
Closing the Idealization Gap
with Theory Generation

(Extended Abstract)

Darrell Kindred Jeannette M. Wing
Computer Science Department

Carnegie Mellon University
fdkindred,wingg@cs.cmu.edu

August 1997

1 Overview

Cryptographic protocol design demands careful verification during all phases of
development. Belief logics, in the tradition of the Burrows, Abadi, and Needham
(BAN) logic of authentication [BAN90], provide a simple, intuitive model, and
allow natural expressions of a protocol and its goals. Since manual deduction is
error-prone, protocol designers need automated tools to make effective use of these
logics. Such tools often require excessive human intervention or supply inadequate
feedback during the verification process.

We take a new approach, “theory generation,” which allows highly automated
reasoning with these logics, and which supports new forms of protocol analysis.
In this approach, given a logic, L, we generate a finite representation, T�, of the
full theory, corresponding to a protocol, P . Given this representation, determining
whether the protocol satisfies some property, �, requires only a simple membership
test, � � T �? (Figure 1). Furthermore, since the theory is represented by a finite
set of formulas, we can analyze differences between protocols by comparing the
generated theories, and we can easily answer questions such as, “What beliefs
does this principal hold after receiving message 2?” In earlier work described in
our USENIX paper, we applied theory generation to three different belief logics
(BAN, AUTLOG [KW94], and Kailar’s accountability logic [Kai96]), and seven
protocols for authentication and electronic commerce [KW96].

BAN-style belief logics enable the designer to think about a protocol at a
convenient level of abstraction; however, the gap between the “idealized” protocol

1

theory

generator

property

checker

logic L protocol P property φ

y/n

Figure 1: Basic Approach

and a concrete protocol implementation is substantial. In this paper, we show how,
in the context of theory generation, to bridge this gap.

Many of the well-known deficiencies of these belief logics stem from this
troublesome “idealization” step, in which the person verifying a protocol must
devise an abstract interpretation for each of the concrete messages exchanged
in the protocol. It is difficult to produce a good idealization. For example,
the original BAN analysis of the Needham-Schroeder public-key authentication
protocol failed to expose a flaw recently discovered by Lowe, in part because it used
an idealization that masked the problem [Low95]. Although general guidelines for
building idealizations exist, the idealization process itself is informal, and thus there
is no way to reason formally about the validity of an idealization. An improper
idealization may assign meanings to a message that the sender did not intend,
making any further reasoning invalid. Even a “good” idealization may obscure
important aspects of the protocol.

In this paper, we present a formalization of the idealization step (Section 3).
We give a set of simple properties that will be required of legitimate idealizations,
and then describe some more interesting properties that should hold for a given
idealization and concrete protocol together.

Given a concrete protocol and formalized idealization, we can reason about
four classes of properties, all within the context of theory generation:

� belief goals: These are the properties traditionally verified in BAN-style
analysis, regarding beliefs held at the end of a protocol run [KW96].

� honesty: These properties assert that principals sign only messages that
correspond to their beliefs.

� responsibility: These properties prevent principals from acting in manners
that indirectly contradict their beliefs.

2

theory

generator

property

checker

feasibility

checker

honesty

checker

responsibility

checker

logic

concrete

protocol idealization

belief

property

y/n

y/n

y/n

y/n

Figure 2: Fuller Approach

� feasibility: These properties ensure that principals have enough knowledge
to carry out their assigned roles in the protocol.

In this paper we focus on honesty properties (Section 4).
Figure 2 gives a fuller schematic of our entire approach. Using the same theory

generator, we can perform more than just the belief-property checks as suggested
in Figure 1. Note that we need to modify the description of the protocol given as
input: rather than give an abstract protocol, a user gives both a concrete protocol
and a set of rules for assigning idealized meanings to concrete messages.

3

2 The Theory Generation Method1

The technique for checking whether some desired property, �, holds for a given
protocol, P , consists of these basic steps:

� Given a logic, L (consisting of a finite set of axioms and controlled-growth
rules), our tool automatically generates a checker, C, specialized to that
logic.

� Given the protocol, P , for which we want to check property �, encode the
initial assumptions and messages of P as formulas of L; call this set T 0.

� Using C, exhaustively enumerate the theory, T�, that is, the set of facts
(formulas) derivable from the formulas in T 0.

� Determine whether � is in T � by a simple membership test.

2.1 Class of Logics

We impose several restrictions on the logic, L, to ensure that this technique can be
applied successfully.

