Miroé Tools

Allan Heydon Mark W. Maimone J. D. Tygar Jeannette M. Wing Amy Moormann Zaremski

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

Miré provides a visual way to specify security configurations.
It consists of two visual specification languages, the instance
language and the constraint language. This paper describes the
current Miré tool support. What makes some of these tools
particularly novel are the non-trivial algorithms implemented
to check for properties such as ambiguity. What makes the
overall design of our Miré environment particularly interesting
and useful for prototyping is the lonsely-coupled way in which
the individual tools interact.

1 Introduction
1.1 The Languages of Miré

Miré provides a visual way to specify security configurations.
It consists of two visual specification languages, the instance
language! {15] and the constraint language [4]. The underlying
model of security is based on the Lampson access matrix [8],
where the (i.j/)* entry in the matrix indicates the modes by
which user i may access file j. In Unix, the access modes are
read, write, and execute.

The Mir6 instance language lets one draw boxes and arrows
to specify an access matrix. A box which does not contain other
boxes is called atomic and represents either a user or a file.
Boxes can be contained in other boxes, to indicate groups of
users and directories of files. Labeled arrows go from one box
to another; the label indicates the access mode. The relationship
represented by an arrow between two boxes is also inherited by
all pairs of boxes contained in those two boxes. Arrows may
be negated, indicating the denial of the specified access.

Figure 1 shows a typical instance picture, as drawn in
the Miré editor. The positive arrow from Alice to
/usr/Alice/mail indicates that Alice has read access to
her mail directory. The negative arrow from World indicates
that no other user has read access to Alice’s mail directory.
Note that boxes may be contained in more than one box; for
example, Bob is in both Group 1 and Group 2.

The presence of negative arrows in the language adds some
non-triviality to the semantics. Intuitively, an arrow p can over-
ride another arrow g (of the opposite parity) if p connects boxes

This research was sponsored by IBM and the Defense Advanced Re-
search Projects Agency (DOD), under Contract No. MDA904-88-C-6005.
Additional support for J. Wing was provided in part by the National Science
Foundation under grant CCR-8620027 and for J. D. Tygar under a Presiden-
tial Young Investigator Award, Contract No. CCR-8858087. M. Maimone
(under contract N00014-88-K-0641) and A. M. Zaremski are also supported
by fellowships from the Office of Naval Research.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, ei-
ther expressed or implied, of IBM, the Defense Advanced Research Projects
Agency, the National Science Foundation, the Office of Naval Research or
the US Government.

'In previous papers, the instance language was simply called the Miré
language.

TH0277-4/89/0000/0086$1.00© 1989 IEEE

86

that are more tightly nested than the boxes connected by gq.
However, it is possible to draw pictures containing arrows of
opposite parity that “conflict” with each other. For example,
referring to Figure 1, if a positive read arrow were drawn
from Group 1 and a negative read arrow were drawn from
Group 2, then it would be unclear whether Bob has read ac-
cess to Alice’s directory. Such pictures are called ambiguous.
We postpone a more rigorous description of these semantics to
Section 4.

The Miré constraint language also consists of boxes and
arrows, but here the objects have different meanings. A con-
straint picture defines a set of instance pictures. If a given
instance picture satisfies the constraints of a constraint picture,
we say it is legal. Different sets of constraints are used to
describe different security configurations. For example, a con-
straint picture for the Unix operating system would be radically
different from one describing the Bell-LaPadula model [2,3]. In
a constraint picture, a box is labeled with an expression that
defines a set of instance boxes. For example, in Figure 2, the
left-hand box refers to the set of instance boxes of type User.
There are three types of arrows: syntactic (solid horizontal),
semantic (dashed horizontal), and containment (solid vertical
with head inside box). Syntactic arrows match actual arrows
in an instance picture, semantic arrows match entries in the
access matrix, and containment arrows concern which boxes
are inside other boxes. Additionally, each constraint object is
either thick or thin (we call the thick part of the constraint the
trigger), and a constraint picture has a numeric range (the de-
fault is > 1). The thick/thin attribute and range are key in
defining the semantics of a constraint picture: in general, for
each set of instance objects that matches the thick part of the
constraint, count the number of sets of objects, disjoint from
the set matching the thick part, that match the thin part; this
number must lie within the range. Figure 2 shows a constraint
picture which specifies that a user who has write access to a
file should have read access to it as well.

