
Fast, Automatic Checking of Security Protocols

Darrell Kindred Jeannette M. Wing
Computer Science Department

Carnegie Mellon University
fdkindred,wingg@cs.cmu.edu

Abstract

Protocols in electronic commerce and other security-
sensitive applications require careful reasoning to demon-
strate their robustness against attacks. Several logics have
been developed for doing this reasoning formally,but pro-
tocol designers usually do the proofs by hand, a process
which is time-consuming and error-prone.

We present a new approach, theory checking, to ana-
lyzing and verifying properties of security protocols. In
this approach we generate the entire finite theory, Th, of a
logic for reasoning about a security protocol; determining
whether it satisfies a property,�, is thus a simple member-
ship test: � � Th. Our approach relies on (1) modeling
a finite instance of a protocol in the way that the secu-
rity community naturally, though informally, presents a
security protocol, and (2) placing restrictions on a logic’s
rules of inference to guarantee that our algorithm ter-
minates, generating a finite theory. A novel benefit to
our approach is that because of these restrictions we can
provide an automatic theory-checker generator. We ap-
plied our approach and our theory-checker generator to
three different logics for reasoning about authentication
and electronic commerce protocols: the Burrows-Abadi-
Needham logic of authentication, AUTLOG, and Kailar’s
accountability logic [4, 8, 6]. For each we verified the de-
sired properties using specialized theory checkers; most
checks took less than two minutes, and all less than fif-
teen.

1 Motivation for our Approach

Past approaches to reasoning about security proto-
cols, e.g., authentication protocols, have relied on ei-
ther pencil-and-paper proof or machine-assisted proof
through the use of interactive theorem provers, e.g.,
the Boyer-Moore Prover [3], Gypsy [5], HDM [9], Ina

This research is sponsoredby the Wright Laboratory, Aeronautical Sys-
tems Center, Air Force Materiel Command, USAF, and the Advanced
Research Projects Agency (ARPA) under grant number F33615-93-1-
1330. Views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing of-
ficial policies or endorsements, either expressed or implied, of Wright
Laboratory or the United States Government.

Jo [10], and UNISEX [7]. Proofs of properties of
these protocols relied on either specialized logics, e.g.,
Burrows-Abadi-Needham’s Logic of Authentication, or
an encoding of a specialized logic in the theorem prover’s
general-purpose logic. These proofs are tedious to do. If
done by hand, they are prone to error; and they can be
applied only to small examples. If done by machine,
they require tremendous user patience since the machine
usually insists on treating the critically creative and the
boring bookkeeping steps of the proof all with equal im-
portance; they often take hours to complete, even dis-
counting human user time; and they are also prone to
error since they still rely on human intervention and in-
genuity.

In this paper we present a completely different ap-
proach to verifying properties about security protocols.
It relies on the observation that informal reasoning about
these protocols by the security community is invariably
done in terms of a finite number of entities, e.g., parties
communicating, messages exchanged, types of messages,
encryption and decryption keys. Thus, we reason about
a finite model of a protocol rather than its generalization.
Our approach further relies on the observation that logics
used to reason about these protocols have a finite number
of rules of inference that “grow in a controlled manner”
(discussed in Section 2.1). It is this controlled growth
that enables us to build an automatic checker for a given
logic and class of protocols we wish to verify. It is the
small size in the number of entities we need to model and
the small size in the number of rules in any given logic
that enables us to do this checking fast.

Stated simply, our method is to build the entire theory,
Th, given a logic and a model of the protocol we want
to check. Since the model is finite and since the logic’s
rules always shrink or grow in a controlled manner, the
theory we generate is finite. Then checking whether a
property, �, holds of a protocol boils down to a simple
membership test: � � Th? In all the examples we
have looked at, generating Th takes no more than a few
minutes; membership is a trivial test.

In fact, we do even better. We provide more than a



single fast, automatic checker for verifying properites of
a class of security protocols, but better yet, we provide
a tool that for any given logic generates one of these
fast, automatic checkers. In other words our tool is a
theory-checker generator (and each checker it generates
implements the method described above). And best of
all, the tool we built generates these checkers completely
automatically as well!

In this paper, we first describe our method and argue
informally its correctness and termination properties. We
illustrate in Section 3 how we applied this method to three
different logics, each proposed as the basis for reasoning
about security protocols:

Logic Class of Protocols Properties
to Check

BAN authentication authentication
AUTLOG authentication authentication,

privacy
Kailar elec. commerce accountability

We start with the BAN logic since AUTLOG is a varia-
tion of it and Kailar’s logic is similar in flavor to BAN. We
discuss some of the implementation details in Section 4
and explain how we are able to build a tool that can gen-
erate checkers automatically. Section 5 discusses related
work. We close in Section 6 by summarizing our contri-
butions and discussing two important future directions of
this work: why logics for reasoning about security pro-
tocols are particularly amenable to our method and the
general applicability of our method to domains outside
of security.

2 Our Method

The technique for checking whether some desired
property, �, holds for a given protocol, P , consists of
these basic steps:

� Given a logic, L (consisting of a finite set of axioms
and controlled-growth rules), our tool automatically
generates a checker, C, specialized to that logic.

