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Abstract—Miré is a set of languages and tools that support visual
specification of file system security. We present two visual languages:
the instance language, which allows specification of file system access,
and the constraint language, which allows specification of security pol-
icies. We also describe tools we have implemented and give examples
of how our languages can be applied to real security specification prob-
lems.

Index Terms—Formal specification, higraph, security, specification
tools, visual language.

1. INTRODUCTION

HE Mir6 visual languages and tools are used to spec-

ify security configurations. By ‘‘visual language,”’ we
mean a language whose entities are graphical, such as
boxes and arrows. By ‘‘specifying,”’ we mean stating in-
dependently of any implementation the desired properties
of a system. Finally, by “‘security,”” we mean file system
protection: ensuring that files are protected from unau-
thorized access and granting privileges to some users, but
not others.

A. Motivation

Why visual specifications?

Pictures, diagrams, graphs, charts, and the like are
commonly used to aid the understanding of control infor-
mation, data structures, computer organization, and over-
all system behavior. With the advent of new display tech-
nology they have become more feasible as a means of
communicating ideas in general. Visual concepts have
even infected our terminology; e.g., the basic unit of se-
curity in Multics is a “‘ring.””’

Our work differs from other work in visual languages
in three important ways: first, unlike many languages
based on diagrams where boxes and lines may fail to have
a precise meaning, or worse, have multiple interpreta-
tions, we are careful to provide a formal semantics for our
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visual languages. Second, in contrast to visual program-
ming languages such as C? or Forms/2 [91, [1], we are
interested in specifications, not executable programs.
Third, we do not use visualization just for the sake of
drawing pretty pictures; instead, we address a domain,
security, that lends itself naturally to a two-dimensional
representation.

Why security?

Computer security is a central problem in the practical
use of operating systems. File system protection has al-
ways been a concern of traditional operating systems, but
with the proliferation of large, distributed systems, the
problem of guaranteeing security to users is even more
critical. In order to provide security in any one system, it
is important to clearly specify the appropriate security
policy (one for a university would be different from one
for a bank) and then to enforce that policy. We address
the first of these two issues by providing a way to express
these policies succinctly, precisely, and visually.

As opposed to previous approaches to specifying se-
curity that assume simple, fixed policies [16], [3], our
emphasis is on providing the users at a site with the ability
to tailor a security policy to their needs and to support the
use of that policy in a working file system. Moreover, we
are interested in helping users navigate through a speci-
fication as a means of understanding a specific system’s
security configuration.

Security lends itself naturally to visualization because
the domains of interest are best expressed in terms of re-
lation on sets, easily depicted as Venn diagrams, and the
connections among objects in these domains are best ex-
pressed as relations (e.g., access rights), easily depicted
as edges in a graph (where the nodes consist of objects in
a Venn diagram). The Miré languages extend Harel’s
work on higraphs [5], an elegant visual formalism that
depicts relations on Venn diagrams.

B. Overview of the Miré Languages

We model security for a file system in terms of a set of
users, a set of files, and a set of access modes (ways that
users may access files). There are two types of questions
we need to be able to answer to fully specify a file system
security policy: first, ““Which users have which kinds of
access to which files?’’ and second, ‘“Which of all pos-
sible user-file accesses are realizable by the operating sys-
tem and acceptable according to our site’s security pol-
icy?”” The Mird environment provides two visual
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specification languages that allow a specifier to answer
these questions by drawing pictures. The instance lan-
guage specifies the access rights of particular users to par-
ticular files' [21], and the constraint language specifies
restrictions on the kinds of instance pictures that are per-
mitted [6].

We define the semantics of the instance language in
terms of the Lampson access matrix [10], in which one
axis is labeled with user names and a second axis is la-
beled with file names.” The (i, J)th entry in the matrix is
the set of modes by which user i may access file j. The
range of access modes varies from one operating system
to another. In Unix, for example, access modes on files
include read, write, and execute.

The instance language uses boxes and arrows to depict
projections of an access matrix. A box that does not con-
tain other boxes represents either a user or a file. Boxes
can be contained in other boxes to indicate hierarchical
groupings of users and directories of files. Labeled arrows
connect one box to another to indicate the granting of ac-
cess rights. The relationship represented by an arrow be-
tween two boxes is also inherited by all pairs of boxes
contained in those two boxes. Arrows may be negated,
indicating denial of the specified access rights.

For example, Fig. 1 shows an instance picture that re-
flects some aspects of the Unix file protection scheme.
The outermost left-hand box depicts a world, World, of
users, two (out of possibly many not explicitly shown)
groups, Groupl and Group2, and three (out of many not
explicitly shown) users, Alice, Bob, and Charlie. The
containment and overlap relationships between the world,
groups, and users indicate that all users are in the world
and that users can be members of more than one group.
The right-hand boxes denote Alice’s private file and the
password file. The arrows indicate that Alice, and no other
user, has read and write rights to /usr/alice/private. The
other users do not have write access to Alice’s private file
since we define the absence of an appropriate arrow to
mean no access. All users have read access to /etc/
passwd.

The access matrix (and hence the instance language)
provides the ability to represent all possible security con-
figurations. A major challenge in specifying security is to
restrict the set of possible configurations to only those that
are realizable and acceprable. Since an operating system
can only support certain configurations, some access ma-
trices must be disallowed. For example, in Unix, a con-
figuration in which one group of users has permission only
to read a file and a second group of users has permission
only to write that file cannot be realized (unless one group
is either the set of all users or the singleton set of the file’s

'In some previous papers (namely [12} and [21]), the instance language
was simply called the Mir6 language.

*In fact, we do not need to limit ourselves merely to protection between
users and files. We could easily extend our access matrices, and the Mir6
domain, to include any number of unary and binary relations between op-
erating system objects; an example is process-to-process operations such
as the right for one process to communicate with another.
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World
read
Y—» /usr/alice/private
write >
read |
read /etc/passwd
——————
Fig. 1. A sample instance picture.

owner) [17]. Other access matrices must not be allowed
because specific security policies may make some situa-
tions unacceptable. For example, in the military Bell-
LaPadula security model [2], [4], users and files in the
operating system are assigned linear security levels (e.g.,
top secret, secret, not secret); it is only acceptable for
users to write to files at their security level or higher and
to read files at their level or lower.