1.2 Overview

This paper describes the current Mird tool support. What makes
some of these tools particularly novel are the non-trivial algo-
rithms implemented to check for properties such as ambiguity.
What makes the overall design of our Miré environment par-
ticularly interesting and useful for prototyping is the loosely-
coupled way in which the individual tools interact. We divide
the set of tools into front-end tools and back-end tools, as illus-
trated in Figure 3. The former are independent of any operating
system, while the latter incorporate information about a partic-
ular operating system and its file structure.

The front-end tools are conceptually used as follows: one
draws an instance picture using the editor, checks it for am-
biguity with the ambiguity checker, and then checks it for le-
gality with the constraint checker. The printing tool generates

(Tiame) .
¢ Warld

Tear Viorkhesich

——e—— {Group 1
Giopz
E S
[Perete Omect] (R 1

fusriAbce/matl

i —

Figure 1: The Mir6 editor and a sample instance picture

PostScript files so hardcopies of pictures can be produced. Fig-
ure 1 shows the editor tool with a sample instance picture. This
picture was checked with the ambiguity checker. Figure 2 was
also generated with the editor and printed using the printing
tool.

With the help of an extensive set of generic parsing routines
stored in the parser library, all front-end tools operate on a
textual representation of pictures written in a well-defined in-
termediate file format (IFF). An IFF file consists of a list of
entries. There is an entry for each object (box or arrow) in
the picture, as well as an “inside” entry to list the boxes di-
rectly contained in each box, and an “editor” entry to list global
characteristics of the picture. Each entry consists of a list of
attribute-value pairs, which provide a fiexible way to include
any information required for that entry. For example, the entry
for a box will contain, among other things, its name, type, lo-
cation, and size. Using an IFF makes it possible to do parallel
development of the tools where normally dependencies would
require one tool (e.g., the editor) to be built before another
(e.g., any of the checkers). Sections 2, 3, 4, and 5 describe
in detail the design and implementation of the editor, parser
library, ambiguity checker, and constraint checker.

The two back-end tools are operating-system dependent. The
configurer generates a set of system-level commands that set
file and directory protections and user and process privileges as
specified by an instance picture. The prober checks an existing
file system configuration for whether it satisfies a given instance
picture. Section 6 describes our plans for these two tools in
more detail.

All tools drawn in rectangles in Figure 3 are semantic-domain
independent; those in ellipses depend on the semantic-domain
(in this paper, security). For example, a by-product of the
ambiguity checker is the semantic interpretation (i.e., an access-
rights matrix) of an instance picture. The eventual goal is to use
the same semantic-domain independent tools with a different set
of semantic-domain dependent ones; that is, we intend to use
the same picture languages to specify system properties other
than security.

2 Editor

The Miré editor tool allows a user to create, view, and mod-
ify instance and constraint pictures. Figure 1 shows a sample

87

type = User type = File

Figure 2: A sample constraint picture
snapshot of an editing session.

2.1 Design

The editor window is divided into two main parts: a menu
(along the left-hand side of the window), and a drawing area.
Commands to the editor are through menus, direct mouse ma-
nipulation, and occasional keyboard entry.

The lower part of the menu provides standard graphical edit-
ing functions, including reading from and writing to a file (in
IFF format), clearing the drawing area, undoing, and quitting.
It will also provide an interface to the other Mir6 tools via
commands that check for ambiguity, verify legality, and print
hardcopy.

The drawing area displays an actual instance picture or con-
straint picture. A user creates objects in the drawing area by
selecting an icon from the menu for the type of object desired
(box or arrow) and the appropriate attributes (e.g., whether an
arrow is positive or negative), and then specifying with the
mouse where the object should appear in the drawing area.
Objects in the drawing area can be selected, resized, moved,
copied or deleted. A user can also change various character-
istics of an object, such as its label, thickness (for constraint
objects), or parity (for arrows).

