empset
interface. Such specification dependencies should not be confused with
implementation dependencies, where one module is used within the
implementation of another. Implementation dependencies are typically a
superset of the specification dependencies. Clients, however, should not
be concerned with implementation dependencies.

The usesclause bringsintwotraits. Thetrait sprint isused in exactly
thesameway asit wasinemployee. Theinvocation of theL SL handbook
trait Set (page 167) substitutesthe sort on whichtypeemployee isbased
for E and the sort on which type empset isbased for C.
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imports employee;

mutable type empset;

uses Set (employee, empset),
sprint (empset, char(]);

empset empset create (void) {
ensures fresh(result) A result’ = { };
}
void empset final (empset s)
modifies s;
ensures trashed(s) ;
}
void empset clear (empset s) {
modifies s;
ensures s’ — { };
}
bool empset insert (empset s, employee e) {
modifies s;

ensures result = - (e € s°) A s’ = insert(e, s87);

}

void empset insertUnique (empset s, employee e) {
requires — (e € 87);
modifies s;
ensures s’ = insert(e, s7);
bool empset delete(empset s, employee e) {
modifies s;
ensures result = e € s° A s’ = delete(e, s7);
empset empset union(empset sl, empset s2) {
ensures result’ = s1” U s2° A fresh(result);

}

FIGURE 5.9. empset.Icl, part 1

73



74 5.3. A guided tour through an LCL specification

empset empset disjointUnion (empset sl, empset s2) {
requires s1” N s2” = { };
ensures result’ = s1” U s2° A fresh(result);
void empset intersect (empset s1, empset s2) {
modifies s1;
ensures sl’ = sl1” N s27;
int empset size (empset s) {
ensures result = size(s”);
bool empset member (employee e, empset s) {
ensures result = e € s~ ;
bool empset subset (empset sl, empset s2) {
ensures result = s1” C s27;
employee empset choose (empset s) {
requires s~ # { };
ensures result € s”;
char *empset sprint (empset s) {
ensures isSprint (resultl[]’, s7)
A fresh(resultl[]);

void empset initMod (void) ({
ensures true;

}

FIGURE 5.9. empset.Icl, part 2
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empset esl, es2;

esl = empset create( );

es2 = esl;

empset_insert(es2, e);

if (empset_size(esl) == 1) printf("Sharing.");
else printf ("No sharing.");

FIGURE 5.10. Codeto test for sharing

empset esl, es2;

esl = empset create( );

es2 = empset create( );

if (esl == es2) printf ("Same object.");
else printf ("Different objects.");

FIGURE 5.11. Code to test meaning of ==

Clients may write assignment statementsinvolving variables and values
of abstract types. Since the value of an object of amutable abstract typeis
itself an object, assignments produce sharing. Consider, for example, the
code fragment in Figure 5.10.

Because of the semantics associated with mutable abstract types, this
program code will print “Sharing.” As we shall see shortly, it is the
responsibility of the implementor of the type to ensure that assignment
has the proper semantics.

Clientsmay not writecodethat usesC's == operator to compareval uesof
abstract types. The problemisthat for mutabl e abstract typesan expression
of theform x == y would return true exactly when x and y denote the
same object. For example, the code in Figure 5.11 would print “ Different
objects.” For immutabl e abstract types, however, theresult of acomparison
using == would beunpredictabl e, sincetheimplementation hasthefreedom
to have or not have multiple copies of the same value. We return to this
pointin Section 5.3.

The first two functions exported by empset.1lcl, empset_create
andempset_final,aretypical of functionsfoundininterfacesexporting
abstract types.

The first conjunct in the ensures clause of empset_create says
that the function returns a fresh object of type empset. Saying that it is
fresh meansthat it is not aliased to any objectsvisiblein the pre-state. The
second conjunct says that the value of the returned object is the empty set
of employees. Thisfunction will typically appear in a statement of the
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form es = empset_create (). Since empsets are mutable, calls
to other functions exported by this interface, such as empset_insert,
can then be used to change the value contained by the object.

A client of empset should call empset_final whenitiscertain that
an empset object will never be referenced again. The clause ensures
trashed (s) saysthat uponreturnfromempset_final (es) nothing
can be assumed about the value of the object to which es isbound. The
assertion trashed (s) isnot equivaent to

modifies s

ensures true

because referencing a trashed object can even cause the client program to
crash.

A good implementation of empset _final will free storage that isno
longer needed, although this specification does not require it to. Since
a client has no information about how an empset is represented, it
cannot directly free the storage consumed by an empset. For example,
if empset were implemented as a pointer to a pointer to a data structure,
thecall free (es) would free only the pointer, not the data structure.

The third function in the interface, empset_clear, is provided for
reinitializing an existing empset. Unlike empset _create, it does not
create anew empset but rather has a side effect on an existing object.

Thefunctionsempset_insert and empset_insertUnique both
add an employee to an empset. The chief difference isthat the latter
requires that the employee to be added is not already present. This may
make it possible to implement the function more efficiently. However, if
the requirement is violated, the behavior of empset_insertUnique
istotally unconstrained by the specification. The implementation we give
later does not check the requirement. If it is violated the implementation
returns without complaint, but it breaks a representation invariant—thus
leading to unpredictable behavior on subsequent uses of the empset.

The functions empset_union and empset_disjointUnion both
return the union of two empsets. Once again, the requires clause makes
it possible to implement one more efficiently than the other. Notice that
even though s1 and s2 are not modified, the specifications refer to s1”
and s2”. The " is needed because s1 and s2 refer to objects. These must
be evaluated in some state to get avalue. Here s1 and s2 contain the same
values in the pre- and post-states. By convention, we use ~ rather than ’
for objectsthat are guaranteed to have the same values in both states.

Since both functionsare required (by fresh (result)) toreturn sets
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that are not aliased to any objects visible in the pre-state, the sets that
they return can be modified without affecting the values of other sets. For
example, knowing that theresult empset isfresh allowsthe client to pass
it to empset_final without worrying about having an effect on other
empsets.

One way of ensuring freshness is to alocate new storage. This raises
the question of what happens if there is no storage to alocate. In the
implementations of these functions (see Appendix B), thisis handled by
printing amessage and terminating the program.8 But such behavior seems
to violate the specification, which says that they should return. We could
have augmented the specification to take the possibility of running out
of storage into account, but it would have been tedious and not very
informative. Almost every function may fail for lack of storagein the stack
or heap. Sothe possihility of exiting theentire program, instead of returning
from the function, isimplicit in every ensures clause. This allows any
function to terminate the program. Of course, responsible implementors
do not take wanton advantage of this. For some applications it may be
important to specify interfaces that preclude running out of storage.

Therequires clause of empset_choose isnecessary to guarantee that
the ensures clause is satisfiable. If g™ isempty, it is not possible to return
an employee thatisamember. If ™ contains more than one element, the
specification allows any member s” to be returned. The implementation
we present later gains efficiency by being abstractly non-deterministic:
A single abstract empset value may have many different representations
(depending on the order in which itselementswere inserted), and the value
returned by empset_choose is determined by the representation value
passed in.

Although the remaining functions are a necessary part of this interface,
they don't illustrate any new LCL features. An implementation of the
interface is given in Appendix B.

DBASE

The next specification describes a simple data base of employees.

Up to now we have presented modules by first giving an interface
specification, then its auxiliary LSL specification, and finally, its imple-
mentation. This works well when the reader has good a priori intuition

8For simplicity, our implementation checksinline after eachallocation. In practice, it is
better to isolate this by calling user-supplied allocation routines.
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about the meaning of the abstractions used in the interface specification.
When such intuition cannot be relied upon, it is often better to present the
auxiliary specification first, as we do here.

Figure 5.12 contains a trait that constrains the kinds of elements a
database may contain. Not coincidentally, it corresponds closely to the
trait associated with employee.1cl. It isassumed by the dbase trait.

Figure 5.13 starts by including Set. This inclusion tells us that
a db is a set of employees. Recal that employee is defined in
dbaseAssumptions tobeatuple withfive fields. Notice that since
adb ismerely aset of tuples, no invariant about the elements, e.g., that no

dbaseAssumptions: trait

includes Set (employee for E, empset for C)
gender enumeration of MALE, FEMALE, gender ANY
job enumeration of MGR, NONMGR, job_ ANY
employee tuple of ssNum: int,

name: employee name,

salary: int,

gen: gender,

j: job

FIGURE 5.12. dbaseAssumptions.ldl

dbase: trait
assumes dbaseAssumptions
includes Set (db for C, employee for E, new for {},
hire for insert)
db g tuple of g:gender, j: job, 1: int, h: int
db_status enumeration of db_OK, salERR, genderERR,

JobERR, duplERR
introduces
query: db, db_g — empset

match: gender, gender — bool
match: job, job — bool

fire, promote: db, int — db
setSal: db, int, int — db
find: db, int — employee
employed: db, int — bool
numEmployees: db — int

FIGURE 5.13. dbase.ldl, part 1
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asserts
V e: employee, k: int, g, gg: gender,
j, Jjg: job, g: db g, sal: int, d: db
query (new, q) == { };
query (hire(e, d), q) ==
if match(g.g, e.gen) A match(g.j, e.j)
AN g.1 < e.salary A e.salary < g.h
then insert (e, query(d, q)) else query(d, q);

match(gg, g) == gg = gender ANY V g = gg;
match(jg, j) == jg = job ANY V j = jqg;
fire(new, k) == new;
fire (hire(e, d), k) ==

if e.ssNum = k

then fire(d, k) else hire(e, fire(d, k));

promote (new, k) == new;
promote (hire(e, d), k) ==

if e.ssNum = k

then hire(set_j (e, MGR), promote(d, k))
else hire(e, promote(d, k));

setSal (new, k, sal) == new;
setSal (hire(e, d), k, sal) ==
if e.gssNum = k

then hire(set_salary(e, sal),
setSal(d, k, sal))
else hire(e, setSal(d, k, sal));
employed(d, k)
= (find(d, k) .ssNum = k A find(d, k) € 4d);
employed (new, k) == false;
employed (hire (e, d), k) ==
e.ssNum = k V employed(d, k);
numEmployees (new) == 0;
numEmployees (hire (e, d)) == numEmployees (d)
+ (1if employed(d, e.ssNum) then 0 else 1);

FIGURE 5.13. dbase.ldl, part 2
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two employees have the same ssNum, isimplied. Thisisin contrast to
type db, whose specification, Figure 5.14, doesimply such an invariant.

In addition to the operators inherited from Set, the trait introduces
a number of operators that will prove useful in writing dbase.lcl.
Understanding the meaning of these operators isthe key to understanding
dbase.1lcl, Figure 5.14.

The most interesting of these operators is query. The first two
axioms imply that the value of query (d, q) isthe set containing all
employees in the data base that match the gender and job fields of g
and that have salaries between g.1 and g. h.

The dbase interface encapsulates a database and a set of functions
to query and manipulate it. It exports two exposed types, db_g and
db_status, and a number of functions. It also contains our first use
of global variables. LCL uses the same scope rules as C. However, LCL
extends the function prototype by including a list of the global variables
referenced by the function. LCLint will check that each global variable
accessed by the function body appearsin itsglobalslist.

At first glance, it may seem abit surprising that we have chosen to make
db an immutable type. The reason for thisis that we don’'t intend to have
formals of type db. Changes to the global variable d will be described as
changes to the binding of the variable, not as mutations to the object to
which the variable is bound in the pre-state.

Asit happens, the global variablein dbase isa specification variable.
Such variables are declared solely to facilitate writing specifications.
Neither the specification variable d nor the specification type db is
exported by the interface. Client code cannot refer to either. Furthermore,
since they are not exported, specification types and variables need not be
implemented. In fact, neither the type db nor the variable d appearsin our
implementation of thisinterface.

This example contains our first use of the an LCL claims clause. Such
clausesplay arole analogoustothe implies clausesof LSL. They assert
facts that the specifier believes should be derivable from the rest of the
specification. The claims clause here asserts that ssNums are unique
keysfor employees. Theterm d* isanalogousto d” and d ; it means “the
value of d in any state visible to clients of thisinterface.” Therefore, this
claim is an invariant that must hold in all states visible to clients. As we
shall see shortly, such invariants can be verified by data type induction.

The function hire is closely related to the operator hire of
dbase.1lsl. Thedifferenceisthatit doessomeerror checking andreturns
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imports employee, empset, stdio;

typedef struct{gender g; job j; int 1; int h;} db q;

typedef enum {db_OK, salERR, genderERR, jobERR,
duplERR, missERR} db status;

spec immutable type db;

spec db d;

uses dbase, sprint (ioStream, db) ;

claims UniqueKeys (employee el, employee e2) db d;
ensures
(el € d* A e2 € d* A el.ssNum = e2.ssNum)
= (el = e2);

}

db_status hire(employee e) db d; {
modifies d;

ensures
(1f result = db OK
then d’ = hire(e, 4d7) else d' = 47)

A result =
(1f e.gen = gender ANY then genderERR
else if e.j = job ANY then jobERR
else if e.salary < 0 then salERR
else if employed(d”, e.ssNum) then duplERR
else db_OK) ;
}
void uncheckedHire (employee e) db d;
requires e.gen # gender ANY A e.j # job ANY
A e.salary > 0 A -employed(d”, e.ssNum);
modifies d;
ensures d' = hire(e, 4d7);
}
bool fire(int ssNum) db d;
modifies d;
ensures result = employed(d”, ssNum)
A d' = fire(d”, ssNum) ;
}

FIGURE 5.14. dbase.Icl, part 1
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int query(db g g, empset s) db d; {
modifies s;
ensures s’ = s U query(d™, q)
A result = size(query(d™, q));
}

bool promote (int ssNum) db d; {
modifies d;

ensures
result = (employed(d”, ssNum)
A find(d", ssNum).j = NONMGR)
A (if result then d’' = promote(d”, ssNum)

else d' = ad7);
}
db status setSalary(int ssNum, int sal) db d; {
modifies d;
ensures
result =
(if employed(d”, ssNum)
then (if sal < 0 then salERR else db OK)
else missERR)
A (if result = db OK
then d’ = setSal(d”, ssNum, sal)
else d’ = ad7);
}
void db_print (void) db d; FILE *stdout; {
modifies *stdout”;
ensures 1 s:ioStream (
(*stdout™)’ = write((*stdout”™)”, s)
A isSprint(d”, s));
}
void db_initMod(void) db d; {
modifies d;
ensures d’ = new;

}

FIGURE 5.14. dbase.Icl, part 2
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aresult indicating the outcome of this checking.

ThefunctionuncheckedHire doesno error checking. Of course, if it
iscalled when itsrequires clause does not hold, it islikely to do something
unfortunate that may not be detected for quite some time. Both functions
modify the specification variable d. Since d isaglobal variablerather than
aformal parameter, it can be accessed directly; thereis no need to passin
apointer toit.

Thefunction query isaso closely related to the LSL operator query.
But the operator returnsan empset and thefunction returnsan int equal
to the number of employeesadded to s astherequired side effect of calling
query. Thisisacommon C idiom.

Now we can use data type induction, discussed in Chapter 3, to show
that the claims clause holds. The function dbase_initMod ensures
that d starts out empty. The only functions that are alowed to add
employeesto d arehire and uncheckedHire. If hire iscalled with
an employee whose ssNum is already in 4, its specification says that it
must return dup1ERR and leave d unchanged. Finally, the requires clause
of uncheckedHire forbidscalling thefunctionwith an employeewhose
ssNum isaready in d.

The only thing of note about dbase.1h, Figure 5.15, is that the
specification variable and specification type do not appear in it.

An implementation of dbase ispresented in Appendix B.

A TEST DRIVER FOR DBASE

Before looking at the abstractions used in the implementation of dbase,
we pause to take alook at some code that uses dbase. Figure 5.16 is part
of aprogram we used to test our implementationsof the modul es specified
earlier in this section.

The program drive beginswith aseries of #includes of the .hfiles
for the modules containing functions or types that it uses directly. It does
not include any subsidiary modulesthat they may use. While the included
.h files are necessary to compile the driver, to understand the code one
need look only at the corresponding .Icl files. If the implementation of
one of the used modules, such as empset, should change, drive would
have to be re-linked or re-compiled (depending upon whether the .h files
#includedindrive were modified), but drive’s code would hot have
to be changed.

After declaring somevariables, drive initializestheincluded modules.
LCLint will issue awarning if thisinitialization is not done immediately
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/*PASS Output from LCL Version 1.7 11-AUG-1992 */
#include "bool.h"
#include "employee.h"
#include "empset.h"
#include "stdio.h"
typedef struct

gender g;

job Jj;

int 1;

int h;
} db_q;

typedef enum {

db_OK,

salERR,

genderERR,

jobERR,

duplERR,

missERR} db_status;
extern db_status hire (employee e);
extern void uncheckedHire (employee e);
extern bool fire (int ssNum) ;
extern int query (db_g g, empset s);
extern bool promote (int ssNum) ;
extern db_status setSalary (int ssNum, int sal);

extern void db_print (void);

extern void db_initMod (void);

FIGURE 5.15. dbase.lh
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/* Include those modules that export */
/* things used explicitly here */
#include <stdio.h>

#include "bool.h"

#include "employee.h"

#include "empset.h"

#include "dbase.h"

int main(int argc, char *argv([]) {
employee e;
empset es;
char na[10000];
char * sprintResult;
int 1, j;
db_status stat;
db_qg g;

/* Initialize the LCL-specified modules */
/* that were included */
bool_initMod() ;
employee initMod () ;
empset_initMod () ;
db_initMod() ;

/* Perform tests */
for (i = 0; 1 < 20; i++) {
e.ssNum = i;
e.salary = 1000 * i;
if (i < 10) e.gen = MALE; else e.gen = FEMALE;
if (i < 15) e.j = NONMGR; else e.j = MGR;
(void) sprintf (na, "J. Doe %d", 1i);
employee setName (&e, na);
if (i%2 == 0) hire(e);
else {
uncheckedHire (e) ;
stat = hire(e);
if (stat != duplERR)
printf ("Error 1: Duplicate not found\n") ;
}

printf ("Should print 20 employees:\n") ;
db_print () ;

/* .. %/

FIGURE 5.16. Fragment of test driver
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following the declarations of thefunctionma in. Since the author of main
has no way of knowing what modules are used in the implementations of
the included modules, the various initMod functions must themselves
cal the initMod functions of the modules they use. This could resultin
some initMod functionsbeing called more than once, which iswhy their
specifications typically require them to be idempotent.

Thedriver then callssomeof the specified functions. Effectsthat arefully
constrained by specifications, such as the result returned by fire, are
checked internally. Where the specification allows a variety of acceptable
effects, output is printed so it can be checked by eye or by atest harness
that comparesit with the output of a previous run.

We now move down alevel of abstraction and specify three interfaces
that are useful in implementing the modules specified above. In order to
avoid storing more than one copy of an employee, the implementations
of db and empset usehandlesthat “point” to objectsof typeemployee.
These handles are defined in eref.lcl. The functions specified in
ereftab.lcl are used to ensure that the mapping from employees
to erefs is one-to-one. The interface erc.1lcl exports a type that is
basically a bag of erefs. Objects of type erc are used both to represent
empsets and within the implementation of db.

EREF

Figure5.17, introducesan immutableabstract type. Valuesof typeeref
can be thought of as abstract pointers to employees. They can be used
in much the same way as pointers, except that no functions corresponding
to pointer arithmetic have been supplied. Using erefs rather than actual
pointers offers several advantages:

e It provides alevel of abstraction. The implementor can change the
implementation, e.g., from anindex into an array to apointer, without
worrying about invalidating client code.

e |t allows private storage management. For example, a compacting
storage manager can be written, since all access must be through
functionsin the module.

e It is more general, allowing references to data that is in another
address space, on another machine, on a disk, etc.
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imports employee;

immutable type eref;
spec immutable type map;

Spec map m;
constant eref erefNIL = nil;

uses refTable(eref, employee, map) ;

eref eref alloc(void) map m; {
modifies m;
ensures newlInd(result, m", m’);
void eref free(eref er) map m; {
requires er € domain(m’) ;
modifies m;
ensures m’ = delete(m”, er);
void eref assign(eref er, employee e) map m; {
requires er € domain(m’) ;
modifies m;
ensures m’ = assign(m”, er, e);
employee eref get(eref er) map m; {
requires er € domain(m’) ;
ensures result = m [er];
bool eref equal (eref erl, eref er2) {
ensures result = (erl = er2);
void eref initMod(void) map m; {
modifies m;
ensures m’ = new;

}

FIGURE 5.17. eref.Icl
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refTable (Ind, Val, Tab): trait
includes Set (Ind, IndSet)
introduces
new: — Tab
assign: Tab, Ind, Val — Tab
delete: Tab, Ind — Tab
_ [ 1: Tab, Ind — Val
domain: Tab — IndSet
nil: — Ind

newInd: Ind, Tab, Tab — Bool

asserts
Tab generated by new, assign
Tab partitioned by = [ 1, domain
vV i, 11, 1i2: Ind, v: Val, t,tl,t2: Tab
delete (new, i) == new;
delete(assign(t, i1, v), i2) ==
if i1 = i2
then delete(t, 12)
else assign(delete(t, i2), 11, v);
assign(t, 11, wv) [i2] ==
if i1 = i2 then v else t[i2];
domain (new) = {};
domain(assign(t, i, v)) ==
insert (i, domain(t)) ;
newInd (i, tl, t2) == = (i € domain(tl))
A domain(t2) = insert (i, domain(tl))

A = (1 = nil)

FIGURE 5.18. refTable.lsl
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#if !defined (EREF_H)
#define EREF_H
#include "employee.h"
typedef int eref;
/* Private typedefs used in macros */
typedef enum {used, avail} eref status;
typedef struct {employee *conts;

eref status *status;

int size;} eref ERP;

/* Declared here so that macros can use it */
extern eref ERP eref Pool;

#include "eref.lh"

#define erefNIL -1

#define eref free(er) (eref Pool.status[er] = avail)
#define eref assign(er, e) (eref Pool.conts[er] = e)
#define eref get (er) (eref Pool.conts[er])

#define eref equal(erl, er2) (erl == er2)

#endif

FIGURE 5.19. eref.h
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#include <stdio.h>
#include "eref.h"

eref ERP eref Pool; /* private */
static bool needsInit = TRUE; /* private */

eref eref alloc(void) ({
int i, res;

for (i=0;
(eref Pool.status[i] == used)
&& (i < eref Pool.size);
i++);
res = i;
if (res == eref Pool.size) {

eref Pool.conts =
(employee*) realloc(eref Pool.conts,
2*eref Pool.size*sizeof (employee)) ;

if (eref Pool.conts == 0) {
printf ("Malloc returned null in eref_alloc\n");
exit (1) ;

}

eref Pool.status =
(eref_status*)realloc (eref_Pool.status,
2*eref_Pool.size*sizeof (eref_status)) ;

if (eref Pool.status == 0) {
printf ("Malloc returned null in eref_alloc\n");
exit (1) ;

}

eref_Pool.size = 2*eref Pool.size;

for (i = res+l; i < eref Pool.size; i++)
eref Pool.status[i] = avail;
eref Pool.status[res] = used;

return (eref) res;

}

FIGURE 5.20. eref.c, part 1
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void eref initMod(void)

int 1i;
const int size = 16;
if (needsInit == FALSE) return;

needsInit = FALSE;
bool_initMod () ;
employee initMod() ;
eref Pool.conts =
(employee *) malloc(size*sizeof (employee)) ;

if (eref Pool.conts == 0) {
printf ("Malloc returned null in eref_initMod\n");
exit (1) ;

}

eref Pool.status =
(eref status *) malloc(size*sizeof (eref status));

if (eref Pool.status == 0) {
printf ("Malloc returned null in eref_initMod\n");
exit (1) ;

}

eref_Pool.size = size;

for (i = 0; i < size; i++) eref Pool.status[i] = avail;

FIGURE 5.20. eref.c, part 2
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Ineref.1lcl, the specification variable m is used to keep track of the
set of extant ere £s(sothat the specificationeref _alloc cansay thatthe
result isanew eref) and of the mapping from erefs to employees.
Trait refTable, Figure 5.18, specifies the operators on the values of
objects of type map.

Figures 5.19 and 5.20 contain an implementation of eref.

The implementation variable eref _Pool has much the same role in
the implementation as the specification variable m did in eref.1cl.
However, there are other implementations that would not have anything
corresponding to m, for example, one that used the C type employee *
to represent erefs. Because the implementation variable eref_Pool is
usedinmacro definitions, C requiresitto bedeclared extern ineref . h,
even though clients of eref should not reference it—or even know about
its existence.

In this implementation of eref, the function eref _equal is
implemented by a macro that uses ==. However, one can imagine
implementations of eref for which this would not work. Suppose, for
example, the implementation used a gratuitous level of indirection and
made int * therepresentationof eref. Theneref_equal would have
to beimplemented as *er1 == *er2. Thisillustrateswhy LCLint will
generateawarning if clientsusethe == operator directly, rather than calling
eref_equal.