The constraint language provides the specifier with a
visual way to describe realizable and acceptable configu-
rations by limiting the set of ‘‘legal’” instance pictures. A
constraint picture (or constraint) specifies a (possibly in-
finite) set of instance pictures. If a given instance picture
is an element of the set of instance pictures described by
a constraint picture, we say that the instance picture
matches the constraint or that it is legal with respect to
that constraint picture. Different sets of constraints de-
scribe different security configurations. For example,
constraint pictures for Unix would be quite different from
those describing the Bell-LaPadula model or Carnegie-
Mellon’s Andrew File System [19].

Like the instance language, the constraint language
consists of boxes and arrows, but here the objects have
different meanings. In a constraint picture, a box is la-
beled with an expression that defines a set of instance
boxes. For example, in Fig. 2, the left-hand box refers to
the set of instance boxes of type User.

Three kinds of constraint arrows are used to describe
the three relations in an instance picture: explicit arrows
in an instance picture, entries in an instance picture’s cor-
responding access matrix, and containment relations
among the boxes of an instance picture. Additionally, each
constraint object is either thick or thin, and a constraint
picture has a numeric range (the default is = 1). The
thick/thin attribute and range are key in defining the se-
mantics of a constraint picture, given operationally as fol-
lows. For each set of objects in the instance picture that
matches the thick part of the constraint, count all the ways
of extending that matching to include the thin portion of
the constraint; this count must lie within the range. Fig.
2 shows a constraint picture specifying that any user who
has write access to a file should have read access to it as
well (dashed arrows specify access relations).

This paper discusses the instance and constraint lan-
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Fig. 2. A sample constraint picture.

guages in detail (Sections II and IIT), describes some of
the Mir6 tools we have designed and implemented (Sec-
tion IV), and closes with an evaluation of our approach
to visualizing security specifications (Section V).

II. THE INSTANCE LANGUAGE

A. Syntax and Semantics

An instance picture is formed from a set of typed ob-
jects, each of which is an optionally labeled box or arrow.
Boxes represent individual users or files or collections of
users or files; arrows represent access rights. A box that
contains no other boxes represents a single user or file and
is called atomic. Boxes may be nested to indicate group-
ings of users or files; boxes may also overlap. Arrows can
be positive or negative, representing the granting or denial
of access rights. Well-formedness conditions define the
domain of syntactically legal pictures. One condition is
that arrows must be attached at both ends; another is that
all arrows must start from a user box and end at a file box.

The semantics of an instance picture is an access ma-
trix. Table I gives the access matrix for the instance pic-
ture of Fig. 1. Any relation not specified by an explicit
arrow in an instance picture is denied by default. So al-
though the negative arrow in Fig. 1 is not strictly neces-
sary, it is good ‘‘visual programming style’’ to make the
absence of read rights explicit. A formal definition of the
instance language’s syntax and semantics appears in [12].

The presence of negative arrows in the language adds
some nontriviality to the semantics because pictures with
ambiguous interpretations can be constructed. Fig. 3
shows an example of such a picture. Is Bob a special user
who has access to all programs in usr, including admin?
Or are no users (including Bob) allowed access to the ad-
min directory? Both interpretations seem equally valid;
therefore, we say this picture is ambiguous. In defining
ambiguity below, we restrict our attention to arrows of a
single type, such as read, since arrows of differing types
cannot generate ambiguities.

Consider Fig. 1 again. Although both positive and neg-
ative read arrows relate Alice to the file /usr/alice/pri-
vate, we interpret the picture to state that Alice does have
read access to her private file. When determining whether
a user has access to a file, an arrow that is most tightly
nested at both its head and tail governs the sense of the
access. In Fig. 1 we say the positive read arrow from
Alice overrides the negative one from World.

When does one arrow override another? For any two
boxes b and b’, we say *‘b is a descendant of b"*’ (denoted
byb < b')if b = b’ orif b is contained in b’. If b <
but b # b’, we write b < b’ and say ‘b is a proper
descendant of b'.>* If b and b’ overlap (i e. <hare 3 com-
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TABLE 1
THE ACCESS MATRIX FOR FIG. |
letc/passwd /usr/alice/private
Alice {read} {read. write }
Bob {read} {}
Charlie {read} {}
World fusr/
Bob read

Fig. 3. An ambiguous instance picture.

mon descendant) such that neither is a proper? descendant
of the other, we write b X b’ and say “‘b crisscrosses b’.”’
For example, in Fig. 1, Bob < World and Groupl X
Group2.

The relation between two arrows p and » is determined
by the relations between the boxes at their heads and tails.
Let a' and 4" denote the boxes at the tail and head, re-
spectively, of arrow a. Roughly speaking, p overrides n
if p is more tightly nested than » on one side (the head or
tail) and if n is not more tightly nested than p on the other
side. Formally, ‘‘p overrides n’’ (denoted by p << n) if

(P < n'vp AN < ntvph M n)
A= (p'Xn Ap' M.

For example, in Fig. 1, using p for the top positive read
arrow and n for the negative read arrow, p << n since
p' < n'and p" X n*. However, in Fig. 3, again using p
for the positive arrow and n for the negative one, neither
p << nnorn << p, since p' < n’and n" < p".

We can now define the access relation R(u, f) between
an atomic user box u and an atomic file box f. We define
the set of all ancestors of abox bby 4, = {b' | b < b'}.
The only arrows governing R(u, f) are those connecting
aboxu eAd,toabox f' e Ap; call this set of arrows
E(A,, A¢). In Fig. 1 for example, if we let u = Alice and
f = /lusr/alice/private, the only read arrows in E(A,, Af)
are the top two; the third read arrow is not in this set
because the box /ete/passwd is not in Ay.