� V is a formula for any variable V , and

� if F1� � � � � Fn are formulas and S is a function symbol, then S�F1� � � � � Fn�
is a formula (for any n � 0).

A constant can be represented as a function symbol with no arguments (we will omit
the parentheses in this case). In particular, no conjunction, disjunction, negation,
or quantifiers are permitted. Here are some legal formulas:

believes�A� shared key�KAB� A� B��
sees�B� encrypt�KBS� shared key�KAB� A� B���
controls�S� shared key�KAB� A� B��

We must be able to separate the rules of inference of the logic L into three
classes:

1Most of the this section is straight from our USENIX paper. We include it to make this paper
more self-contained.

4

� S-rules: An S-rule (shrinking rule) consists of a set of premises,fP1� � � � � Png,
and a conclusion C, such that if P1� � � � � Pn unify simultaneously with a set
of derivable formulas, then C (appropriately instantiated) is a derivable for-
mula. The conclusion must be the same size as or smaller than one of the
premises, by some well-founded measure. Each variable occurring in the
conclusion must also occur in one or more premises.

� G-rules: A G-rule (growing rule) has the same form as an S-rule, but the
conclusion must be strictly larger than each of the premises, by the same
measure, and each variable occurring in the premises must also occur in the
conclusion.

� Rewrites: A rewrite is a pair of formulas, �f1� f2�, such that any occurrence
of f1 in a derivable formula may be replaced by f2, yielding another derivable
formula. The formula f2 must be the same size as f1 and contain the same
variables.

Finally, we require that each S-rule must still meet the S-rule criteria when all
its premises that could match G-rule conclusions are removed. Whereas the other
restrictions are local properties of individual rules and thus can be checked for each
rule in isolation, this global restriction involves the whole set of rules.

2.2 Summary of Applications of Our Method

In our USENIX paper, we describe the theory-generation algorithm and present
informal arguments for its correctness and termination. We explain how we applied
it to three different logics and checked authentication protocols and an electronic
commerce protocol for various desired properties:

Logic Class of Protocols Properties to Check

BAN authentication authentication
AUTLOG authentication authentication, privacy
Kailar electronic commerce accountability

3 Formalizing Interpretation

The informal idealization step is a widely acknowledged limitation of BAN-like
belief logics [Syv91, NS93, MB94]. Abadi and Needham provide a set of prac-
tical guidelines for constructing good idealizations [AN96]. These guidelines are

5

unsuitable to formal verification, but furthermore they are more restrictive than
necessary, so they are often “legitimately” violated in practice. This makes it hard
to identify the truly improper idealizations that lead to problems.

The form of the BAN-like logics suggests a natural expression of idealiza-
tions: as extra rules added to the logic. Each of these rules can represent an
“interpretation” that protocol participations can legitimately make. For instance,
if Alice sees the signed message [A.B.K], she might be allowed to assume that

the meaning of that message is A K
�� B. (We use the notation [X.Y.Z] to rep-

resent a concrete message with three fields.) This interpretation might correspond
to a rule whose premise is P believes Q said �P�Q�K� and whose conclusion is

P believes Q said P
K
�� Q. With these extra interpretation rules, we can start

from the initial assumptions and the concrete protocol messages, and derive all
properties from there. We will allow interpretation rules in any of the following
forms:

P sees X

P sees Y

P believes Q said X

P believes Q said Y

P believes Q says X

P believes Q says Y

Here, X is a pattern matching concrete messages, and Y , idealized messages. We
will present further limits on the allowed interpretation rules later.

There are other approaches to bridging the “idealization gap.” Since idealized
protocols can exhibit different behaviors from their concrete counterparts, we
might decide to abandon reasoning about beliefs and do all verification at the
concrete level. This is what recent verification techniques based on model-checking
do [Low96, MMS97, MCJ97]. While this approach has the appeal of producing
counterexamples and not requiring the construction of idealizations, it does have
some disadvantages. There is no longer any formal notion of the “meaning” of a
message, and there is little indication of why a protocol works. We can analyze data
flow: secrets successfully communicated, information leaked, and so on, and we
can check the “correspondence” properties defined by Woo and Lam [WL93], but
we cannot verify the richer and more intuitive belief properties. We cannot factor
out the abstract “core” of a protocol from its various possible implementations.