ERC

Figures 5.21 and 5.22 together specify a set of functions operating on the
mutable abstract types, erc (for “employeeref collection”) andercIter.
These types and functions are used in the implementation of both empset
and dbase.

An erc is essentially a bag.® Most of the functions on erc’s are
unremarkable.; the unusual functions in this specification are those that
dea withercIters.

Objects of type ercIter are used by clients to iterate over al the
elements of an erc. In the specification, Figure 5.21, (though not in the
implementation, discussed on page 99) ercIter’s are modeled asa pair
consisting of theerc to beiterated over and abag containingthoseerefs
that have not been yielded to the client. The function erc_iterStart

Trait Bag can befound in Appendix A, page 169.
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erc: trait

assumes CTrait
includes Bag(eref, ercElemsg)
erc tuple of val:ercElems, activelters: int
erclter tuple of toYield: ercElems, eObj: ercObj
introduces
{}: — erc
yielded: eref, erclter, erclter — bool
startIter: erc — erc
endIter: erc — erc
asserts
YV e: eref, itl, it2: erclter, c: erc
{} ==1{}, ol;
yielded (e, itl, it2) == e € itl.toYield
A it2 =
startIter(c) == [c.val, c.activeIters + 1];
endIter(c) == [c.val, c.activelIters - 1]

FIGURE 5.21. erc.lsl
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[delete(e, itl.toYield), itl.eObjl;
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imports eref;

mutable type erc;
mutable type erclter;

uses erc(obj erc for ercObj), sprint (erc, charl(]);

erc erc_create (void) ({
ensures fresh(result) A result’ = { };

}

void erc clear(erc c) {

requires ¢ .activeIters = 0;
modifies c;
ensures c’ = { };

}

void erc insert (erc c, eref er) (

requires c¢”.activelters = 0 A er # erefNIL;
modifies c;
ensures ¢’ = [insert(er, < .val), 0];

}

bool erc delete(erc c, eref er) (

requires ¢ .activeIters = 0;
modifies c;
ensures result = er € ¢ .val

A ¢’ = [delete(er, ¢ .val), 0];

}

bool erc member (eref er, erc c) ({
ensures result = er € ¢ .val;

}

FIGURE 5.22. erc.lcl, part 1
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eref erc choose (erc c)
requires size(c”.val) # 0;
ensures result € c”.val;
int erc_size(erc c) {
ensures result = size(c .val);
ercIter erc iterStart (erc c) ({
modifies c;
ensures fresh(result) A result’ = [c¢ .val, c]
A ¢’ = startIter(c’);

eref erc_yield(ercIter it) ({
modifies it, it”.eObj;
ensures if it".tovield # { }
then yielded(result, it”, it’)

A (it".eObj)’ = (it".eObj)"
else result = erefNIL A trashed(it)
A (it".eObj)’ = endIter((it”.eObj)");

}

void erc_iterFinal (ercIter it) {
modifies it, it”.eObj;
ensures trashed(it)
A (it".eObj)’ = endIter((it”.e0Obj)");
}

void erc_join(erc cl, erc c2) {
requires cl”.activelIters = 0;
modifies ci1;
ensures cl’ = [cl”.val U c2”.val, 0];

}

char *erc_sprint (erc c) {

ensures isSprint (result[]’, ¢”) A fresh(resultl[]);

}

void erc_final (erc c)
modifies c¢;
ensures trashed(c) ;
void erc_initMod (void) {
ensures true;

}

FIGURE 5.22. erc.lcl, part 2
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maps an erc into an ercIter in which al the elements remain to be
yielded. Each time erc_yield is caled with this object, it returns an
eref and updatesthe ercIter by deleting thereturned eref from the
bag of erefsthat remainto beyielded. Wheneach eref hasbeen yielded
asmany timesasit occursinthe erc, erc_yield returnserefNIL.
Iterator functions are typically used in code of the form
eref er;

erc c;
erclter it;

for_ercElems (er, it, c)
Body of loop

}
where for_ercElems isdefined by the macro

#define for ercElems(er, it, c)\
for (er = erc_yield(it = erc_iterStart(c));\
er != erefNIL;\
er = erc yield(it))

It is often the case that the body of an iteration itself uses an iterator.
Theintroduction of ercIters makesit possibleto have nested iterations
over thesameerc.

One question that ari ses with thisprogramming paradigm concerns what
happens if the erc is modified within the body of the loop. Writing
specifications that give a precise semantics for such a situation is not
difficult. However, building an efficient implementationis. For that reason,
our specification forbids modification of an erc that isbeing iterated over.

In erc.1s1, Figure 5.21, an erc is modeled as a pair of a bag of
ercElems and an int. The bag is used to contain the elements of the
erc and the int isused, in erc.1cl, to keep track of the number of
activeiterators. Thismakesit possibletowriterequiresclausesthat prohibit
caling a function that might modify an erc while that erc is being
iterated over. Conceptually, the function erc_iterStart increments
the number of active iterators. The function erc_yield decrements the
number of activeiteratorswhenit hasyielded thelast element. Thefunction
erc_iterFinal aso decrements the number of active iterators. This
function should be called before exiting prematurely (e.g., by break or
return) from the body of an iteration.'®

OThefunction erc_iterFinal canbeused in macrosto defineversionsof return
and break that are appropriate for use within iterations. An example of this appearsin
Appendix B.
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imports employee, eref;
mutable type ereftab;
uses ereftab;

ereftab ereftab create(void) ({
ensures result’ = empty;

}

void ereftab insert (ereftab t, employee e, eref er) {

requires getERef (t”, e) = erefNIL;
modifies t;
ensures t’ = add(t”, e, er);

}

bool ereftab delete(ereftab t, eref er) ({
modifies t;
ensures result = in(t", er) A t’ = delete(t”, er);

}

eref ereftab lookup (employee e, ereftab t) ({
ensures result = getERef (t”~, e);

}

void ereftab initMod(void)
ensures true;

}

FIGURE 5.23. ereftab.Icl

Again, the implementation is not presented here, but appears in
Appendix B.

EREFTAB

The last module in our example is ereftab, Figures 5.23 and 5.24. It
is used to create a one-to-one mapping from employees to erefs. It
makes it unnecessary to store multiple copies of the same employee
record within the implementation of empset.

The intended use of ereftab_insert isto put an employee in
an ereftab only after a lookup has failed to find an eref for that
employee. The requires clause of ereftab_insert formalizes this
property, and allows the implementation not to duplicate a test that hasjust
been made by the client.

Theimplementationof ereftab isunremarkable, andisnot presented.
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ereftab: trait

assumes CTrait

introduces
empty: — ereftab
add: ereftab, employee, eref — ereftab
delete: ereftab, eref — ereftab
getERef: ereftab, employee — eref
erefNIL: — eref
in: ereftab, eref — bool
size: ereftab — int

asserts
ereftab generated by empty, add
ereftab partitioned by getERef
V e, el: employee, er, erl: eref, t: ereftab

delete (empty, er) == empty;
delete(add(t, e, er), erl) ==
if er = erl then t
else add(delete(t, erl), e, er);
in (empty, er) == false;
in(add(t, e, er), erl) == er = erl V in(t,
getERef (empty, el) == erefNIL;

getERef (add(t, e, er), el) ==

if e = el then er else getERef (t, el);
size (empty) == 0;
size(add(t, e, er)) ==

1 + (if in(t, er) then 0 else 1)

FIGURE 5.24. ereftab.Isl

er) ;
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typedef struct _elem

{eref val; struct _elem *next;} ercElem;
typedef ercElem *ercList;
typedef struct {ercList vals; int size;} ercInfo;
typedef ercInfo *erc;
typedef ercList *ercIter;

FIGURE 5.25. erc’s representation

IMPLEMENTATION NOTES

Here we take the opportunity to make some comments about the
relationship of these specifications to the implementations presented in
Appendix B.

In erc.1lcl, Figure 5.22, the value of an object of type erc was
modeled asapair of abag and an integer. Theinteger was used to keep track
of the number of active iterators. Figure 5.25 contains the representation
used in the implementation of erc and ercIter. The representation of
erc isapair, but the integer is not used to keep track of the number of
active iterators. Rather it contains the number of elementsinthe erc. In
fact, the implementation has no need to keep track of the number of active
iterators. It is the responsibility of the clients of this interface to ensure
that the requires clause holdswhenever afunction iscalled. It might be an
appropriate application of defensive programming for the implementor of
erc.lcl to keep track of the number of active iterators and check that
requires clauses hold on entry to functions, but it is not required by the
specification.

The implementation of empset usesan erc to represent an empset.
(Recdll thattheval field of anerc isabag.) Theimplementational so uses
a non-exported module-level variable, known, to avoid alocating space
for the same employee more than once. The first time an employee
isinserted into any empset, it isaso inserted into known and a newly
alocated eref isinserted intothe erc. On subsequent insertsof the same
employee intoany empset, theold eref isreused. Thisauxiliary data
structure is shared by the implementation of all objects of type empset,
but this sharing is not visibleto clients.

Figure 5.26 contains a representation invariant for the implementation
of empset. The implementation ensures that thisinvariant is established
by empset _create and preserved by al other functionsin the empset
interface. The first conjunct of the invariant asserts that no eref occurs
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V s:empset
(V er:eref (count(er, s.val) < 1)
A s.activelters = 0
A V er:eref
(count (er, s.val) = 1 = er € known)

FIGURE 5.26. Representation invariant for empset

#define firstERC mMGRS
#define lastERC fNON
#define numERCS (lastERC - firstERC + 1)

typedef enum {mMGRS, £fMGRS, mNON, fNON} employeeKinds;

erc db[numERCS] ;

FIGURE 5.27. dbase.c fragment

more than once in the val part of an erc used to represent an empset.
The second conjunct corresponds to the requires clause of many of the
functions of type erc, and therefore must be maintained so that the
implementation of empset can use those functions. The third conjunct
givesarel ationship that must alwayshol d between the modul e specification
variable known and any erc representing an empset.

The implementation of dbase is considerably longer than that of the
other modules specified here. It is also somewhat different in structure.
Unlikeempset .h anderc.h, dbase . h containsno typedef (although
it doesinherit typedefs of exposedtypesfromdbase . 1h). Thisisbecause
dbase.1lcl exportsno abstract types and the implementation of dbase
doesn’t use any macros that depend on locally defined types. Information
pertinent only to compiling the implementation itself is restricted to
dbase.c, Figure5.27.

The specification variable d in dbase.lcl is implemented by
the variable db. We chose a different name for the variable in the
implementation to emphasize that there is no necessary correspondence
between module-level variables appearing in the implementation and
specification variables appearing in the specification. It ispurely accidental
that our specification variable corresponds to a single implementation
variable; one of our earlier implementations of the interface used four
distinct ercsto represent d.



5. LCL: A Larch Interface Languagefor C 101

The correctness of the implementations of the functions in dbase. ¢
depends upon the maintenance of the representation invariant given in
Figure 5.26. That this holds can be shown by an inductive argument:

o Itisestablished by dbase_initMod.

e For each exported function, if the invariant and the requires
clause hold on entry, the invariant will hold upon termination. In
discharging this step of the proof, it is necessary to examine even
those functions whose specification does not allow them to modify
d, sincethey might still modify the representation of 4, i.e., thearray
db.

The implementation of dbase includes severa functions that do not
appear in dobase.lcl and therefore are not accessible to clients. It
would be acceptable for these functions to break the invariant temporarily
(athough, in fact, they don’t).



Chapter 6

LM3: A Larch Interface Language
for Modula-3

This chapter describes much of LM3, version 1.1, and gives an informal
description of its semantics. It skimssomewhat rapidly over therole of the
LSL specification tier, which isquite similar to that for LCL, as discussed
in the previous chapter.

Because Modula-3 is structured around the definition and use of explicit
interfaces, LM3 specifications are more intimately related to Modula-3
programsthan LCL specificationsare to C programs. Because Modula-3's
opaguetypesand revelations providedirect support for abstract types, LM3
doesn’'t need to add much in that area. Because Modula-3'SREF typesare
more disciplined than C's pointer types, LM 3's storage model is somewhat
simpler. Because Modula-3 provides garbage collection, specifications
don’'t have to say as much about storage management; for example, there
isno need for anything correspondingto t rashed in LCL. But subtyping
and concurrency raise issues that make LM3 complicated in other ways.

LM3 provides constructsfor specifying:

types, both fully exposed and abstract (opaque);

procedures and object methods (collectively, routines);

invariants, for both types and modules;

concurrency and synchronization.

This chapter is intended for Modula-3 programmers—practicing or
potential. We assume some familiarity with Modula-3. If you are not
acquainted with Modula-3, you may wish to consult a Modula-3 text
[52, 69].

6.1 Thereation between LM3 and Modula-3

Modula-3 has well-defined notions of interface and implementation:

e Aninterfacefile (.13 file or . ig file) declares the components of
the modul €' sinterface and documentsthe intended uses of exported
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types and the actions of exported procedures. LM 3 specifications
areincorporated ininterface files, wewill often call such augmented
files interface specifications.

e An implementation file (.m3 file or .mg file) supplies the
representations of the types and the bodies of the procedures and
object methods declared in the interface, as well as code that is
private to the module.

Clients of amodule should look at itsinterface, not its implementation.
LM3isusedto provideclientswith aprecise description of thefunctionality
of the interface! An LM3 specification also provides implementors a
contract with precise information about what they are to implement.

There are two kinds of information in an LM 3 interface specification:

¢ Modula-3 declarations. Each Modula-3 interfacefileisalsoan LM3
specification. Thereis abuilt-in association of Modula-3 base types
and type constructorswith LSL sorts, and there is a standard set of
traitsfor Modula-3 that provides operators on these sorts.

e LM3 pragmas. Aswill be discussed in the rest of this chapter, LM3
annotations are incorporated in Modula-3 as pragmas, set off by
the brackets <* and *>. Pragmas embedded in interface files can
introduce abstract types and give constraints on types, variables,
and routines. Since the compiler ignores pragmas that it does not
recognize, they provideaconvenient way of embedding specification
information in the program text. LM3 annotations may be thought
of as formalized commentswithin the interface file.

6.2 TheLM3 semantic model

The LM3 and LSL tiers of a specification are connected as described
in Chapter 3. LM3 annotations are written using LSL terms plus some
syntactic sugar to make specifications more Modula-3-like in appearance.

Since LM3, like Modula-3, is statically typed, the kind of values that a
variable can contain in any state isfixed. Similarly, each LSL value has a
unique sort. To connect the two languages, there is a mapping from LM3

1L M3 isalso used to annotateimplementations for program verification. This aspect of
LM3isnot addressed in this book.
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typesto LSL sorts. Each built-in type of Modula-3, each type built from
Modula-3 type constructors (e.g., ARRAY [1..100] OF INTEGER),
and each abstract type defined in LM 3 is based on an LSL sort. The sort
on which atype is based does not appear explicitly in LM 3 specifications.
Instead, an L M 3 typename or other type expression standsfor itsassociated
sort. LM 3 follows Modula-3's type checking rules [69].

Standard LSL traits define operators of the sorts upon which Modula-3
built-in types (e.g., INTEGER and TEXT) are based. Users familiar with
Modula-3will already have someintuition about these operators. Specifier-
suppliedtraitsare used to introduce application-specific operators. A traits
clause is used to incorporate specifier-supplied traits and to connect user-
defined typesto LSL sorts.

An LM3 interface specification defines the functional behavior of a
collection of exported routines (procedures and methods), variables, and
constants. From a semantic point of view, thereis no significant difference
between procedures and methods; methods are just procedures with an
implicit SELF parameter and a dlightly different syntax.

A routine may communicate with its calers by returning a result, by
accessing variables accessible to the caller, by modifying such variables,
or by raising an exception. The specification of each routinein aninterface
can be studied, understood, and used without reference to the specifications
of other routines.

Each routineis specified by apredicate on apair of states—the pre-state
and the post-state—that defines the set of state transformations (actions)
the routine is allowed to perform.?

A stateisarepository for entitiesthat can be changed by routines. Itisa
mapping from entire variables to values. Each program and specification
variableisacoordinate of the state space; entirevariablesarethe orthogonal
coordinates. Each entire variable can be assigned avalue without affecting
thevalue of any other entire variable. For example, if Aisanarray variable,
Aisentire,buta[i] and2 [§] arenot, sinceassigning to onemight change
the other, depending on the values of 1 and ;. Each field of an object type
is an entire variable, indexed by objects. However, t . £ is analogous to
£ [t] andisnot entire.

e The global state for an interface specification is defined by its
type, variable and constant declarations, and the global states of the

2Inour discussion of concurrency, wewill generalizethe predicateto apply to asequence
of pairs of states, rather than just asingle pair; see page 116.
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interfaces it imports. It may include auxiliary variables and fields
introduced in pragmas purely for the purposes of the specification.

e The local state for a routine specification is given by its formal
parameter list, RESULT (whichrepresentsthereturned value, if any),
RAISEVAL (which represents the normal or exceptional outcome),
RAISEARG (which represents the value of the argument to RAISE,
if any), CURRENT (which represents the identity of the thread that
called the routine), and the components of the global state that the
routineis alowed to access.

e The target variables of a routine are those variables to which it is
allowed to assign new values. They are a subset of its local state,
and are explicitly listed in its specification.

¢ Within a specification, an immutable value (constant) is represented
directly by its name. The value of a variablein the pre-state is also
represented by itsname; the value of atarget variablein the post-state
is represented by its name followed by a prime ().

As discussed in Chapter 3, a routine specification consists of a routine
declaration augmented by a body containing REQUIRES, MODIFIES,
and ENSURES clauses. It effectively separates the obligations of clients
and implementations. The requires clause gives the obligations of the
client, which the implementor is entitled to presume. The modifies and
ensures clauses give the obligationsof theimplementor, which (along with
termination) the client is entitled to presume.

6.3 A guided tour through an LM 3 specification

To show how LM3 isused, we present and discuss an example that makes
use of most of its features. The example is only superficially redlistic; it
was structured to use language constructs in the order that we want to
discuss them.

AN EMPLOYEE DATABASE

Our exampleis asimpledatabase that holdsinformation about employees.
If you have aready looked at the example in Chapter 5, you should note
that thisis not the same design. For example, this database stores sharable
Employee objects, Chapter 5's database stores values of records about
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employees. Some of the differences are due to differences between the
stylesthat are natural in C and in Modula-3; some are arbitrary.

An interesting feature of this database is that these routines may be
invoked concurrently and therefore require mutually exclusive access
to the shared data. How this mutua exclusion is ensured is up to the
implementation; the specification doesnot say. However, it does say which
routines are allowed to be non-atomic; all the rest must appear atomic to
their users.

We start with simpleinterfaces and build up to more complex ones:

¢ EmployeeData containsno specification pragmas, but showshow
Modula-3 declarations are interpreted as L M3 specifications.

e Employee introduces some explicit LM3 type specifications and
illustrates the specification of methods of an exposed type.

e GenericSet gpecifies atype that is generic and opaque, and has
a nondeterministic method.

¢ EmployeeSet showstheinstantiation of a generic interface.

e EmployeeGroup illustrates simple subtyping and a non-atomic
routine.

¢ EmployeeDatabase usesacombination of previously-discussed
features.

e EmployeeSetFriends illustratesthe use of apartia revelation
to give access to part of the representation of an abstract type.

We specify each interface, and describe the meaning of the LM3
constructs it introduces.

EMPLOYEEDATA

The interface specification in Figure 6.1 declares some simple types
that we use in later interfaces, but contains no specification pragmas. It
illustrates exposed types, whose full specification is given by the semantics
of their Modula-3 declarations. The specification states that:

e MaxSal isaconstant of sort Int.
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INTERFACE EmployeeData;
CONST MaxSal = 1000000;
TYPE

Gender = {Male, Female};
Job = {NonMgr, Manager};
Salary = [1 .. MaxSal];
SSnum = INTEGER;

END EmployeeData.

FIGURE 6.1. EmployeeData.i3

¢ Inany state, the value of a variable of type Salary hassort Int
from the trait Integer, (Since INTEGER is the base type of any
integer subrange). Furthermore, the value will be between 1 and
MaxSal. SSnum issimply arenaming of INTEGER.

e Gender and Job are enumeration types with the constants
Gender.Male and Gender.Female and Job.NonMgr and
Job .Manager. These constants may be used in specificationsjust
asthey arein programs.

EMPLOYEE

Figure 6.2 defines a data type used to hold information about individual
employees.

The imports clause of Employee says that its interface specifi-
cation depends on EmployeeData’s interface specification; it gives
Employee and its clients access to the constants, variables, types, and
routines specified in EmployeeData. It also makes the trait associated
with EmployeeData a part of Employee’s associated trait. This
specification dependency should not be confused with an implementation
dependency, where an interface is used within the implementation of a
module.

Following a common convention in Modula-3, the principal type of the
Employee interface is named T, for easy reference within the interface
specification and implementation. Outside the module, it is referred to as
Employee.T.

T is an exposed object type.® It doesn’t introduce any abstraction, and

SUnfortunately, “ object” means different thingsin different programming languages. In
Modula-3, an object type is an explicit reference type with fields and methods.
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INTERFACE Employee;
IMPORT EmployeeData;
TYPE
T = OBJECT
ssnum : EmployeeData.SSnum;
name : TEXT;
salary: EmployeeData.Salary;
gender: EmployeeData.Gender;
job : EmployeeData.Job;
METHODS
promote (increase: EmployeeData.Salary)
RAISES {AlreadyManager};
END;
EXCEPTION AlreadyManager;
<* METHOD T.promote (increase)
REQUIRES
(SELF.salary + increase) < EmployeeData.MaxSal
MODIFIES SELF.job, SELF.salary
ENSURES SELF.job’ = EmployeeData.Job.Manager
A SELF.salary’ = SELF.salary + increase
EXCEPT SELF.job = EmployeeData.Job.Manager
=> (RAISEVAL = AlreadyManager A UNCHANGED (ALL))

* >
END Employee.

FIGURE 6.2. Employee.i3
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itsdatarepresentation isfully defined by Modula-3. Theimplicit operators
for an object typeallow accesstoitsfields, sothat, for example, t . name’
refers to the value in the post-state of the name field of the object t.

This interface provides our first example of a specification that goes
beyond what is provided by Modula-3 itself. In the specification of the
method T . promote

e therequiresclause saysthat promote should be called with avalue
of increase that resultsin avalid raise; the raise will be positive
because of thetypeof increase. If theraiseistoo big, thebehavior
of promote isunconstrained.

¢ themodifiesclause (target list) saysthat promote may not ater the
values of any client-visible variables except the object’s own job
and salary fields.

¢ the ensures clause says that promote must change the job and
salary fieldsin particular ways. This postcondition is written in
two parts:

— The first part describes the normal result of an invocation of
promote: the job field will be changed to Manager andthe
salary field will beincremented by increase.

— The second part describes the exceptional behavior. If
SELF.job is dready Manager then promote must raise
the exception AlreadyManager and change nothing.

There are several more things to note about the constructs used in this
specification:

e An except clause consists of one or more guarded predicates. |If
any guard (a predicate before =>) is true, then the method must
ensure the postcondition given after one of the true guards, rather
than the normal postcondition. If more than one guard is true, the
implementation may satisfy any of the associated postconditions,
nondeterministically.

e RAISEVAL isaspecia component of the state; a value other than
RETURNS in the post-state represents the raising of an exception. If
thereisno except clause, RAISEVAL = RETURNS isimplicit.
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e Wedo not follow RESULT and RAISEVAL with primes; since they
are meaningful only in the post-state, there is no ambiguity.

¢ The UNCHANGED operator is a shorthand for saying that the values
of alist of variables may not change between the pre-state and the
post-state, even though they are in the target list. It is equivaent to
saying x’ = x for each x in the list. ALL is a further shorthand for
the complete target list.

GENERICSET

Theinterface in Figure 6.3 providesageneric set abstraction. Thisisour
first type that is not exposed. T is an abstract type whose representation is
hidden from clients. In Modula-3, thisis called an opaque type.

T <: Public saysthat T isa subtype of the type Public. Itisa
common convention in Modula-3 to use an auxiliary type named Public
to declare the methods and fields exported by an opaque type.