One problem with visual systems is the possibility of seeing
too much information at once. The editor will provide several
facilities for managing this information, including zooming in
and out, hiding boxes within boxes, and scrolling vertically and
horizontally across a large picture.

!
1
1
' Editor
)

!

Printing

Postscript File

Parser
Library

'u Ambiguitly

! Checker

Checker

1
1
, onstraint
|
1
]

Access-right
Matrix

Back-end Tools

Prober

Figure 3: The Mir6 tools

2.2 Implementation

The editor is built on top of the Gamet user interface devel-
opment environment [12]. Gamet provides us with an object-
oriented graphics package, encapsulated input device handlers
(interactors), and a constraint system to ease the pain of devel-
oping a graphical user interface. Garnet simplifies the creation
of windows and menus. Its object-oriented nature provides
a convenient mechanism for encapsulating attributes, and the
interactors allow the selection and movement of compound ob-
jects. The Garnet constraint system gives us a way to specify
restrictions on the manipulation of our graphical objects (e.g.,
the ends of arrows in an instance picture must always be at-
tached to boxes, even when those boxes are moved). Garnet
itself is built on top of the X11 window system and CMU
Common Lisp.

3 Parser Library

The parser library provides the routines necessary to parse IFF
files, as well as some basic routines to manipulate the resulting
parse tree. Mir6 tools use these library routines to convert IFF
files into the necessary internal data structures.

3.1 Design

The parser’s input is an IFF file describing an instance picture or
constraint picture. Its output is a pointer to a list of structures,
one for each entry in the intermediate file. Each structure points
to a list of attributes, one for each attribute/value pair in the
intermediate file associated with that structure’s entry.

The parser library contains a top-level function Parse.
Parse takes a single argument specifying the tool that is call-
ing it. The parser saves only those entries and attributes re-
quired by the specified tool. As a result, the parse tree does
not contain extraneous data. For example, the printing tool
needs the location and size of a box, but does not need any
containment information; the ambiguity checker, on the other

88

hand, does not need location and size information, but builds
on the containment information. Furthermore, it is very simple
to extend the program to account for new tools as they are im-
plemented (since the parsing information is stored as data, not
as program code).

The parser also contains general purpose routines for extract-
ing data from the parse tree. These routines are quite flexible,
for they can extract data from attributes that have lists as val-
ues. When appropriate, the extracted data is converted to a
more efficient representation, e.g., the type of a box in the ini-
tial parse tree is either the string “user” or the string “file”, but
the extraction routine converts these to 0 and 1 respectively.

3.2 Implementation

The parser was built using the Unix tools lex [9] and yacc [6].
All memory required by the program is allocated dynamically,
so the input is limited only by the memory size of the machine.
For example, there is no artificial limit to the number of entries
in the input file. Additionally, the access modes allowed on
arrows are not built into the program. The allowed entry names
and attribute names are hard-coded into the parser library, but
this set of legal identifiers can be extended easily.

The parser implements a limited form of type-checking on
the attribute-value pairs. It knows which attribute names are
legal for each entry type, and it knows which value types are
legal for each attribute. If any type inconsistencies are found,
they are reported as errors. Syntax errors in the input are fa-
tal; all other errors are reported without immediate termination.
However, if the parser finds any non-fatal errors, it will abort
after processing the entire input file. Furthermore, the parse tree
constructed by the parser module contains input-file line num-
ber information, so all errors generated by the parser include
line numbers to help the user find input errors quickly.

4 Ambiguity Checker

Since our instance language allows for the creation of ambigu-
ous pictures, and since ambiguity in instance pictures is not eas-
ily detected by a person, it is necessary to automate the process
of checking an instance picture for ambiguity. Such automation
is possible because the semantics of instance pictures and the
definition of ambiguity have been expressed formally in [11].
That paper precisely describes when the relation between an
atomic user box and an atomic file box for a particular access
mode is pos, neg, or ambig.

The ambiguity checker considers all pairs of atomic user
and file boxes and all access modes. For each user/file pair
of atomic boxes, it searches for either a positive arrow or a
negative arrow of each access mode to certify that a positive or
negative relationship exists between the two boxes. If no such
certificate is found, the boxes have an ambiguous relationship
with respect to that access mode.

