ods applied to those (simply) critical applications on which
the future of a company depends or whose software sys-
tems can affect society at large.

A DANGER OF THIS FM-LIGHT approach is that formalists will
obtain no thanks for their efforts! Many contributions of
formalism are now absorbed into everyday computing

LIGHTWEIGHT FORMAL METHODS

Daniel Jackson and Jeannette Wing,
Carnegie Mellon University

M any benefits promised by formal methods are
shared with other approaches. The precision of
mathematical thinking relies not on formality but on care-
ful use of mathematical notions. You don’t need to know
Z to think about sets and functions. Likewise, the lin-
guistic advantages of a formal notation rely more on syn-
tax than semantics.

Mechanical analysis, in contrast, is a benefit unique to
formal approaches. An engineer’s sketch can communi-
cate ideas to other engineers, but only a detailed plan can
be rigorously examined for flaws. Informal methods often
provide some analysis, but since their notations are gen-
erally incapable of expressing behavior, the results of the
analysis bear only on the properties of the artifact’s
description, not on the properties of the artifact itself.

For everyday software development, the purpose of for-
malization is to reduce the risk of serious errors in speci-
fication and design. Analysis can expose such errors while
they are still cheap to fix. Formal methods can provide lim-
ited guarantees of correctness too, but, except in safety-
critical work, the cost of full verification is prohibitive, and
early detection of errors is a more realistic goal.

To make analysis economically feasible, the cost of spec-
ification must be dramatically reduced, and the analysis
itself must be automated. Experience (of several decades)
with interactive theorem proving has shown that the cost
of proof is usually an order of magnitude greater than the
cost of specification. And yet the cost of specification alone
is often beyond a project’s budget. Industry will have no
reason to adopt formal methods until the benefits of for-
malization can be obtained immediately, with an analy-
sis that does not require further massive investment.

Existing formal methods, at least if used in the conven-
tional manner, cannot achieve these goals. By promoting
full formalization in expressive languages, formalists have
unwittingly guaranteed that the benefits of formalization
are thinly spread. A lightweight approach, which in con-
trast emphasizes partiality and focused application, can
bring greater benefits at reduced cost. What are the ele-
ments of a lightweight approach?

PARTIALITY IN LANGUAGE. Until now, specification lan-
guages have been judged primarily on their expressive-
ness, with little attention paid to tractability. Some
languages—such as Larch—were from the start designed
with tool support in mind, but they are the exception.
Tools designed as an afterthought can provide only weak
analysis, such as type checking. The tendency (in Z espe-

know-how (for example, context-free grammars, finite-
state diagrams, and so on), yet there is still a question as
to the impact of formal methods. When states, data-type
invariants, retrieve functions, loop invariants, rely/guar-
antee-conditions are all part of general computer knowl-
edge, the formalists will be challenged to justify their
continuing research on other topics. |

cially) to see a specification language as a general math-
ematical notation is surely a mistake, since such general-
ity can only come at the expense of analysis (and,
moreover, at the expense of the language’s suitability for
its most common applications).

PARTIALITY IN MODELING. Since a complete formaliza-
tion of the properties of a large system is infeasible, the
question is not whether specifications should focus on some
details at the expense of others, but rather which details
merit the cost of formalization. The naive presumption that
formalization is useful in its own right must be dropped.
There can be no point embarking on the construction of a
specification until it is known exactly what the specifica-
tion is for; which risks it is intended to mitigate; and in
which respects it will inevitably prove inadequate.

PARTIALITY IN ANALYSIS. A sufficiently expressive lan-
guage, even if designed for tractability, cannot be decid-
able, so a sound and complete analysis is impossible. Most
specifications contain errors, and so it makes more sense
to sacrifice the ability to find proofs than the ability to
detect errors reliably. A common objection to this
approach is that it reduces analysis to testing: No reported
errors does not imply no actual errors. But this much-
touted weakness of testing is not its major flaw. The prob-
lem with testing is not that it cannot show the absence of
bugs, but that, in practice, it fails to show their presence.
A model checker that exhausts an enormous state space
finds bugs much more reliably than conventional testing
techniques, which sample only a minute proportion of
cases.

PARTIALITY IN COMPOSITION. For a large system, a sin-
gle partial specification will not suffice, and it will be nec-
essary to compose many partial specifications, at the very
least to allow some analysis of consistency. How to com-
pose different views of a system is not well understood

April 1996

and has only minimal support from specification lan-
guages, since it does not fit the standard pattern of “whole-
and-part” composition.