Since we have chosen not to make the representation of T visible, we
have to provide some way to represent its values in specifications. We
declare a specification field, T. set to denote the value represented by
the hidden components. Within the specification, we treat it as though it

GENERIC INTERFACE GenericSet (E) ;
EXCEPTION NotFound;
TYPE
T <: Public;
Public = OBJECT

METHODS

init ();
copyTo (newCopy: T);
freshCopy (): T;
size () : CARDINAL;
insert (e: E.T);
remove (e: E.T);
union (s: T);
disjointUnion (s: T);
intersect (s: T);
member (e: E.T): BOOLEAN;
choose (): E.T;

END;

FIGURE 6.3. GenericSet.ig, part 1
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<* TRAITS Set(E.T FOR E, ETSet FOR C);

TYPE ETSet;
FIELDS OF T set: ETSet

METHOD T.init ()
MODIFIES SELF.set
ENSURES SELF.set’ = {}

METHOD T.copyTo (newCopy)
MODIFIES newCopy.set

ENSURES newCopy.set’ = SELF.set
METHOD T.freshCopy ()
ENSURES RESULT.get’ = SELF.set A FRESH(RESULT)

METHOD T.size()

ENSURES RESULT = size (SELF.set)
METHOD T.insert (e)

MODIFIES SELF.set

ENSURES SELF.set’ = insert (e, SELF.set)
METHOD T.remove (e)

MODIFIES SELF.set

ENSURES SELF.set’ = delete(e, SELF.set)
METHOD T.union(s)

MODIFIES SELF.set

ENSURES SELF.set’ = SELF.set U s.set
METHOD T.disjointUnion (g)

REQUIRES SELF.set N s.set = {}

MODIFIES SELF.set

ENSURES SELF.set’ = SELF.set U s.set
METHOD T.intersect (s)

MODIFIES SELF.set

ENSURES SELF.set’ = SELF.set N s.set
METHOD T.member (e)

ENSURES RESULT = e &€ SELF.set
METHOD T.choose ()

REQUIRES SELF.set # {}

MODIFIES SELF.set

ENSURES RESULT & SELF.set

A SELF.set’ = delete (RESULT, SELF.set)
*>
END GenericSet.

FIGURE 6.3. GenericSet.ig, part 2
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INTERFACE EmployeeSet = GenericSet (Employee)
END EmployeeSet.

FIGURE 6.4. EmployeeSet.i3

were declared as an ordinary field of T. We don’'t have to include it in
the implementation, but any revelation of hidden fields of T must have
an associated abstraction relation that shows how the specification and
implementation values are related.

In our earlier examples, the trait associated with each interface has been
implicit, entirely composed of built-in traits associated with Modula-3 and
with the types and type constructors appearing in declarations. Here, the
traits clause explicitly includes set, page 167, into the trait associated
with the GenericSet interface, renaming the formal parameters of the
trait to the sorts on which the types £. T and ETSet arebased. E. T isa
programtype, and ETSet isaspecificationtype, introduced in thispragma
asthe type for the specification field, set.

Most of the method specifications follow the same pattern as our
previous example, using the specification fields of T rather than actual
fields. T.init, for example, ensures that the abstract field SELF. set
hasthe value {} when it returns. The specification of T . copyTo ensures
that the set field of the object passed in as a parameter becomes equal to
SELF. set. Thisisquitedifferent from saying that SELF isassigned to a
VAR parameter, which would be specified as follows:

METHOD T.assign(target)
MODIFIES target
ENSURES target’ = SELF

The choose method is an example of a specification of a non-
deterministic routine. The method is required to remove and return some
value from the set. No information is given about which element isto be
chosen; the implementation may use this freedom to improve efficiency,
so clients must not rely on any particular choice.

EMPLOYEESET

EmployeeSet is a simple interface that instantiates the interface
GenericSet passing the Employee interface for the forma pa-
rameter E. The instantiated program type EmployeeSet.T has an
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instantiated specification field set with instantiated specification type
EmployeeSet .ETSet that holdsaset of Employee.Ts.

EMPLOYEEGROUP

Figure 6.5 introduces a specialization of EmployeeSet that hasan extra
component, manager. Informally, agroup isa set of employeeswith one
distinguished member. The only extra operation we add to a group is a
method to make an employee (who may or may not already be a member
of the group) the manager of the group.

In thisinterface, we illustrate the interaction between specification and
subtyping, show atype invariant, and specify a non-atomic method.

Here, we have a partially opaque type. The type has one visible field,
EmployeeGroup.T.manager, but there may also be hidden fields
used by the implementation. Since T is a subtype of EmployeeSet . T,
both the exposed and specification fields of EmployeeSet . T can be
used in the specification of T. We use the local manager field and the
inherited set specification field.

INTERFACE EmployeeGroup;
IMPORT EmployeeData, Employee, EmployeeSet;
TYPE
T <: Public;
Public = EmployeeSet.T OBJECT
manager: Employee.T;
METHODS
copyTo (newCopy: T);
freshCopy(): T;
makeManager (e: Employee.T) ;
END;
PROCEDURE Subordinates (t: T): EmployeeSet.T;
<* TYPE INVARIANT t: T
t.manager = NIL
V (t.manager.job = EmployeeData.Job.Manager
A t.manager € t.set)
PROCEDURE Subordinates(t)
ENSURES RESULT.get’ = delete(t.manager, t.set)

A FRESH (RESULT)
* >

FIGURE 6.5. EmployeeGroup.i3, part 1
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< * STRENGTHEN T.init ()
MODIFIES SELF.manager
ENSURES SELF.manager = NIL
STRENGTHEN T.remove (e)
MODIFIES SELF.manager
ENSURES IF e = SELF.manager
THEN SELF.manager’ = NIL
ELSE UNCHANGED (SELF.manager)
STRENGTHEN T.intersect (s)
MODIFIES SELF.manager
ENSURES IF SELF.manager &€ SELF.set’
THEN UNCHANGED (SELF.manager)
ELSE SELF.manager = NIL
STRENGTHEN T.choose ()
MODIFIES SELF.manager
ENSURES IF RESULT = SELF.manager
THEN SELF.manager = NIL
ELSE UNCHANGED (SELF.manager)
METHOD T.copyTo (newCopy)
MODIFIES newCopy.manager, newCopy.set
ENSURES newCopy.manager’ = SELF.manager
A newCopy.set’ = SELF.set
METHOD T.freshCopy ()
ENSURES RESULT.manager = SELF.manager
A RESULT.set = SELF.set
A FRESH (RESULT)
METHOD T.makeManager (e)
MODIFIES e.job, SELF.manager, SELF.set
COMPOSITION OF promote; add_to_group; install END
ACTION promote
ENSURES e.job’ = EmployeeData.Job.Manager
A UNCHANGED (SELF.manager, SELF.set)
ACTION add_to_group
ENSURES SELF.set’ = insert (e, SELF.set)
A UNCHANGED (e.job, SELF.manager)
ACTION install
ENSURES SELF.manager’ = e

A UNCHANGED (e.job, SELF.set)
* >
END EmployeeGroup.

FIGURE 6.5. EmployeeGroup.i3, part 2
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The first new construct in this specification is a type invariant. The
meaning of thisclause isthat, in any state visibleto a client, each instance
of T either has ho manager or has amanager field whose job field
has the value Manager and that manager will aways be a member of
its set. Thisinvariant is conjoined to the precondition of each routine
and action in the interface that may read something of type T, and to the
postcondition of each routineand action in theinterface that may modify or
return something of type T. Variable namesin the invariant are implicitly
primed for postconditions.

The procedure in the interface, subordinates, returnsthe members
of a given group, excluding the manager. It could, of course, have been
specified as a method on T, but it is also perfectly valid to do it thisway.
The only item of interest in the specification of isthe use of the set field
of aT asavauefor the equivalent field in an EmployeeSet . T. Thisis
permitted since the set field was inherited from the supertype.

Each of the methods that T inherits from EmployeeSet . T has an
inherited specification. A subtype method always inherits the specification
of the corresponding method for the supertype; otherwise it would not
be sensible to use values of the subtype in contexts where values of
the supertype is expected. Since the subtype is more specialized, it is
often appropriate to give it a stronger specification. This is done using a
strengthen clause.

For example, because an EmployeeGroup . T has amanager figd,
and an EmployeeSet . T does not, most methods that modify values of
type EmployeeGroup . T should have strengthened specifications.

For some of the methods, such as size, manager is smply
irrelevant. Generalizing the principlethat an omitted modifiesclause means
modifies nothing, the absence of any further specification of size
meansthat it leavesthemanager field unchanged. Thisinterpretation al so
suffices for the specifications of insert, union, disjointUnion,
and member.

The incremental specifications of init, remove, intersect and
choose are simple: they just say what value manager isto havein the
post-state. This extra clause is conjoined onto the specification inherited
from the supertype.

The treatment of the methods copyTo and freshCopy is more
complex, but not unusual. In Modula-3, only the implicit SELF parameter
to a method gets the subtype by inheritance. So both inherited methods
produce an EmployeeSet . T, rather than an EmployeeGroup.T. TO
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get around this, we use a standard trick. We introduce new methods that
produce EmployeeGroup . T values, intentionally giving them the same
names, so they obscure the inherited methods. Since the new methods
have different signatures, STRENGTHEN is not appropriate and we give
full specifications for the new methods.*

The method makeManager introduces another feature. Modula-3 has
built-in support for threads, which are lightweight units of concurrency
that may share a state space. When specifying routines that may be called
from multiple threads, we have to be concerned about the possibility of
interference among these threads. LM3 provides constructs to specify
each non-atomic routine as a sequence of atomic actions.®> To clients of
an interface, atomic actions must always appear to have executed in some
particular order; any concurrency in the implementation must be hidden.

The behavior of makeManager is specified as three atomic actions.
Consider the elements of its specification:

e Themodifies clause isthe same as for an atomic routine. It restricts
each of the actions to a subset of its target list. None of the
actionscan modify non-target variables. An action specification may
further limit the changes to a subset of the target list, by indicating
componentsthat are not to be changed by that action.

e Rather than a single ensures clause, the method is specified as
a composition of a three actions. Each action has an associated
specification that can be read as if it were a routine specification
without arequires clause:

1. promote—must change the job component of the e
parameter toManager, and must not alter either themanager
field or the set specification field;

2. add_to_group—must insert e into the group;
3. install—must make e the manager of the group.

4Thesignature of inherited methods someti mes confusesnovice M odul a-3 programmers
and they make the mistake of expecting all parameters of the supertype to be converted
to the subtype. The same misunderstanding will lead to the detectable mistake of using
STRENGTHEN when it isinappropriate.

5This section only touches the tip of the concurrency iceberg. It does not discuss
synchronization operations or the general case where routines may have action sequences
of arbitrary length. A more complete example is contained in Chapter 5 of Systems
Programmingwith Modula-3[69], which usesan earlier version of LM3to specify Modula-
3's synchronization primitives.
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So the overall effect of the method is to make e the manager of
the group, while ensuring that each action preserves the invariant on T.
Preserving theinvariant between actionsisimportant because other actions
might be interleaved between promote and add_to_group or between
add_to_group and install.

EMPLOYEEDATABASE

An EmployeeDatabase, Figure 6.6, provides a collection of routines,
including both queries and updates, over a set of EmployeeGroups and
their employees.

INTERFACE EmployeeDatabase;
IMPORT EmployeeData, Employee, EmployeeSet,
EmployeeGroup;
TYPE
T <: Public;
Public = OBJECT
METHODS
init () ;
query (g: Query): EmployeeSet.T;
hire (e: Employee.T; g: EmployeeGroup.T)
RAISES {AlreadyEmployee};
getGroup (e: Employee.T): EmployeeGroup.T
RAISES {NotEmployee};
createGroup (man: Employee.T) :
EmployeeGroup.T;
removeGroup (g: EmployeeGroup.T) ;

END;
Query = RECORD
g := EmployeeData.Gender.Male;
j := EmployeeData.Job.NonMgr;
testGender, testJob: BOOLEAN := FALSE;
low := FIRST(EmployeeData.Salary) ;
high := LAST (EmployeeData.Salary) ;
END;

EXCEPTION AlreadyEmployee;
EXCEPTION NotEmployee;

FIGURE 6.6. EmployeeDatabase.i3, part 1
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<* TRAITS Set (EmployeeGroup.T FOR E, EGSet FOR C) ;
TYPE EGSet;
FIELDS OF T set: EGSet;
METHOD T.init
MODIFIES SELF.set
ENSURES SELF.set’ = {}
METHOD T.query (q)
ENSURES V e:Employee.T;
e € RESULT.set’
p=4
(1 gr:EmployeeGroup.T;
gr € SELF.set
e € gr.set
(g.testGender = g.g = e.gender)
(g.testJob = g.j = e.job)
g.low < e.salary
A e.salary < g.high)
METHOD T.hire (e, g)
REQUIRES g € SELF.set
MODIFIES g.set
ENSURES g.set’ = insert (e, g.set)
EXCEPT d gr:EmployeeGroup.T;
(gr € SELF.set A e € gr.set)
=> RAISEVAL = AlreadyEmployee
METHOD T.getGroup (e)
ENSURES e &€ RESULT.set A RESULT & SELF.set
EXCEPT V gr:EmployeeGroup.T;
- (gr € SELF.set A e € gr.set)
=> RAISEVAL = NotEmployee
METHOD T.createGroup (man)
MODIFIES SELF.set
ENSURES RESULT.manager = man

A
A
A
A

A RESULT.set’ = {man}
A FRESH (RESULT)
A SELF.set’ = insert (RESULT, SELF.set)

METHOD T.removeGroup (g)
MODIFIES SELF.set

ENSURES SELF.get’ = delete(g, SELF.set)
* >
END EmployeeDatabase.

FIGURE 6.6. EmployeeDatabase.i3, part 2
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INTERFACE EmployeeSetFriend;
IMPORT Employee, EmployeeSet, List;

REVEAL EmployeeSet.T < : EmployeeSet.Public
OBJECT
cont: List.T
END;

PROCEDURE Sort (s: EmployeeSet.T);
<*
TYPE INVARIANT s: EmployeeSet.T
size(s.set) = length(s.cont.l)
A Y e:Employee.T;
e € s.set & I i:Int;
0 < i A 1 < size(s.set)
A s.cont.l[i] = e

STRENGTHEN EmployeeSet.T.insert (e)
ENSURES
e ¢ SELF.set
= SELF.cont.l’[size(SELF.set)] = e

PROCEDURE Sort (s)
MODIFIES s.cont.1l
ENSURES
V i:Int;
(0 €< i A i1 < (size(s.set)-1))
= (s.cont.l’[i]) .ssnum

< (s.cont.l’[i+1]) .ssnum
*>

END EmployeeSetFriend.

FIGURE 6.7. EmployeeSetFriend.i3

As before, the actual representation of a T is hidden, so we provide a
specification field set, of abstract type EGSet.

EMPLOYEESETFRIEND

Thetype EmployeeSet . T, Figure 6.7, illustratesa Modula-3 partial
revelation of an opaque type. It allows clientsto know some of the detail
of an EmployeeSet . T without exposing al of it.

In Figure 6.7, we expose the fact that an EmployeeSet.T has a
field that isa List . T. We do not show the specification of the List
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interface here, but it has a specification field 1 that represents an abstract
list. The TYPE_INVARIANT providesthe abstraction relation, by relating
this concrete field to the abstract fields visible from EmployeeSet. We
strengthenthe insert method specification in aconsistent way, requiring
that each new element be added at the end of thelist.

Finally, we specify a procedure, Sort, that only makes sense in the
presence of the revelation: the set abstraction does not have an order, but
thelist representation does. Since the modifies clause doesn’'t allow Sort
to modify s.set, the specification can dispense with the usual clause
saying that the final value must be a permutation of theinitial value.

For more extensive use of partial revelation, see Chapter 6 of [69].
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Chapter 7

Using L P to Debug L SL Specifications

In earlier chapters, we have attempted to show how Larch can be used to
write precise specifications. However, it isnot sufficient for specifications
to be precise; they should also accurately reflect the specifier’s intentions.
Mistakes from many sources will crop up in specifications. Any practical
methodol ogy that relies on specifications must provide meansfor detecting
and correcting their flaws, in short, for debugging them.

Parsing and type-checking are useful and easy to do, but don't go
far enough. Unfortunately, we cannot prove the “correctness’ of a
specification, because there is no absol ute standard against which to judge
correctness. So we seek methods and toolsthat will be helpful in detecting
and localizing the kinds of errors that we commonly observe.

Since the Larch style of specification emphasizes brevity and clarity
rather than executability, it is usualy not possible to evaluate Larch
specifications by testing. Instead, LSL allows specifiers to state precise
claims about specifications. If these claims are true, they can be verified
statically. Such a verification won't guarantee that a specification meets a
specifier’sintent, but it isa powerful debugging technique. Once the flaws
verification reveals are removed, there should be fewer doubts about the
specification’s accuracy.

The claimsallowed in LSL specifications are undecidable in the general
case. Hence we can't hope to build a tool that will automatically certify
an arbitrary specification. However, tools can assist specifiersin checking
claims during debugging.

This chapter describes how two such tools fit into our work on LSL.
Our principal debugging tool is LP [30], the Larch proof assistant.! LP's
design and development have been motivated primarily by our work on
LSL, but it also has other uses (cf. Appendix E). Because of these other
uses, and because we also intend to use LP to analyze Larch interface
specifications, we have tried not to make L P too L SL-specific. Instead, we
have chosen to build and use asecond tool, the LSL Checker, asafront-end
to LP. The LSL Checker checks the syntax and type consistency of LSL

Theversion of LP describedin thisbook isthat released in November, 1991. A version
with increased logical power is currently under development.
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specifications, then generates L P proof obligationsfrom their claims.

Sections 7.1 and 7.2 describe the checkable claimsthat can be made in
LSL specifications. Sections 7.3 through 7.6 describe how LP is used to
check these claims. Section 7.7 contains an extended example.

7.1 Semantic checksin LSL

We begin by reviewing the kinds of semantic claims that can be made in
LSL. As mentioned in Chapter 4, semantic claims about LSL traits fall
into three categories:

e consistency (that a specification does not contradict itself),

¢ theory containment (that aspecification hasintended consequences),
and

e relative completeness (that a set of operatorsis adequately defined).

Consistency is an assertion about what is not in the theory of trait, and
is therefore not expressible in LSL. Instead, it is implicitly required of
al traits: no legal LSL trait’s theory contains the inconsistent equation
true == false.Clamsintheother two categoriesare stated explicitly
using the LSL constructs implies and assumes.

CHECKING IMPLICATIONS

An implies clause adds nothing to the theory of atrait. Instead, it makes a
claimabout theory containment. It enables specifierstoincludeinformation
they believe to be redundant, either as a check on their understanding or
to call attention to something that a reader might otherwise miss. The
redundant information is of two kinds: statements like those in asserts
clauses, which are claimed to be in the theory of the trait, and converts
clauses, which describe the extent to which a specification isclaimed to be
complete.

Theinitial design of LSL incorporated abuilt-in notion of compl eteness.
We quickly concluded, however, that requirements of completeness are
better left to the specifier’s discretion. It useful to check certain aspects
of completeness|ong before a specification isfinished. Furthermore, most
finished specifications are left intentionally incomplete in places. LSL
allows specifiers to make checkable claims about how complete they
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LinearContainer (E, C): trait
introduces
empty: — C
insert: E, C — C
head: ¢ — E
tail: ¢ — C
igEmpty: C — Bool
€ _: E, C— Bool
asserts
C generated by empty, insert
C partitioned by head, tail, isEmpty
YV c: C, e, el: E
head (insert (e, empty)) == e;
tail (insert (e, empty)) == empty;
isEmpty (empty) ;
- isEmpty (insert (e, c));
- (e € empty) ;
e € insert(el, ¢c) ==e = el V e € ¢
implies
YV c: C, e: E
isEmpty(c) = - (e € c)
converts €, isEmpty

FIGURE 7.1. Sample L SL specification

intend specificationsto be. These claims are usually most valuable during
specification maintenance. Specifiers don’'t usually make erroneous claims
about completeness when first writing a specification. On the other hand,
when editing aspecification, they often delete or change something without
realizing itsimpact on completeness.

The first part of the implies clause of the trait LinearContainer,?
Figure 7.1, asserts that if isEmpty of a container is true, no element is
in that container. By checking that this assertion follows from the axioms
of the trait, we can gain confidence that the axioms describing i sEmpty
and € are appropriate.

2This trait is similar to the trait Container that appears in Figure 4.13 and in
Appendix A: its theory is contained in that of Container. Many of the traits in this
chapter are adapted from traits appearing in Appendix A. However, in order to better
illustrate how traits are checked, we have changed them in small ways. In particular, we
have often added implications and suppressed details that do not affect the points we wish
to make.
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PQ(E, Q): trait
assumes TotOrd (E)
includes LinearContainer (E, Q)
asserts V g: Q, e: E
head (insert (e, q)) ==
if isEmpty(qg) then e
else if e < head(g) then e
else head(q) ;
tail (insert (e, q)) ==
if isEmpty(qg) then empty
else if e < head(g) then g
else insert (e, tail(qg))
implies
Vq:Q, e: E
e € g = —(e < head(q))
converts isEmpty, head, tail, €
exempting head (empty), tail (empty)

FIGURE 7.2. LSL specification for apriority queue

The converts clause in LinearContainer clams that the trait
contains enough axioms to define € and isEmpty; that is, given any
fixed interpretations for the other operators, al interpretations of € and
isEmpty that satisfy thetrait’s axioms are the same.

The converts clause in PQ, Figure 7.2, involves more subtle check-
ing. The exempting clause indicates that the lack of eguations for
head (empty) and tail (empty) isintentional: the operators head
and tail areonly claimedto bedefined uniquely relativetointerpretations
for thetermshead (empty) and tail (empty) . Section 7.5 describes
the checking entailed by the converts clause in more detail.

CHECKING ASSUMPTIONS

There are two mechanisms for combining LSL specifications. Both are
defined as operations on the texts of specifications. For both, the theory of
acombined specificationisaxiomati zed by the union of the axiomatizations
for theindividual specifications; each operator isconstrained by the axioms
of all traitsin which it appears. Trait inclusion and trait assumption differ
only in the checking they entail.

Thetrait PQ, Figure 7.2, which includes LinearContainer, further
constrainsthe interpretationsof head, tail, and insert. The assumes
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TotOrd (E) : trait

introduces
< __: E, E — Bool
> _: E, E — Bool

asserts forall x, vy, z: E
2 (x < x )

(x <y ANy < 2) =2 x < z;
x < vy X =y Vy < x;
X >y==y <X

implies
TotOrd(E, > for <, < for >)
Vx, y: E

FIGURE 7.3. LSL specificationfor total orders

clause of PQ indicatesthat PQ’s theory also contains the theory of the trait
TotOrd, Figure 7.3.

The use of assumes rather than includes entails additional
checking. Theassumption must be discharged whenever pQ isincorporated
into another trait. For example, checking the trait

NumericPQ: trait
includes PQ (N, NumericQ), Numeric

involves checking that the assertionsin the trait TotOrd (N) areimplied
by those in the traits PQ, LinearContainer, and Numeric taken
together. Sometimes these assumptionscan be syntactically discharged for
example, if Numeric explicitly includes TotOrd (N).

Figure 7.4 summarizes the checking that LSL requires for the sample
traits introduced in this section.

7.2 Proof obligations for LSL specifications

An LSL specification generally consists of a hierarchy of traits, some of
whichinclude, assume, or imply others. We usethe L SL Checker to syntax-
check and type-check the traits, to extract the proof obligations required
to check the semantic claims in the traits, and to discharge some of these
proof obligations. This section describes how the LSL Checker extracts
the proof obligations. The next several sections describe how we use LPto
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NumericPQ

Check consistency of NumericPQ.

Check assumption of TotOrd (N) by PQ.

Use the assertions of al traits except for those of TotOrd.

PQ Numeric
Check consistency of pQ. Check . ..
Check implications Use...

Use the assertions of PQ and the theories of
LinearContainer and TotOxrd.

LinearContainer TotOrd

Check consistency. Check consistency.
Check implications. Check implications.
Use local assertions. Uselocal assertions.

FIGURE 7.4. Summary of required checking
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discharge those proof obligations that the LSL Checker cannot discharge
syntactically.

To extract proof obligations, the LSL Checker computes the following
sets of propositions (equations, generated by clauses, and partitioned by
clauses) for each trait T in atrait hierarchy.

e Theassertionsof T consist of the propositionsin the asserts clauses
of T and of al traits (transitively) included in T.

e The assumptions of T consist of the assertions of al traits
(transitively) assumed by T.

e Theaxiomsof T consist of itsassertions and its assumptions.

¢ Theimmediate consequences of T consist of the propositionsin T's
implies clause and the axioms of al traitsthat T explicitly implies.

The LSL Checker places the axioms for each trait T in a file
named T Axioms.lp. It also generates a file named T_Checks. 1p,
which contains the proof obligations associated with showing that T's
axioms entail its immediate consequences, its converts clauses, and the
assumptionsof each trait explicitly included in or assumed by T. The LSL
Checker does not generate an explicit proof obligationfor showing that T's
axioms are consistent. In fact, such a proof obligationisnot expressiblein
LP. Like LSL, LP contains no mechanisms for making statements about
what is not in atheory.

TheL SL Checker can discharge some proof obligationssyntactically, for
example, because a proposition to be proved occurs textually among the
axioms available for use in the proof. When it cannot do this, it places
commands in T_Checks.1lp that initiate a proof of the proposition.
Sometimes LP will be able to carry out the required proof automatically;
sometimesit will require user assistance.