Since all pairs of atomic boxes and all access modes are
checked, the ambiguity checker also functions as an access
matrix generator. If a particular command-line argument flag
is supplied to the program, it will print out positive and negative
relationships between atomic user and file boxes, in addition to
the ambiguous ones.

4.1 Design

The ambiguity checker module starts by extracting data from
the parse tree to construct the data structures required to im-
plement the ambiguity checking algorithm efficiently. It builds
three types of structures in memory. First, it constructs lists of
the user and file boxes. Second, it constructs lists of arrows;
there is one list for each access mode. Finally, for each box
type (i.e., user and file), it constructs a two-dimensional rela-
tion matrix representing the containment relationship between
every pair of boxes of that type.

An intermediate file contains direct containment information
among boxes, so from the input file we add direct contain-
ment relations to the relation matrices. The matrix at that point
will represent a graph of direct containment among the boxes.
However, the ambiguity checking algorithm requires that we
also know if some box is contained in another at any level. We
therefore compute the indirect containment relations by running
a reflexive-transitive closure algorithm on each of the relation
matrices.

The ambiguity algorithm also requires that we know if some
box criss-crosses? another. We run another algorithm on the re-
lation matrices to add criss-crosses relations. At this point, the
data structures required by the ambiguity algorithm are com-
pletely built, and we are ready to start testing for ambiguity.

The ambiguity algorithm works as follows. For each atomic
user box u, atomic file box f, and each access mode m, it
searches for either a positive or negative certificate between u
and f with mode m. Henceforth, discussion of the algorithm
will be with respect to some implicit mode m; we will need to
repeat the ambiguity test for each access mode.

We say box & is an ancestor of box b if ' and b are the
same box or if »' contains b at some level. Let A be the set
of all arrows connecting an ancestor of # to an ancestor of f.
According to the definition of ambiguity in [11], an arrow c is
a certificate for u and f if it is in A and if it “overrides” all
other arrows in A. By “overrides”, we mean that both ¢’s head

2Formally, box a criss-crosses box b if a and b are the same box, or if
neither properly contains the other but they contain some box ¢ in common
(and hence overlap). Note that the criss-crosses relation is both reflexive
and symmetric.

89

and tail are attached to more deeply nested boxes than the other
arrows in A.

Therefore, to perform the search for a certificate, we first
partition A into the two sets N and P of negative and positive
arrows, respectively. If both N and P are empty, we can imme-
diately conclude that the relation between u and f is neg since
this is the default. If one is empty, but not the other, then we
can also immediately conclude the relation between u and f.

Otherwise, both N and P are non-empty. We first search
these sets to see if P contains a positive certificate. If so, the
relation between u and f is pos. If not, we search N to see if
it contains a negative certificate. If so, the relation between u
and f is neg. Otherwise, we must conclude that the relation
between u and f is ambig.

We now describe precisely how the search for a certificate is
performed. Without loss of generality, say we are looking for
a positive certificate. For each arrow p € P, we check that p
“gverrides” all arrows n € N. If so, p is a positive certificate;
if not, we try the next arrow in P. If there are no more arrows
to try, then P does not contain a certificate. We now formally
define what it means for p to “override” n. Let p, and p; be the
boxes attached to the tail and head of p respectively; similarly
for n, and ny. Then p overrides n iff it is not the case that p,,
criss-crosses n, and py criss-crosses n; or that n, is contained
in p,, or that n; is contained in py.

4.2 Implementation

The ambiguity checker was written to be fast. As a result, it
sometimes sacrifices space for speed. For example, the rela-
tion matrices are implemented as true two-dimensional arrays,

leading to an O(nz) space cost; since these matrices may be

sparse, it might be more practical to use some more space-
efficient sparse-matrix representation.

The boxes are stored in two linked lists: one for user boxes
and one for file boxes. Each list is in two parts: non-atomic
boxes appear first in the list, and atomic boxes follow them. A
pointer to the first atomic box in the list is also stored so we
can iterate over either all boxes or all atomic boxes of either
type.

