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1. Introduction

Large software systems used in practice typically
exhibit more complex behavior than smali well-understood
Often,
behavior as they react to changes in the environment.

programs. such systems display degraded
Under ideal circumstances, the system’s behavior satisfies
a set of application-dependent preferred constraints. Each
level of
In the

presence of events not under the system’s control, e.g.,

constraint typically preserves a certain

“correctness,” and each has an associated cost.

faults due to its environment, certain constraints may
and the
application designer may choose to relax them as long as

become difficult or impossible to satisfy,
the resulting behavior is sufficiently “close” to the
preferred behavior. Other external events, e.g., bug fixes
or compensating actions, can later cause a system to
return to a more preferred behavior. In the security
application, faults correspond to breaches in security and
integrity, e.g., students modifying a grades file; fixes
correspond to repairing security holes, e.g., changing the
passwords of accounts that have been illegally accessed.

Numerous specification techniques have been
successfully used to characterize the functional properties,
i.e., input-output behavior, of systems but only a few have
been applied, with limited success, to specify security
properties as well (e.g., [2,6,12,7]). These attempts
typically treat security constraints as additional functional
constraints  of in a monolithic

a system, resulting

specification that fails to distinguish between correctness
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properties independent of security concerns and those
specific to privacy and protection.

In this paper, we describe the relaxation lattice method,
a new approach to specifying graceful degradation for a
large class of systems. We apply this method to the
security domain by identifying degraded system behaviors
with those that may result from security violations such as
a user of one security class obtaining access rights
associated with those of a higher class. Our method can
be used in two ways: (1) as a descriptive technique for
specifying the behavior of existing systems in which
breaches of security may inadvertently or unavoidably
occur and (2) as a formal design technique for specifying a
range of behaviors, from ideal to undesired, of systems to
be implemented.

The key to our method is the incorporation of sets of
constraints into standard (functional) specifications. As
with the usual correspondence between specifications and
implementations, the less constraining the specification,
the greater the number of possible implementations. The
significant advantage our method enjoys over others is the
clean separation between the specification of a system'’s
functional behavior in the absence of faults and that in the
presence of faults due to its environment. By factoring out
correctness constraints from security constraints, we can
characterize the essential trade-offs between the costs of
preserving security constraints and the costs of relaxing
them. Thus, the price one must pay for a secure system

can be calculated in terms of the level of security desired.



2. General Model

The basic containers for data are called objects. Each
object has a type, which defines a set of possible values
and a set of primitive operations that provide the only
means to create and manipulate objects of that type. For
example, a file might provide Read and Write operations,
and a FIFO queue might provide Eng and Deq operations.

We model a computation as a history, which is a finite
sequence of executions of operations on objects. For an
operation executed by a process p on an object x in a
history, we write:

x:: op(args*)/term(res®) ::P

where op is an operation name, args”is a sequence of
argument values, ferm is a termination condition name,
and res” is a sequence of result values. The operation
name and argument values constitute the invocation, and
the termination condition and result values constitute the
We

assume that operations on objects can be executed

response. We use “Ok” for normal termination.
atomically; that is, an operation either takes place
completely or not at all, and operations appear to take
place instantaneously with respect to one another.! An
object subhistory, H|x, of a history H is the subsequence
of operations in H whose object names are x. In this

paper, we focus on individual object subhistories.

2.1. Simple Object Automata

We model an object by a simple object automaton, an
automaton that accepts certain sequences of operation
executions. A simple object automaton is a four-tuple
<STATE, s, OP, 8>, where STATE is the object’s set of
states, s, e STATE is its initial state, OP is a set of
(the alphabet),

8: STATE x OP — 2STATE s a partial transition function.

operations automaton’s  input and

" Atomic operations can be implemented by a variety of well-known
techniques, including the two-phase locking and two-phase
commitment protocols [5, 8], or atomic broadcast protocols [3, 4].