Consider thetrait NumericPQ, whichincludesboth PQ and Numeric.
Because PQ assumes TotOrd, it isnecessary to check that the axioms of
NumericPQ imply those of TotOrd. If Numeric explicitly includesor
impliesTotOrd, or if the assertionsof TotOrd are among the axioms of
Numeric, then the LSL Checker can discharge the assumption required
for including PQ inNumericPQ. On the other hand, if Numeric simply
asserts some properties of the binary relations < and >, the LSL Checker
will formulate LP commands that initiate a proof of the conjecture that
these propertiesimply the assertions of TotOrd.



128 7.2. Proof obligationsfor LSL specifications

LSL Traits
Tg.1lsl, ..., T,.1sl

'
| TheLSL Checker | — Diagnostics

.

T, Axioms.1lp, T, .Theorems.1lp
T;-Checks.1p

'

t
Diagnostics

FIGURE 7.5. Using the LSL checker and LP to check LSL traits

LEMMAS FOR PROOF OBLIGATIONS

When checking the semantic claimsin a hierarchy of traits, it is generaly
desirable to use lemmas that have been (or can be) shown separately
to follow from the axioms of those traits. The theorems of a trait
T consist of its axioms supplemented by al appropriately renamed
propositions (transitively) implied by T or by some trait below T in the
inclusion/assumption hierarchy.® The LSL Checker places the theorems
for each trait T in a file named T_Theorems . 1p, and refers to this file
instead of T Axioms.1p in T_Checks.1lp when it is sound to do so.
In general, soundness is guaranteed as long as there is a partial order for
checking proof obligationsin which each theorem is (or can be) checked
before it is used as alemmato discharge another proof obligation.

By providing a small set of axiomsfor atrait T, a specifier can make it
easier to check traitsthat imply T or that include atrait that assumes T. By
providing alarge set of implicationsfor T, a specifier can makeit easier to
reason about T and, in particular, to check traits that include or assume T,
without at the same time making it harder to check traits that imply T or
that include atrait that assumes T.

Figure 7.5 shows how the LSL Checker and LP are used together to
check LSL traits.

3Some generated by and partitioned by clauseswill not qualify astheoremsof T when
arenaming identifies the generated or partitioned sort with some other sort.



7. Using LPto Debug LSL Specifications 129

declare sorts
C, E

declare operators
head: ¢ — E
insert: E, C — C
igEmpty: C — Bool
tail: ¢ — C
empty: — C
€: E, C — Bool

declare variables

e: E
c: C
el: E

FIGURE 7.6. LP declarationsproduced from LinearContainer

7.3 Trandating LSL traitsinto LP

LP is a proof assistant for a subset of multisorted first-order logic with
equality. The basisfor proofsin LPiscaled alogical system. This section
contains an overview of the components of a logical system in LP and
discusses their relation to the components of an LSL trait. The following
sections discuss how these components are used by LP to discharge proof
obligations associated with LSL traits.

A logical system in LP consists of a signature (given by declarations)
plus equations, rewrite rules, operator theories, induction rules, and
deduction rules. Logical systems are closely related to LSL theories, but
are handled somewhat differently. Axiomsin LP have operational aswell
as semantic content, and they can be presented to L P incrementally, rather
than all at once.

DECLARATIONS

Sorts, operators, and variables play the samerolesin LP asthey doin LSL.
AsinLSL, operators and variables must be declared, and operators can be
overloaded. There are afew minor differences: sorts must be declared in
LP, and LP doesn't provide scoping for variables.

The LSL Checker produces the declarations in Figure 7.6 from the
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introduces and V clausesin thetrait LinearContainer.

EQUATIONS AND REWRITE RULES

Equationsplay aprominentrolein LP. Some of L P sinference mechanisms
work directly with equations. Most, however, require that equations be
oriented into rewrite rules, which LP uses to reduce terms to normal
forms. It is usualy essential that the rewriting relation be terminating,
that is, no term can be rewritten infinitely many times. LP provides
several mechanisms that automatically orient many sets of equations into
terminating rewriting systems. For example, in response to the commands

set name group

declare sort G

declare variables x, y, z: G

declare operators e: — G, i: G — G, *: G, G — G

assert

which enter the usual axiomsfor groups, L P produces the rewrite rules
group.l: (x * y) * 2z — x * (y * z)
group.2: i(x) * x — e
group.3: e * X — X

L P automatically reverses the second equation to prevent nonterminating
rewriting sequences such as

e — i(e) * e — i(e) * i(e) * e — ...

A system’s rewriting theory consists of the propositions that can be
proved by reduction to normal form. This theory is always a subset of its
equational theory, which consists of the propositions that can be proved
from its equations and from its rewrite rules considered as equations.
A system’s rewriting theory does not usually include al of its equational
theory. The proof mechanismsdiscussed in Section 7.4 hel p to compensate
for this incompleteness. In the case of group theory, for example, the

equation e == i (e) follows logically from the axioms, but is not in
the rewriting theory of the three rewrite rules: it isirreducible, but not an
identity.

LP provides built-in rewrite rules to simplify predicates involving the
connectives—, A, V, =, and <, theequality operator =, and theconditional



7. Using LPto Debug LSL Specifications 131

operator 1f. These rewrite rules are sufficient to prove many identities
involving these operators, but not all. Unfortunately, the sets of rewrite
rules that are known to be complete for propositional calculus require
exponentia time and space. Furthermore, they tend to expand, rather
than simplify, propositions that do not reduce to identities. These are
serious drawbackswhen we are debugging specifications, because we often
attempt to prove conjectures that are not true. So none of the compl ete sets
of rewrite rules is built into LP. Instead, LP provides proof mechanisms
that can be used to overcome incompletenessin a rewriting system. It also
allows usersto add any of the compl ete sets they choose to use.

LP treats the equations true == false andx = t == false,
where t is a term not containing the variable x, as inconsistent. (The
second equation rules out empty sorts.) Inconsistencies can be used to
establish subgoals in proofs by cases and contradiction. If they arise in
other situations, they indicate that the axioms in the logical system are
inconsi stent.

OPERATOR THEORIES

L P provides special mechanisms for handling some equations that cannot
be oriented into terminating rewrite rules. LP recognizes two operator
theories: the commutative theory and the associative-commutative (ac)
theory. For example, the command assert ac + says that + is
associative and commutative. Logically, this assertion is an abbreviation
for two eguations:

X + (y +2) == (X +VY) + 2

X + Yy ==Yy + X

Operationally, it causes L P to match and unify terms modul o associativity
and commutativity. This increases the number of theories that LP can
reason about. It also reduces the number of axioms required to describe
various theories, the number of reductions necessary to derive identities,
and the need for certain kinds of user interaction, such as case analysis. Its
main drawback isthat it can be much slower than ordinary rewriting.*

4A secondary drawback is that ordering equations that contain commutative and ac
operators into terminating sets of rewrite rulesis, in principle, more difficult. In practice,
however, thisis not a problem.



132 7.3. Trandating LSL traitsinto LP

INDUCTION RULES

LP uses induction rules to generate subgoalsin proofs by induction. The
syntax for induction rulesisthe samein LPasin LSL.°
Users can specify multipleinduction rules for a single sort and can use

the appropriate rule when attempting to prove an equation by induction.
For example, assuming appropriate declarations, the LP commands

set name setInductionl

assert S generated by empty, insert

set name setInduction2

assert S generated by empty, singleton, U

alow

prove x C x by induction using setInduction2

In LSL, the axioms of atrait typically have only one generated by for a
sort. It is often useful, however, to put othersin the trait’s implications.

DEDUCTION RULES

L P subsumes the logical power of the partitioned by construct of LSL in
deduction rules, which LP uses to deduce equations from other equations
and rewrite rules. Like other formulas in LP, deduction rules may be
asserted as axioms or proved as theorems. While the partitioned by clause
in the trait LinearContainer can be expressed by an equation, in
general a partitioned by clause is equivaent to a universal-existential
axiom, which can only be expressed asadeductionrulein LP. For example,
the LP commands
assert S partitioned by €
assert
when (V e) e € x ==e € y
yield x ==y

are equivalent and define a deduction rule equivalent to the axiom of set
extensionality

(Vz,y:8)[(Ve: E)e€z o ecy)=z =1y

Thisdeductionruleenables LPto deduceequationssuchasx == x U x
automatically from equationssuchase € x == e € (x U x).

5The semantics of induction is somewhat stronger in LSL than in LP, since arbitrary
first-order formulas cannot be written in this version of LP.
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Deduction rules can have multiple hypotheses and/or multiple conclu-
sions. For example, the transitivity of < can be formulated as a deduction
rule with two hypotheses:

when i < j, j < k yield i < k
The built-in A-splitting law is a deduction rule with two conclusions:
when p A gq yield p, g

Such deduction rules serve toimprovethe performance of L Pand to reduce
the need for user interaction.

LP automatically applies deduction rules to equations and rewrite rules
whenever they are normalized. The sample proof in Section 7.5 illustrates
the logical power of deduction rules, as well as the benefits of applying
them automatically to the case and induction hypothesesin a proof.

7.4 Proof mechanismsinLP

Thissection providesabrief overview of the proof mechanismsin LP. The
next two sectionsdiscusshow they are used to check LSL semantic claims.

L P provides mechanisms for proving theorems using both forward and
backward inference. Forward inferences produce consequences from a
logical system; backward inferences produce subgoals whose proof will
suffice to establish a conjecture. There are four methods of forward
inferencein LP.

1. Automatic normalization produces new consequences when a
rewrite rule is added to a system. LP keeps rewrite rules, equations,
and deduction rules in normal form.

If an equation or rewriterule normalizesto anidentity, itisdiscarded,
becauseitislogically and operationally superfluous. If all hypotheses
of a deduction rule normalize to identities, the deduction rule is
replaced by the equations in its conclusions. If al conclusions
of a deduction rule normalize to identities, the deduction rule is
discarded.

Userscan “immunize” equations, rewrite rules, and deduction rules
to protect them from automatic normalization, both to enhance the
performance of LP and to preserve a particular form for use in a
proof. Users can also “deactivate” rewrite rules and deduction rules
to prevent them from being applied automatically.
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2. Automatic application of deduction rules produces new conse-

guences after equationsand rewrite rulesin asystem are normalized.
Deduction rules can aso be applied by explicit command, for
example, to immune equations.

. The computation of critical-pair equations and the Knuth-Bendix

completion procedure [58, 72] produce equational consequences
(such as i (e) == e) from incomplete rewriting systems (such
as the three rewrite rules for groups, page 130). We often compute
critical-pair equationsfrom selected setsof rewrite rules. Sometimes
we run the completion procedure to find the last few consequences
to finish off a proof or, as discussed in Section 7.7, to look for
inconsi stencies. However, werarely completeour rewriting systems,
becauseacomplete set of rewriteruleswith agiven equational theory
may not exist, may betoo expensiveto obtain, or may lead to normal
formsthat are hard to read [28].

Explicit instantiation of variables in equations, rewrite rules, and
deduction rules also produces consequences. For example, in a
system that contains the deduction rule

when (V e) e € x == e € y yield x ==y

and therewriterulee € (x U y) — e € x V e € y,Wwe
can instantiate y in the deduction rule by x U x to produce the
conclusonx == x U x.

There are seven methods of backward inference for proving theoremsin
LP. These methods are invoked by theprove and resume commands. In
each method, LP generates a set of subgoalsto be proved, that is, lemmas
that together are sufficient to imply the conjecture. For some methods,
LP generates additiona hypotheses that may be used to prove particular
subgoals.

1. Normalization rewrites conjectures. If a conjecture normalizes to

an identity, it is a theorem. Otherwise the normalized conjecture
becomes the subgoal to be proved.

2. Proofs by cases can further normalize a conjecture. The command

prove e by cases ti, ..., tn, Where t1, ..., t, ae
predicates, directs LP to prove an equation e by division into cases
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t1, ..., ty (Orintotwo cases, t1 and —t1, if » = 1). Whenn > 1,
onesubgoal isto provethat thecasesareexhaustive,i.e., t; vV ...V
tn. INn addition, for each case t;, LP substitutes new constants for
the variables of t; in both t; and e to form t,;’ and e;’, which
it uses to creates the subgoal e;’ with the additiona hypothesis
t;’ — true. If an inconsistency results from adding the case
hypothesis t; *, that case isimpossible, and e, ’ is vacuously true.
Otherwise, thesubgoal e;’ must be shownto follow from the axioms
supplemented by the case hypothesis.

Case analysishastwo primary uses. If the conjectureisatheorem, a
proof by cases may circumvent alack of completenessin the rewrite
rules. If the conjecture is not atheorem, an attempted proof by cases
may simplify the conjecture and make it easier to understand why
the proof is not succeeding.

. Proofs by induction are based on the induction rules described in
Section 7.3. For example, a proof by induction of

isEmpty(c) = —-(e € )

from the axioms of LinearContainer involvestwo steps. The
basis step involves showing that

isEmpty (empty) = — (e € empty)

Thisfollows from the axioms by normalization. The induction step
involves picking a new constant cc, assuming

isEmpty(cc) = - (e € cc)

as an induction hypothesis, and showing that

isEmpty (insert (el, cc)) =
- (e € insert(el, cc))

This follows by normalization from the axioms supplemented by
thisinduction hypothesis.

. Proofs by contradiction provide an indirect method of proof. If an
inconsi stency follows from adding the negation of the conjectureto
LP'slogica system, then the conjecture is atheorem.
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5. Proofs of implications can be carried out using a simplified form of
proof by cases. The command prove ti1 = ty by = directs
LP to prove the subgoal t,’ using the hypothesist;’ — true,
wheret,’ and t,’ areobtained asinaproof by cases. This suffices
because the implication is vacuously truewhen t 1’ isfalse.

6. Proofsof conditionalscan also becarried out usingasimplified form
of proof by cases. The command

prove if(ty, t2, t3) == t4 by if
directsLP to provethesubgoa t,’ == t4’ usingthe hypothesis
ty’, and to prove the subgoal t3’ == t4’ using the hypothesis
-ty1’,wherety’, ..., ty’ areaobtained asin aproof by cases.

7. Proofs of conjunctions provide a way to reduce the expense of
rewriting modulo the associativity and commutativity of A. The
commandprove t1 A ...A t, by A directsLPto proveeach
of tq, ..., t, asaseparate subgoal.

LP alows users to specify which methods of backward inference are
applied automatically and in what order. This is done by using the set
proof-methods command. For example, the LP command

set proof-methods if, =, normalization

tells LP that whenever it is given a conjecture to prove, it should
automatically try to apply these three methods, in the given order.

L P aso provides automatic methods of backward inference for proving
induction and deduction rules. In each method, LP generates a set of
subgoals to be proved, as well as additional hypotheses that may be used
to prove particular subgoals. (See the next section for examples.)

Proofs of interesting conjectures hardly ever succeed on the first try.
Sometimes the conjecture is wrong. Sometimes the formalization is
incorrect or incomplete. Sometimes the proof strategy is flawed or not
detailed enough. When an attempted proof fails, we use a variety of LP
facilities (e.g., case analysis) to try to understand the problem. Because
many proof attempts fail, LP is designed to fail relatively quickly and
to provide useful information when it does. It is not designed to find
difficult proofs automatically. Unlike the Boyer-Moore prover [8], it does
not perform heuristic searches for a proof. Unlike LCF [71], it does not
allow users to define complicated search tactics. Strategic decisions, such
as when to try induction, must be supplied as explicit LP commands.
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declare sorts
E

declare operators
<: E, E — Bool
>: E, E — Bool

declare variables

X: E
y: E
z: E

set name TotOrd
assert
- (x < x)
(x < v ANy < z) =x < z
X y Vvy < X
X X

Al

<y X
> y ==Y
FIGURE 7.7. TotOrd_-Axioms.1lp

On the other hand, LP is more than a “proof checker,” since it does not
require proofs to be described in minute detail. In many respects, LP is
best described as a “ proof debugger.”

7.5 Checking theory containment

The proof obligations triggered by implies and assumes clauses in an
LSL trait require us to check theory containment, that is to check that
claims follow from axioms. This section discusses how the LSL Checker
formul ates the proof obligationsfor theory containment for LP, as well as
how we use LP to discharge these obligations. The next section discusses
checking consistency.

PROVING AN EQUATION

The proof obligation for an equation is easy to formulate. Consider, for
example, the proof obligations that must be discharged to check the trait
TotOrd shown in Figure 7.3. Figure 7.7 displays the LP commands
that the LSL Checker extracts from this trait in order to axiomatize
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execute TotOrd Axioms
set name TotOrdTheorem
% Prove implication of TotOrd(E, > for <, < for >)
prove - (x > x)
ged
prove (x > y Ay > z) = X > z
ged
prove X > vy V x =y V y > X
ged
prove X < y ==Yy > X
ged
% Prove implied equation
prove = (x < y A vy < X)
ged

FIGURE 7.8. TotOrd_Checks.1lp

its theory, and Figure 7.8 displays the LP commands that the LSL
Checker extracts from thistrait in order to discharge its proof obligations.
The execute command abtains the axioms for TotOrd from the file
TotOrd_Axioms.1lp. Theprove commandsinitiate proofs of thefive
immediate consequences of TotOrd.

LP can discharge al proof obligations except the first without user
assistance. The user is derted to the need to supply assistance in this
proof by a diagnostic (“Proof suspended”) printed in response to the ged
command. At this point, the user can complete the proof by entering the
complete command or the command

critical-pairs TotOrd with TotOrd

Proofs of equationsrequire varying amounts of assistance. For example,
when checking that LinearContainer implies
isEmpty(c) = - (e € c)
the single LP command resume by induction sufficesto finishthe

proof.
When checking that PQ, Figure 7.2, implies

e € g => (e < head(q))

more guidance is required. This proof proceeds by induction on q. LP
proves the basis subgoal without assistance. For the induction subgoal, LP
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introducesanew constant gc to takethe place of the universally-quantified
variable g, adds

e € gc = -1 (e < head(qgc))

as the induction hypothesis, and attemptsto prove

e € insert(el, gqc) =
- (e < head(insert(el, gc)))

which normalizesto
(el = e V e € qc) =
- (e < (if isEmpty(gc) then el
else 1f el <« head(qgc) then el
else head(gc)))

LP now automatically applies the = proof method, i.e., it assumes
the hypothesis of the implication, introducing new constantsec and elc
to take the place of the variables e and e1, and attempts to prove the
conclusion of the implication from this hypothesis. At this point, further
guidanceisrequired. The command

resume by case isEmpty(gc)

directs LP to divide the proof into two cases based on the predicate
in the first if. In the first case, isEmpty (gc), the desired conclu-
sion normalizes to - (ec < elc). The complete command leads
LP to deduce - (e € gc), using the implied equation in the trait
LinearContainer, which is available for use in the proof because
LinearContainer precedes PQ in the trait hierarchy. With this fact,
LP is able to finish the proof in the first case automatically. The second
case, “isEmpty (gc), requires more user assistance.

Figure 7.9 shows the entire proof, as recorded and annotated by LP
in a script file. In addition to recording user input, LP has indented the
script to reveal the structure of the proof, and it has annotated the proof by
adding lines (beginning with <>) to indicate when it introduced subgoals
and lines (beginning with [1) toindicate when each of these subgoalsand
the theorem itself were proved. Such an annotated proof provides the user
with a means of regression testing after changing the axioms for a trait.
On request, when LP executes the annotated proof (using the new set of
axioms), it will halt execution and print an error messageif the annotations
do not match the execution. These checks help pinpoint the source of
a problem when changes in the axioms cause some step in the proof to
succeed with less user guidance than expected or to require more guidance.
Without the check, LP might, for example, apply a tactic intended for a
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set proof-methods =, normalization
prove e € q = - (e < head(q)) by induction
<> 2 subgoals for proof by induction on ‘g’
<> 1 subgoal for proof of =
[1] = subgoal
[] basis subgoal
<> 1 subgoal for proof of =
resume by case isEmpty(gc)
<> 2 subgoals for proof by cases
% Handle case isEmpty(gc)
complete
[] case isEmpty(gc)
% Handle case -1isEmpty(gc)
resume by case elc < head(qc)
<> 2 subgoals for proof by cases
% Handle case elc < head(gc)
resume by contradiction
<> 1 subgoal for proof by contradiction
complete
[] contradiction subgoal
[] case elc < head(qgc)
% Handle case -1 (elc < head(qc))
resume by contradiction
<> 1 subgoal for proof by contradiction
complete
[] contradiction subgoal
[] case —(elc < head(gc))
[] case - (isEmpty(gc))
[1] = subgoal
[] induction subgoal

[] conjecture
ged

FIGURE 7.9. LP-annotated proof of PQ implication
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FinSet: trait
introduces
empty: — S
insert: S, E —» S
singleton: E — S

U _ .85, s =S

€ _:E, S — Bool

¢ _:8, S — Bool
asserts

S generated by empty, insert

S partitioned by €

forall s, sl1: S, e, el: E
singleton(e) == insert (empty, e);
s U empty == s;

s U insert(sl, e) == insert(s U sl1l, e);

- (e € empty) ;

e € insert(s, el) ==e € s V e = el;

empty C s;

ingsert(s, e) € s1 == C 81 A e € sl
implies

S partitioned by C
S generated by empty, singleton, U

FIGURE 7.10. AnLSL trait for finite sets

particular case in a proof to the wrong case, thereby causing the proof to
fail in mysterious ways. This checking helps prevent proofs from getting
“out of sync” with their author’s conception of how they should proceed.

PROVING A “PARTITIONED BY”

Proving a partitioned by clause amounts to proving the validity of the
associated deduction rulein LP. For example, the LSL Checker formulates
the proof obligations associated with the partitioned by in the implies
clause of Figure 7.10 using the LP commands

execute FinSet Axioms
prove S partitioned by C

and L P trand ates the partitioned by into the deduction rule

when (V s3) s1 C 83 == g2 C s3,
s3 € s1 == s3 C s2
yield sl == s2
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LPinitiatesaproof of thisdeduction rule by introducing two new constants,
slc and s2c¢ of sort S, assuming slc € 83 == s2¢ C s3 and
83 C slc == s3 C s2c as additional hypotheses, and attempting
to prove the subgoal s1c == s2c. LP cannot prove slc == s2c
directly, because the equation is irreducible. The user can guide LP by
typing complete, which yieldsthelemmae € slc == e € s2c,
after which LP automatically finishes the proof by applying the deduction
rule associated with the assertion S partitioned by €.

PROVING A “GENERATED BY”

Proving a generated by clause involves proving that the set of elements
generated by the given operators contains all elements of the sort. For
example, the LSL Checker formulatesthe proof obligation associated with
the generated by in the implies clause of Figure 7.10 as

execute FinSet Axioms
prove S generated by empty, singleton, U

LP then introduces a new operator i sGenerated: S—Bool, addsthe
hypotheses

isGenerated (empty)

isGenerated (singleton(e))

(isGenerated(sl) A isGenerated(g))
= isGenerated(sl U g)

and attemptsto prove the subgoal isGenerated (s). User guidanceis
required to complete the proof, for example, by entering the commands

resume by induction
complete

directing L P to use the induction scheme obtained from the assertion
S generated by empty, insert

and then to run the completion procedure to draw the necessary inferences
from the additional hypotheses.

PROVING A “CONVERTS’

Proving that a trait converts a set of operators involves showing that the
axioms of the trait define the operators in the set relative to the other
operators in the trait. For example, to show that LinearContainer
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execute LinearContainer_ Theorems
declare operators

isEmpty’: C — Bool

€': E, C — Bool

assert C partitioned by head, tail, isEmpty’
assert
isEmpty’ (empty)
- (1sEmpty’ (insert (e, c¢)))
- (e € empty)
e €' insert(el, c) ==
isEmpty’ (c) = —(e €’

set name conversionChecks

prove e € ¢ == e &' c
ged

prove isEmpty(c) == isEmpty’ (c)
ged

FIGURE 7.11. Proof obligationsfor converts in LinearContainer

converts isEmpty and €, one must show that, given any interpre-
tations for empty and insert, there are unique interpretations for
isEmpty and € that satisfy the axioms of LinearContainer.
Equivalently, we must show that thetheoriesof LinearContainer and
LinearContainer (isEmpty’ for isEmpty, €' for €) to-
gether imply the two equations 1 sEmpty (¢) == isEmpty’ (¢) and
e €c==c¢ ¢ c.

The LSL Checker formulates these proof obligations with the LP
commandsin Figure 7.11.% The only user guidance required to discharge
these proof obligationsis a command to proceed by induction.

The proof obligation for the converts clause in PQ is similar. Here we
must show that given any interpretationsfor empty and insert, aswell
as for the exempted terms head (empty) and tail (empty), there
are unigue interpretationsfor head, tail, isEmpty, and € that satisfy
the theory of PQ. The proof obligationsfor this are shown in Figure 7.12.
Again, theonly user guidance needed to compl ete the proofsare commands
to proceed by induction.