Mao has proposed a method of developing idealizations in a principled way
[Mao95], by breaking the idealization process down into a sequence of incremental
steps, each of which can be justified individually. We choose a different approach
that is suitable for automation via theory generation, and that we feel more directly
expresses the desired qualities of idealizations.

6

4 Honesty

Burrows, Abadi, and Needham recommend, “for the sake of soundness, we always
want to guarantee that each principal believes the formulas that he generates as
messages” [BAN90]. This requirement has intuitive appeal: the protocol should
not require principals to “lie.” If participants were free to send arbitrary messages,
recipients could derive faulty conclusions about the senders’ beliefs from those
messages. We will refer to this kind of restriction as an honesty property. In the
next two sections, we discuss honesty first for idealized protocols, and then in the
context of explicit interpretations.

4.1 Honesty in Idealized Protocols

We need a more precise statement of the honesty property; the goal is to prevent
message recipients from deducing beliefs of other principals that are invalid. To
achieve this, we must consider the circumstances under which one principal can
decide another principal holds some belief. This typically happens through the
application of a message-meaning rule, such as the rule for interpreting messages
signed with a shared key, followed by the application of a nonce-verification
rule. We focus on the message-meaning step: any message (formula) that is

encrypted under some key (e.g., fA
Kab�� BgKs

), or combined with some secret

(e.g., hA
Nb
�� BiNa) could potentially be interpreted as a belief of the principal

doing the encrypting or combining. Therefore, we will state the honesty property
in terms of messages signed, where a principal signs a message whenever it applies
encryption or secret-combination to that message. (Note that this notion is broader
than that of public-key digital signatures.) A principal takes responsibility for any
statement it signs, since those are the statements that might later be used by other
principals to derive beliefs of the signer.

We can now state the honesty property:

Honesty property (for idealized protocols): For every message com-
ponent M that a principal P signs, it must be true that P believes M

at the point at which P sent the message containing M .

The requirement that the belief hold at the time the message is sent prevents circular
situations in which two (or more) principals send each other statements that neither
believes initially, but that both come to believe after receiving the other’s message.

Most of the idealized protocols in the published BAN analyses will not pass

this test, since they typically contain messages like fTa� A
K
�� BgKab

, where the

7

signer does not actually “believe”Ta. We can fix this by replacing each troublesome
message fragment, X , with some formula the sender actually believes, such as
A sees X or fresh�X�. This approach requires introducing some extra “seeing”
rules, such as, P sees Q said X � P sees X .

4.2 Honesty with Explicit Interpretations

The honesty property is fairly simple in the context of reasoning about idealized
protocols, but when we introduce interpretation rules, it becomes more interesting.
Since concrete messages have no direct meaning, it no longer makes sense to talk
about believing the contents of a message; we can only discuss believing some
interpretation of a message. Roughly, we want to extend the honesty property to
say that, for every message component a principal signs, that principal must believe
all possible interpretations of that message component. We must, however, refine
the notion of interpretation for this definition to be useful.

By making interpretations explicit, we expose the possibility that a single
concrete message may be interpreted differently in different runs of the protocol.
This would make the honesty property difficult to verify; we would prefer to confine
our reasoning to a single run. By imposing certain restrictions on the interpretation
rules, we can ensure that no additional interpretations are possible in other runs
of the protocol. If we require that interpretation rules make no mention of “run
variables,” then their results on a given concrete message will be the same in all
protocol runs. By “run variables” we mean variables in the protocol description
that assume different values in different runs of the protocol. This would normally
include principal names like A and B and specific keys and nonces. A trusted
server name, S, would be considered a run variable unless the server’s identity
is fixed across all runs. This restriction, which corresponds loosely to Abadi and
Needham’s “explicitness” principle, is actually stronger than necessary. We are
investigating ways to safely relax this restriction in order to accommodate more
protocols.

Protocols involving shared secrets (not keys) can present a challenge. We
choose not to provide a secret-combining operator (hXiY) at the concrete level.
Providing one would oblige the low-level implementation to distinguish secret-
combining from ordinary concatenation. To allow more flexibility, we use in-
terpretation rules to decide when a given concrete message is meant to convey a
secret-combination. This means that for some messages, two levels of interpreta-
tion will be required: one to interpret a concrete message as a secret-combination,
and a second to interpret the contents of the secret-combination.

We do model encryption explicitly at the concrete level, so there is no need

8

for interpretations to introduce encryption. To preserve orthogonality with the
message-meaning rules, interpretations should also not perform decryption. We
can enforce this through a simple syntactic restriction that no encryption operators
can appear in the premise or conclusion of an interpretation rule.