The domain of the transition function can be extended
to histories, 8*: STATE x OP* — 2STATE;
(s, A)=s

(s,H-p)=ug ¢ 8'(s.H)5(5'- P)
where “” denotes concatenation, and “A” denotes the
empty history. We use 8*(H) as shorthand for 8*(s,, H). A
history H is accepted by an automaton if 8*(H) = &. We
call L(A), the language accepted by automaton A, the
behavior of A.

2.2. Relaxation Lattices

Let A be a set of simple object automata having the
same set of states, the same initial state, and the same
operations, but (possibly) different transition functions.
We say that A is a lattice of automata if the set
{L(A) | A< A} is a lattice under reverse inclusion (i.e., the
smallest language is at the top). We call the language of
the automaton at the top of the lattice the preferred
behavior of the lattice.

A relaxation lattice is given by a set of constraints C, a
lattice of automata A, and a lattice homomorphism,
¢:2€ - A. For now, we leave a relaxation lattice’s set of
constraints uninterpreted since the meaning of such
constraints is domain-dependent. It suffices to think of
each constraint as an assertion to be satisfied. We will
see that in the security domain, the set of constraints
roughly corresponds to the complement of the set of
capabilities that processes have with respect to objects
(protected resources) in the system. We orient the lattice
2€ so that the largest (intuitively, the strongest) set of
constraints lies at the top, and ¢(C) is the preferred
behavior of A. In general, ¢ is defined over a sublattice of
2¢

A relaxation lattice is thus a lattice of simple object
automata parameterized by a set of constraints, where the
stronger the set of constraints, the smaller the language
accepted. Informally, a relaxation lattice describes an
object's conditional behavior. If the environment is such
that the object satisfies constraints C ¢ C, then the object
will behave like the simple object ¢(C), accepting the



language L(¢(C)). While an object is able to satisfy its
strongest set of constraints, it will accept only histories
If the

environment, e.g., security violations, force the object to

from its preferred behavior. changes to
satisfy a weaker set, then it will accept additional “weakly
correct” histories, which are undesired but perhaps
tolerated. Further changes to the environment may later
cause the object to satisfy a more desired behavior.

The relaxation method is appropriate for modeling the
behavior of objects for which there is a meaningful cost
The

higher one goes in the lattice, the higher the price paid for

associated with moving up the relaxation lattice.

the more preferred behavior. In the security domain, we
use constraints to model the cost of tolerating violations
such as the cost of implementing a secure encryption
algorithm or the cost of hiring personnel tc guard a locked

room.

2.3. The Environment

The environment determines which behavior, preferred
or otherwise, an object exhibits. The environment itself
can be represented by an automaton <2€, Cg EVENT, 8>,
where input events in EVENT model changes in the current
set of constraints (state), and 8g: 2€ x EVENT — 2€ is the
transition function (note that 8¢ maps to a single state, not
a set of states as for object automata). Let A be a lattice
of automata, where each A in A is given by the tuple
<STATE, Sp OP, 85>. The sets EVENT and OP may be
disjoint, as in the mail queue example of the next section,
but in general they may overlap. Let o: 2€ ., A be the
lattice homomorphism.

The environment and the lattice can be combined into a
single automaton that accepts interleaved events and
operations:

<2C x STATE, (€[ Sp), EVENT U OP, 8>
Let EVENTOP be EVENT u OP. The transition function &:
2C x STATE x EVENTOP — 2€ x 2STATE js defined by two
components, 6;: 2€ x EVENTOP — 2C, which defines the
effects on the environment state, and 8,: 2€ x STATE x

EVENTOP — 2STATE which defines the effects on the lattice
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state:

84(c, p) = if p € EVENT then &g(c, p) else ¢
Sx(c, s, p) =it pe OP A A =¢(d4(c, p)) then S,(s, p)
else {s}

When the (combined) automaton accepts an event, it
changes the environment state. When the automaton
accepts an operation, it changes the object state,
choosing the transition function indicated by the current
environment. If the input is both an event and an
operation, the environment changes before the transition

function is selected.