5The figure’slast assertion comesfrom the implies clausein LinearContainer.
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execute PQ Theorems
% Declarations, axioms, and theorems for
% head’, tail’, isEmpty’, €’ occur here
set name exemptions

assert
head (empty) == head’ (empty)
tail (empty) == tail’ (empty)

set name conversionChecks

prove isEmpty(g) == isEmpty’ (q)
ged
prove head(q) == head’ (q)
ged
prove tail(g) == tail’ (q)
ged
prove e € g == e €' g
ged

FIGURE 7.12. Proof obligationsfor converts in PQ
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7.6 Checking consistency

Checks for theory containment fall into the typical pattern of use of
a theorem prover. The check for consistency is harder to formulate
because it involves nonconsequence rather than consequence. Techniques
for detecting when this check fails are more useful than techniques for
certifying that it succeeds.

A standard approach in logic to proving consistency involves inter-
preting the theory being checked in another theory whose consistency is
assumed (e.g., Peano arithmetic) or has been established previously [77].
Inthisapproach, user assistanceisrequired to definetheinterpretation. The
proof that the interpretation satisfies the axioms of the trait being checked
then becomes a problem of showing theory containment, for which LP
iswell suited. This approach is cumbersome and unattractive in practice.
More promising approaches are based on metatheoremsin first-order logic
that can be used for restricted classes of specifications. For example, any
extension by definitions (see [77]) of a consistent theory is consistent.

For equational traits (i.e., traits with purely equational axiomatizations,
of which there are relatively few), questions about consistency can be
trandated into questions about critical pairs. In some cases, we can use
LP to answer these questions by running the completion procedure or by
computing critical pairs. If these actions generate an inconsistency, the
axioms are inconsistent; if they complete the axioms without generating
the equation true == false, then the trait is consistent. This proof
strategy will not usually succeed in proving consistency, because many
equational theories cannot be completed at al, or cannot be completed in
an acceptable amount of time and space. However, it has proved useful in
finding inconsistencies among equations.

We can use al of LP's forward inference mechanisms to search for
inconsistenciesin a specification. The completion procedure searches for
inconsistencies automatically, and we can instantiate axioms by “focus
objects” (in the sense of McAllester [64]) to provide the completion
procedure with a basis for its search. Even though unsuccessful searches
do not certify that aspecificationisconsistent, they increase our confidence
in a specification, just astesting increases our confidence in a program.
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Coordinate: trait
introduces
origin: — Coord
- __: Coord, Coord — Coord
asserts V cd: Coord
cd - cd == origin

Region(R) : trait
assumes Coordinate
introduces
€ : Coord, R — Bool
cd € r is true if point cd is in region r
Nothing is assumed about the contiguity
or shape of regions

o o

o°

Displayable(T) : trait
assumes Coordinate
includes Region (T)
introduces

[ 1: T, Coord — Color

t [cd] represents appearance of object t
at point cd

o°

o°

FIGURE 7.13. Prototype traits for windowing abstraction

7.7 Extended example

To illustrate our approach to checking specifications in a slightly more
realistic setting, we show how one might construct and check some traits
to be used in the specification of a simple windowing system [43]. These
are preliminary versions of traits that would likely be expanded as the
specifications (including the interface parts) were devel oped.

The first three traits, Figure 7.13, declare the signatures of some basic
operators.

The proof obligations associated with these traits are easily discharged.
When LP's completion procedure is run on Coordinate, it terminates
without generating any critical pairs. Since Coordinate has no
generated by or partitioned by clauses, thisissufficient to guaranteethatitis
consistent. When checking the inclusion of Region by Displayable,
Region’s assumptionof Coordinate isdischarged syntactically, using
Displayable’s assumption of the same trait.
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Window (W) : trait
assumes Coordinate
includes Region, Displayable (W)
W tuple of cont, clip: R, fore, back: Color, id: WId
asserts V w: W, cd: Coord
cd € w ==cd € w.clip;
wlcd] == if cd € w.cont then w.fore else w.back
implies converts [ ], €:Coord,W—Bool

FIGURE 7.14. Window.1sl

Thewindow trait, Figure 7.14, defines awindow as an object composed
of content and clipping regions, foreground and background colors, and a
window identifier. The operator € isqualified by asignatureinthelastline
of the trait because it is overloaded, and it is necessary to say which € is
converted.

There are three proof obligations associated with this trait. The
assumptions of Coordinate in Region and Displayable are
syntactically discharged using window’'s assumption. The converts clause
is discharged by LP without user assistance. The other proof obligationis
consistency. As discussed in the previous section, we use the completion
procedure to search for inconsistencies. Running it for a short time neither
uncovers an inconsistency nor proves consistency.

The view trait, Figure 7.15, defines a view as an object composed of
windows at locations. There are several proof obligations associated with
this trait. Once again, the assumptions of Window and Displayable
are discharged syntactically by the assumption in view. Once again,
using the completion procedure to search for inconsistencies uncovers no
problems. However, checking the converts clause does turn up a problem.
The conversion of inw and both €’s is easily proved by induction over
objects of sort v. However, the inductive base case for __[__] does not
reduce at all, because emptyV [cd] isnot defined. This problem can be
solved either by defining emptyV [cd] or by adding

exempting V cd: Coord emptyV[cd]

to the converts clause. We choose the latter because there is no obvious
definition for emptyVv [cd]. With the added exemption, the inductive
proof of the conversion of __[__] goes through without further interaction.
When we attempt to provethefirst of the explicit equationsintheimplies
clause of view, we run into difficulty. After automaticaly applying its



148 7.7. Extended example

View: trait
assumes Coordinate
includes Window, Displayable (V)
introduces
emptyV: — V
addWw: V, Coord, W — V
€ _: W, V— Bool
inW: VvV, WId, Coord — Bool
asserts
V generated by emptyV, addw
V e¢d, cdl: Coord, v: V, w, wl: W, wid: WId
- (cd € emptyV) ;
cd € addW (v, cdl, w) ==
(cd - cdl) € w V cd € v;
- (w € emptyV) ;
w € addW (v, cdl, wl) == w.id = wl.id V w € v;
addw (v, cdl, w) [cd] ==
if (cd - cdl) € w
then wlcd - cdl] else v[cd];
% In view only if in a window, offset by origin
—inW (emptyV, wid, cd);
inW (addW (v, cd, w), wid, cdl) ==
(w.id = wid A (cd - cdl) w)
V inW (v, wid, cdil)
implies
VYV c¢d, cdl: Coord, v,vl: V, w: W
New window does not affect the appearance
of parts of the view lying outside the window
—inW (addWw (v, cd, w), w.id, cdl)
= addW(v, cd, w) [cdl] = v[cdl];
Appearance within newly added window is
% independent of the view to which it is added
inW (addW (v, cdl, w), w.id, cd)
= addW(v, cdl, w) [ed] = addwWw(vl, cdl, w) [cd]
converts inW, €:Coord,V—Bool, €:W,V—Bool,
[ 1:V,Coord—Color

o°

o°

o°

FIGURE 7.15. Preliminary version of view.1lsl
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proof method for implications, L P reduces the conjecture to

if (cdlc - cdc) € wc.clip
then if (cdlc - cdc) € wc.cont
then wc.fore else wc.back
else vc[cdlc]
== vc[cdlc]

and reduces the assumed hypothesis of the implicationto
- ((cdc - cdlc) € wc.clip)

At this point, we ask ourselves why the hypothesisis not sufficient to
reduce the conjecture to an identity. The problem seemsto be the order of
the operands of -. Thisleadsusto look carefully at the second equation for
inW in trait view. There we discover that we have written cd - c<d1
when we should have written cd1 - cd, or, to be consistent with the
form of the other equations, reversed the role of cd and cd1 in the left
side of the equation. After changing thisaxiomto

inW (addW (v, cdl, w), wid, cd) ==
(w.id = wid A (cd - cdl) € w
V inW(v, wid, cd)

the proof of the first implication goes through without interaction.
The second conjecture, after LP applies its proof method for implica
tions, reduces to
if (cdc - cdlc) € wc.clip
then if (cdc - cdlc) € wc.cont
then wc.fore else wc.back
else vccdc]

if (cd - cdlc) € wc.clip

then if (cdc - cdlc) € wc.cont
then wc.fore else wc.back

else v’ [cdc]

We resume the proof by dividing it into two cases based on the predicate
in the outermost i f’s. When this predicate is true, the conjecture reduces
to true; when it isfalse, the conjecture reduces to

ve [ede] == v’ [cdc]
Since v’ is avariable and vc a new constant, we know that we are not

going to be able to reduce thisto true. This does not necessarily mean
that the proof will fail, since we could be in an impossible case (i.e., the
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current hypotheses could lead to acontradiction). However, examining the
current hypotheses,

inW(ve, wc.id, cdc) % Hypothesis of =

)

- ((cdc - cdlc) € wc.clip) % Casge hypothesis

gives us no obvious reason to believe that a contradiction exists.

Thisleads usto wonder about thevalidity of the conjecturewearetrying
to prove, and to ask ourselves why we thought it was true when we added
it to the trait. Our informal reasoning had been:

1. The hypothesis inW (addw (v, cdl, w), w.id, cd) of the
conjecture guarantees that coordinate c¢d isin window w in the view
addw (v, cdl, w).

2. If wisadded at the same place in v’ asin v, cd must also bein
addw (v’ , cdl, w).

3. Furthermore cd - <di will be the same relative coordinate in w
inbothaddw (v, <cdil, w) andaddw (v’, cdl, w).

4. Therefore the equation

addw (v, cdl, w) [cd]
if (cd - cdl) € w
then wlcd -cdl]

else v[cd]

intrait view should guarantee the conclusion.

Thefirst stepinformalizing thisinformal argument isto attempt to prove
inW (addW(v, cdl, w), w.id, cd) = (cd - cdl) € w

as alemma. LP reduces the conclusion of thisimplication to
(cdc - cdlc) € wc.clip

using the normalized implication hypothesis

(cdc - cdlc) € wc.clip V inW(vec, wc.id, cdc)

Casing on the first digunct of the hypothesis reduces the conjecture to
false under the same implication and case hypotheses as above.

We are thus stuck in the same place as in our attempted proof of the
original conjecture. This leads us to question the validity of the first step
in our informal proof, and we discover a flaw there: when v contains a
window with the same id asw, the implication is not sound. The problem
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isthat we implicitly assumed the invariant that no view would contain two
windows with the same id, and our specification does not guarantee this.
There are severa ways around this problem, among them:

1. Trait view could be changed so that addw chooses a unique id
whenever awindow is added.

2. Trait view could be changed so that addw is the identity function
when the 14 of the window to be added is already associated with a
window in the view.

3. The preservation of theinvariant could be left to the interface level.

We choose the third alternative and weaken the second implication of
trait view to:

VYV c¢d, cdl: Coord, v, v': V, w: W
Appearance within a newly added window is
independent of the view to which it is added,
provided that the window id is not already
present in the view.
- (wev) A n(wev)
A inW(addWw (v, cdl, w), w.id, cd))
= addW(v, cdl, w) [cd] = addW(v’, cdl, w) [cd]

o° o o°

—~ oP

which is proved with a small amount of user interaction after proving the
lemma
- (w € v) = —inW(v, w.id, cd)

by induction on v.
Finally, we introduce a coordinate system.
CartesianView: trait

includes View, Natural

Coord tuple of x, y: N

asserts V cd, cdl: Coord
origin == [0, 0];
cd - cdl == [cd.x & cdl.x, cd.y & cdl.y]

implies converts origin, -

LP usesthefacts of thetrait Natural (see Appendix A) to automatically
discharge the assumption of Coordinate that has been carried from
level to level. LP requires no assistance to complete the proof that the
coordinate operators are indeed converted.

Of course, for expository purposes, we have used an artificialy
simplified example. We aso deliberately seeded some errors for LP to
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find. However, most of the errors discussed above occurred unintentionally
as we wrote the example, and we did not notice them until we actualy
attempted the mechanical proofs.

7.8 Perspective

The Larch Shared Language includes severa facilities for introducing
checkable redundancy into specifications. These facilities were chosen to
expose common classes of errors. They give specifiers a better chance of
receiving diagnostics about specifications with unintended meanings, in
much the same way that type systems give programmers a better chance
of receiving diagnostics about erroneous programs.

A primary goal of Larch isto provide useful feedback to specifierswhen
there is something wrong with a specification. Hence we designed LP
primarily as a debugging tool. We are not overly troubled that detecting
inconsistenciesisgenerally quicker and easier than certifying consistency.

We expect to discover flawsin specifications by having attempted proofs
fail. LP does not automatically apply backwards inference techniques, and
it requires more user guidance than some other provers. Much of this
guidance is highly predictable, e.g, proving the hypotheses of deduction
rules as lemmas. Although it is tempting to supply LP with heuristics
that would generate such lemmas automatically, we feel that it is better to
leave the guidance to the user. At many pointsin a proof, many different
heuristics could apply. In our experience, choosing the next step in a proof
(e.g., acase split or proof by induction)—or deciding that the proof attempt
should be abandoned—often depends upon knowledge of the application.
LP cannot reasonably be expected to possess this knowledge, especialy
when we are searching for a counterexample to a conjecture, rather than
attempting to prove it. However, in some cases, the LSL Checker may
be able to use the structure of LSL specifications to generate some of the
guidance (e.g., using induction to prove a converts clause) that users must
currently provideto LP.

The checkable redundancy that LSL encourages in specifications also
supports regression testing as specifications evolve. When we change part
of a specification (e.g., to strengthen or weaken the assertions of one
trait), it is important to ensure that the change does not have unintended
side-effects. LP's facilities for detecting inconsistencies help us discover
grossly erroneous changes. Claims about other traits in the specification,
which imply or assume the changed trait, can help us discover more
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subtle problems. If some of these claims have already been checked, LP's
facilities for replaying proof scripts make it easy to recheck their proofs

after achange—an important activity, but one that islikely to be neglected
without mechanical assistance.
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Conclusion

Larch is dtill very much a “work in progress.” New Larch interface
languages are being designed, new tools are being built, and the existing
languages and tools are in a state of evolution. Most significantly,
specifications are being written.

But Larch has reached a divide, what Churchill might have called “the
end of the beginning.” Until now, most of thework on Larch has been done
by the authors of this book and their close associates. We hope that the
First International Workshop on Larch [66] and the publication of thisbook
mark the beginning of the period when most Larch research, devel opment,
and application will be done by people we do not yet know.

THE ESSENCE OF LARCH

Over the years, we have spent many pages describing Larch languages,
tools, and applications. However, the essence of Larch rests in a few
principles that have guided our efforts:

¢ The most important use for specification is as a tool for helping
to understand and document interfaces. Therefore, clarity is more
important than any other property.

e Specifications should not just describe mathematical abstractions,
but real interfaces supplied by programs. They should be written at
thelevel of abstraction at which clientsprogram. Thisusually means
sinking to the level of a programming language.

e Structuring specifications into two tiers, which we have called
the interface tier and the LSL tier, makes specifications easier to
understand and facilitates reuse of parts of specifications.

— Theinterfacetier describesthe observable behavior of program
components. Sincewhat aclient can observeislikely to depend
in fundamental ways on the client programming language,
much can be gained by designing interface specification lan-
guagesthat are optimized for specific programming languages.
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Specifications in this tier can be rather simple, provided that
the right abstractions are provided in the LSL tier.

— The LSL tier describes mathematical abstractions that are
independent of the details of any programming model. These
are the principal reusable components of specifications. While
we have used only one language (L SL) to write specifications
in this tier, there is no fundamental reasons other languages
could not be used. Languages used in this tier should have a
simple semantics; they need not deal with messy issues such
asruntime errors, which are better handled intheinterfacetier.

e Specification languages should be carefully designed. Having an
elegant semantics is not enough. Careful attention to syntax and
static semantic checking is crucial.

e Tool support is vital. One of the great virtues of using a formal
notation is that tools can be used to help detect and isolate a variety
of errors. Whenever we have improved our tools to detect a new
classof errors, we have found more errors in existing specifications.

¢ Toolsfor checking interface specifications should be integrated with
other programming language tools, e.g., preprocessors that enforce
programming conventions.

e Specification must not be viewed as an isolated activity. It must
be integrated with good programming practice. The goa is not to
specify arbitrary programs, but to use specifications to help design,
implement, document, and maintain good programs. Specifications
can help in structuring these activities.

A CAUTIONARY NOTE

Throughout thisbook we have stressed waysin which formal specification
can be used to help in building high quality software. However, we have
tried not lose sight of the fact that formal specification is not a panacea.
Good engineering practice is essential. To quote an anonymous referee of
an early draft of this book,

... bullishness about formal methods must be strongly tem-
pered by the following important realization: Formalization
should be aimed at achieving conceptual clarity, rather than
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8. Conclusion

as a mere exercise in encoding pieces of mathematics. No
notation or toolset, however fancy and elaborate, can be a
substitute for clear thought. At best, formalization can help
clarify ideas and concepts by making them more tangible. At
worst, poor or faulty formalization can cloud and confuse
issues beyond repair.



Appendix A
An LSL Handbook

A.1 Introduction

This handbook supersedes Piece IV of Larch in Five Easy Pieces[51] and
“A Larch Shared Language Handbook” [46].

READING THE HANDBOOK

This handbook contains a collection of traits written in LSL 2.4 that can
be studied to learn more about LSL. Many traits are also suitable for use
as gpecification components. They constitute a library for the LCL and
LM3 tools; we hope that they will save others from reinventing wheels—
especially polygonal ones. Other traitsare more likely to be used as models
for the development of similar specialized specification components.

This handbook is representative rather than complete. The LSL tier
is open-ended because we believe that no handbook or library will ever
include everything that will be needed. Users are encouraged to augment
this handbook with additional traits, and to prepare their handbooks for
particular applications.

Thisisnot atextbook on discrete mathematics. If you already understand
acollection of concepts(e.g., integer arithmetic), their formalization should
make sense to you. If you don't, you should till be able to understand
precisely what the definitions say (or don't say), but you probably won't
get many clues as to why the particular definitionsin (say) Lattice or
AbelianMonoid areinteresting and useful. Think of this handbook as
the* collected formulas’ that might appear as an appendix to amathematics
text.

There are many trade-offs in developing thiskind of handbook:

simplicity versus compl eteness,

structure (includetrait by reference) versus explicitness (copy trait),

brevity versus explicit indication of consequences,

CONCi Se Versus mnemonic names,
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e stylistic consistency versus an illustrative range of valid styles,

e standardization (for communication) versusflexibility (for efficiency
in particular cases),

¢ selection among competing notations and definitions for concepts,
e conceptual elegance versus practical utility.

We expect that, in the not-too-distant future, specification handbooks
will most often be used in their online forms, with browsing tools that
enable readers to make many of these choices dynamically, according to
their needs and preferences. Unfortunately, this book is still a hostage to
thetyranny of paper, sowe' ve had to make these choicesin advance. There
are general tendenciesin the choicesexhibited here, but we haven't applied
any of our own guidelines dlavishly. Many of the stylistic variations are
intentional, but there are prabably others that we simply didn’t notice.

This handbook does not have to be read front-to-back. There is
no “correct” order in which to study the traits. Feel free to browse
and skip according to your interests and needs. Early sections tend to
deal with specific constructs that occur frequently in program interface
specifications, while later sections are somewhat more abstract, providing
mathematical building blocks that can be used to define, classify, or
generalize such constructs. When there didn’t seem to be any natural order
for things, we fell back on alphabetical order.

Traits in sections labeled data types or data structures are quite likely
to be used directly in interface specifications. Traits in sections labeled
assumptionsand implicationsor operator definitionsare more likely to be
used in other traits.

Traitsarelistedintheindex. If you don’t know exactly what areferenced
trait contains, you can always look it up. However, we have tried to use
familiar names for familiar concepts. Particularly on first reading, it is
probably better to assumethat traitssuch as Integer and TotalOrder
mean what you expect, than to flip continually from trait to trait and section
to section.

An implies clausedoesnot contributetothe meaning (i.e., thetheory)
of alegal trait. It is perfectly acceptable to ignore them, and it is often best
to do so on first reading. However, they do offer you a chance to check
your understanding, by giving examples of facts that are consequences of
the definitionsin the trait. They may a so include alternative (and perhaps
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more familiar) definitions, or show connections that may not be obvious
from looking at just the definitionsin the traits.

Both includes and assumes clauses add axioms from referenced
traits. They both have the same semantics within a trait in which they
appear, so it'sfine to ignorethe distinction on first reading. But assumes
clausesimposean additional proof abligationwhenever thetrait containing
themisreferencedinanother trait, sothey becomevery relevant whenusing
traits to compose specifications.

Many abstract types are defined in two traits, one of which defines only
the essential operators that characterize the type, while the other includes
definitionsfor aricher set of operators in terms of the essential operators.
The former kind of trait tends to be used in assumes and implies
clauses; the latter, in includes clauses and in interface specifications.
Compare, for example, SetBasics and Set, or RelationBasics
andRelation.

Many traitsinclude Integer and usesort Int whereit might seemthat
Natural and Nat would be more natural choices—and, in some cases,
would lead to somewhat simpler specifications. This is a consequence of
the decisionin the interface languages to base all the whole-number types
on Int. Thetrait IntegerPredicates defines predicates to test for
several commonly-used subsets of theintegers. The aternativewas alarge
amount of sort-conversion that would severely distract from the clarity of
interface specifications. So we pay asmall priceinthe LSL tier for greater
simplicity in theinterface tier.

If a definition seems “unnatural” to you, you will find it instructive to
try to construct amore natural definition yourself. If you find one, you will
have gained some experience in writing LSL specifications; if you don't,
you may have gained some insight into the reason for the “unnatural”
definition.

Thetraitsin thishandbook have passed the scrutiny of the LSL Checker,
which parses, expands trait references, resolves overloading, and sort-
checks. Most of them have not yet been subjected to additional checking
of the kind described in Chapter 7.

The onlineversion of thishandbook isstill evolving. The authorswould
appreciate al kinds of feedback from readers and users. Arethere errorsor
sources of confusion? Have we omitted something that would be widely
useful? Are there better ways to define some of the concepts?
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NAMING AND LEXICAL CONVENTIONS

Sort names;

e Numeric types: Int for integers, P for positive numbers, Q for
rationals, F for floating point, and N otherwise.

e T if thereisonly one“interesting” sort in the trait.
e Container traits: E for elements, C for containers.
Operator names:

e o for agenericinfix operator and also for the composition of maps
and relations.

e o for agenericrelation.

For convenience in manipulating the online form of the handbook, we
have chosen a sequence of 1SO L atin characters to represent each non-1SO
Latin symbol used in the handbook. Some of them are chosen for visual
similarity (e.g., — iswritten as -> and < iswritten as <=); others have
been modeled on TeX's choices (e.g., o iswritten as \circ and € is
written as \ in). A completelist isgiven in Section C.

Each Larch interface |language definesitsown notationfor literal s, based
on the programming language's notation; numerical types will generally
includethetrait schemaDecimalLiterals.

Many traits have a size or count operator whose value is always
non-negative. For reasons given in the previous section, except within
Section A.15, Number theory, we have giventheir range as Int, from trait
Integer, rather than asN, from trait Natural.
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DATA TYPE: BOOLEAN

Boolean: trait
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% This trait is given for documentation only.

% It is implicit in LSL.
introduces

true, false: — Bool
—=__: Bool — Bool
Y S A
asserts

Bool generated by true,
YV b: Bool

- true == false;

- false == true;

true A b == b;
false A b == false;
true V b == true;
false V b == b;
true = b == b;

false = b == true
implies
AC (A , Bool),
AC (V, Bool),
Distributive (V for +,
Distributive (A for +,
Involutive (—__, Bool),
Transitive (= for ¢,
YV bl, b2, b3: Bool
= (bl A b2) == =bl V
= (bl V b2) == bl A
bl V (bl A b2) ==Db
bl A (bl V b2) ==Db
b2 VvV —b2;

(bl = b2) Vv (bl = b3

bl = b2 ==

Bool, Bool — Bool
false

A for *, Bool for T),
vV for *, Bool for T),

Bool for T)
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OPERATOR DEFINITION: IF THEN ELSE

Conditional (T): trait
% This trait is given for documentation only.