The relation between u and f is unambiguous if and only
if there are no arrows governing the relationship between
uand f (i.e., E(A,, Af) = &) or there is a witness set W
S E(A,, A;) of arrows of like polarity such that, taken
together, the arrows of W override all arrows in E(A,, Ar)
of opposite polarity. (We formalize what it means for a
set of arrows to override another set in the definition of
R(u, f) below.) If no such witness set exists, the relation
between u and f is defined to be ambiguous.

“The inclusion of **proper™” in this definition is important. since 't reaps
h=h' = forrd
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TABLE 11
SOME SAMPLE INSTANCE TYPE DEFINITIONS AND ORJECTS FOR UNIX

Definitions Objects
type Entity type Sysobj Alice : User
{ owner : string, M )
type World ( created : date, M ) /ust/alice : Directory

subtype of Entity
number-of-objects 1
type File
type Group
subtype of Entity

type User
subtype of Entity

type Dir

type Mail
subtype of Dir

( modified : date, O )

subtype of Sysobj
( is-device : boolean = False, M )

subtype of Sysobj

¢ owner, Alice )
 created, 01/01/88 )

We formalize this notion by partitioning E(A,, Ayr) into
its positive and negative arrows, E*(A,, Af) and
E™(A,, Af), respectively. The relation R(u, f) is then
given by:

if(3IW € E* (4, 4/)
vn e E” (A, 4f)
IpeWp << n)

if QW < E(A,, A;)
vp € E*(A,, Af)
Ine Win << p)
orE(A, A;) = &

otherwise.

( positive

negative

R(u, f) =

\ ambiguous

For example, in Fig. 3, R(Bob,admin) = ambiguous
since neither arrow in the picture overrides the other, and
hence, neither forms a witness set.

So far we have focused on the semantics of the relation
defined by an instance picture as determined by the ar-
rows. We also associate type semantics with arrows and
boxes. Each arrow or box object has a type. The type of
an arrow is a subset of a user-specified finite set Any of
access modes (e.g., Any = {read, write, execute}). The
type of a box is a name plus a (possibly empty) set of
attributes. Each box type must first be defined; individual
boxes are created as objects of a type with specific values
bound to the type’s attributes.

A box type definition takes the form:

type name

[ subtype of parent ]

[ number-of-objects range ]
[ attribute-list )

where clauses enclosed in square brackets ([]’s) are op-
tional.

The number-of-objects clause constrains the number
of instantiations of this type, where range is either a sin-
gle integer or an integer range, with the default value

being [0..c0]. The artribute-list is a list of zero or more
tuples. Each attribute in the list provides additional infor-
mation about each object of the type. An attribute is either
optional or mandatory (indicated by an O or M in the tu-
ples of Table II), and may have a default value.

Box type definitions provide a subtyping mechanism.
Each type has at most one parent (i.e., there is no multiple
inheritance). The root of the type tree is defined to be type
Root, which has no attributes and is not a subtype of any
other type. A subtype inherits all of the attributes of its
parent type, and can add additional attributes of its own.
There are two restrictions on the attributes that a subtype
inherits: first, if an attribute is mandatory in the parent, it
must be mandatory in the subtype, and second, an attri-
bute which is optional in the parent may be mandatory in
the subtype. To create an object of a particular type, the
user must supply a name for the object and values for all
of the mandatory attributes of that type; the user may also
supply values for any of the optional attributes.

Table II contains examples of type definitions and typed
box objects. The two main types are Entity and Sysobj.
There are three subtypes of Entity (World, Group, and
User) and two subtypes of Sysobj (Dir and File). There
can be only one World, indicated by the number-of-ob-
Jects range of the World type. All boxes with type Sysobj
have owner, created, and modified attributes; the first
two are mandatory, whereas the third is optional. All
boxes with type File have an additional boolean attribute
indicating whether or not they are devices: that attribute’s
default value is False.

Type information allows instance pictures to be re-
stricted in two different ways. First, there are restrictions
on the number of instantiations of each type, such as
*‘there must be exactly one object of type World’’; such
restrictions are expressed in the number-of-objects clause
of the type definition. Second, the constraint language
provides a means for restricting pictures based on the val-
ues of type attributes.

III. THE CONSTRAINT LANGUAGE
The Mir6 instance language is capable of specifying file
system security configurations for any operating system.
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However, the system architecture and local security pol-
icies impose constraints on what should be considered a
legal (realizable and acceptable) instance picture for that
system. For example, an instance picture that is legal for
Multics may be illegal for Unix. We use the constraint
language to define legal instance pictures.

Constraints are assertions that the existence of some sit-
uation implies that some additional condition must hold,
and are therefore divided into two parts: the antecedent
(or trigger) and the consequent (or requirement). For ex-
ample, we may wish to specify the constraint, ‘‘Any time
a user has write access to a file, he or she should also have
read access to it.”” (This is the example given in Fig. 2.)
In this case, the existence of write access is the trigger on
the read access requirement. Both parts are expressed to-
gether in a single constraint picture. We describe shortly
how we depict these constraints and give a description of
their semantics.

We would like our constraint language to be able to
place restrictions on the following aspects of an instance
picture:

® Where arrows may be drawn (e.g., ‘‘there can be at
most 20 arrows leading to any box of type top-se-
cret’’). Such constraints specify certain syntactic re-
lations among boxes because they depend solely on
the syntax of the instance picture.

® Entries in the associated access matrix (e.g., ‘‘if a
user has write access to a file, he or she should also
have read access to it’’). These constraints specify
semantic relations among boxes because they depend
on the meaning of the instance picture.

® Box containment relations (e.g., ‘‘every user in the
Miré group should have a subdirectory contained in
his or her home directory called miro™’).

In general, a single security requirement will involve a
combination of these relations. For example, the con-
straint ‘‘for every user named u in the system, there should
be a directory named u in the /usr directory, and there
should be a file called mail in that directory to which u
has read access’’ is a combination of containment and se-
mantic constraints; however, we can express this require-
ment with a single constraint picture.