2.4, Specification Language

In our examples, we use the Larch Specification
Language [9] to specify the automata of the lattice A2 in
particular, the STATE and & components of a simple object
automaton. A state in STATE is a mapping between an
object and its value, hence it is convenient to represent an
object’s possible states as a set of values. We specify an
object’s values with a Larch trait, which denotes a first-
order theory. In a trait, the set of operators and their
signatures following introduces defines a vocabulary of
terms to denote values. For example, from the Queue trait
of Figure 2-1, emp and ins(emp, 5) denote two different
queue values. The set of equational axioms following the
constrains clause defines a meaning for the terms, more
precisely, an equivalence relation on the terms, and hence
on the values they denote. For example, from Queue, one
could prove that del(ins(ins(ins(emp, 4), 3), 3), 3) =
ins(ins(emp, 4), 3). The generated by clause of Queue
asserts that emp and ins are sufficient operators to
generate all values of queues. Formally, it introduces an
inductive rule of inference that allows one to prove
properties of all terms of sort Q.

We use Larch interfaces to describe transition functions
for simple object automata. For example, interfaces for

the Enq and Deq operations for queues are shown in

2we use informal descriptions to characterize the environment,
though it is straightforward to give it a complete Larch specification
since an environment is also modeled as an automaton.



Figure 2-2. The object’s identifier, e.g., q, is an implicit
argument and return formal of each operation; the
process’s (immutable) identifier, e.g., P, is an implicit
argument. A requires clause states the precondition that
must hold when an operation is invoked. An ensures
clause states the postcondition that the operation must

establish upon termination. An unprimed argument

formal, e.g., q, in a predicate stands for the value of the

object when the operation begins. A return formal or a

primed argument formal, e.g., g, stands for the value of
the object at the end of the operation. For an object x, the
absence of the assertion x’ = x in the postcondition states

that the object's value may change. We use the

vocabulary of traits to write the assertions in the pre- and
postconditions of an object's operations;, we use the

meaning of equality to reason about its values. Hence,

the meaning of ins and = in Eng's postcondition is given by

the Queue trait. Note that by definition of the ftrait

operators, the Deq operation does not necessarily remove

Queue: trait
introduces
emp: -» Q
ins:Q, E—-Q
del: Q,E-Q
isEmp: Q - Bool
isin: Q, E - Bool
constrains Q so that for all [q: Q, e, e1: E]
Q generated by [ emp, ins ]
del(emp, e) = emp
del(ins(q, e),e1) = ife = el thenq
else ins(del(qg, e1), )
isEmp(emp) = true
isEmp(ins(q, e)) = false
isin(emp, e) = false
isin(ins(q, €), e1) = (e = e1) visin(qg, e1)

Figure 2-1: Queue Trait

q:: Eng(e)/Ok() ::P
requires true
ensures g’ = ins(qg, e)

q:: Deq()/Ok(e) ::P

requires — isEmp(q)
ensures isin(q, e) A q’ = del(q, e)

Figure 2-2: Queue Interfaces

the first element inserted as for a FIFO queue, and permits
for duplicate elements as for a muitiset.

For an operation, p, of a simpie object automaton, A,
we write ppre, and ppost, for the pre- and
postconditions of p. The transition function & for A is
defined such that

(Vs, s’ e STATE) §' € &(s, p)
iff p.pre(s) ~ p.posta(s, s').
For each automaton in a lattice A, the sets of states
(values) are the same, but their transition functions differ.
Thus, their specifications will all use the same trait, but will

have different interfaces.

3. Application of Model to Security

Relaxation lattices can be used to specify certain kinds
of security properties. Informally in this domain, the
objects are the resources to be protected, e.g., files,
directories, and laserwriters, and the processes are the
users, e.g., people and programs, of these resources.
The environment captures the privileges of the users, i.e.,
the rights of users to execute certain operations on the
resources. The environment corresponds to an access-
rights matrix [11}, which can change as protection is
breached. To preserve secrecy, we must ensure that
unauthorized users are prevented from executing
operations that return information about the object’s state,

and that

to preserve integrity, we must ensure

unauthorized users are prevented from executing

operations that modify the object’s state.