% It is implicit in LSL.

introduces if then else : Bool, T, T — T

asserts
Vx, v, z: T
if true then x else y == x;

if false then x else y ==y
implies V b: Bool, x: T
if b then x else x == x
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DATA T
Intege
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Integers

YPE
r (Int): trait

% The usual (unbounded) integers operators

incl
De
To

udes
cimallLiterals (Int for N),
talOrder (Int)

introduces

0,

l1: — Int

succ, pred, -_, abs: Int — Int

, - , * : Int, Int — Int

di
asse

v, mod, min, max: Int, Int — Int
rts

Int generated by 0, succ, pred

v

AC
AC
Ri

x, y: Int

succ (pred (x)) ==
pred (succ (x)) ==
-0 == 0;

-succ (x) == pred(-x);

y then x else y;
y then y else x;

(+, Int),

(*, Int),

(min, Int),

(max, Int),
ngWithUnit (Int for T)

Int generated by 1, +, -_ :Int—Int
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V x, y: Int
X < y == gucc(x) < succ(y);
x < y==x < succ(y)
converts
1, - :Int—Int, _ - :Int,Int—Int,

abs, +, *, div, mod, min, max, <, >, <, >

LITERALS

Decimalliterals (N): trait
% A built-in trait schema given here
for documentation only

%
°
%

introduces
o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 %,
— N

succ: N — N
asserts equations

1 == succ(0) ;
2 == succ(l);
3 == succ(2);

as far as needed for any literals
of sort N appearing in the including trait

o\ o

OPERATOR DEFINITIONS

IntegerPredicates (Int): trait
% Frequently used subranges of the integers
assumes Integer
introduces
InRange: Int, Int, Int — Bool
Natural, Positive, Signed, Unsigned: Int — Bool
maxSigned, maxUnsigned: — Int
asserts forall n, low, high: Int

InRange (n, low, high) == low < n A n < high;
Natural(n) == n > 0;

Positive(n) == n > 0;

Signed(n) ==

InRange (n, -succ(maxSigned), maxSigned) ;
Unsigned (n) InRange (n, 0, maxUnsigned)
implies V n: Int
Positive (n) = Natural (n) ;
Unsigned(n) = Natural (n)
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A.4 Enumerations

Enumeration (T): trait
% Enumeration, comparison, and ordinal position
% operators, often used with "enumeration of"
assumes Integer
includes DerivedOrders
introduces
first, last: — T
succ, pred: T — T
ord: T — Int
val: Int — T
asserts
T generated by first, succ
T generated by last, pred
Vx, y: T
ord(first) == 0;
x # last = ord(succ(x)) = ord(x) + 1;
x # last = pred(succ(x)) = x;
val (ord (x)) == x;
x < y == ord(x) < ord(y);
x < last
implies
TotalOrder
T generated by val
T partitioned by ord

V x: T
x # first = succ(pred(x)) = x;
x # last = x < succ(x);
first < x;
ord(x) > 0
converts

first:—T, succ:T—T, pred:T—T, ord,
<:T,T—Bool, >:T,T—Bool,
< :T,T—Bool, >:T,T—Bool
exempting succ (last), pred(first)
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A5 Containers

Throughout this section we use E for the element sort, and C for the
container sort. This simplifies comparisons among data structures and
makes it easier to write generic operator definitions that work for several
kinds of containers. Since variable names are local to traits, we imposed
no such uniformity on them.

UNORDERED DATA STRUCTURES
SetBasics (E, C): trait

[}

% Essential finite-set operators

introduces
{}: = c
insert: E, C — C
&€ : E, C — Bool
asserts

C generated by {}, insert
C partitioned by €
YV s: C, e, el, e2: E
-(e € {});
el € insert(e2, 8) ==el = e2 V el € s
implies
InsertGenerated ({} for empty)
YV e, el, e2: E, s: C
insert (e, s) # {};
insert (e, insert(e, s)) == insert (e, s);
insert (el, insert(e2, s)) =
insert (e2, insert(el, s))
converts €&
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Set (E, C): trait
% Common set operators
includes
SetBasics,
Integer,
DerivedOrders (C, C for <, D for >,
C for <, D for >)
introduces
¢ : E, C — Bool
delete: E, C — C
{ }:E—>C

U _, _n_, - :Cc,CoC
size: C — Int
asserts
Ve, el, e2: E, s, sl1, s2: C
e ¢ s== (e € s);
{ e } == insert( {b:
el € delete(e2, ) ==el # e2 A el € s;
e € (81 U 82) ==¢e € sl V e € 82;
e € (sl N s2) ==e € s1 A e € 82;
e € (81 - 82) ==e € s1 A e ¢ s2;
size({} == 0;
size (insert (e, s)) ==
if e ¢ s then 51ze(s) + 1 else size(s);
s1 C 82 ==s1 - s2 = {}
implies

AbelianMonoid (U for o, {} for unit, C for T),

AC (N, Q),
JoinOp (U, {} for empty),
MemberOp ({} for empty),
PartialOrder (C, C for <, D for >,
C for <, D for >)
C generated by {1}, {_}, U
YV e: E, s, 81, s2: C
s1 C 82 = (e € 81 = e € s2);
size(g) > O
converts
€ ¢, {_}

, delete, size, U, N, -:C,C—C,
gl 2[ CI D
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BagBasics (E, C): trait

°
%

Essential bag operators

includes Integer
introduces

{}:—>C
insert: E, C — C
count: E, C — Int

asserts

C generated by {}, insert
C partitioned by count
YV b: C, e, el, e2: E
count (e, {}) == 0
count (el, insert(

e2, b)) ==
count (el, b) + (

if el = e2 then 1 else

implies

InsertGenerated ({} for empty)
YV e: E, b: C

insert (e, b) # {};

count (e, b) > 0
converts count
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Bag (E, C): trait

[}

% Common bag operators

includes
BagBasics,
DerivedOrders (C, C for <, D for >,
C for <, D for >)
introduces

delete: E, C — C
{ }:E—>C

€ _, ¢ :E, C — Bool

size: C — Int

., - =::C, C—=2C
asserts

YV e, el, e2: E, b, bl, b2: C
count (el, delete(e2, b)) ==
if el = e2 then max(0, count(el, b) - 1)
else count(el, b);

{ e } == insert (e, {});

e € b == count (e, b) > 0;

e ¢ b == count (e, b) = 0;
size({}) == 0;

size(insert (e, b)) == size(b) + 1;

count (e, bl U b2) ==
count (e, bl) + count (e, b2);
count (e, bl - b2) ==
max (0, count (e, bl) - count(e, b2));
bl C b2 == bl - b2 = {};
implies
AbelianMonoid (U for o, {} for unit, C for T),
JoinOp (U, {} for empty),
MemberOp ({} for empty),
PartialOrder (C, C for <, D for >,
C for <, D for >)
Ve, el, e2: E, b, bl, b2: C
insert (e, b) # {};
count (e, b) > 0;
count (e, b) < size(b);
bl C b2 = count (e, bl) < count (e, b2)
converts count, €, ¢, {_ }, U, -:C,C—C,
delete, size, C, D, C, D
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INSERTION ORDERED DATA STRUCTURES

StackBasics (E, C): trait
% Essential LIFO operators
includes Integer
introduces
empty: — C
push: E, ¢ — C
top: C — E
pop: C — C
asserts
C generated by empty, push
YV e: E, stk: C
top (push (e, stk)) == e;
pop (push (e, stk)) == stk;
implies converts top, pop
exempting top (empty), pop (empty)

Stack (E, C): trait
% Common LIFO operators
includes StackBasics, Integer

introduces
count: E, C — Int
€ : E, C — Bool

size: C — Int
igEmpty: C — Bool
asserts
YV e: E, stk: C
size (empty) == 0;
size (push(e, stk)) == size(stk) + 1;
isEmpty (stk) == stk = empty
implies
Container (push for insert, top for head,
pop for tail)
C partitioned by top, pop, isEmpty
VY stk: C
size(stk) > 0
converts top, pop, count, €, size, isEmpty
exempting top (empty), pop (empty)
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Queue (E, C): trait
% FIFO operators
includes Integer
introduces
empty: — C
append: E, C — C
count: E, C — Int
__ € __: E, C — Bool
head: ¢ — E
tail: ¢ — C
len: C — Int
isEmpty: C — Bool
asserts
C generated by empty, append
Vg: C, e, el: E
count (e, empty) == 0;
count (e, append(el, q)) ==
count (e, gq) + (if e = el then 1 else 0);
e € q == count (e, q) > 0;
head (append (e, q)) =
if g = empty then e else head(q);
tail (append(e, q)) =
if g = empty then empty
else append(e, tail(qg));

len (empty) == 0
len (append(e, gq)) == len(q) + 1;
isEmpty (g) == q = empty

implies

Container (append for insert)
C partitioned by head, tail, isEmpty
YV g: C
len(gq) > O
converts head, tail, len
exempting head (empty), tail (empty)



172 A.5. Containers

Deque (E, C): trait
includes Integer
introduces

empty: — C

% Double ended queue operators

41 _+E, C—>_C
__F_:C, E—C
count: E, C — Int

c : E, C —- Bool

Egad,_Iést: C —- E
tail, init: C¢ — C

len: C — Int

igsEmpty: C — Bool

asserts

C generated by empty, F
Ve, el, e2: E, d: C
count (e, empty) == 0;

count (e, el 4 d) =

count (e, d)

+

(if e = el then 1 else

e € d == count (e, d) > 0;
e 1 empty == empty F e;
(el 4 d) Fe2 ==el 4 (dF e2);

head(e 4 d
last(d F e
tail(e 4 4
init(d F e
)
)
)

isEmpty (d
implies

Stack (head for top, tail for pop,
41 for push, len for size),

Queue (1 for append, last for head,
init for tail)

C generated by empty, -

C partitioned by len, head, tail

C partitioned by len, last, init

YV da: C
d # empty
= (head(d) 4 tail(d) = d
A init(d) F last(d) = 4d)

converts head, last, tail, init, len
exempting head (empty), last (empty),

tail (empty),

init (empty)
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List (E, C): trait
% Add singleton and concatenation
includes Deque
introduces
{ }: E—>C
Il ¢, c—=cC
asserts V e: E, 1ls, 1lsl, 1ls2: C
{e} == empty F e;
ls || empty == 1s;
1s1 || (1s2 F e) == (1sl || 1s2) F e
implies
C generated by empty, { }, ||
converts head, last, tail, init, len, {_}, ||
exempting head (empty), last (empty),
tail (empty), init (empty)

String (E, C): trait

% Index, substring

includes List

introduces
_ [ 1:¢C, Int —» E
prefix: C, Int — C
removePrefix: C, Int — C
substring: C, Int, Int — C

asserts V e: E, s: C, i, n: Int

tail (empty) == empty;
init (empty) == empty;
s[0] == head(s);
n > 0= sn + 1] = tail(s) [n];
prefix(empty, n) == empty;
prefix (s, 0) == empty;
n >0
= prefix(e 4 8, n + 1) = e 1 prefix(s, n);
removePrefix (s, 0) == s;
n >0
= removePrefix(s, n + 1)
= removePrefix(tail(s), n);
substring(s, 0, n) == prefix(s, n);
i>0
= substring(s, i + 1, n)
= substring(tail(s), i, n)
implies

IndexOp (4 for insert)
C partitioned by len, [ ]
converts tail, init
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Sequence (E, C): trait
% Comparison, subsequences
assumes StrictPartialOrder (>, E)
includes
LexicographicOrder,
String
introduces

isPrefix, isSubstring, isSubsequence: C, C — Bool

find: C, C — Int
asserts V e, el, e2: E, s, sl, s2: C
igPrefix(sl, s2) == sl = prefix(s2, len(sl));
igSubstring(sl, s2) ==
igPrefix(sl, s2) V isSubstring(sl, tail(s2));
isSubsequence (empty, s);
—isSubsequence (e 1 s, empty);
isSubsequence (el -1 s1, e2 - sg2) ==
(el = e2 A isSubsequence(sl, s2))
V isSubsequence (el 1 s1, s2);
find(sl, s2) ==
if isPrefix(sl, s2) then 0
else find(sl, tail(s2)) + 1
implies
IsPO (isPrefix, C),
IsPO (isSubstring, C),
IsPO (isSubsequence, C)
¥V s, s1, s2: C, i, n: Int
igPrefix (prefix (s, n), s);
isSubstring(substring(s, i, n), s);
isSubstring(sl, s2) = isSubsequence(sl, s2)
converts
igPrefix, isSubstring, isSubsequence, find
exempting V s: C, e: E find(e 1 s, empty)
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CONTENT ORDERED DATA STRUCTURES
PriorityQueue (>:E,E—Bool, E, C): trait

% Enumerate by order on elements
assumes TotalOrder (E for T)
includes Integer
introduces
empty: — C
add: E, C — C
count: E, C — Int
€ _:E, C— Bool
head: ¢ — E
tail: ¢ — C
len: C — Int
igsEmpty: C — Bool
asserts
C generated by empty, add
C partitioned by head, tail, isEmpty
Ve, el: E, qg: C

count (e, empty) == 0;
count (e, add(el, q)) ==

count (e, gq) + (if e = el then 1 else 0);
e € q == count (e, q) > 0;

head(add(e, q)) ==
if g = empty V e > head(q) then e
else head(q) ;

tail (add (e, q)) =
if g = empty V
else add(e, tail(q)

N
~.

len (empty) == 0;

len(add (e, g)) == len(qg) + 1;

isEmpty(g) == g = empty
implies

Container (add for insert)

Ve, el, e2: E, g: C
add(el, add(e2, q)) = add(e2, add(el, q));
len(qg) > 0;
add (e, q) # empty

converts count, €, head, tail, len, isEmpty
exempting head (empty), tail (empty)
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ChoiceSet (E, C): trait
% A set with a weakly-gspecified choose operator
includes Set
introduces
choose: C — E
rest: C — C
igEmpty: C — Bool
asserts V e, el: E, s: C
s # {} = choose(s) € s;

s # {} = rest(s) — delete(choose(s), s);
isEmpty(s) == s = {}
implies

C partitioned by choose, rest, isEmpty
YV e: E, s: C
s # {} = s — insert (choose(s), rest(s))

ChoiceBag (E, C): trait
% A bag with a weakly-gspecified choose operator
includes Bag
introduces
choose: C — E
rest: C — C
igEmpty: C — Bool
asserts V e, el: E, b: C
b # {} = choose(b) € b;
b # {} = rest(b) = delete(choose(b), b);
isEmpty(b) == b = {}
implies
Container (choose for head, rest for tail,
{} for empty)
C partitioned by choose, rest, isEmpty
YV e: E, b: C
b # {} = b = insert(choose(b), rest (b))
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ASSUMPTIONS AND IMPLICATIONS

InsertGenerated (E, C): trait
% C’'s contain finitely many E’s
introduces
empty: — C
insert: E, C — C
asserts

C generated by empty, insert

Container (E, C): trait
% head and tail enumerate contents of a C
includes InsertGenerated, Integer
introduces
igEmpty: C — Bool
count: E, C — Int
€ _: E, C — Bool
head: ¢ — E
tail: ¢ — C
asserts
C partitioned by isEmpty, head, tail
Ve, el: E, c: C
isEmpty (empty) ;
- isEmpty (insert (e, c));
count (e, empty) == 0;
count (e, insert(el, c)) ==
count (e, ¢) + (if e = el then 1 else 0);
e € ¢ == count (e, c) > 0;
- isEmpty(c) =
count (e, insert (head(c), tail(c)))
= count (e, c¢)
implies
V c: C
- isEmpty(c) = count (head(c), c) > 0;
converts isEmpty, count, €

177



178 A.5. Containers

OPERATOR DEFINITIONS

MemberOp: trait
assumes InsertGenerated

introduces
€ _, ¢ +E, C - Bool
asserts V e, el, e2: E, c: C
e ¢ c==(e €c);
e ¢ empty;
el € insert(e2, c) ==el = e2 V el € c

implies converts €, ¢

JoinOp (M) : trait

Container combining operator
e.g., union, concatenation
assumes InsertGenerated

o°

o°

introduces X : C, C — C
asserts V e: E, ¢, cl, c2: C

empty X ¢ == ¢;

insert (e, cl) X ¢2 == insert(e, cl X ¢2)
implies

Associative (X, Q)
converts X

ReverseOp: trait
% An operator on lists commonly used
% to demonstrate theorem provers.
assumes List
introduces reverse: C — C
asserts V e: E, 1, 11, 12: C

reverse (empty) == empty;
reverse (e 1 1) == reverse(l) F e
implies V e: E, 1, 11, 12: C
reverse (reverse(l)) == 1;
1 # empty = head(reverse(l)) = last(l);

1 # empty
= tail(reverse(l)) = reverse(init(l)) ;
len(reverse(l)) == len(1l);
reverse (11 || 12) == reverse(l2) || reverse(ll)
converts reverse
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IndexOp: trait
% Select the i-th element in the container
% (in enumeration order) .
assumes Integer, Container

introduces [ 1: C, Int — E
asserts V c¢: C, i: Int

c[0] == head(c) ;

i > 0 = cl[i+l] = tail(c) [i]

CoerceContainer (DC, RC) definesan operator toconvertfrom
aterm of one container sort, DC, to aterm of another container sort, RC,
with the same elementsinserted in the same order. For example, astack can
be mapped to aqueue. Maore interestingly, alist can be mapped to abag, or
abag to a set; these mappingsloseinformation on order and on multiplicity,
respectively, so the inverse mappingswould introduce inconsistencies.

CoerceContainer (DC, RC): trait
% Insert each element of DC in a new RC
assumes
InsertGenerated (DC for C),
InsertGenerated (RC for C)
introduces coerce: DC — RC
asserts V dc: DC, e: E
coerce (empty) == empty;
coerce (insert (e, dc)) == insert (e, coerce(dc))
implies converts coerce

Permutation (E, C): trait
% Test for having the same elements
assumes Container
includes

Bag (B for C),

CoerceContainer (C for DC, B for RC)
introduces isPermutation: C, C — Bool
asserts V cl, c2: C

isPermutation(cl, c2) == coerce(cl) = coerce(c2)
implies V e: E, cl1, c2: C
igPermutation(cl, c2)
= count (e, c¢l) = count (e, c2)
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The following traits “promote” various operators on elements to
corresponding operators on containers.

ElementTest (pass, E, C, T): trait
$ filter collects elements accepted by pass
assumes InsertGenerated
introduces
pass: E, T — Bool
filter: C, T — C
allpPass: C, T — Bool
somePass: C, T — Bool
asserts V ¢: C, e: E, t: T
filter (empty, t) == empty;
filter (insert(e, c), t) ==
if pass(e, t) then insert(e, filter(c, t))
else filter(c, t);
allPass (empty, t);

allPass (insert (e, c), t) ==
pass(e, t) A allbPass(c, t);
somePass (¢, t) == filter(c, t) # empty

implies converts filter, somePass, allPass

PairwiseExtension (o, ®, E, C): trait
% Induce a binary operator on containers
% from a binary operator on elements.
assumes Container (E, C)

introduces
o _:E, E— E
& _:C, C—>C

asserts V el, e2: E, cl, c2: C
empty © empty == empty;
(cl # empty A c2 # empty)
= cl ® c¢2 = insert (head(cl) o head(c2),
tail (cl) ® tail(c2));
implies converts ©
exempting V e: E, c: C
empty ® insert(e, c¢), insert(e, c) ® empty
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PointwiseImage: trait
% Apply elemOp to each element
assumes
InsertGenerated (DE for E, DC for C),
InsertGenerated (RE for E, RC for C)
introduces
elemOp: DE — RE
containerOp: DC — RC
asserts V dc: DC, de: DE

containerOp (empty) == empty;
containerOp (insert (de, dc)) ==
insert (elemOp(de), containerOp (dc))

implies converts containerOp

ReduceContainer (unit, o): trait
% Insert the operator in enumeration order.
assumes Container

introduces
unit: — E
o : E, E—> E

reduce: C — E
asserts V c: C
reduce (c) =
if ¢ = empty then unit
else head(c) o reduce(tail(c))
implies converts reduce
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A.6 Branching structures

DATA STRUCTURES

Thefollowing trait defines the operators on alist (of sort C), each of whose
elements (of sort E) is either an atom (of sort 2) or alist.

ListStructure (A, E, C): trait
% Classical LISP
includes List

E union of list: C, atom: A

BinaryTree (E, T): trait
% One of the many interesting tree structures
introduces
[ 1: E—-T
[, 1:T, T—>T
content: T — E
first, second: T — T
igLeaf: T — Bool
asserts
T generated by [ 1, [, ]
T partitioned by content, first, second, isLeaf
Ve: E, tl, t2: T
content ([e]) =
first ([tl, t2]
second ([t1l, t2
isLeaf ([e]);
—isLeaf ([tl, t2])
implies converts isLeaf
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OPERATOR DEFINITIONS

ListStructureOps (A, E, C): trait

% Operators frequently used in

% theorem proving demonstrations.

assumes ListStructure

introduces
flatten, reverseAll: C — C
countAtoms: C — Int

asserts V a: A, 1, 11, 12: C

flatten (empty) == empty;
flatten(atom(a) 4 1) == atom(a) 4 flatten(l);
flatten(list (11) 4 12) ==

flatten(1l1l) || flatten(1l2);

reverselAll (empty) == empty;
reverseAll (atom(a) 4 1) =
reverseAll (1) F atom(a);
reverseAll (1ist (11) 4 12) ==
reverseAll (12) F list (reverseAll (11));
countAtoms (1) == len(flatten(l))

implies
v 1, 11, 12: C
flatten (11l || 12) == flatten(1ll) || flatten(1l2);
flatten(flatten(l)) == flatten(l) ;
reverseAll (11 || 12) ==
reverseAll (12) || reverseAll(1l1l);

reverseAll (flatten (1))

flatten(reverseAll (1)) ;
reverselAll (reverseAll (1)) == 1;
countAtoms (11 || 12) ==

countAtoms (11) + countAtoms (12) ;
countAtoms (flatten(l)) == countAtoms (1) ;
countAtoms (reverseAll (1)) == countAtoms (1)

converts flatten, reverseAll, countAtoms
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A.7 Maps

DATA STRUCTURES

Arrays are heavily-used data structures; programming languages often
provide alarge number of operators. The following definitions are only a
sample.

Arrayl (E, I, A): trait

[}

% Basgsic one-dimensional array operators

introduces
assign: A, I, E — A
[ 1:a, 1I—>E
asserts

Va: A, i, j: I, e: E
assign(a, i, e) [j] ==
if i = § then e else aljl

Array2 (E, I1, I2, A): trait

% Basic two-dimensional array operators
introduces

assign: A, I1, I2, E — A

[, _1:A, 11, I2 - E
asserts

Va: a, i1, ji: 11, 12, j2: 12, e: E

assign(a, i1, i2, e) [j1, j2] ==
if i1 = j1 A i2 = j2 then e else aljl, j2]

ArraySlice2 (E, I1, I2, A): trait
% A two-dimensional array
% treated as a vector of vectors
includes
Arrayl (E, I2, Al),
Arrayl (Al, I1, A)
introduces
assign: A, I1, I2, E — A
[, 1:Aa, I1, I2 — E

asserts
V a: A, i1: I1, i2: I2, e: E
alil, i2] == (aldill) [i2];

assign(a, i1, i2, e) ==
assign(a, 11, assign(alil], i2, e))
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Themapsof thefollowingtrait arefinitely generated by {} andupdate.

FiniteMap (M, D, R): trait
$ An M is a map from D’'s to R’s.
introduces
{}: =M
update: M, D, R —» M
apply: M, D — R
defined: M, D — Bool
asserts
M generated by {}, update
M partitioned by apply, defined
YV m: M, d, d1, d2: D, r: R
apply (update (m, d2, r), dl) ==
if d1 = d2 then r else apply(m, dl);
—defined({}, d);
defined (update(m, d2, r), dl) ==
dl = d2 V defined(m, d1)
implies
Arrayl (update for assign, apply for [ 1,
M for A, D for I, R for E)
converts apply, defined
exempting V d: D apply({}, d)

OPERATOR DEFINITION

ComposeMaps (M1, M2, D, T, R): trait
If ml is a map from D to T
and m2 is a map from T to R,
ml o m2 is a map from D to R.
assumes
FiniteMap (M1, T, R),
FiniteMap (M2, D, T)
includes FiniteMap
introduces _ o _ : M1, M2 — M
asserts V ml: M1, m2: M2, d: D
apply(ml o m2, d) == apply(ml, apply(m2, d));
defined(ml o m2, d) ==
defined(m2, d) A defined(ml, apply(m2, d))

o o

o°
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A.8 Rdations

DATA STRUCTURE

The following traits do not presume that the domain sort, E, is generated
by any fixed set of operators. Subsets of E are represented by subrelations
of the identity relation.

Relation (E, R): trait
includes
RelationBasics,
RelationOps,
RelationPredicates

RelationBasics (E, R): trait

[}

$ el ( r) e2 means el is related to e2 by r.
introduces

_~{_ )Y _ :E, R, E— Bool
1, T, I: - R

[, 1: E, E—R

., "L rR >R

U _: R, R—R
asserts

R partitioned by  {( )

Ve, el, e2, e3, e4: E, r, rl, r2: R
—|(e1<J_>e2);

el (T ) e2;
el { I ) e2 ==¢el = e2;
el ( [e2, e3] ) e4d ==el = e2 A e3 = e4;
el ( -r ) e2 == = (el { r ) e2);
el {r1)e2==e2 (1) e1;
el { r1 Ur2 ) e2===el (rl)e2 V el ( r2) e2
implies
AbelianMonoid (L for unit, U for o, R for T),
Involutive (___1, R),
Involutive (-, R)
equations
-1 ==TT;
-T == 1;
J__l==J_;
T-1==T
converts U, - -1
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OPERATOR DEFINITIONS

The skolem operator is introduced solely to get around the absence of
existential quantifiersin LSL.