A. Syntax and Semantics

Like instance pictures, constraint pictures contain boxes
and arrows, but with restrictions and extensions to the in-
stance picture syntax. Each constraint picture specifies a
‘‘pattern’” which defines a (possibly infinite) set of in-
stance pictures. If a particular instance picture matches
the pattern, we say that instance picture is legal with re-
spect to the constraint.

We now present an informal description of the syntax
and semantics of the constraint language in an incremen-
tal fashion. At each step in the presentation, we give ex-
amples of constraint pictures (constructed from the syn-
tactic objects described up to that point) and instance
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pictures, and explain why a particular instance picture
does or does not match that constraint picture.

1) Constraint Boxes: Each constraint box contains a
box predicate taken from the box predicate language. A
particular box in an instance picture matches a constraint
box if the values of the instance box’s attributes make the
predicate in the constraint box true. In an actual instance
picture, there may be more than one box that matches a
given constraint box. Similarly, each instance box may
match more than one constraint box.

The box predicate is a boolean expression (where “‘&,”’
““|,”> and *“!”’ denote ‘‘and,’’ ‘‘or,”” and ‘‘not,’’ respec-
tively) of relations involving constants and attribute names
associated with some box type. We use € and C as re-
lations on box types to denote subtype and proper sub-
type, respectively. We use variables to force attribute val-
ues of two or more boxes to match. A variable is
distinguished from other identifiers by preceding it with a
*‘$.”” Each variable $X in a constraint must appear in at
least one predicate containing the expression ‘‘attribute =
$X.’’ The operational semantics of each variable in a con-
straint is as follows: pick any box pattern in which the
variable is compared to an attribute for equality and set
the value of the variable to the value of the attribute of
the instance box matching that box pattern. Then, for each
other use of the variable in constraint boxes, substitute the
assigned value for the variable; that substituted value must
satisfy all of the box predicates.

The boxes shown in Fig. 4 illustrate the basics of the
box predicate language. The predicates match: (a) all
Users named jones, (b) all Groups other than those
named miro or theory, and (c) all Files created in January
1988.

For the remainder of this section, we will adopt the
shorthand that upper-case letters denote box predicates
matched only by the box in the instance picture named
with the same lower-case letter (i.e., a matches A only, b
matches B only, etc.).

2) Constraint Arrows: There are three kinds of con-
straint arrows, one for each type of relationship between
boxes (syntactic, semantic, or containment) we wish to
constrain. We call the arrows associated with these rela-
tionships syntax arrows, semantics arrows, and contain-
ment arrows, respectively. Both the head and tail of a
syntax or semantics arrow lie directly on the boundary of
the boxes to which they are connected, whereas the head
of a containment arrow lies inside its connected box. Syn-
tax and semantics arrows are visually distinguished by
drawing them with solid and dashed lines, respectively.
We also adopt the convention that syntax and semantics
arrows are horizontal, while containment arrows are ver-
tical. This convention is used only for pedagogical pur-
poses in this paper; the language does not impose it. Ex-
amples of these arrows are shown in Fig. 5.

Syntax and semantics arrows are labeled, but contain-
ment arrows are not. The label in the former two cases
serves to further specify which type of relationship may
exist between a and b. Recall that Any is the set of al-
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type = User & type = Group & type = File &
name = "jones” ! (name € { "miro","theory" } 1/1/88 <= created <= 1/31/88

(a)

Fig. 4. Three box patterns.

L) @--'.

(a) Syntax (b) Semantics
Arrow Arrow

(c) Containment
Arrow

Fig. 5. The three constraint arrow types.

lowed access types. In general, the label specifies some
nonempty set S S Any. If § is a singleton set, we write it
simply as s instead of {s}.

We now describe what it means for the instance boxes
a and b to match the constraint box patterns 4 and B with
respect to each type of arrow.

a) Syntax Arrow: If there is a syntax arrow from A
to B labeled §, then there must exist an arrow in the in-
stance picture from a to b of some type s € S.

b) Semantics Arrow: If there is a semantics arrow
from A to B labeled S, then the access matrix associated
with the instance picture must specify that a has permis-
sion s on b, for some s € S. Furthermore, since the access
matrix is only defined on atomic boxes, any box pattern
having a semantics arrow incident to it can be matched by
only an atomic box. Therefore, in this case, a and b can
match their respective box patterns only if they are atomic.

¢) Containment Arrow: If there is a containment ar-
row from A to B, then box a must be directly contained
in box b.

Note that semantics arrows differ from syntax arrows in
that semantics arrows match whenever access is allowed;
syntax arrows match only when an arrow physically con-
nects the two corresponding instance boxes.

Consider the instance picture and the six different con-
straints shown in Fig. 6(a). Along with each constraint is
an indication of whether or not the instance picture
matches that constraint. We now explain each of these
results.

a(l) and a(2): Constraint (1) is matched because d
does have write access to g; constraint (2) is not matched
because there is not a write arrow connecting d to g in the
instance picture.

a(3) and a(4): Constraint (3) is matched because b is
directly contained in a; constraint (4) is not matched be-
cause although d is contained in a, it is not directly con-
tained.

a(5): Constraint (5) is matched because there is a
read arrow from a to e in the instance picture. This con-
straint points out the ‘‘or’’ nature of the set label on syn-
tax and semantics arrows: constraint (5) would have been
matched if there had been either a read or a write arrow
(or both) from a to e.

16. NO. 10, OCTOBER 1990

Instance

af ) read fe

t

Wit
¢ @J: write 0]

read
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(5) Matched (6) Matched (3) Matched
() (b)
Fig. 6. Examples of positive (a) and negative (b) constraint arrows.
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a(6): Constraint (6) is matched because d has read
access to f.

3) Containment and Starred Containment: We use the
instance pictures’ powerful visual representation for con-
tainment in constraint pictures as well. Drawing one box
inside another is a shorthand for drawing a containment
arrow between two nonintersecting boxes. Fig. 7(a) shows
the equivalence of these two representations. Note how-
ever that constraint boxes are not allowed to overlap.