Each box in the input is given an internal name (sysname).
An arrow is described by listing the sysnames of the boxes it
connects (along with other information). The program uses a
hash table to find a box quickly, given its sysname. It also uses
a separate hash table to store various identifiers such as legal
entry names, legal attribute names, access modes, and other
identifiers occurring in the input file.

The reflexive-transitive closure algorithm run on each of the
relation matrices was derived from the algorithm discussed in
sections 5.6 and 5.7 of [1]. We made some simple modifications
to this algorithm. First, we used only two O(nz) arrays to store
the previous and current results of the dynamic programming
structures as opposed to the O<n3> space suggested by their
algorithm. Second, our algorithm maintains the distinction be-
tween direct containment and indirect containment. Although
the ambiguity algorithm does not require this distinction, it is
free to maintain, and may be required by other tools.

The algorithm to add criss-crosses information to the relation
matrices is straightforward. Recall that two boxes a and b criss-
cross if they are the same box, or if neither box contains the
other and there is some box ¢ which is contained by both a
and b. Given the results of the transitive closure algorithm
described above, each criss-cross computation can be done in
constant time. For every pair of boxes a and b, we therefore
simply search all other boxes to find a box ¢ contained by both;

this algorithm is 0(n3) in the number of boxes of a given type.
The only other implementation detail worth mentioning in-
volves the test to decide if one arrow p overrides another arrow
n. Recall that the definition of overrides involves several com-
parisons based on the relationships between the boxes at the
tails and heads of p and n. Each possible relationship between
two boxes of the same type (either no relation, direct con-
tainment, containment, or criss-crosses) is stored in the relation
matrix as a number. So for every pair of arrows, we can quickly
(in O(1) time) find the two numbers corresponding to the rela-
tionships between the pairs of boxes at the tails and heads of the
arrows. Using a simple 4x4 static matrix (initialized at compile
time) to represent the overrides result according to these two
numbers, we can perform the overrides test in constant time.
We now consider the asymptotic worst case time complexity
of the ambiguity checking algorithm. Let # be the number of
boxes and m the number of arrows in the input. The number
of atomic user boxes and the number of atomic file boxes are
each O(n). The number of arrows of a particular access mode
is O(m). Therefore, to iterate over all pairs of atomic boxes

and all access modes takes O(nzm) time. Each of the sets N
and P may be O(m) in size, so searching for a certificate may
take O(mz) time. Therefore, the overall worst-case running

time is 0(n2m3). This upper bound should be compared to the

lower bound of {? <n2m) required simply to generate the access
matrix.

§ Constraint Checker

The constraint checker, like the ambiguity checker, is a front-
end tool. Given an instance picture and a constraint picture, the
constraint checker will determine whether the instance picture
is legal according to the given constraint. Hence this tool will
ensure that a particular user’s security configuration conforms to
a given set of standards, perhaps specified by a system admin-
istrator (in this case, many instance pictures will be compared
to one constraint picture). The constraint checker is currently
under development.

Instance pictures provide an elegant method for specifying
sets of users and files. Similarly, constraint pictures represent
sets of instance pictures concisely. These picture languages re-
duce the specification work required of people by asking more
of the language compilers. In fact, determining whether an in-
stance picture satisfies a particular constraint (using the method
below) requires exponential time in the worst case. We have
not found a polynomial-time matching algorithm at the time of
this writing. There are a number of heuristics that improve the
time spent on typical cases, but none covers all possible cases.

5.1 Design

The constraint checker takes unambiguous instance and con-
straint pictures as input. The access matrix, computed by the
ambiguity checker, must also be input if the constraint picture
has any semantic arrows. Output consists of a boolean value
that answers the question “Does this instance picture satisfy
this constraint?”, and optionally a message describing which
instance boxes and arrows failed to satisfy the constraint.

To speed up the implementation, certain features of the con-
straint will be precomputed before actual matching begins.
These features include: the types of constraint arrows, the nu-
meric constraint range, and the number of subboxes for each
box in the trigger (i.., all thick boxes). Creative application
of these features can reduce the time spent in finding instance
subpictures that match the trigger. For instance, if no semantic

arrows are present, then the access matrix need not be searched.