RelationOps: trait
% Useful non-primitive operators on relations.
assumes RelationBasics
includes
DerivedOrders (R, C for <, D for >,

C for <, D for >)

introduces
__ € _, ¢ +E, R > Bool
set, dom, range, _*t, *: R — R
no o, - X _:R, R—>R

7

domRestrict, rangeRestrict, imagéT-R, R — R
skolem: E, R, R, E — E

asserts
Ve, el, e2, e3: E, r, rl, r2: R

e €r==¢e{(r)e;
e ¢ r== (e € r);
set(r) ==r N I;
dom(r) == set(r o T);
range (r) == set (T o r);
el {rlNr2)e2===el (rl)e2 A el (r2) e2;

(el { rl ) e2 A e2 ( r2 ) e3)
= el {rl o r2 ) e3;
el (rl o r2 ) e2
= (el { rl ) skolem(el, rl, r2, e2)
A skolem(el, rl, r2, e2) ( r2 ) e2);

r o
™ ==T U (rt);
(rl = I U r2 A r2 = rorl) =
((r*) C r1 A (xt) C r2);
rl - r2 ==1rl N (-r2);
rl X r2 == set(rl) o T o set(r2);
rl C r2 ==rl1l - r2 = 1;
domRestrict (rl, r2) ==rl N (r2 o T);

image (rl, r2) == set(rl) o r2;
rangeRestrict (rl, r2)
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implies
AbelianMonoid (T for unit, N for o, R for T),
Distributive (U for +, N for *, R for T),
Distributive (N for +, U for *, R for T),
Idempotent (set, R),
Monoid (I for unit, R for T),
Lattice (R for T, U for U, N for M,
C for <, D for >, C for <, D for >),
PartialOrder (R, C for <, D for >, C for <,
D for >)
Ve: E, r, rl, r2:

-(rl U r2) == (-rl) N (-r2);
-(r1 N r2) == (-rl) U (-r2);
(rl1 o r2) ! == (r271) o (r17}
converts
€, ¢, set, dom, range, _t*, *, - | x,
U, N, o, -:R—R, Y, C, D, C, D,

domRestrict, image, rangeRestrict

SetToRelation: trait
% Map a (finitely generated) set
% to the relation that represents it.

assumes SetBasics, RelationBasics

introduces
relation: C — R
asserts
YV e: E, s: C
relation({}) == L;
relation (insert (e, s)) == [e, e] U relation(s)
implies
YV e: E, s: C
e € s == e { relation(s) ) e

converts relation



Appendix A. An LSL Handbook 189

The predicates in the next trait are closely related to the theories defined
in Section A.11, but they define the properties of relationstreated asval ues,
whereas Section A.11 defines properties of relations treated as operators.
Thisduplicationisa price of not using a higher-order logicin LSL.

RelationPredicates: trait
% Tests for useful properties
% of individual relations.
assumes
RelationBasics,
RelationOps
introduces
antisymmetric, asymmetric, equivalence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive: R — Bool
into, onto: R, R — Bool
asserts
Vr, rl, r2: R
antisymmetric(r) == (r N (r~ 1)) C I;
asymmetric(r) == r N (r 1) = L;
equivalence (r) ==
reflexive(r) symmetric(r) A transitive(r);
functional (r) (r'Y) or) C I;
irreflexive(r) ==r N I = 1;
oneToOne (r) == r o (r 1) = 1;
reflexive(r) == 1
symmetric(r) == ¢
total (r) == dom(r
transitive( =
into(rl, r2
onto(rl, r2) == set
implies converts
antisymmetric, asymmetric, equivalence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive, into, onto
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A.9 Graph theory

Graph (N, G): trait
$ nl ( g ) n2 means that there is
% an edge from nl to n2 in g
includes Relation (N for E, G for R)
introduces
nodes, undirected: G — G
isPath: N, N, G — Bool
stronglyConnected, weaklyConnected: G — Bool

asserts V nl, n2: N, g: G
undirected(g) == g U (g7h);
nodes (g) == dom(g) U range(g) ;
isPath(nl, n2, g) ==nl { g* ) n2;
stronglyConnected(g) == g* = nodes(g) X nodes(9g) ;

weaklyConnected (g)
stronglyConnected (undirected(g))
implies
VYV nl, n2: N, g: G
(stronglyConnected(g) A nl € nodes(g)
A n2 € nodes(g))
= isPath(nl, n2, g)
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A.10 Properties of single operators

Associative (o, T): trait
introduces o : T, T — T

asserts V x, v, Z: T
(x oy) o z==x0 (y o z)

Commutative (o, T, Range): trait

introduces = o : T, T — Range
asserts V x, y: T
X o0y ==Y 0X

AC (o, T): trait
introduces o : T, T — T
asserts V x, vy, z: T
(x oy) oz==x0 (y o 2z);
X 0y ==Y 0 X
implies
Associative,
Commutative (T for Range)

Idempotent (op, T): trait
introduces op: T — T
asserts V x: T

op (op (x)) == op(x)

Involutive (op, T): trait
introduces op: T — T
asserts V x: T

op(op(x)) == x
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A.11 Properties of relational operators

ComparewithRelationPredicates, page 189

Antisymmetric (¢): trait
introduces = ¢ : T, T — Bool
asserts V x, y: T

(xoy ANy ox) = x=1yY

Asymmetric (¢): trait
introduces ¢ : T, T — Bool
asserts V x, y: T
X oy => 7(y o x)

Functional (¢): trait
introduces _ ¢ _ : T, T — Bool

asserts V x, vy, z: T
(xoy AN xoz) =y =2;

Irreflexive (¢): trait
introduces = ¢ : T, T — Bool
asserts V x: T
- (x © x)

OneToOne (¢): trait
introduces _ ¢ _ : T, T — Bool

asserts V x, vy, z: T
(xoy AN xoz) =y =2;
) = x =

Reflexive (¢): trait
introduces _ ¢ : T, T — Bool
asserts V x: T
X o X

Symmetric (¢): trait

introduces _ ¢ _ : T, T — Bool
asserts V x, y: T
Xoy==Y 90X

implies Commutative (¢ for o, Bool for Range)
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Transitive (¢): trait
introduces ¢
asserts V x, vy, z: T

(x oy ANy o z) => X0z

T, T — Bool

Equivalence: trait

includes
(Reflexive, Symmetric, Transitive) (= for ¢)

Equality (T): trait
% This trait is given for documentation only.
% It is implicit in LSL.

T, T — Bool

introduces = _,  #
asserts

T partitioned by =

Vx, v, z: T

X = xX;

X =Yy ==Y = Xj

(x =y ANy =2) = x=z;

x #£y=="(x=y)
implies Equivalence (= for =)
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A.12 Orderings

PARTIAL AND TOTAL ORDERS
IsPO (£, T): trait

)

$ < is a partial order on T

introduces < : T, T — Bool
asserts V x, vy, z: T

x < x;

(x <y ANy < z) =x < z;

x <y ANy <x==x=yY
implies

Antisymmetric (<),

PreOrder,

Reflexive (<),
Transitive (<)

T partitioned by <

PartialOrder (T): trait
includes IsPO, DerivedOrders
implies
PartialOrder (> for <, < for >,
> for <, £ for >),
StrictPartialOrder (<, T)

IsTO (<, T): trait

)

$ < is a total order on T

introduces < : T, T — Bool
asserts V x, vy, z: T
x < x;
(x <y ANy <z =x < z;
xSy Ay < x==x=Y;
x <y Vy<x
implies IsPO, TotalPreOrder

TotalOrder (T): trait

includes IsTO, DerivedOrders

implies
PartialOrder,
StrictTotalOrder (<, T),
TotalOrder (> for <, < for

> for <, < for

T partitioned by <

2,
>)
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ASSUMPTIONS AND IMPLICATIONS

PreOrder (<, T): trait

includes Reflexive (<), Transitive (<)
implies V x, y, z: T
x < x;
x <y ANy < z)=>x<z
TotalPreOrder (<, T): trait

includes PreOrder
asserts V x, y: T
x <y Vy<Xx

StrictPartialOrder (<, T): trait

includes Irreflexive (<), Transitive (<)
implies
Asymmetric (<)
Vx, v, z: T
- (x < x);
x <y ANy <z =3x <z
StrictTotalOrder (<, T): trait

includes StrictPartialOrder
asserts V x, y: T
x <y Vy<xVxx=y

OPERATOR DEFINITIONS

DerivedOrders (T): trait
% Define any three of the comparison operators,
% given the fourth
introduces
<

assert

AN
vV

I~<:I\/
|
|
|
|

<\
® |
NININ N .

> <
]
ol
IS
<

EEVEEVERY
VIV A IA
Ko e @
In
In
KO XON
MM N

implies
converts
converts
converts
converts

ANV VYV

INININ IV
VIV A A
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MinMax (T): trait
assumes TotalOrder
introduces

min, max: T, T — T

asserts V x, y: T
min(x, y) == if x < y then x else y;
max(x, y) == if x > y then x else y
implies

AC (min, T),
AC (max, T)
converts min, max

LexicographicOrder (E, C): trait
% "Dictionary" order on C
assumes
Container,
StrictTotalOrder (<, E)
includes DerivedOrders (C)

asserts V cl, c2: C

cl < c2 ==
c2 # empty
A (cl = empty
V (if head(cl) = head(c2)
then tail(cl) < tail(c2)
else head(cl) < head(c2)))
implies

TotalOrder (C)
converts <:C,C—Bool, >:C,C—Bool,
<:C,C—Bool, >:C,C—Bool
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A.13 Latticetheory

GreatestLowerBound (T): trait
introduces

< T, T — Bool

N _:T, T—>T

asserts V x, vy, z: T

(x Nyl < x;

(x Ny < vy

(z < x AN z<vy) =>z < (xNvy)

Semilattice (T): trait
assumes PartialOrder
includes GreatestLowerBound

introduces

l: —» T

U T, T—>T
asserts V x, vy, z: T

1 < x;

x Uy ==y U x;

x My ==y I %x;

x < (xUvy);

x <z ANy < z)=>(xUy) <z
implies

AbelianMonoid (U for o, 1 for unit),
AbelianSemigroup (M for o)

Lattice (T): trait
assumes PartialOrder
includes Semilattice
introduces T: — T
asserts V x: T

x < T
implies

Lattice (U for M, M for U, T for L, L for T,

197
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A.14 Group theory

Semigroup: trait

introduces o : T, T — T
asserts V x, vy, z: T
(x oy) o z==x0 (y o z)

implies Associative

LeftIdentity: trait
introduces
o _: T, T—T
unit: — T
asserts V x: T
unit o x == x

RightIdentity: trait
introduces
o _: T, T—T
unit: — T
asserts V x: T
X o unit == x

Identity: trait
includes LeftIdentity, RightIdentity

Monoid: trait

introduces
o : T, T—T
unit: — T
asserts V x, vy, z: T
(x oy) oz==x0 (y o 2z);
unit o X == X;
X o unit == x

implies Semigroup, Identity

LeftInverse: trait
assumes LeftIdentity
introduces _~l: T — T
asserts V x: T

(x 1) o x == unit
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RightInverse: trait
assumes RightIdentity

introduces "l T — T
asserts V x: T
x o (x71) == unit

Inverse: trait
assumes Identity, Semigroup
includes LeftInverse, RightInverse
implies
Involutive (_ ~! for op)
Vx, yv: T
unit~! == unit;

(x o y)™t == (y -1

_1)o(x
Group: trait
introduces
o __: T, T—T
unit: — T
bt ST
asserts V x, vy, z: T
(x oy) oz==x0 (y o 2z);
unit o X == X;
(x1) o x == unit;
implies Monoid, Inverse

Abelian: trait

introduces o : T, T — T
asserts V x, y: T
X o0y ==Y 0X

implies Commutative (T for Range)

AbelianSemigroup: trait
includes Abelian, Semigroup
implies AC

AbelianMonoid: trait
includes Abelian, Monoid

AbelianGroup: trait
includes Abelian, Group

199
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LeftDistributive (+, *, T): trait

introduces
4+, * T, T =T
asserts V x, vy, z: T
X * (y +2z) == (x *vy) + (x * z)

RightDistributive (+, *, T): trait

introduces

4+, * T, T —T
asserts V x, vy, z: T

(v + 2) * x == (y * x) + (2 * x)

Distributive (+, *, T): trait
includes LeftDistributive, RightDistributive

Ring: trait
includes
AbelianGroup (+ for o, 0 for unit, - for
Semigroup (* for o),
Distributive (+, *, T)

RingWithUnit: trait
includes Ring, Monoid (* for o, 1 for unit)

Field: trait

includes
RingWithUnit,
Abelian (* for o)
introduces "l T — T

asserts V x: T
x#£0=x* (x1) =1
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A.15 Number theory

This section presents a series of traits dealing with operators on whole
numbers. The following section deals with operators on rational and

floating point numbers.

DATA TYPES
Natural (N): trait

[}

% The usual operators on the natural numbers,
% starting from 0.

includes
ArithOps (N),
DecimallLiterals,
Exponentiation (N),
MinMax (N),
TotalOrder (N)
introduces
& _: N, N—>N
asserts
N generated by 0, succ
V x, v: N
succ (x) # 0;
succ (x) = succ(y) == x = vy;

x < succ(x);
0 & x ==0;
0 X;
implies
NaturalOrder

N generated by 0, 1, +
Vx, y: N

**  min, max,
exempting V x: N
div(x, 0), mod(x, 0)
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Positive (P): trait
% Basic operators on natural numbers,
starting from 1
includes DecimallLiterals (P for N), TotalOrder (P)
introduces
l1: — P
succ: P — P
4+ , _* : P, PP
asserts
P generated by 1, succ
V x, y: P
X + 1 == succ(x);
X + succ(y) == succ(x + V) ;
X*1 == X;
x*gucc(y) == x + (xX*y);
x < succ(x)
implies
NaturalOrder (P for N, 1 for 0)
P generated by 1, +
converts +, *, <, >, <, >

%
°
%



Appendix A. An LSL Handbook 203

IntCycle (first, last, N): trait
$ A finite subrange of the integers that includes O,
% and wraps at succ(last)
includes

ArithOps (N),

DecimallLiterals,

MinMax (N),

TotalOrder (N)
introduces

first, last: —» N

pred, - , abs: N —» N

- :N, N—>N
asserts

N generated by 0, succ

V x, v: N

succ (last) == first;

7

X
X;

) =
)

-0 == 0;
-succ (x) == pred(-x);
abs(x) == if x < 0 then -x else x;
x - y==x+ (-y);
x # last = x < succ(x)
implies

Distributive (+, *, N),

RingWithUnit (N for T)

N generated by 0, pred

V x: N
pred(first) == last;
first < x;
x < last;
-(-x) ==X

converts
pred, -_:N—N, abs, _ - :N,N—N,
1:—N, +, *, max, min, <, >, <, >

SignedInt (maxSigned, N): trait
% Typical machine arithmetic, signed complement.
includes IntCycle (minSigned, maxSigned, N)

asserts equations

succ (minSigned) == -maxSigned
implies equations
minSigned + maxSigned == -1;

abs (minSigned) == minSigned
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UnsignedInt (maxUnsigned, N): trait

% Typical machine arithmetic, unsigned.
includes IntCycle (0, maxUnsigned, N)

ASSUMPTIONS AND IMPLICATIONS

Enumerable requiresonly that each value of sort N must be reachable by
applying succ to 0 afinite number of times. Infinite requiresthat the
values yielded by succ are al distinct. The inclusion of Totalorder
inNaturalOrder ensuresthat succ (x) isawaysgreater than x, and
hence that there are infinitely many distinct values of sort N.

Enumerable (N): trait
introduces
0: —- N
succ: N — N
asserts
N generated by 0, succ

Infinite (N): trait
introduces
0: —- N
succ: N — N
asserts V x, y: N
succ (x) # 0;
succ (x) = succ(y) ==X =y

NaturalOrder (N): trait
% The natural numbers with an ordering
includes
Enumerable (N),
TotalOrder (N)
asserts V x: N

x < succ(x)

implies
Infinite (N)
Vx, y: N
0 £ x;
X < succ(y) ==x < y;
succ (x) < succ(y) ==x < vy

converts <, >, <, >
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OPERATOR DEFINITIONS
Addition (N): trait

[}

% Define the operator + in terms of 0 and succ
includes AbelianMonoid (+ for o, 0 for unit, N for T)

introduces
0: — N
succ: N — N
4+ : N, N—> N
asserts V x, y: N
X + 0 == x;
X + succ(y) == succ(x + V)

Multiplication (N): trait
% Define the operator * in terms of 0, succ, and +
includes
AbelianMonoid (* for o, 1 for unit, N for T),

Addition (N)

introduces
l1: — N
_* :N, N—> N
asserts V x, y: N
1 == succ(0) ;
X * 0 == 0;
X * gucc(y) == X + (x * vy)

ArithOps (N): trait
% Defines operators div and mod relative to + and *
% for positive denominators
assumes TotalOrder (N)
includes Multiplication (N)
introduces
div, mod: N, N — N
asserts V x, y: N
y > 0
= (0 < mod(x, Vy)
A mod(x, v) < vy
A (mod(x, y) + (div(x, y) * y)) = x)
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Exponentiation (T): trait
% Repeatedly apply an infix * operator
assumes
Enumerable (N),

Monoid (* for o, 1 for unit)

introduces ** : T, N — T
asserts V x: T, y: N
X**Q == 1;

xX**gucc(y) == X * (x**y)
implies V x:

x**gucc (0) == x

AT

IntegerAndNatural (Int, N): trait
% Conversions between Int’s and N’s
includes
Integer (Int),
Natural (N)
introduces
int: N — Int
nat: Int — N
asserts V n: N

int (0) == 0;
int (succ(n)) == succ(int(n)) ;
nat (int(n)) == n

IntegerAndPositive (Int, P): trait
% Conversions between Int’s and P’'s
includes
Integer (Int),
Positive (P)
introduces
int: P — Int
pos: Int — P
asserts V p: P
int (1) == 1;
int (succ (p)) == succ(int(p));
pos (int (p)) P

(
p
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A.16 Floating point arithmetic

207

Thetrait Rat ional providesenough of atheory of rational arithmeticto

specify the properties of floating point arithmetic.

Rational: trait

[}

% For use in the trait FloatingPoint.
includes

Exponentiation (Q for T, P for N),
IntegerAndPositive (Int, P),

MinMax (Q),
TotalOrder (Q)
introduces
_/_ _+Int, P —Q
0, 1: — Q
- ___1, abs: Q — Q
I _*_I T _/_: Q, 0 — Q
asserts
Q generated by / :Int,P—Q
vV i, i1, i2: Int, p, pl, p2, p3: P, q, gl
0/p == 0;
int (p) /p == 1;
il/pl = i2/p2 == 11 * int(p2) = i2 * int
-(i/p) == (-1i)/p;
(int (p1) /p2) "1 == int (p2) /p1;
(-q@) 7t == -(a™h;
abs (i/p) == abs (i) /p;
(i1/p) + (i2/p) == (i1 + 1i2)/p;
(i1/pl) * (i2/p2) == (il * i2)/(pl * p2);
gl - g2 == gl + (-g2);
ql/g2 == ql * (g271);
(i1/p) < (i2/p) == 11 < 1i2
implies
AC (+, Q),
AC (*, Q),
Field (Q for T)
vV i, i1, i2: Int, p, pl, p2, p3: P, g: Q
q + 0 ==gqg;
-g ==0 - g;
(i1/p) - (i2/p) == (il - i2)/p;
qQ* 0==20;
q * 1==g4q;
gl ==1/q;
(

b
~
o]

i
~ b
-
o]
=
o]
N
~
o]
w
1]
Il
-
*
-
o]
=

o]

w
~

o]

i

*
o]
N
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converts
0:—Q, 1:—Q, -:Q —Q, ~!, abs:Q —Q,
+:Q,0—Q, -:0,0—Q, *:0,0—0Q, /:0,0—0Q,
**:0,P—Q, min:Q,0—Q, max:Q,Q0—0Q,
<:Q,0—Bool, >:Q,0—Bool,
<:0,0—Bool, >:Q,0—Bool
exempting 071

The following traits define a theory of floating point arithmetic that is
weak enough to be satisfied by many floating point implementations, yet
strong enough to allow reasoning about floating point arithmetic. Careful
analysis of any particular floating point system should lead to tighter
bounds on the errors due to inexact arithmetic, and might even lead to
some useful identities, such as (f1 + f2) + fa = fi + (f2 + f3).

The basic idea is this: Every floating point number exactly represents
some rational number, returned by the operator rational. Each floating
point operator approximates a corresponding rational operator, but cannot
aways be be exact. The exact answer may not even be representable.
Furthermore, floating point arithmetic does not generaly guarantee to
produce even the closest representable value. So each floating point
operator may introduce an error that depends on:

¢ the magnitude of the operand(s),
¢ the magnitude of the exact and approximate results,
¢ properties of the floating point representation used.

Three parameters characterize the representation: smallest and
largest denote the least and the greatest representable positive values,
respectively, and gap, the largest relative difference between any pair of
consecutive representable positive values. FPAssumptions specifies
relations that must hold among these parameters and the operator
rational (which converts floating point numbersto their exact rationa
values) in order for FloatingPoint to characterize a valid floating
point number system.
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FPAssumptions (smallest, largest,
gap, rational): trait
includes Rational
introduces
smallest, largest, gap: — Q
rational: F — Q
float: Q — F
0, 1: — F
asserts V f: F
smallest > 0;
largest > smallest;

rational (0) == 0;

rational(1l) == 1;

rational (£) # 0 = abs(rational(f)) > smallest;
rational (f) < largest;

gap > 0;

float (rational (f)) == f;
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The predicate approx (f, g, t) comparestheresult £ of afloating
point operation to the exact rational value g of that operation; the predicate
is true if the result is “close enough” to the exact value (i.e., within a
tolerance t), or if the exact value istoo big to be represented.

We have not axiomatized the properties of the IEEE standard’s non-
numeric floating point values (NaN’s). We leave that as an exercise for
numerical analysts, in the expectation that an accurate characterization is
separable from the numerical properties. 1t might be more complex than
anything we have specified in this handbook.

FloatingPoint (smallest, largest,

gap, rational): trait
assumes FPAssumptions
includes
Rational,
TotalOrder (F)
introduces

mag: F — Q
approx: F, Q, Q — Bool
-, abs, ___1: F —- F
I A R T __/__: F, F —- F
asserts
F generated by float
v £, £f1, f2: F, g, t: Q
f1 < f2 == rational(fl) < rational (f2);
mag (f) == abs(rational (f)) ;
approx(f, g, t) ==
abs(g) < largest
= abs(rational(f) - q)
< (smallest +
(gap* (mag(f) + abs(qg) + t)));
approx (-f, -rational(f), 0);
£f#0= approx(f‘l, rational (£) 1, 0);
approx(abs (f), mag(f), 0);
approx(fl + f2, rational(fl) + rational (f2),
mag (f1) + mag(f2));
approx(fl * f2, rational(fl) * rational (f2), 0);
approx(fl - f2, rational(fl) - rational (f2),
mag (f1) + mag(f2));
f2 # 0
= approx(f1/f2, rational (fl)/rational (f2), 0)
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| mplementations of Example LCL
| nterfaces

This appendix contains the implementations of the interfaces erc,
empset, and dbase specified in Chapter 5. We present them here not
because they are intrinsically interesting, but for compl eteness.