The constraint syntax also provides a means for speci-
fying that a box is contained in another box at some level,
as opposed to being contained directly. A containment ar-
row with a star at its tip denotes this more general starred
containment relation. Again, there is an equivalent graph-
ical representation for starred containment in which one
starred box is drawn inside another [Fig. 7(b)].

The semantics of a starred containment relation is
straightforward. Boxes a and b will match the constraint
shown in Fig. 7(b) if and only if a is contained in b (one
or more levels deep). For example, the instance picture
in Fig. 6 would match constraint (4) in Fig. 6(a) if the
containment arrow were starred.

4) Negated Constraint Arrows: Like instance arrows,
each of the three kinds of constraint arrows may be ne-
gated, but the semantics is different in each case. In gen-
eral, a negated syntax arrow matches a negated arrow in
the instance picture, whereas a negated semantics arrow
or containment arrow matches the negation of the relation
that would be specified by the positive version of the ar-
Tow.

We now describe these semantics more formally by de-
fining what it means for the instance boxes a and b to
match the constraint box patterns 4 and B with respect to
each type of negated arrow.

a) Negated Syntax Arrow: If there is a negated syn-
tax arrow from A4 to B labeled S, then there must exist a
negative arrow in the instance picture from a to b of some
type s € S.

b) Negated Semantics Arrow: If there is a negated
semantics arrow from A to B labeled S, then the access
matrix associated with the instance picture must specify
that a has negative permission s on b, for some s € S. As



HEYDON et al.: MIRO—VISUAL SPECIFICATION OF SECURITY

CD_() CO_
- ||A —

:
(a) (b)

Fig. 7. (a) Direct containment and (b) containment.

with positive semantics arrows, a and b can match their
respective boxes only if @ and b are atomic.

¢) Negated Containment Arrow: If there is a negated
containment arrow (or negated starred containment ar-
row) from A to B, then box b must not be directly con-
tained in (or contained at any level in) box a.

Fig. 6(b) shows some simple constraints using negated
arrows. As before, we indicate whether the instance pic-
ture of Fig. 6 matches each constraint. Most of these ex-
amples are straightforward, but constraint b(6) deserves
explanation. In the instance picture, d has positive write
access to g, but negative read access. Constraint b(6) is
matched because we require only the existence of a single
access matrix entry which confirms either a negative read
or a negative write relationship between d and g.

5) Thick and Thin: Constraint pictures in their general
form are composed of both a trigger and a requirement
that must hold whenever the trigger is satisfied. We draw
both parts of the constraint together and use line thickness
to distinguish the two parts; the objects that form the trig-
ger are thick, and the objects that form the requirement
are thin (on a color display system, we might use two
colors, such as red and blue, instead of line thickness).
The loose meaning of a constraint picture with both thick
and thin objects is: for each part of the instance picture
matching the thick part of the constraint, some additional
part of the instance picture must match the thin part of the
constraint. To specify conditions that must be true uncon-
ditionally, the entire constraint picture must be thin.

We spell out the semantics of thick and thin constraints
more rigorously in Section III-A-6. For now, we present
the simple examples of Fig. 8 to introduce the meaning
of such constraints. Constraint (a) says, ‘‘For every User
box u and every File box f that is owned by that same
user, ¥ must have write access to f.”” Constraint (b) says,
“‘For every Dir d owned by the group miro, all boxes
directly contained in d should be Files or Dirs and owned
by the group miroe.’’ Notice that this constraint will force
its way down all Files and Dirs of any subtree rooted by
a Dir owned by the miro group.

6) Building Bigger Constraints: So far, we have only
considered simple constraints composed of at most two
boxes and a single arrow, but in fact a group of many
boxes and constraint arrows may work together to specify
a bigger constraint pattern. We expect most constraint
pictures to be relatively small, consisting of at most four
or five boxes and three or four arrows. We require that no
boxes overlap in these bigger constraints; proper contain-
ment is still allowed as a shorthand for containment.

Given a more complex constraint picture, it is neces-
sary to define carefully what it means for an instance pic-
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type = Dir &
group-owner ="miro"

(typee { File, Dir} &
group-owner ="miro"

.

() (b)

type = User &} write [ type = File &
name = $A }---»f owner = $A

Fig. 8. Two thick and thin constraint examples.

ture to match that constraint. We first convert all occur-
rences of box containment in the constraint to the
equivalent form using containment arrows and starred
containment arrows. We now present some useful defi-
nitions. A subpicture of either an instance or constraint
picture is a (possibly empty) subset of the boxes and ar-
rows comprising the original picture. It is important to
note that a subpicture need not be well-formed; e.g., it
may have dangling arrows. To simplify our presentation,
we ignore negated constraint arrows, although the seman-
tics below are easily extended to handle them.

A subpicture P, of an instance picture I matches a sub-
picture P of a constraint if:

¢ there is a one-to-one mapping « from box patterns of
P to boxes of P; such that for each box pattern b of
Pc, the box a(b) satisfies the box predicate of b;

® there is a one-to-one mapping 3 from syntax arrows
of P to arrows of P; such that for each syntax arrow
a (with label §) of P¢, the type of 8(a) is in S;

¢ there is a one-to-one mapping v from semantics ar-
rows of P¢ to access matrix entries determined by /
such that for each semantics arrow a (with label S)
of Pc, y(a) N S is nonempty; and

® there is a one-to-one mapping from direct contain-
ment arrows (or starred containment arrows) of P to
instances of direct containment (or containment) in
P,

such that for each constraint arrow a in P, if B denotes
the set of box patterns in P incident on a (note that B
may be a pair, singleton, or empty), then the correspond-
ing boxes in P; are connected in the same way that a and
B are. Informally, this definition says that an instance
subpicture matches a constraint subpicture if each indi-
vidual object matches and if the instance boxes are related
to each other according to the constraint arrows.