� Given the protocol, P , for which we want to check
property �, encode the initial assumptions and mes-
sages of P as formulas of L; call this set T 0.

� Using C, exhaustively enumerate the theory, T�,
that is, the set of facts (formulas) derivable from the
formulas in T 0.

� Determine whether � is in T � by a simple member-
ship test.

In the followingsections, we explain the class of logics
to which this method can be applied, give a more detailed
description of the algorithm, and present informal argu-
ments for its correctness and termination.

2.1 Class of Logics

The method we use requires several restrictions on the
logic, L. First, formulas of the logic are the smallest set
such that

� V is a formula for any variable V , and

� if F1� � � � � Fn are formulas and S is a function
symbol, then S�F1� � � � � Fn� is a formula (for any
n � 0).

A constant can be represented as a function symbol with
no arguments (we will omit the parentheses in this case).
In particular, no conjunction, disjunction, negation, or
quantifiers are permitted. Here are some legal formulas:

believes�A� shared key�Kab� A�B��
sees�B� encrypt �KBS � shared key�Kab� A�B���
controls�S� shared key�Kab� A�B��

We must be able to separate the rules of inference of
the logic L into three classes:

� S-rules: An S-rule (shrinking rule) consists of a
set of premises, fP1� � � � � Png, and a conclusion C,
such that if P1� � � � � Pn unify simultaneously with a
set of valid1 formulas, thenC (appropriately instan-
tiated) is a valid formula. The conclusion must be
the same size as or smaller than one of the premises,
by some well-founded measure. Each variable oc-
curring in the conclusion must also occur in one or
more premises.

� G-rules: A G-rule (growing rule) has the same form
as an S-rule, but the conclusion must be strictly
larger than each of the premises, by the same mea-
sure, and each variable occurring in the premises
must also occur in the conclusion.

� Rewrites: A rewrite is a pair of formulas, �f1� f2�,
such that any occurrence of f1 in a valid formula may
be replaced by f2, yielding another valid formula.
The formula f2 must be the same size as f1 and
contain the same variables.

The classification of a set of rules as S-rules and G-
rules can be done automatically if an appropriate measure

1We mean valid in the technical sense; that is, derivable from the
assumptions.



is supplied. The measure must be compositional; that is,
replacing a subformula by a formula of the same measure
must not change the measure of the whole formula. Typ-
ically, a simple measure such as the number of function
symbols will suffice.

Finally, we require that each S-rule must still meet the
S-rule criteria when all its premises that could match G-
rule conclusions are removed. We will refer to this as the
S/G restriction since it constrains the manner in which
S- and G-rules can interact with each other. Whereas the
other restrictions are local properties of individual rules
and thus can be checked for each rule in isolation, this
global restriction involves the whole set of rules.

2.2 The Algorithm

The encoding of a protocol in the target logic will nor-
mally take the form of a set of formulas that represent
initial assumptions held by the involved parties and the
effects of the messages sent during a run of the proto-
col. The core of the verification method is an algorithm
for computing the transitive closure, under the rules of
inference, of this initial set of valid formulas.

First, we consider the case in which there are S-rules,
but no G-rules or rewrites. The basic strategy we use is
a breadth-first traversal in which each node of the tra-
versed dag is a valid formula. The roots of the dag, i.e.,
the initial fringe, consist of all the formulas representing
assumptions and messages. At each step in the traversal,
we consider all possible applications of the S-rules that
use a formula from the fringe. By use we mean that at
least one of the premises unifies with such a formula. The
new fringe consists of all the new conclusions reached by
those S-rule applications. By the argument given in Sec-
tion 2.3, this process will eventually halt. The resulting
set of formulas is the complete set of valid formulas.

Next, we introduce the G-rules. The G-rules must be
applied more judiciously than the S-rules, since applying
them eagerly can produce infinitely many valid formu-
las. We apply them only as necessary to enable further
application of S-rules. For each S-rule, we separate its
premises into those that unify with some G-rule conclu-
sion and those that do not. When applying that S-rule, we
first unify the latter group of premises with known valid
formulas. We can then proceed to search for a match
for the remaining premises by applying the G-rules “in
reverse” to the premises until we either reach a set of
formulas all of which are known valid, or we cannot ap-
ply the G-rules further. (This process is guaranteed to
terminate: see Section 2.3.)

Finally, we introduce the rewrites. Since they neither
produce larger formulas nor introduce new variables, we

could apply them eagerly like the S-rules. This can lead to
exponential blowup in the set of valid formulas, though,
so it is better to use them only as needed. Since rewrites
can be applied to any subformula, we augment a simple
unification algorithm by trying rewrites at each recursive
step of the unification [15]. Plotkin described a similar
technique for building equational axioms into the unifi-
cation process [16].

Since the G-rules and rewrites are applied lazily, the
full algorithm does not generate the complete set of valid
formulas. Any formula whose formal proof has a rewrite
or G-rule as its last step may not appear. The generated
set of formulas will have the property that any valid for-
mula will be reachable from this set by a proof involving
only G-rules and rewrites. In practice, we have found
that the G-rules are often used solely for establishing
side-conditions, and that all the “interesting” formulas
will in fact appear in the generated set (possibly after
applying rewrites). Nonetheless, if we are interested in
a specific formula we can easily test whether it holds by
performing a simple preprocessing step prior to testing
for membership in the generated set.