MUCH OF WHAT WE SAY HERE IS AT ODDS with the conven-
tional wisdom of formal methods. The notion of a light-
weight approach is radical, however, only in its departure
from a dogmatic view of formal methods that is detached

Industrial Practice

from mainstream software development. In the broader
engineering context, the suggestion of pragmatic com-
promise is hardly new.

Alightweight approach, in comparison to the traditional
approach, lacks power of expression and breadth of cover-
age. A surgical laser likewise produces less powerand poorer
coverage than a light bulb, but it makes more efficient use
of the energy it consumes, and its effect is more dramatic. I

WHAT IS THE FORMAL MIETHODS DEBATE ABOUT?

Anthony Hall, Praxis

tis extraordinary that formal methods cause such fierce

debate. Some proponents seem committed with an
almost religious fervor; some opponents seem hostile
beyond all reason. As far as I know, no issue in software
engineering causes as much passion, unless it is the use of
the goto statement.

One reason for this polarization may be that the two
sides are arguing from completely different premises.
Perhaps the argument has been between those who say
that formal methods are essential because they are the
only way to gain assurance and those who say formal
methods are impossible because they are too expensive.
No amount of argument will resolve that difference unless
the two sides start to recognize each other’s objectives.

I have been using formal methods in real projects for
the past 10 years, and recently [have begun to see a fun-
damental shift in the argument. Ten years ago, the argu-
ment was that formal methods were hugely expensive
(they were!) but that you had to use them because there

*was no other way to ensure that your software was cor-
rect. Now, the argument is quite different. We know that
it is possible to produce software, even critical software,
without formal methods; we also know that it is horribly
expensive. What is only recently becoming clear is that it
is practical to produce software, even noncritical software,
using formal methods; it is also, as far as we can tell,
cheaper to do it that way.

Isay “as far as we can tell” because it is notoriously dif-
ficult to get any useful information from software met-
rics. What I can do is describe some of the projects we

have done at Praxis and

how we perceive the costs
and benefits of using for-
mal methods.'2

One of the largest appli-

cations of formal methods I

know of is a project we com-
pleted a few years ago to
develop an air traffic control
information system called

CDIS. This is a safety-related

system, but there was no
regulatory pressure to use
formal methods for thatrea-

Computer

son. However, we wanted to make sure that we understood
the requirements accurately and decided to use formal
methods at the early stages of the life cycle to help us do
that. We therefore wrote a formal specification of the whole
system as the basis for our development. There are about
150 user-level operations in CDIS (the final system is about
200,000 lines of code), so the specification is a large docu-
ment (about 1,000 pages). This in turn means that we are
making fairly “shallow” use of formality—we did not
attempt any proofs of consistency or of particular proper-
ties. Nevertheless, we found the specification enormously
useful in pinning down just what it was that we were going
to build. .

The system specification was not the only way we used
formality on CDIS. We also wrote a similar specification’
of the main design-level modules, again at a shallow level.
In one particular part of the design we used formality in a
much deeper way, writing detailed process specifications
and attempting to prove them correct. The fact that some
proofs failed demonstrated that our design was in fact
incorrect, and as it turned out, incorrect in a way that
might well have escaped detection in our tests. Fault met-
rics for CDIS confirmed our hope that it would be of higher
quality than systems built using conventional methods.
They also showed an unusual distribution in that, unlike

many other systems, very few of the faults that survived—-

system test into the delivered system were requirements or
specification faults.

Most interesting is the fact that none of this good news
cost us anything—our productivity on the project was as
good as or better than if we had done it conventionally. I
believe that one reason is that the work we put in at the
early stages was effective in finding lots of errors that
would, if we had not found them, have proved very expen-
sive to correct later. The formal specification enabled us
to find these errors effectively. . :

While CDIS is an example where formal methods at the
front of the life cycle pay off, they can also show economic
benefits at the code and test stages. For Lockheed, we have
recently been analyzing the code for the avionics software
for the C130J.2 The software is coded in the Spark-anno-
tated subset of Ada, working from specifications in the
Software Productivity Consortium’s Core notation. Here,
too, many people would expect that the use of Spark
would add to the software’s cost, while improving its qual-
ity. In fact, however, the added quality decreases the cost