We are now ready to define matching between entire
instance and constraint pictures. We first split the con-
traint picture C into its thick (trigger) and thin (required)
subpictures, which we call C; and Cg, respectively. An
instance picture 7 is legal with respect to the constraint
picture C if, for each subpicture I; of I that matches Cr,
there is a disjoint subpicture I of I such that I; U I,
matches all of C. Furthermore, the one-to-one mappings
used in the combined matching (of I U I and C) must
be extended functions of the one-to-one mappings in the
matching of Iy and Cy.
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Consider the (probably undesirable) constraint of Fig.
9 in reference to the instance picture of Fig. 1. This con-
straint says: ‘‘For every box of type User directly con-
tained in a box named Groupl, there must exist a file
named /usr/alice/private to which that User has read ac-
cess.”’ Since Bob does not have such permission, the in-
stance picture of Fig. 1 is not legal with respect to this
constraint.

7) Numeric Constraints: A constraint picture can also
have a numeric constraint associated with it that specifies
some range of nonnegative integers. We determine
whether an instance picture is legal with respect to the
constraint as follows: for each subpicture that matches the
trigger, the number of different subpictures matching the
entire constraint must be within the specified range. When
there is no explicit range, the default value is ‘= 1.”’

Fig. 10 uses a numeric range to specify one of the con-
ditions implicit in the design of the Andrew file system.
In Andrew, an access list of at most ten entries is asso-
ciated with each directory. Fig. 10 therefore states that
any Dir may have at most ten arrows pointing at it.

8) Negative Constraints: Sometimes, it is more natu-
ral to express a constraint by depicting what should not
be allowed. Negative constraints are used for this pur-
pose. A negative constraint is simply a positive constraint
(as described so far) with a large ‘*“X’’ through its frame.
An instance picture is legal with respect to a negative con-
straint if and only if it is illegal with respect to the positive
version of the constraint. Since negated constraints with
counts can be confusing, we only allow constraints with-
out a numeric constraint to be negated. Hence, a negative
constraint is equivalent to its positive version with the nu-
meric constraint ‘‘= 0.”’

Fig. 11 depicts another aspect of the Andrew file sys-
tem. Protections in Andrew are associated only with di-
rectories—files inherit the protection of their parent direc-
tory. Therefore, we require that no File in an instance
picture for Andrew can have an arrow pointing to it.

B. Example Constraints for Unix

In this section we present some possible constraints for
the Unix operating system. Some of these constraints
eliminate instance pictures that cannot be realized under
Unix. Others specify security policies a system adminis-
trator might wish to impose in addition to Unix’s policy.
Before each example, we describe the constraint being
specified.

1) Every arrow must connect an Entity to a Sysobj.

(type < Entity | Any l type < Sysobj ]

2) Every Group must be directly contained in at least
one World, and a Group cannot be contained in anything
except a World.

type = World

[type = Group]

type != World

type = Group]
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name = "Group1"

type = User

Fig. 9. A composite constraint.

[type < Entity | Any_{ type = Dir

<=10 )

Fig. 10. No directory may have more than 10 arrows pointing at it.

N
/’\

type < Entity | Any _{ type = File l

Fig. 11. No file may have any arrows pointing at it.

3) Whenever a User has write access to a File, he or
she should also have read access to that File.

write

[type = User I""':[ type = File ]
read

4) Every user Dir (e.g., /usr/doe) should contain the
three Dirs: bin, src, and man. Note the two different vis-
ualizations of the containment relation in this constraint.

(type = Dir) & (name = "/usr/)

type = Dir
A A

type = Dir & type = Dir & |[type = Dir &
name = "bin"| [ name = "src" | [ name = "man"”

5) For each User named A, there should be a Dir named
A in /usr/, and that Dir should contain a File called Mail
to which user A is the only User with read access. This
constraint denies all other Users read access on A’s mail
file because, for each matching of instance picture boxes
to trigger boxes, each box matching the bottom User box
must be different from the box matching the top User box.

| type = User &
name = "$A" *593(’

type = User

(type = Dir} & (name = "/ust/”)
(type = Dir) & (name = "$A/")
“~a{ (type = File) &
(name = "Mail")

6) If a User A has a Dir named private in his home
directory, then any File or Dir contained in it should have
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the following two properties: A should have write access
to it, and no other User should have read access to it.

type = User & (type = Dir) & (name = "$A")
name ="SA" bowite | (0 &
“>] | (name = "privater)
type = User read T type C Sysobj
b - -x_ -

7) Below is a constraint that a system administrator
might wish to establish. It states that no directory that
appears anywhere in the /usr/ subtree can contain more
than 20 entries.

(type = Dir) & (name = "/usr/")

type = Dir

( <=20

IV. TooLs

A. Overview

In order to determine the effectiveness of the Mir6 lan-
guages, we are developing a collection of tools to support
the creation and use of instance and constraint pictures.
What makes some of these tools particularly novel are the
nontrivial algorithms implemented to check for properties
such as ambiguity; these are described in [7]. What makes
the overall design of our Mir6 environment particularly
interesting and useful for prototyping is the loosely-cou-
pled way in which the individual tools interact.

We divide the set of tools into front-end tools and back-
end tools, as illustrated in Fig. 12. We draw an analogy
here with conventional compilers, which have a front-end
that is system-independent and a machine-specific back-
end that handles code generation. The front-end Miré
tools are independent of the file system structure of any
specific operating system, while the back-end tools incor-
porate information about a particular operating system and
its security policy.

The front-end tools are used conceptually as follows: a
user draws instance and constraint pictures using the ed-
itor, checks the instance picture for ambiguity with the
ambiguity checker, and then checks the instance picture
against the constraint pictures with the constraint checker.
The printing tool generates PostScript files so hardcopies
of pictures can be produced. With the help of an extensive
set of generic parsing routines stored in the parser li-
brary, all front-end tools operate on a textual represen-
tation of pictures.