2.3 Correctness and Termination

The soundness of the algorithm is easy to establish.
For any formula that is added to the fringe, we can easily
construct a proof of it by tracing back up the dag to
formulas in the initial valid set.

To show completeness (i.e., that any valid formula
is reachable from the generated set using only G-rules
and rewrites), we use induction on the number of S-rule
applications in the proof of a formula, F . If there exists
a proof using no S-rule applications, then the initial valid
set of formulas is sufficient, since we only need to capture
a set of formulas from whichF can be reached by G-rules
and rewrites. If there exists a proof of F using n S-rule
applications, we know by the induction hypothesis that
all lines in the proof before the nth S-rule application are
either in the valid set or can be reached from an element of
the valid set by applying G-rules and rewrites. Since we
apply as many G-rules and rewrites as necessary to enable
S-rule applications, the result of thenth S-rule application
will be in the valid set, and thus F is reachable from the
valid set using only G-rules and rewrites.

The algorithm is guaranteed to terminate because of
the restrictions we impose on the rules. Consider a modi-
fied logic in which any S-rule premise that could match a
G-rule conclusion is removed, and the G-rules are elim-
inated (since they cannot now make any contribution).
The modified S-rules still meet the S-rule criteria by the
S/G restriction.



If we run the algorithm on this modified logic with
some finite set of initial assumptiones, each new formula
is added as the result of an S-rule and thus is smaller or
the same size as one of its premises. The rewrites can
only be applied finitely many times since they preserve
the formula’s size and set of variables. Thus we will
never produce a formula that is larger than the largest ini-
tial assumption, and we will introduce no new variables,
so the set of formulas is finite and the algorithm must
terminate.

If we then reintroduce the G-rules and the missing
premises and run the algorithm, every S-rule application
will correspond to exactly one S-rule application from the
first run. Furthermore, each reverse-application of the G-
rules will terminate since G-rules are strictly growing, so
the algorithm terminates.

3 Examples

We used our theory-checker generator to build three
theory checkers, encoding three different logics: the well-
known BAN logic of authentication [4]; AUTLOG [8],
an extension of the BAN logic; and Kailar’s logic for
reasoning about accountability in electronic commerce
protocols [6]. We describe each of these encodings below.

3.1 BAN

The BAN logic is a natural case to consider; it moti-
vated the original development of our method and tool.
This logic is normally applied to authentication proto-
cols. It allows certain notions of belief and trust to be
expressed in a simple manner, and it provides rules for
interpreting encrypted messages exchanged among the
parties (principals) involved in a protocol.

3.1.1 The Logic

In encoding the BAN logic and its accompanying sam-
ple protocols, we had to make several adjustments and
additions to the logic as originally presented [4], to ac-
count for rules and assumptions that were missing or
implicit.

Figure 1 shows the functions used in the encoding.
The first eleven correspond directly to constructs in the
original logic, and have clear interpretations. The last two
were added: inv makes explicit the relationship implied
between K and K�1, and distinct expresses that two
principals are different.

The BAN logic consists of eleven basic rules of infer-
ence:

� three message-meaning rules that allow one princi-
pal to deduce that a given message was once uttered

by some other principal;

� one nonce-verification rule whereby a principal can
determine that some message was sent recently, by
examining nonces;

� one jurisdictionrule, expressing one principal’s trust
of another;

� five rules for extracting components of messages,
some requiring knowledge of the appropriate keys;
and

� one freshness rule, which states that a conjunction
is fresh if any part of it is fresh.

We encode each of these rules directly as a single S-rule,
with the exception of the freshness rule, which is a G-rule
since its conclusion is larger than its premise:

believes�P� fresh�X��

believes�P� fresh�comma�X�Y ���

The message-meaning and extraction rules involving en-
cryption carry a side-condition that the principal who
encrypted the message is different from the one inter-
preting it. We encode this explicitly using a three-place
encrypt functionand the extra distinct function, by adding
an extra premise to each of these rules.

We add a few rules to this original set to make it
more complete. There are two additional component-
extraction S-rules:

believes�P� said�Q� comma�X�Y ���

believes�P� said�Q�X��

believes�P� believes�Q� comma�X�Y ���

believes�P� believes�Q�X��

The BAN Kerberos protocol analysis indirectly refers to
(and depends on) these rules; AUTLOG includes them
explicitly.

We also add two S-rules that do the work of message-
meaning and nonce-verification simultaneously. The
shared-key version of this rule is

believes�P� fresh�K��
believes�P� shared key�K�Q�P ��

sees�P� encrypt�X�K�R��
distinct�P�R�

believes�P� believes�Q�X��
�

One of these rules is implicitly required by the BAN
Andrew secure RPC analysis. AUTLOG handles this
case somewhat more elegantly by introducing a “recently
said” notion, adding extra conclusions to its message-
meaning (“authentication”) rules, and creating new “con-
tents” rules.