The honesty property for the explicit interpretations case is as follows:

Honesty property (with explicit interpretations): For every message
M that a principal P encrypts, and every formula I , where I is an
interpretation of M from P , it must be the case that P believes I at
the point at which P sent M .

In this context, we say that message M from P has an interpretation I if there
exists someQ such that we can derive Q believes P said I orQ believes P says I

from Q believes P says M .
Together with the syntactic restrictions on interpretation rules, the honesty

property provides many of the guarantees we would like to hold for idealizations.

5 Status and Future Work

We are developing a prototype verification environment, REVERE, which uses
the theory-generation approach. It currently supports checking belief properties
with a variety of logics, and honesty properties using a BAN variant similar in
flavor to AUTLOG. Since the publication of our early performance results, we
have implemented some optimizations that produced substantial speedups; typical
verifications now take under one minute, rather than five to ten. This speed makes
a quick design-and-debug cycle possible during protocol development.

Now that we can reason about concrete and idealized levels of protocol de-
scription together, we are in a position to capture a wider range of properties in a
belief-logic context. The honesty property is just a first step. Honest principals can
still cause damage if they are allowed to act in manners that are inconsistent with
their beliefs; for instance, a principal may reveal shared secrets to untrusted third
parties. We are currently investigating ways to apply theory-generation to checking
responsibility properties, in order to expose this sort of misbehavior. Finally, we
intend to check feasibility properties, which assert that principals have sufficient
information at each step in a protocol to carry out their assigned roles.

We believe that these classes of properties complement each other in such a
way that we will be able to make stronger claims about a protocol that satisfies
all of them than we could using BAN-style reasoning alone. In addition, the
implementations of these checks can be simplified by sharing inputs and results;

9

for instance, the feasibility check could produce as a side effect the set of signed
message fragments which the honesty check requires.

References

[AN96] Martı́n Abadi and Roger Needham. Prudent engineering practice for
cryptographic protocols. IEEE Transactions on Software Engineering,
22(1):6–15, January 1996.

[BAN90] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of
authentication. ACM Transactions on Computer Systems, 8(1):18–36,
February 1990.

[Kai96] Rajashekar Kailar. Accountability in electronic commerce protocols.
IEEE Transactions on Software Engineering, 22(5):313–328, May
1996.

[KW94] Volker Kessler and Gabriele Wedel. AUTLOG—an advanced logic of
authentication. In Proceedings of the Computer Security Foundations
Workshop VII, pages 90–99. IEEE Comput. Soc., June 1994.

[KW96] Darrell Kindred and Jeannette M. Wing. Fast, automatic checking of
security protocols. In Proc. of the USENIX 1996 Workshop on Electronic
Commerce, pages 41–52, November 1996.

[Low95] G. Lowe. An attack on the Needham-Schroeder public-key authentica-
tion protocol. Information Processing Letters, 56(3):131–133, Novem-
ber 1995.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 1055. Springer-Verlag, March 1996. Lec-
ture Notes in Computer Science.

[Mao95] Wenbo Mao. An augmentation of BAN-like logics. In Proceedings
of the Eighth IEEE Computer Security Foundations Workshop, pages
44–56, June 1995.

[MB94] Wenbo Mao and Colin Boyd. Development of authentication proto-
cols: Some misconceptions and a new approach. In Proceedings of the
Seventh IEEE Computer Security Foundations Workshop, 1994.

10

[MCJ97] W. Marrero, E. M. Clarke, and S. Jha. Model checking for security
protocols. Technical Report CMU-CS-97-139, Carnegie Mellon Uni-
versity, May 1997.

[MMS97] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-
graphic protocols using Murphi. In Proceedings of the IEEE Conference
on Secuirty and Privacy, pages 141–15, 1997.

[NS93] B. Neuman and S. Stubblebine. A note on the use of timestamps as
nonces. ACM Operating Systems Review, 27:10–14, April 1993.

[Syv91] P. Syverson. The use of logic in the analysis of cryptographic protocols.
In Teresa Lunt and John McLean, editors, Proceedings of the 1991 IEEE
Computer Society Symposium on Research in Security and Privacy,
May 1991.

[WL93] Thomas Y. C. Woo and Simon S. Lam. A semantic model for authen-
tication protocols. In Proceedings of the 1993 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 178–194, May
1993.

11