ERC.H

#if !defined(ERC_H)
#define ERC H

#include "eref.h"

typedef struct _elem{eref val; struct _elem *next;} ercElem;
typedef ercElem *ercList;

typedef struct {ercList vals; int size;} ercInfo;

typedef ercInfo *erc;

typedef ercList *ercIter;

#include "erc.lh"

#define erc_size(c) ((c)->size)

#define erc_choose(c) ((c->vals)->val)

#define erc_initMod( )\
do {bool_initMod(); employee_initMod();\
eref_initMod();} while (0)

#define erc_iterFinal (it) (free(it))

#define erc_iterReturn(it, result)\
do {erc_iterFinal (it); return result;} while (0)
#define for ercElems(er, it, c)\
for(er = erc_yield(it = erc_iterStart(c));\
leref equal (er, erefNIL);\
er = erc yield(it))
#endif
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ERC.C

#include "erc.h"

erc erc_create (void) {

erc c;

¢ = (erc) malloc(sizeof (ercInfo)) ;

if (¢ == 0) {
printf ("Malloc returned null in erc create\n");
exit (1) ;

}

c->vals = 0;

c->size = 0;

return c;

}

void erc clear (erc c)

ercList elem;

ercList next;

for (elem = c->vals; elem != 0; elem = next) {
next = elem->next;
free (elem) ;

}

c->vals = 0;

c->size = 0;

}

void erc_ final (erc c¢) {
erc_clear(c) ;
free(c);

}

bool erc_member (eref er, erc c)
ercList tmpc;
for (tmpc = c->vals; tmpc != 0; tmpc = tmpc->next)
if (tmpc->val == er) return TRUE;
return FALSE;

}

void erc_insert(erc c, eref er) ({
ercList newElem;

newElem = (ercElem *) malloc(sizeof (ercElem)) ;

if (newElem == 0) {
printf ("Malloc returned null in erc_insert\n");
exit (1) ;

}

newElem->val = er;

newElem->next = c->vals;

c->vals = newElem;

c->size++;

}

bool erc _delete(erc c, eref er) {
ercList elem;
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ercList prev;

for (prev = 0, elem = c->vals;
elem != 0;
prev = elem, elem = elem->next) {
if (elem->val == er) {
if (prev == 0)
c->vals = elem->next;
else {prev-snext = elem->next;}
free (elem) ;
c->size--;

return TRUE;

}
}

return FALSE;

}

ercIter erc iterStart (erc c¢)
ercIter result;

result = (ercIter) malloc (sizeof (erclList));

if (result == 0) {
printf ("Malloc returned null in erc iterStart\n");
exit (1) ;

}

*result = c->vals;

return result;

}

eref erc_yield(ercIter it)
eref result;
if (*it == 0) {
return erefNIL;
free (it) ;
}
result = (*it)->val;
*(it) = (*it) ->next;
return result;

}

void erc join(erc cl, erc c2) ({
ercList tmpc;
for (tmpc = c2->vals; tmpc != 0; tmpc = tmpc->next)
erc_insert (cl, tmpc->val);

}

char * erc sprint(erc c) {
int len;
eref er;
erclter it;
char *result;
result = (char*)malloc(erc_size(c)
* (employeePrintSize+1) +1) ;
if (result == 0) {

213
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printf ("Malloc returned null in erc_sprint\n");
exit (1) ;

}

len = 0;

for ercElems (er, it, c¢) {
employee sprint (& (result[len]), eref get(er));
len += employeePrintSize;
result[len++] = ’'\n’;

result [len] = ’\0’;
return result;

EMPSET.H

#if !defined (EMPSET H)
#define EMPSET H

#include "eref.h"
#include "erc.h"
#include "ereftab.h"

typedef erc empset;
ereftab known;

/*
Abstraction function, toEmpSet:
e \in toEmpSet (s) ==
exists er (count(er, s.val) =1
/\ getERef (known, e) = er)

Rep invariant:
forall s: empset
(forall er: eref (count(er, s.val) <= 1)
/\ s.activelters = 0
/\ forall er: eref (count(er, s.val) =1
=> in(known, er)))

*/
#include "empset.lh"

#define empset create() (erc_create())
#define empset final(s) (erc_final(s))
#define empset member (e, s)\
(! (eref_equal (_empset get (e, s), erefNIL)))
#define empset size(es) (erc_size(es))
#define empset choose (es) (eref get (erc_choose(es)))
#define empset_ sprint (es) (erc_sprint(es))
#endif
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EMPSET.C

#include "empset.h"
static bool initDone = FALSE;

eref empset_get (employee e, erc s) {
eref er;
erclter it;
employee el;
for ercElems (er, it, s) {
el = eref get(er);
if (employee equal (&el, &e))
erc_iterReturn(it, er);

}

return erefNIL;

}

void empset clear (empset s) {
erc_clear(s) ;
}

bool empset insert (empset s, employee e) {
eref er;
if (l!eref equal( empset get(e, s), erefNIL)) return FALSE;
empset insertUnique (s, e);
return TRUE;

}

void empset insertUnique (empset s, employee e) {
eref er;
er = ereftab lookup (e, known);
if (eref equal (er, erefNIL)) ({
er = eref alloc( );
eref assign(er,e);
ereftab insert (known, e, er);
}
erc_insert(s, er);

}

bool empset delete (empset s, employee e) {
eref er;
er = empset get (e, s);
if (eref equal (er, erefNIL)) return FALSE;
return erc_delete (s, er);

}

empset empset disjointUnion(empset sl, empset s2) {
erc result;
erclter it;

eref er;
empset tmp;
result = erc create( );

if (erc size(sl) > erc size(s2))
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tmp = s1;
sl = s2;
s2 = tmp;

}

erc_join(result, sl1);
for_ercElems (er, it, s2)

empset insertUnique (result, eref get (er));
return result;

}

empset empset union(empset sl, empset s2) {
eref er;
ercIter it;
erc result;
empset tmp;

result = erc_create( );

if (erc_size(sl) > erc size(s2)) {
tmp = s1;
sl = s2;
s2 = tmp;

}

erc_join(result, s2);

for_ercElems (er, it, sl)

if (!empset member (eref get (er), s2))
erc_insert (result, er);

return result;

}

void empset intersect (empset sl, empset s2) {
eref er;
erclter it;
erc toDelete;
toDelete = erc create( );
for_ercElems (er, it, sl)
if (!empset member (eref get (er), s2))
erc_insert (toDelete, er);
for_ercElems (er, it, toDelete)
erc_delete(sl, er);
erc_final (toDelete) ;

}

bool empset subset (empset sl, empset s2) {
employee e;
eref er;
erclter it;

for_ercElems (er, it, sl)
if (!empset member (eref get (er), s2))
erc_iterReturn(it, FALSE) ;
return TRUE;

}

void empset initMod (void) ({
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if (initDone) return;
bool_initMod () ;

employee initMod() ;

eref initMod() ;
erc_initMod() ;

ereftab initMod() ;

known = ereftab create( );
initDone = TRUE;

DBASE.H

#if !defined (DBASE_H)
#define DBASE H

#include "eref.h"
#include "erc.h"

#include "dbase.lh"

#endif

DBASE.C

#include <strings.hs>
#include "dbase.h"

#define firstERC mMGRS
#define lastERC fNON
#define numERCS (lastERC - firstERC + 1)

typedef enum {mMGRS, £fMGRS, mNON, fNON} employeeKinds;
erc db[numERCS] ;
bool initDone = FALSE;

void db_initMod(void) {
int 1i;
if (initDone) return;
bool_initMod () ;
employee initMod() ;
eref initMod () ;
erc_initMod() ;
empset_initMod () ;
for (i = firstERC; i <= lastERC; i++)

db[i] = erc_create( );

initDone = TRUE;

}

eref db_ercKeyGet (erc c, int key) {
eref er;
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erclter it;
for_ercElems (er, it, c)

if (eref get(er) .ssNum == key) erc iterReturn(it, er);
return erefNIL;

}

eref db_keyGet (int key) {

int 1i;

eref er;

for (i = firstERC; i <= lastERC; i++) {
er = db ercKeyGet (db[i], key);

if (!eref equal(er, erefNIL)) return er;

}

return erefNIL;

}

int db addEmpls(erc ¢, int 1, int h, empset s)
eref er;
erclter it;
employee e;
int numAdded;
numAdded = 0;
for ercElems (er, it, c¢) {
e = eref get(er);
if ((e.salary >= 1) && (e.salary <= h)) {
empset insert (s, e);
numAdded++;
}
}

return numAdded;

}

db_status hire(employee e) {
if (e.gen == gender ANY) return genderERR;
if (e.J == job ANY) return JjobERR;
if (e.salary < 0) return salERR;
if (l!eref equal(_db_keyGet (e.ssNum), erefNIL))
return duplERR;
uncheckedHire (e) ;
return db_OK;

}

void uncheckedHire (employee e) {
eref er;
er = eref alloc();
eref assign(er, e);
if (e.gen == MALE)
if (e.j == MGR)
erc_insert (db[mMGRS], er);
else erc_insert (db[mNON], er);
else if (e.j == MGR)
erc_insert (db[fMGRS], er);
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else erc_insert (db[fNON], er);

bool fire(int ssNum) {

}

int 1i;

eref er;

erclter it;

for (i = firstERC; i <= lastERC; i++)

for_ercElems (er, it, dbl[i])
if (eref get(er).ssNum == ssNum) {

erc_iterFinal (it);
erc_delete(db[i], er);
return TRUE;

}

return FALSE;

bool promote (int ssNum) {

}

eref er;
employee e;
gender g;
g = MALE;
= _db_ercKeyGet (db [mNON], ssNum) ;
(eref_equal (er, erefNIL)) {
er = db ercKeyGet (db[fNON], ssNum) ;
if (eref equal (er, erefNIL)) return FALSE;
g = FEMALE;
}
J

eref get (er);

= MGR;

eref_assign(er, e);

if (g == MALE) {
erc_delete(db[mNON], er);
erc_insert (db [mMGRS], er);

else {
erc_delete (db[fNON], er);
erc_insert (db[fMGRS], er);

}

return TRUE;

db_status setSalary(int ssNum, int sal) {

eref er;

employee e;

if (sal < 0) return salERR;

er = db keyGet (ssNum) ;

if (eref equal (er, erefNIL)) return missERR;
e = eref get(er);

e.salary = sal;

eref assign(er, e);

return db_OK;
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int query(db g g, empset s) {
eref er;
employee e;
int numAdded;
int 1, h;
int 1i;
1 =qg.1;
h = g.h;
switch(g.g)
case gender_ ANY:
switch(g.j)
case job ANY:
numAdded = 0;
for (i = firstERC; i <= lastERC; i++)
numAdded += _db addEmpls(db[i], 1, h,
return numAdded;
case MGR:
numAdded = db addEmpls (db [mMGRS], 1, h,

numAdded += _db addEmpls(db[fMGRS], 1, h,

return numAdded;
case NONMGR:

s);

s);
s);

numAdded = _db addEmpls (db[mNON], 1, h, s);

numAdded += _db addEmpls(db[fNON], 1, h,
return numAdded;
}
case MALE:
switch(g.j)

case job ANY:
numAdded = _db addEmpls (db [mMGRS], 1,
numAdded += _db addEmpls (db[mNON], 1,
return numAdded;

case MGR:
return _db_addEmpls (db[mMGRS], 1, h, s);

case NONMGR:
return _db_addEmpls (db[mNON], 1, h, s);

case FEMALE:
switch(g.j)
case job ANY:
numAdded = db addEmpls (db[fMGRS], 1, h
numAdded += _db addEmpls(db[fNON], 1, h
return numAdded;
case MGR:

’

’

return _db_addEmpls (db[fMGRS], 1, h, s);

case NONMGR:

return _db_addEmpls (db[fNON], 1, h, s);

}
}

void db_print (void) {
int 1i;

s);

s);
s);

s);
s);

7
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char * printval;

printf ("Employees:\n") ;

for (i = firstERC; i <= lastERC; i++) {
printval = erc_sprint(db[i]) ;
printf ("$s", printval) ;
free(printval) ;

}
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L exical Forms and Initialization Files

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may haveitsown lexical conventionsand capabilities. To conform
toloca conventionsand to exploit locally available capabilities, character
and token classes are extensible and can betailored for particular purposes
by initialization files.

In this appendix we give the LSL and LCL initialization files used for
theexamplesinthisbook. We a so givethe | SO L atin codes used for typing
the special symbols appearing in specifications in this book.

The book was produced using IATeXwith aLarch stylefile. That allowed
us to type specifications using the 1SO Latin codes given here, and have
them appear in the text as special symbols.

LCL init file

commentSym //

opChar Tl#ssre|
selectSym

synonym \and /\
synonym \or \/
synonym \implies =>
synonym \marker o
synonym \eq ==
synonym \neq =
synonym \not !
synonym \not not
synonym \not ~
synonym \pre ~
synonym \post

synonym \arrow ->

synonym \arrow \ra
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LSL init file

commentSym

idChar
opChar
singleChar

opensym
closeSym
selectSym

simpleId

synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym

)

% Following

synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym

o\°

Ti#ssre|

7

[ { \< \langle
1 } \> \rangle

\bot \top

\and /\
\and &
\or \/
\or |
\implies =>
\not !
\not not
\not
\eg =
\neq =
\neq 7=
\arrow ->
\marker

\equals ==
\forall forall
\egsep ;

used for checking LCL

Bool bool

Int int

Int signed char

Int unsigned char

Int short_int

Int long int

Int unsigned short_ int
Int unsigned_int

Int unsigned long int
double float

double long double

223
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SO Latin codes for special characters

— iswrittenas ->

< iswrittenas <=

> iswrittenas >=

#£ iswrittenas ~=

- iswrittenas ~

V iswrittenas \/

A iswrittenas /\

= iswrittenas =>

Y iswrittenas \forall
3 iswrittenas \exists
* iswrittenas \any

* iswrittenas \*

* iswrittenas \+

—1 jswrittenas \inv

( iswrittenas \<

) iswrittenas \>

€ iswrittenas \in

¢ iswrittenas \notin
N iswrittenas \I

U iswrittenas \U

C iswrittenas \subset
C iswrittenas \subseteq
D iswrittenas \supset

D iswrittenas \supseteq
- iswrittenas - |

F iswrittenas |-

|| iswrittenas | |

- iswrittenas \cdot

o iswrittenas \circ

-4 iswrittenas \precat

F iswrittenas \postcat
L iswrittenas \bot

T iswrittenas \top

M iswrittenas \glb

LI iswrittenas \1ub

O iswritten as \ominus

o iswrittenas \rel

X iswrittenas \times
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Further |nfor mation and Tools

This appendix contains alist of currently available Larch tools.

Readers interested in keeping up with new developments should sub-
scribetotheelectronicmailinglist Larch-interest@src.dec.com.
Thislistisused for announcementsand queriesof general interest. Requests
tobeaddedto (or deleted from) thislist, aswell asmore specialized queries,
should be sentto larch-interest-request@src.dec.com.

All informationinthissection iscurrent as of October 1992. An updated
version will bekept onlineon theinternet host gatekeeper.dec. com.
It will be available for anonymousftp as

/pub/DEC/Larch/Information.tex

1. Id. Larch Shared Language Checker. Syntax and sort checks LSL
specifications. Trandates LSL into Ip input. Contact: Stephen
Garland, MIT.

2. Icl. Syntax and type checker for LCL. Interfaces with Isl. Contact:
Stephen Garland, MIT.

3. Im3. Syntax and type checker for Modula-3 interface specifications
writtenin LM3. Interfaces with Isl. Contact: Kevin Jones, DEC.

4. Ip. Larch Prover. Proof checker for fragment of first-order logic with
equality. Contact: Stephen Garland, MIT.

5. gcil. Generic Concurrent Interface Language (GCIL) Checker.
Syntax and type checks GCIL specifications. Interfaces with Idl.
Contact: Jeannette Wing, CMU.

6. Penelope. Verification tool for Larch/Ada specifications and Ada
programs. Contact: M. Stillman, ORA.

7. Larch/Smalltalk Browser. Syntax and sort/type checker and
browser for Larch/Smalltalk and LSL specifications. Contact: Gary
Leavens, ISU.
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CONTACT ADDRESSES

MIT/LCS

Dr. Stephen J. Garland

M assachusetts I nstitute of Technology
Laboratory for Computer Science
545 Technology Square

Cambridge, MA 02139, USA
Internet:garlandelcs.mit .edu

DEC/SRC

Dr. James J. Horning

Dr. Kevin D. Jones

Digital Equipment Corporation

Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301-1044, USA

Internet: horning@src.dec.com, kjones@src.dec.com

ISU/DCS

Professor Gary Leavens

229 Atanasoff Hall

Department of ComputerScience

lowa State University

Ames, lowa 50011-1040, USA

Internet. leavens@cs.iastate.edu.

ORA

M. Stillman

Odyssey Research Associates
301A Harris B. Dates Drive
Ithaca, NY 14850-1313, USA.
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CMU/SCS

Professor Jeannette M. Wing

Carnegie Mellon University

School of Computer Science

Pittsburgh, PA 15213-3890, USA

Internet: Jeannette .Wing@cs.cmu.edu
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Classified Bibliography

This bibliography was started by Jeannette Wing and augmented by
Yang Meng Tan. It is available by anonymous ftp from Internet node
larch.lcs.mit.edu as/pub/larch-bib/larch-bib. tex.
Suggested additions for the online version should be sent to
ymtan@lcs.mit.edu. Full citationsfor all references are givenin the
next section.

Papers about Larch

CURRENT WORK

Reports about the current status of several Larch-related projects are
contained in [66].

LARCH LANGUAGES

Larch Interface Languages: generic [16, 53, 61, 88]; Ada[37]; C[26, 80];
C++[60]; CLU [86]; ML [93]; Modula-3 [55, 56, 57]; Smalltalk [17].
Larch and other methods: [95].

LARCH TOOLS

LP, the Larch proof assistant: [30]; a beginner’s strategy guide [81]; an
extension [83]; [5, 11, 18, 19, 76, 84].
For LSL [7, 59]; for LCL [26]; for LM3 [57].

Example specifications

Apple MAC Toolbox: [13].

Avalon built-in classes, examples (queue, directory, counter): [92], [89],
and [61].

Display: [43].

Finite element analysislibrary: [3, 1].

Garbage collection: [22].
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|OStreams: [55].

Larch/Ada: [15, 37].

Library: [87].

Miro languages and editor: [94, 99].

Thread synchronization primitives: [6, 69].

Using specifications to search software libraries: [73].

Proofsusing LP

Adaprograms. [38]

Avalon queue example: [92, 35, 91].
Circuit examples: [18, 32, 78, 75, 79].
Mathematical Theorems: [65].
Temporal Logic of Actions: [25].
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" (post-state value), 58, 61
" (pre-state value), 58, 61, 76
—>(inC), 60

— (in signature), 8, 18, 36
=, 36, 47

==, 36, 75, 92

£, 47

[1 (LPbox), 33,139

[1 (inC), 58, 60

<> (LP diamond), 33, 139
= (logical implies), 10

d (there exists), 10

Y (for al), 10, 11

< (logica equivalence), 9
- (logical not), 10

v (logical or), 10

A (logical and), 10

Abelian, 199
AbelianGroup, 199
AbelianMonoid, 199
AbelianSemigroup, 199
abstract field, 112
abstract invariant, 29, 78, 80
abstract type, 34, 15
assignment, 75
collection of related opera-
tions, 4, 21, 72, 92
constructor, 54
creation and finalization, 75
implementation, 4, 26-29,
72

in C, 58-60

in Modula-3, 104, 110, 119

reasoning about, 29

type checking, 59, 72
abstract value, 110
abstraction function, 26—29
abstraction relation, 112
abstractions, programming with,

1-5

AC, 191
action, 104
Addition, 205
addresses of Larch contacts, 225
adequate definition, 54, 122
algebra, 37
algebraic specification, 18, 35
aliasing, 77
ALL, 110
announcements, 225
Antisymmetric, 192
ArithOps, 205
array, 60, 67, 68
Arrayl, 184
Array2, 184
ArraySlice2, 184
asserts, 20
assignment, abstract type, 75
Associative, 191
associativity, 55, 131
assumes

discharge of, 125, 127, 137,

146
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examples, 51, 55, 78
purpose, 44, 124
VS. includes, 46, 125
assumptions, 44-47
Asymmetric, 192
atomic action, 116
auxiliary specifications, 17, 57,
77

backward inference, 134
Bag, 169

bag, 86

Bago0, 45

Bagl, 46

Bag2, 47
BagBasics, 168

based on, 21, 58, 104

basic value, 59

basis of induction, 28, 38, 135
BinaryTree, 182
binding, 10

bool, type, 68
Boolean, 161

bound and free variables, 10
break, 96

built-in operator, 36, 47—49

C and Modula-3, 102
.cfile, 57
call by value, 60
CartesianView, 151
case anaysis, 134
character set, 33, 222
checking
alocation failure, 77
assumption, 124-125, 127,
137
avoidance of, 83
based onredundancy, 18, 31,
4344, 152

completeness, 122
composition, 124-125
consistency, 127, 145
conversion, 123-124
defensive, 80, 99
examples, 146-152
generators, 142
hardware design, 30
implementation, 86
implication, 122-125, 137
interface specification, 17
LCLint, 57, 72, 80, 83, 92
LSL specification, 17, 43,
121-153
made easier, 128
of book, 62
precondition, 76
proof script, 30, 31
sort-, 18, 58, 61
specification, 7, 17, 121
specifications, iii
theory containment, 137-143
type-, 7, 18, 72, 104, 121,
125
understanding, 43, 80, 122
chemistry, 7
chess, 7
ChoiceBag, 176
ChoiceSet, 176
claims, 80, 83
client, 5, 22, 25, 57, 103
CoerceContainer, 179
combining
abstractions, 3
implementations, 3
solutions, 1, 2
specifications, 18, 39, 124
comments, 62
Commutative, 191



commutativity, 55, 131
comparison, of abstract typeval ue,
75, 92
completeness, 43, 54, 122
checking, 122
of deduction system, 12
of theory, 11
completion (Knuth Bendix), 139
completion (Knuth-Bendix), 134,
142, 145-146
ComposeMaps, 185
composition of actions, 116
concrete value, 110
concurrency, 116
Conditional, 162
conjunction, 10
consequences, 12-13
consistency, 12, 37, 43, 122, 127
checking, 126, 145-146
constants
inC, 57, 63, 66, 70
inLM3, 105
inLSL, 49
in Modula-3, 104, 106, 107
logical, 9
mathematical, 21
new, 135, 139, 142
contact addresses, 225
Container, 52, 177
container traits, 166181
contradiction, 135
control object, 62
conventions, 4, 62, 75
lexical and typographic, 33—
34, 222-224
converts
checking, 142-143
purpose, 43
semantics, 43, 44, 123
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Coordinate, 146
correctness

of implementation, 4, 7, 25,

59, 101

of specification, 7, 41, 121
crash, 68
create function, 75
critical pairs, 134, 138, 145
cstring, 63, 64

data abstraction, 34
data type induction, 28, 29, 83
dbase implementation, 100
dbase.c, 217-221
dbase.h, 217
debugging
L SL specifications, 121-153
proof, 30
DecimallLiterals, 164
declaration
inC, 57, 92
inLCL, 80
inLP, 129-130
inLSL, 18, 31, 36, 48, 146
in Modula-3, 102-104, 106,
110
decomposition, 1-3
deduction
rule, 12, 38, 132-134, 141
system, 12
default proof methods, 136
defensive programming, 68, 80,
99
definitional specifications, 5
Deque, 172
DerivedOrders, 195
design
decision, 7, 70
of proof, 30
of software, 1-4
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determinism, 67, 77
disambiguation, 48, 49
discharging

assumption, 46, 101, 125,

127, 137

proof obligation, 127

subgoal, 31
disunction, 10
Displayable, 146
distinguished sort, 54
Distributive, 200
domain, 8, 18, 36
driver program, 83

effective deduction system, 12
efficiency, 76, 77
ElementTest, 180
empset.c, 215217
empset.h, 214
ENSURES, 105, 109
ensures, 22, 62, 67,68
Enumerable, 204
Enumeration, 165
enumeration, 49
enumeration type, 107
environment, 58
Equality, 193
equation, 9, 36

checking, 137-141

inLP, 130131
equational specification, 35-37
equational theory, 37, 130, 145
Equivalence, 193
equivalence, 41
equivalencel, 40
equivalence2, 40
erc.c, 212-214
erc.h, 211
error

avoidance, 57

in specification, 43
examples

LCL, 22, 62-101

LM3, 22, 105-120

LSL, 18,40-42,51-55, 157—

210
checking, 146-152

proof, 31-33, 146-152
EXCEPT, 108, 109
exception, 109
exempting, 44, 54, 55, 124
existential quantifier (3), 10
Exponentiation, 206
exposed fields, 113
exposed type, 21

in C, 58, 59, 66, 72, 80, 100

in Modula-3, 103, 106, 109
extension operators, 54
extern, 67, 92

failure
of proof, 136, 147, 149-150,
152
of storage alocation, 77
Field, 200
field specification, 119
field (in C), 59
final algebra, 37
FiniteMap, 185
first-order logic, 8-13
first-order theory, 20, 37
FloatingPoint, 210
formal method, 155, 156
formal parameter, 58, 60, 61, 66,
105
LSL, 41
formal specification, 6—7
formalization, caution, 155-156
formula, 9
forward inference, 133, 145



FPAssumptions, 209
free and bound variables, 10
fresh, 7577
function (in C)
prototype, 57, 66, 70, 72, 80
specification, C, 61-62
Functional, 192

gcce, 62
GCIL, 225
generated by, 37,51, 132
checking, 142
generator set, 54
generators, 142
generic
interface, 110, 112
operator, 51, 55
global state
inLM3, 104
global variable, 80, 104
Graph, 190
GreatestLowerBound, 197
Group, 199
group theory traits, 198-200

.hfile, 57, 70
handbook, 63

errors, 159

LSL, 157-210

online, 158, 159
hiding, 5, 21, 110, 113, 116
hierarchy, 3
history, iii—iv

.13 file, 102

Idempotent, 191

Identity, 198

if__then__else__, 20, 36, 37,
47, 162

.igfile, 102
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immutabletype, 59, 75, 80, 86
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