Function BAN interpretation
believes�P�X� P believes X
sees�P�X� P sees X
said�P�X� P said X
controls�P�X� P controls X
fresh�X� fresh(X)

shared key�K�P�Q� P
K
� Q

public key�K�P�
K
�� P

secret�Y�P�Q� P
K
��Q

encrypt�X�K�P� fXgK from P

combine�X� Y� hXiY
comma�X� Y� X�Y (conjunction)
inv�K1�K2� K1 and K2 are a public/private key pair
distinct�P�Q� principals P and Q are not the same

Figure 1: BAN functions

We add seven freshness G-rules: four to reflect the fact
that an encrypted (or combined) message is fresh if either
the body or the key is, and three that extend the freshness
of a key to freshness of statements about that key. The
example protocol verifications in the BAN paper require
some of these extra freshness rules, and we include the
rest for completeness. AUTLOG includes the first four
of them.

Finally, since we represent message composition ex-
plicitly (via comma), we include three rewrites that ex-
press the commutativity and associativity of the comma
function; three more rewrites provide commutativity for
shared key, secret, and distinct. The shared key rewrite
looks like this:

shared key�K�P�Q�

shared key�K�Q�P �

Appendix A contains the complete set of rules and
rewrites.

The logic restrictions from Section 2 do not permit
the use of universal quantifiers, as BAN specifications
sometimes do in delegation statements [4]:

A believes �K��S controls �A
K
�� B��

However, since none of the BAN rules introduce new
keys, we can get the effect of this universal quantification
in assumptions by instantiating the statement with each of
the keys mentioned in the other assumptions. We could
do this automatically as a preprocessing step. It may be

possible to extend our method slightly to allow universal
quantification at the outermost level.

After encoding the rules, we entered each of the four
protocols examined in the BAN paper and checked all
the properties claimed there [4]. (We added most of the
extensions above after some verification attempt failed.)

3.1.2 Kerberos

Through a sequence of four messages, the Kerberos
protocol establishes a shared key for communication be-
tween two principals, using a trusted server [12]. The
BAN analysis of this protocol starts by constructing a
three-message idealized protocol; the idealized protocol
ignores message 1 since it is unencrypted. The BAN anal-
ysis then goes on to list ten initial assumptions regarding
client/server shared keys, trust of the server, and fresh-
ness of the timestamps used [4]. We express each of these
three messages and ten assumptions directly (the conver-
sion is purely syntactic), and add four more assumptions
(see Figures 2 and 3).

The first extra assumption—thatAmust believe its own
timestamp to be fresh—is missing in [4], and the last three
are required to satisfy the distinctness side-conditions.
After making these adjustments, we can run the 14 initial
assumptions and 3 messages through our automatically
generated BAN-checker, and it will generate an additional
50 true formulas in 90 seconds2.

2All timings were done on an IBM RS/6000 model 25T with an
80MHz PowerPC 601 CPU.



Message 2. S � A : fTs� A
Kab�� B� fTs� A

Kab�� BgKbs
gKas

sees�A� encrypt�comma�comma�Ts� shared key�Kab� A�B���
encrypt�comma�Ts� shared key�Kab� A�B���

Kbs� S����
Kas� S��

Message 3. A� B : fTs� A
Kab�� BgKbs

� fTa� A
Kab�� BgKab

from A

sees�B� comma�encrypt�comma�Ts� shared key�Kab� A�B���Kbs� S��
encrypt�comma�Ta� shared key�Kab� A�B���Kab� A���

Message 4. B � A : fTa� A
Kab�� BgKab

from B

sees�A� encrypt�comma�Ta� shared key�Kab� A�B���Kab� B��

Figure 2: Kerberos protocol messages, in BAN idealized form and converted to our syntax.

believes�A� shared key�Kas� S� A��
believes�B� shared key�Kbs� S� B��
believes�S� shared key�Kas� A� S��
believes�S� shared key�Kbs� B� S��
believes�S� shared key�Kab� A�B��
believes�A� controls�S� shared key�Kab� A�B���
believes�B� controls�S� shared key�Kab� A�B���
believes�A� fresh�Ts��
believes�B� fresh�Ts��
believes�B� fresh�Ta��

believes�A� fresh�Ta��
distinct�A� S�
distinct�A�B�
distinct�B� S�

Figure 3: Encoding of the Kerberos initial assumptions. All but the last four assumptions appear in the BAN analysis [4].



By running a simple membership test, we verified that
these four desired results are among them:

believes�A� shared key�Kab� A�B��
believes�B� shared key�Kab� A�B��

believes�B� believes�A� shared key�Kab� A�B���
believes�A� believes�B� shared key�Kab� A�B���

These results agree with the original BAN analysis. They
indicate that each of the two parties believes it shares a
key with the other, and that each believes that the other
believes the same thing. Appendix B illustrates one step
in the algorithm: applying an S-rule with the help of a
G-rule and rewrites.

If we remove the optional final message from the pro-
tocol and run the checker again, it will generate 41 valid
formulas. By computing the difference between this set
and the first set of 50, we can determine exactly what the
final message contributes. Among the 9 formulas in this
difference is

believes�A� believes�B� shared key�Kab� A�B����

(the last of the four results above). This confirms the
claim in the original analysis that “the three-message
protocol does not convinceA ofB’s existence” [4]. This
technique of examining the set difference between the
deduced properties of two versions of a protocol is a
simple but powerful benefit of our approach; it helps in
understanding differences between protocol variants and
it supports “rapid” protocol design.