The two back-end tools are operating-system depen-
dent. The configurer generates a set of system-level com-
mands that set file and directory protections and user priv-
ileges as specified by an instance picture. The prober
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Front-end Tools

Postscript File

Ambiguity )
Checker Access-right

Matrix

onstraint
Checker

Back-end Tools

Fig. 12. The Mir6 tools.

checks whether an existing file system has the same cor-
responding access matrix as a given instance picture.

All tools drawn in rectangles in Fig. 12 are semantic-
domain independent; those in ellipses depend on the se-
mantic-domain (in this paper, security). For example, a
byproduct of the ambiguity checker is the semantic inter-
pretation of an instance picture (i.e., an access matrix).
The eventual goal is to use the same semantic-domain in-
dependent tools with a different set of semantic-domain
dependent ones; that is, we intend to use the same picture
languages to specify system properties other than secu-
rity.

As of August 1990, the parser, printing tool, ambiguity
checker, editor, and prober are complete. All of the in-
stance pictures in this paper were drawn with the editor,
checked with the ambiguity checker, and printed by the
printing tool.

B. Editor

The Miré editor tool allows a user to create, view, and
modify instance and constraint pictures. It is built on top
of the Gamet user interface development environment
[15]. The editor window is divided into three main parts:
a menu, a help window, and a drawing area. Commands
to the editor are through the menus, direct mouse manip-
ulation, and occasional keyboard entry. Figs. 13 and 14
show sample snapshots of editing sessions on an instance
and constraint picture, respectively.

The top half of the menu shows what kind of picture is
being drawn (instance or constraint); it contains icons or
buttons for the user to select the type of object he or she
wishes to draw and the attributes of that object. This part
of the menu is more extensive when drawing a constraint
picture, since there are several types of arrows, and more
attributes for each object (compare the menus of Figs. 13
and 14).

The bottom half of the menu provides commands for
some standard graphical editing functions (Copy, Delete,
Undo, Clear, Exit), for reading from and writing to a
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Alice’s friends

Help Window

.

Alice’s fles

Fig. 13. The Mir6 editor and a sample instance picture.

Q Instance
@) Constraint

label

o _lmbel 5

|

Arrow Parity:
@) Positive Q) Negative

Constraint Objects:

Help Window

ox 2
AD

Fig. 14. The Mir¢ editor and a sample constraint picture.

file, for displaying the current attributes of a graphical
object, and for interfacing to the other Mir6 tools (Am-
big? and Print call the ambiguity checker and PostScript
printing tool, respectively). Output from the ambiguity
tool can be used to highlight boxes in the instance picture
having an ambiguous relationship.

The drawing area displays an actual instance or con-
straint picture. A user creates objects in the drawing area
by selecting icons from the menu for the type of object

desired (box or arrow) and the appropriate attributes, and
then specifying with the mouse where the object should
appear in the drawing area. In Fig. 14, for example, but-
tons have been chosen for drawing a containment arrow
with attributes ‘‘positive,’’ ‘‘thick’’ and ‘‘starred.’’ Ob-
jects in the drawing area can be selected, resized, moved,
copied or deleted. A user can also display and change the
attributes of an object, such as its type, label, thickness
(for constraint objects), or polarity (for arrows).
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One problem with visual systems is the possibility of
seeing too much information at once. The editor provides
several facilities for managing this information, including
zooming in and out, hiding the boxes inside any specified
box, and scrolling vertically and horizontally across a
large picture.

C. Ambiguity Checker

Since our instance language allows the creation of am-
biguous pictures, and since ambiguity in instance pictures
is not easily detected by people, we provide a way to au-
tomatically check an instance picture for ambiguity. The
ambiguity checker considers all pairs of atomic user and
file boxes and all access modes. For each user/file pair of
atomic boxes and for each access mode, it searches for
either a positive or negative witness set of arrows of that
access mode to determine that a positive or negative re-
lationship exists between the two boxes. If no such wit-
ness set is found, the boxes have an ambiguous relation-
ship with respect to that access mode.

We described the design and implementation of a poly-
nomial-time algorithm for detecting instance picture am-
biguities in [7]. Since all pairs of atomic boxes and all
access modes are checked, the ambiguity checker also
functions as an access matrix generator. If a particular
command-line argument flag is supplied to the program,
it will print out positive and negative relationships be-
tween atomic user and file boxes, in addition to the am-
biguous ones.

D. Constraint Checker

Given an instance picture and a constraint picture, the
constraint checker determines whether the instance pic-
ture is legal according to the given constraint. We use this
tool to ensure that a particular user’s security configura-
tion conforms to a given set of standards, perhaps speci-
fied by a system administrator.

The constraint checker takes unambiguous instance and
constraint pictures as input. The access matrix, computed
by the ambiguity checker, must also be given as input if
the constraint picture has any semantics arrows. Output
consists of a boolean value that answers the question
“‘Does this instance picture satisfy this constraint?’’ and
optionally a message describing which instance boxes and
arrows failed to satisfy the constraint.

Determining whether an instance picture satisfies a par-
ticular constraint is NP-complete. There are a number of
heuristics that can improve the time spent on typical cases
(see [8], [11], [18], and [20]), but none covers all possi-
ble cases.

E. Back-End Tools

Our back-end tools will provide direct interfaces with
existing file systems. Two kinds of back-end tools are
probers and configurers. A prober inspects an existing file
system, compares it with an instance picture, and shows
what differences exist. A configurer sets file protection
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bits and/or user privileges in a file system according to a
given instance picture.

We anticipate that the back-end tools would be written
calling a number of routines to inspect and make modifi-
cations to an existing file system. These routines would
contain all the file system specific code, and separate ver-
sions of them could exist for each type of file system that
Miré was used to specify, e.g., Unix, Andrew, or Mul-
tics.