If only semantic arrows and containment arrows are present,

only the appropriate row and column totals, rather than the en-

tire access matrix, are needed. Also, the nesting level of a

constraint box can be used to prune instance boxes from the

search. In short, only those features relevant to the current
constraint need be computed for each instance picture.

The constraint checker will, in effect, compile a constraint
picture into a set of abstract machine instructions. Those in-
structions will then be performed on particular instance pictures.
Constraint pictures have numeric restrictions (see Section 1.1)
associated with them. If we assume the default restriction, these
instructions have simple interpretations; we use the symbols ¥
and 7 to illustrate for all and there exists, respectively. Some
examples of these instructions (assuming the default range con-
straint of > 1) are:

V boxes b matching P - find all instance boxes matching pat-
tern P, and perform the instructions that follow on each
box b.

¥ children of B - find all children of of B, and perform the
following instructions for each child.

J child of B - show that some child of B satisfies the following
instructions.

B has property P - Verify whether box B has property P, (e.g.,
P might be the existence of other arrows, or part of the
box’s label).

Given a constraint picture, we formulate a list of instructions
to be executed for each instance picture in the following way.
A thick subgraph of a constraint picture is a maximal set of
thick boxes connected by thick arrows. That is, if a thick box
is connected by a thick arrow to another thick box, the thick
subgraph containing one must also contain the other.

1. Construct a list of all thick subgraphs.

2. For each of these subgraphs, associate instructions corre-
sponding to each arrow emanating from it, according to
the following rules (given for containment arrows, since
those for semantic and syntax arrows are similar):

thick arrow from/to thin box:
V boxes containing/contained in the trigger, ensure
that the thin box condition holds.

thin arrow from/to thick box: Delete one of the thick
boxes from the global list, add the instruction V boxes
matching the deleted box constraint, there exists a
connecting arrow.

thin arrow from/to thin box: 3 a parent/child box satis-
fying the thin box constraints.

5.2 Implementation

The algorithmic outline presented above, if implemented di-
rectly, would not be time-efficient. We intend to apply standard
graph-matching heuristics to speed up the running time of the
algorithm, incorporating ideas from [13], [10], [5], and [14].

6 Back-end Tools

After completing our picture language and constraint language
tools, we plan to work on a number of back-end tools that will -
provide direct interfaces with existing file systems. These back-
end tools are the file system specific probers and configurers. A
prober inspects an existing file system, compares it with a Miré
specification, and shows what differences exist. A configurer
sets file protection bits and/or user privileges in a file system
according to a given instance picture.

We anticipate that the back-end tools would be written calling
a number of routines to inspect and make modifications to an

existing file system. These routines would contain all the file
system specific code, and separate versions of them could exist
for each type of file system that Mir6 was used to specify,
e.g., the Unix file system, the Andrew Vice file system, or the
Multics file system.

With these routines we could use the prober to analyze a
file system and compute its access matrix. We then compare
this access matrix to that described by an instance picture, per-
haps discovering discrepancies in some entries. The user, with
the assistance of the other Mird tools, could take one of the
following actions:

1. Find discrepancies, update picture manually. After dis-
covering the file system configuration with the prober, one
could either manually or automatically compare the file
system with a given instance picture. (If this comparison
were automated, then the discrepancies might be high-
lighted in the editor.) The principal technical difficulty
with automating this comparison would be keeping the list
of discrepancies small. Because of the inheritance rules
for positive and negative arrows in the instance language,
there are many instance pictures with the same access ma-
trix, and it is not always straightforward to compute which
portion of the diagram ought to be changed. (Should we
change the arrows on top-level boxes or on deeply nested
boxes?) In fact, finding the minimal set that needs to be
changed is at least as hard as the NP-complete problem
of vertex covering for graphs [7]. However, a few known
heuristics can be adapted in this case to keep the number
of highlighted portions of the diagram small [14].

2. Find discrepancies, update file system automatically.
As above, we would either manually or automatically com-
pare the file system with the given instance picture. The
list of discrepancies could be fed to the configurer which
would adjust file protections and/or process privileges to
conform to the low-level access matrix given by the in-
stance picture.