3.1.3 Andrew RPC, Needham-Schroeder,
and CCITT X.509

We encoded the assumptions and messages of the three
variants of the Andrew secure RPC protocol given in the
BAN paper, and got the expected results. The last of
these verifications required an extra freshness assumption
not mentioned in the BAN analysis, as well as some of
our added freshness rules and the simultaneous message-
meaning/nonce-verification rule.

We duplicated the BAN results for two variants of the
Needham-Schroeder public-key secret-exchange proto-
col. Finally, we ran the checker on two variants of the
CCITT X.509 protocol explored in the BAN paper. One
of these checks failed to produce the expected results, and
this led us to discover an oversight in the BAN analysis:
they observe a weakness in the original X.509 protocol
and claim, “The simplest fix is to sign the secret data Ya
and Yb before it is encrypted for privacy.” In fact we must
sign the secret data together with a nonce to ensure fresh-
ness. After we corrected this, the verifications proceeded
as expected.

3.2 AUTLOG

AUTLOG is an extension of the BAN logic, proposed
by Kessler and Wedel [8]. It introduces several concepts,
including a simulated eavesdropper for detecting infor-
mation leaks, and the idea of principals “recognizing”
decrypted messages.

Our encoding of AUTLOG uses all the BAN functions,
and a few extras: recognizable, mac (for “message au-
thentication codes”), hash, and recently said. The orig-
inal rules of inference from AUTLOG can be entered
almost verbatim. There are 23 S-rules and 19 G-rules;
the rules governing freshness and recognition are the only
G-rules.

To check a protocol for leaks using AUTLOG, one
finds the closure over the “seeing” rules of the transmit-
ted messages. The resulting list will include everything
an eavesdropper could see. Our tool is well-suited to
computing this list; the seeing rules are all S-rules, so the
checker will generate exactly the desired list.

Kessler and Wedel present two simple challenge-
response protocols: one in which only the challenge is
encrypted and another in which only the response is en-
crypted. We encoded both of these protocols and verified
the properties Kessler and Wedel claim: that both achieve
the authentication goal

believes�B� recently said�A�RB��

where RB is the secret A provides to prove its iden-
tity. Furthermore, through the eavesdropper analysis
mentioned above, we can show that in the encrypted-
challenge version, the secret is revealed and thus the pro-
tocol is insecure. (The BAN logic cannot express this.)

We also checked that the Kerberos protocol, expressed
in AUTLOG, satisfied properties similar to those de-
scribed in Section 3.1. Since AUTLOG has a large set
of rules, this verification took roughly 13 minutes; this
was significantly longer than any other verification. In
Section 4 we mention some optimizations we expect to
reduce this time.

3.3 Kailar’s Accountability Logic

More recently, Kailar has proposed a simple logic for
reasoning about accountability in electronic commerce
protocols [6]. The central construct in this logic is

P CanProveX

which means that principalP can convince anyone in an
intended audience sharing a set of assumptions that X
holds, without revealing any “secrets” other than X.

We encoded the version of this logic using “strong
proof” and “global trust”, but the weak-proof and



nonglobal-trust versions would be equally simple. We
used these functions: CanProve, IsTrustedOn, Implies,
Authenticates, Says, Receives, SignedWith, comma, and
inv.

We encoded the four main rules of the logic as follows:

Conj :
CanProve�P�X�� CanProve�P� Y �

CanProve�P� comma�X�Y ��

Inf :
CanProve�P�X�� Implies�X�Y �

CanProve�P� Y �

Sign :

Receives�P� SignedWith�M�K�1��
CanProve�P�Authenticates�K�Q��

Inv �K�K�1�

CanProve�P� Says�Q�M ��

Trust :

CanProve�P� Says�Q�X��
CanProve�P� IsTrustedOn�Q�X��

CanProve�P�X�

The Conj and Inf rules allow building conjunctions and
using initially-assumed implications. The Sign and Trust
rules correspond roughly to the BAN logic’s public-key
message-meaning and jurisdiction rules. We replace the
construct X in M (representing interpretation of part of
a message) with three explicit rules for extracting com-
ponents of a message. We add rewrites expressing the
commutativity and associativity of comma, as in the other
logics. This encoding does not require any G-rules.

We verified the variants of the IBS (NetBill) electronic
payment protocol that Kailar analyzes [6]. Figure 4 con-
tains an encoding of part of the “service provision” phase
of the asymmetric-key version of this protocol. If we run
the Kailar-logic checker on these messages and assump-
tions, it will apply the Sign rule to produce these two
formulas:

CanProve�S� Says�E� comma�SignedWith �Price�
K�1
s ��

Price���
CanProve�S� Says�E� ServiceAck��.

It will then apply the component-extracting rule to pro-
duce

CanProve�S� Says�E� SignedWith�Price�K�1
s

���
CanProve�S� Says�E�Price��.