With these routines we can use the prober to analyze a
file system and compute its access matrix. We then com-
pare this access matrix to that described by an instance
picture, perhaps discovering discrepancies in some en-
tries. Upon discovering such discrepancies with the
prober, the user could either manually or automatically
compare the file system with a given instance picture. (If
this comparison were automated, then the discrepancies
might be highlighted in the editor.) The principal techni-
cal difficulty with automating this comparison would be
keeping the list of discrepancies small. The user, with the
assistance of the other Miré tools, could take one of the
following actions: update the picture manually, update the
picture automatically, or update the file system automat-
ically. For a further discussion of these alternatives and
their implementation, see [7].

V. EVALUATION AND FURTHER RESEARCH

We are still developing the Mir6 environment. Our aim
is to provide a mathematically rigorous framework for se-
curity specification without sacrificing the usability, con-
cision, and aesthetically pleasing properties of visual lan-
guages. The security-specific tools, i.e., the ambiguity
checker, constraint checker, and back-end tools, fit in nat-
urally with the Mir6 editor and provide an integrated en-
vironment for the user.

A. Mir6 as a Security Specification Language

The Mir6 languages demonstrate that it is possible to
specify security visually. But how useful are they? Are
we successful in our attempt to provide a single method
for security specification while satisfying the joint re-
quirements of rigor and straightforwardness? Consider
first the requirement of mathematical rigor. In this paper,
we have seen two examples of security specification lan-
guages, the instance language and the constraint lan-
guage. Certainly our formal semantics for the instance
language shows that we can design a visual language that
satisfies the strictest requirements of rigor. While we have
not presented a formal semantics for the constraint lan-
guage here, valid constraint pictures also have completely
precise and unambiguous meanings.

It is impossible to make a definitive statement about
how easy it is to use the Miré languages without extensive
user tests. Based on preliminary impressions, we believe
that instance pictures are perspicuous to most users. The
constraint language is more difficult to master than the
instance language. But the information captured by the
constraint language would otherwise be expressed as an
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unstructured set of predicates in competing notations that
are solely textual, such as those used to specify PSOS [16])
or the Bell-LaPadula model. In the design of the con-
straint language we have identified visual representations
for the common idioms used in the security domain, ab-
stracting away from the more difficult textual models. In
short, our visual idioms would compile into these “‘as-
sembly-level’” textual languages. The constraint language
provides users with a concise yet expressive set of con-
structs with which to specify and evaluate different exist-
ing security models and to design and experiment with
new, more ambitious models.

Moreover, tools such as our constraint checker and
back-end tools will allow those who write visual specifi-
cations to recognize the consequences of their specifica-
tions more quickly. Using these tools, people could
quickly generate large numbers of examples and test them
for conformity with the constraint checker. Traditional
specification methods do not have these sorts of tools. The
ability to generate examples quickly might have helped
prevent problems that have shown up in standard security
specifications. For example, McLean has criticized the
Bell-LaPadula model for not accurately capturing the in-
formal specification [13], [14]. Our rich set of tools al-
lows users to see, immediately and explicitly, effects of
their specification that they would otherwise have to
imagine (possibly incorrectly) in their heads.

B. Miré as a Visual Formalism

The Mir6 languages demonstrate the power of visual
formalisms by giving two different semantic domains into
which one syntactic domain (boxes and arrows) maps: ac-
cess matrices (for instance pictures) and instance pictures
(for constraint pictures). The fact that we were able to
embed these very different domains in a common frame-
work shows the flexibility and power of our notation. To
Harel’s credit, much of this flexibility is inherited from
his original work on higraphs [5].

The instance language works because it has a first-order
universe primarily consisting of unary and binary rela-
tions over a hierarchical domain. There is nothing specific
to security about this notation; with minor modifications
the instance language could be applied to any set of ob-
ject/entity relations (in Mird, we took these to be file-
system accesses) taken over a set-theoretic domain (in
Mird, these consist of files, groups of files, users, and
groups of users). The most difficult challenge we faced in
designing the instance language was in developing the ex-
ception mechanism, whereby an arrow could override a
less deeply nested arrow, and then designing algorithms
and tools to detect and disallow the ambiguous pictures
that the exception mechanism introduced.

In contrast, the constraint language pushes the higraph
notation much further. Here we needed each constraint
picture to specify some set (typically infinite) of all legal
instance pictures. As argued above, this has been a very
challenging problem in the past for text-based specifica-
tions. In essence, what we have done is to allow quanti-
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fication and implication over our first-order properties to
be expressed in a visual notation. The three types of re-
lations expressed by our arrows are quite different: in the
case of syntax and containment arrows we are expressing
relations that would be immediately visible only from the
syntax of the instance language pictures. On the other
hand, the semantics arrow expresses relations that result
from the interpretation of our instance pictures. In other
words, the semantics of our constraint pictures quantifies
over the semantics of our instance pictures as well as the
instance picture’s syntactic properties. We only carried
this meta-semantics to one level; if our languages were
used for specifying domains more complex than security,
we might want to nest these meta-levels of semantics more
deeply.

Even in the area of security, this meta-semantics could
be exploited a second time. We might consider introduc-
ing a transition language that could express the dynamics
of file system protections. This sort of picture would al-
low us to answer the questions such as, ‘‘Given a single
instance picture, to which other instance pictures can we
legally move in a single operating system action?’’ or
““‘Given an instance picture 4, can we move to an instance
picture B without going through any ‘dangerous’ (i.e., in-
secure) instance pictures?”’ If we view each instance pic-
ture as a node, then the transition language expresses the
directed graph showing how we can legally move from
one node to another node. We could then further gener-
alize by defining a language of constraints on transition
pictures, or a transition language on constraint pictures
(to specify legal changes to security policies). We believe
that these sorts of meta-semantic hierarchies on visual
languages can find wide use in many application domains.

C. Areas for Further Research

As currently defined, Mir6 facilitates prototyping se-
curity policies. Miré by itself, however, has opened a
number of research problems, such as: higraph-layout
problems introduced by our back-end tools, more efficient
ambiguity checking algorithms, constraint checking al-
gorithms that are almost always fast, formal specification
of graphical properties and operations, and the application
of the Mird languages to areas other than security.
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