3. Find discrepancies, update picture automatically. As
above, we would either manually or automatically com-
pare the file system with the given instance picture. But
rather than adjusting the file system automatically, as in
alternative 2 above, or adjusting the picture manually, as
in alternative | above, we might try to adjust the picture
automatically. 1t is certainly possible to do this, since we
can always find at least one representation of any access
matrix: at the very least we can simply represent all files
as atoms (without using any hierarchy) and all processes
(or users) as atoms and draw the bipartite graph corre-
sponding to the access matrix. Of course, such a naive
representation would be no more comprehensible than a
listing of the access matrix itself. What we really would
want in this case is a “pretty printed” instance picture
which would take advantage of the hierarchical structure
allowed in the picture language. Additional difficulties
would be encountered if we insist that the “pretty printed”
instance picture conform to an arbitrary constraint spec-
ification. This would appear to pose a number of chal-
lenging research problems. Indeed, in the extreme case,
where the inputs to our automated “picture-update” algo-
rithm are a complex file system configuration (as discov-
ered by the prober) and the empty instance picture, the
likelihood of obtaining a satisfactory result seems dim. In
the case where the number of discrepancies between the
diagram and the file system is small, however, it does seem
that some progress is possible.

Support for the first two alternatives seems feasible, but the

third option is considerably more difficult and would require

91

the solution of some basic research questions.

7 Acknowledgments

David Harel provided us with the inspiration for our basic vi-
sual language with his notation and semantics for higraphs, and
contributed to the development of the ambiguity algorithm.

We are especially indebted to Brad Myers, who urged us to
develop a visual language for specifying constraints and con-
vinced us that such a means of specification was feasible. He
has also been extremely helpful in bootstrapping our editor on
top of his Garnet system.

References

{1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, Reading, MA, 1974.

[2] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Mathematical Foundations (3 Volumes). Technical Re-
port AD-770 768, AD-771 543, AD-780 528, The MITRE

Corporation, Bedford, MA, Nov. 1973.

[3] Department of Defense. Trusted Computer System Evalu-
ation Criteria. Tech Report CSC-STD-001-83, Computer

Security Center, DoD, Fort Meade, MD, March 1985.

A. Heydon, M. W. Maimone, J. D. Tygar, J. M. Wing,
and A. M. Zaremski. Constraining pictures with pictures.
In 11th IFIP World Computer Conference, Aug. 1989.

(4]

5] C. Hoffman. Group-Theoretic Algorithms and Graph Iso-

morphism. Springer-Verlag, 1982.

{6] S. C. Johnson. Yacc: Yet Another Compiler Compiler.
Computing Science Tech Report 32, Bell Labs, Murray

Hill, NJ, 1985.

{71 R. M. Karp. Reducibility among combinatorial problems,

pages 85-103. Plenum Press, New York, 1972.

[8] B. W. Lampson. Protection. ACM Operating Systems

Review, 19(5):13-24, Dec. 1985.

M. E. Lesk. Lex — A Lexical Analyzer Generator. Com-
puting Science Tech Report 39, Bell Labs, Murray Hill,
NJ, Oct. 1985.

9

[10]) E. Luks. Isomorphism of graphs of bounded valence can
be tested in polynomial time. In 275 Annual Symposium

on Foundations of Computer Science, pages 42-49, 1980.

M. W. Maimone, J. D. Tygar, and J. M. Wing. Mir6
semantics for security. In Proceedings of the 1988 IEEE
Workshop on Visual Languages, pages 45-51, Oct. 1988.

(11}

[12] B. A. Myers. The Garnet User Interface Development
Environment: A Proposal. Technical Report CMU-CS-
88-153, Camegie Mellon University, Computer Science

Department, Sep. 1988.

{13] R. Read and D. Comeil. The graph isomorphism disease.

J. Graph Theory, 1:339-363, 1977.

{14] J. D. Tygar and R. Ellickson. Efficient netlist comparison
using hierarchy and randomization. In 22" ACM/IEEE

Design Automation Conference, pages 702-708, 1985.

{15] J. D. Tygar and J. M. Wing. Visual specification of secu-
rity constaints. In Proceedings of the 1987 IEEE Work-

shop on Visual Languages, Sweden, Aug. 1987.