Finally, it will apply Inf to derive these results, which
Kailar gives [6].

CanProve�S� Says�E�ReceivedOneServiceItem�E���
CanProve�S� Says�E�AgreesToPrice�E� pr���

It will stop at this point, since no further rule applications
can produce new formulas.

We verified the rest of Kailar’s results for two variants
of the IBS protocol and for the SPX Authentication Ex-
change protocol. Each check with this logic took less
than ten seconds.

4 Implementation
Implemented in the Standard ML programming lan-

guage, our tool makes heavy use of SML’s modules sup-
port. SML modules can be signatures (interface descrip-
tions), structures (implementations), or functors (generic
or parameterized implementations). With our tool, each
logic is represented by a structure containing its func-
tion names (e.g., believes and sees), S-rules, G-rules,
rewrites, and a measure function on its formulas. The
checker-generator is a functor that takes as an argument
a logic module, and generates a new module which is a
checker specialized to that logic. For instance, to cre-
ate the three checkers we used, we invoke the functor,
TheoryChecker, with three different Logic struc-
tures:

structure BanChecker =
TheoryChecker(structure Logic = BAN

...)
structure AutlogChecker =
TheoryChecker(structure Logic = AUTLOG

...)
structure KailarChecker =
TheoryChecker(structure Logic = Kailar

...)

Then, for a particular protocol such as Kerberos, we
first compute the closure of the list of initial assumptions
appended (@) with the list of messages, and then we run
a simple check for any desired property:

val formulas = BanChecker.closure
(Kerberos.assumptions
@ Kerberos.messages);

check(formulas, Kerberos.A_knows_Kab);

The current implementation is a rough first cut. We
plan to make it significantly more efficient by represent-
ing sets of formulas with more sophisticated data struc-
tures that support fast lookups, union, and fast unifica-
tion against the whole set of formulas; we also know
of some possible optimizations to the search procedure
which should help. Nonetheless, all but three of our ver-
ification attempts ran in less than two minutes each, and
the remaining three took less than fifteen minutes each.

One way in which the current implementation could
be improved is to allow type declarations for the func-
tions in each logic. For instance, the BAN logic might



IBS protocol messages:

Message 3. E � S : ffPriceg
K
�1
s

�Priceg
K
�1
e

Receives�S� SignedWith �comma�SignedWith �Price�K�1
s

��
Price��

K�1
e

��

Message 5. S � E : fServiceg
K
�1
s

Receives�E� SignedWith�Service�K�1
s

��

Message 6. E � S : fServiceAckg
K
�1
e

Receives�S� SignedWith �ServiceAck �K�1
e

��

Initial assumptions:

CanProve�S�Authenticates�Ke� E��
Implies�Says �E�Price��AgreesToPrice�E� pr��
Implies�Says �E� ServiceAck��ReceivedOneServiceItem�E��

Figure 4: Excerpt from IBS protocol and initial assumptions.

have types representing principals, keys, and formulas,
and the encrypt function would expect a formula, a key,
and a principal as its arguments. This would help elimi-
nate errors in encoding both protocols and rules, and the
search mechanism can then take advantage of the type
information as well.

5 Related Work

Model checking is a technique whereby a finite state
machine is checked for a property through exhaustive
case analysis. It has been used successfully in hardware
verification and protocol analysis. Most recently, the
FDR model checker [17] has been used by Lowe [11] to
debug and fix the Needham-Schroeder public key pro-
tocol and by Roscoe [18] to check noninterference of a
simple security hierarchy (high/low). Like model check-
ing, our method relies on the finiteness of the entity being
verified; unlike model checking, however, we generate a
finite theory, not a finite model.

Theorem proving, usually machine-assisted, is the
more traditional approach to verifying security proper-
ties, including a long history of work based on the Bell-
LaPadula model [1]. As in theorem proving, we manip-
ulate the syntactic representation, i.e., the logic, of the
entity we are verifying; by restricting the nature of the
logic, however, unlike machine-assisted theorem proving,

we enumerate the entire theory rather than (with human
assistance) develop lemmas and theorems as needed. We
also express the messages exchanged in a protocol as a
set of initial non-logical axioms (and thus express them in
the same language as the logic), avoiding the need for the
user to learn more than one input language. Moreover,
our method is completely automatic and fast.

Before building our theory-checker generator, we im-
plemented the BAN logic within the PVS verification sys-
tem [14], and reproduced the Kerberos protocol proofs
with it. The encoding of BAN in PVS was quite natural,
but the proofs were tedious, primarily because for each
rule application, we had to enter the variable instantia-
tions manually since the prover could not guess the right
ones. This would be a smaller problem in a verification
system with support for unification.

Our approach is the closest in nature to logic program-
ming, embodied in programming languages like Prolog.
Indeed, AUTLOG has been implemented in Prolog. Our
approach, however, is more powerful because we can
produce results without any dependence on rule ordering,
and because we use a modified unification algorithm that
can handle simple rewrite rules. At the same time, we are
more specific; by tailoring our reasoning to security pro-
tocols, we exploit the nature of the domain in ways that
make exhaustive enumeration a computationally feasible



and tractable approach to automatic verification.

The idea of computing the “closure” (or “completion”)
of a theory is used in the theorem proving system SAT-
URATE [13]. Our restrictions on the input logic allow us
to generate a saturated set of formulas that we find easier
to interpret than the sets generated by these more general
systems.

Finally, our approach makes it easy to generate spe-
cialized checkers automatically. Just as Jon Bentley has
argued the need for “little languages” [2], our tool pro-
vides a way to construct “little tools” for “little logics.”

6 Summary and Future Directions

Our approach was motivated by the need to debug pro-
tocols in the security domain. When someone presents
a security protocol, there is always an uneasiness on our
part. These are typical questions that we pose ourselves
when simply trying to understand a security protocol:

� Why is that message needed?

� Is the ordering of these messages required or inci-
dental?

� Why is that message or part of the message en-
crypted? Is it necessary?

To argue the correctness, or better yet to find perfor-
mance optimization, for example by deleting a message,
unordering messages (and thus allowing concurrency),
or avoiding encryption, necessitates at least a systematic
way of reasoning about these protocols. Using special-
ized logics helps; using tools that automate these logics
helps even more.

The restrictions we impose on the input logic offer the
substantial advantage that we can guarantee termination,
and furthermore a logic can be automatically checked for
compliance with these restrictions (given a measure).

A further advantage of our approach, as illustrated by
the “diff” example of Section 3.1.2, is that we can study
closely-related theories by examining the formulas that
appear in the generated set of one but not the other.

With fast, automatic verification, through the use of
our checkers for “little logics,” protocol designers can
invent and debug their protocols quickly, with the same
ease as compiling a program. Thus as a compiler gives
programmers assurance that their programs are type cor-
rect, our checkers can give protocol designers additional
assurance that their protocols are “correct” (i.e., satisfy
certain desired properties).

With the explosion of the Internet and the wide range of
electronic commerce protocols proposed and in commer-
cial use, the problem of verifying and debugging these
protocols is going to get worse. Even well-understood
authentication protocols are subject to attacks by the en-
vironment that do not satisfy their original assumptions.

Our method has two promising future directions. First,
we readily acknowledge that we greatly exploit the na-
ture of the domain: security protocols are most often
explained informally in terms of a small number of par-
ties (Alice, Bob, a server, and perhaps an eavesdropper),
a small number of message exchanges (usually not more
than ten), a small number of keys (public and private
keys for each party involved), a small number of nested
encryptions (usually under two), and so on. We also
exploit the smallness of the logics involved: the BAN
logic (as we encode it) has only twenty rules of infer-
ence; moreover, it has only eight G-rules. It is possible
(though we have only an intuition at this point) that there
is something inherent to security protocols and logics for
reasoning about them that makes our theory-generation
technique especially appropriate.

Second, of course, our technique is not only applicable
to protocols in security. While we do impose significant
restrictions on the logics, these restrictions are expressed
in general terms and may well be satisfied by useful logics
from other domains.

A BAN logic encoding

This appendix contains the complete encoding of the
BAN logic, from which the BAN checker is automatically
generated. See Section 3.1 for further explanation.

The three message-meaning S-rules:

believes�P� shared key�K�Q�P ��
sees�P� encrypt�X�K�R��

distinct�P�R�

believes�P� said�Q�X��

believes�P� public key�K1� Q��
sees�P� encrypt�X�K2� R��

inv �K1�K2�
distinct�P�R�

believes�P� said�Q�X��

believes�P� secret�Y�Q� P ��� sees�P� combine�X�Y ��

believes�P� said�Q�X��

The nonce-verification S-rule:

believes�P� said�Q�X��
believes�P� fresh�X��

believes�P� believes�Q�X��



The jurisdiction S-rule:

believes�P� controls�Q�X��
believes�P� believes�Q�X��

believes�P�X�

The seven S-rules for extracting components of mes-
sages:

believes�P� shared key�K�Q�P ��
sees�P� encrypt�X�K�R��

distinct�P�R�

sees�P�X�

believes�P� public key�K�P ��
sees�P� encrypt�X�K�R��

sees�P�X�

believes�P� public key�K1� Q��
sees�P� encrypt�X�K2� R��

inv�K1�K2�
distinct�P�R�

sees�P�X�

sees�P� combine�X�Y ��

sees�P�X�

sees�P� comma�X�Y ��

sees�P�X�

believes�P� said�Q� comma�X�Y ���

believes�P� said�Q�X��

believes�P� believes�Q� comma�X�Y ���

believes�P� believes�Q�X��

The two combined message-meaning and nonce-
verification S-rules:

believes�P� fresh�K��
sees�P� encrypt�X�K�R��

distinct�P�R�
believes�P� shared key�K�Q�P ��

believes�P� believes�Q�X��

believes�P� fresh�Y ��
sees�P� combine�X�Y ��

believes�P� secret�Y�Q� P ��

believes�P� believes�Q�X��

The eight G-rules dealing with freshness:

believes�P� fresh�X��

believes�P� fresh�comma�X�Y ���

believes�P� fresh�K��

believes�P� fresh�shared key�K�Q�R���

believes�P� fresh�K��

believes�P� fresh�public key�K�Q���

believes�P� fresh�Y ��

believes�P� fresh�secret�Y�Q�R���

believes�P� fresh�Y ��

believes�P� fresh�combine�X�Y ���

believes�P� fresh�K��

believes�P� fresh�encrypt�X�K�R���

believes�P� fresh�X��

believes�P� fresh�encrypt�X�K�R���

believes�P� fresh�X��

believes�P� fresh�combine�X�Y ���

Finally, the various commutativity and associativity
rewrites:

comma�X�Y �

comma�Y�X�

comma�comma�X�Y �� Z�

comma�X� comma�Y� Z��

comma�X� comma�Y� Z��

comma�comma�X�Y �� Z�

believes�P� shared key�K�Q�R��

believes�P� shared key�K�R�Q��

believes�P� secret�Y�Q�R��

believes�P� secret�Y�R�Q��

distinct�P�Q�

distinct�Q�P �

B BAN checker sample step

Here we illustrate one step in the algorithm as ap-
plied to the BAN/Kerberos example from Section 3.1.2,
to show how a new formula gets added to the fringe. Af-
ter two levels of the breadth-first traversal are completed,
there are 37 formulas in the known-valid set. Of these,
16 are in the fringe, including this one:

believes�B� said �S� comma�TS � shared key�Kab�

A�B����

This formula unifies with the first premise of the “nonce-
verification” S-rule (see Appendix A), so we apply its
unifier to the second premise of that rule, yielding

believes�B� fresh�comma�TS � shared key�Kab�

A�B���� .

None of the 37 formulas unifies with this additional
premise, so we attempt to work backwards from it, us-
ing G-rules and rewrites. If we reverse-apply the first
freshness G-rule, we get



believes�B� fresh�TS��,

which is one of the initial assumptions of the protocol (and
thus one of the 37 known formulas). Since all premises
for the nonce-verification rule have now been matched,
we insert its (instantiated) conclusion into the new fringe:

believes�B� believes�S� comma�TS �
shared key�Kab�

A�B����.

References

[1] D. E. Bell and L. J. LaPadula. Secure computer
systems: Unified exposition and Multics interpre-
tation. Technical Report ESD-TR-75-306, The
MITRE Corporation, Bedford, MA, March 1976.

[2] J. Bentley. Little languages. Communicationsof the
ACM, 29(8):711–721, 1986.

[3] R. S. Boyer and J. S. Moore. A Computational
Logic. ACM monograph series. Academic Press,
New York, 1979.

[4] Michael Burrows, Martín Abadi, and Roger Need-
ham. A logic of authentication. ACM Transactions
on Computer Systems, 8(1):18–36, February 1990.

[5] D. I. Good, R. L. London, and W. W. Bledsoe.
An interactive program verification system. IEEE
Transactions on Software Engineering, 1(1):59–67,
1979.

[6] Rajashekar Kailar. Accountability in electronic
commerce protocols. IEEE Transactions on Soft-
ware Engineering, 22(5):313–328, May 1996.

[7] R. A. Kemmerer and S. T. Eckmann. A User’s
Manual for the UNISEX System. Dept. of Computer
Science, UCSB, 1983.

[8] Volker Kessler and Gabriele Wedel. AUTLOG—an
advanced logic of authentication. In Proc. the Com-
puter Security Foundations Workshop VII, pages
90–99. IEEE Comput. Soc., June 1994.

[9] K. N. Levitt, L. Robinson, and B. A. Silverberg.
The HDM handbook, vols. 1–3. Technical report,
SRI International, Menlo Park, California, 1979.

[10] R. Locasso, J. Scheid, D. V. Schorre, and P. R. Eg-
gert. The Ina Jo reference manual. Technical Report
TM-(L)-6021/001/000, System Development Cor-
poration, Santa Monica, California, 1980.

[11] G. Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In Tools
and Algorithms for the Construction and Analysis
of Systems, volume 1055. Springer-Verlag, March
1996. Lecture Notes in Computer Science.

[12] S. P. Miller, C. Neuman, J. I. Schiller, and J. H.
Saltzer. Kerberos authentication and authorization
system, chapter Sect. E.2.1. MIT, Cambridge, Mas-
sachusetts, July 1987.

[13] P. Nivela and R. Nieuwenhuis. Saturation of first-
order (constrained) clauses with the Saturate sys-
tem. In Proc. of the Fifth International Conference
on Rewriting Techniques and Applications, pages
436–440, June 1993.

[14] Sam Owre, John Rushby, Natarajan Shankar, and
Friedrich von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering,
21(2):107–125, February 1995.

[15] Laurence C. Paulson. ML for the Working Pro-
grammer. Cambridge University Press, Cambridge,
1991.

[16] G. D. Plotkin. Building-in equational theories. Ma-
chine Intelligence, 7:73–90, 1972.

[17] A. W. Roscoe. Model-checking CSP. In A. W.
Roscoe, editor, A Classical Mind: Essays in Honour
of C. A. R. Hoare. Prentice-Hall, 1994.

[18] A. W. Roscoe. CSP and determinism in security
modelling. In Proc. of the 1995 IEEE Symp. on
Security and Privacy, pages 114–127, 1995.