3.1. Secure Object Automata

Let S and O be the sets of subjects and objects.
Intuitively, S consists of all system users and programs,
i.e., processes in our general model; O consists of all the
resources to be protected, e.g., files, directories, and
laserwriters. Let M be an access-rights matrix [11] where
the (i, j)-th entry in M is a set of rights that subject ie S
has for object je O.

Unlike standard models of security (e.g., Bell and
LaPadula's [1] or Lampson’s [11]) in our model, a right of a



subject i is not just the name of an access mode (e.g.,
Read, Modify, Execute) or operation (e.g., Enq, Deq), but
is a pair of predicates (i.e., pre- and postconditions) on the
name of each operation of object j. For example, an entry
for a subject P on a file f might contain the following pair of
predicates for a Write operation:

f:: Write(v: value) :: P
requires id(P) = owner(f)
ensures val(f)=v

“ig",
appropriate traits. This element of the (P, f) entry in M

where “owner,” and “val” are defined in the
restricts the process P invoking the Write operation to be

the owner of the file f.

Definition 1: A history H is secure if for each
operation “A:: e ::P” in H there exists some (pre,
post) pair of predicates for operation e in the (P,
A)-th entry of M such that e.pre(s) A e.post(s, s’),
where s, s’ e STATE, and s is the state of A
upon invoking e and s' is the state upon return.

A secure object automaton Secure(A) is an object
automaton that accepts histories of the simple object
automaton A such that each history in L{Secure(A)) is
secure.

Since an access-rights matrix M can be viewed as a set
of permissions, we identify an environment's set of
constraints (its “state”) to be the complement of the set of
permissions. Intuitively, constraints are prohibitions of the
form “User X does not have the capability for operation Y
on object Z,” that are formally derivable from the sets of

pairs of predicates of M.

3.2, Secure Mail Queue

Although secrecy and integrity are often treated as
monolithic properties, they can be viewed as subject to
graceful degradation. For exampie, consider a mail queue
used as a temporary repository for mail intended for other
sites. The mail queue provides four operations: a user
can enqueue a message, dequeue the oldest message
from the queue, cancel an unsent message, and list
unsent messages. Clearly, not everyone should be

allowed to execute every operation. For this example, we
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recognize four disjoint classes of users (see 3-1): (1)
operators may execute any operation, (2) faculty members
may enqueue messages and list or cancel transmission of
their own messages, (3) mailer processes may dequeue
messages for transmission, and (4) students, naturally,
have no privileges at all. The specification of the set of
values (hence, STATE) of the mail queue is given in Figure
2-1, and of the operations (hence, the transition function
d), in Figure 3-2.
each user U invoking an operation on the queue q has an

In this specification, we assume that

unforgeable name id(U), and that any attempt to execute
an unauthorized operation signals an Unauthorized
exception.

Class: trait
C enumeration of
[operator, facuity, mailer, student)

Users: trait
includes Class, Set[USet, User]
User record of [id: Id, class: C)
introduces
ops: USet - USet
fac: USet — USet
mir: USet - USet
stu: USet — USet
constrains USet so that for all [u: U, us: US]
u e ops(us) = [class(u) = operator A
u e (fac(us) U mir(us) U stu(us))]
u e fac(us) = [class(u) = faculty A
u e (ops(us) L mir(us) L stu(us))]
u e mir(us) = [class(u) = mailer A
u e (ops(us) u fac(us) U stu(us)))
u e stu(us) = [class(u) = student A
u e (ops(us) u fac(us) L mir(us))]

Figure 3-1: Traits for Users of the Secure Mail Queue

We can use relaxation lattices to formulate a variety of
We
take as our lattice of constraints prohibitions of the form

alternative “less secure” mail queue specifications.

“User X does not have a capability for operation Y.” Under
ideal circumstances, each user has the set of capabilities
appropriate to his or her class. The cost of preserving
these constraints is the cost of keeping passwords secret,
using secure encryption protocols, etc. An event that
affects the environment occurs when a user acquires
capabilities to which he or she is not entitied, increasing

the set of possible behaviors. Since a user who has



discovered a new security breach is always free to refrain
from exploiting it, each such breach introduces the
possibility of new behaviors without excluding the
possibility of older behaviors, thus the resulting set of

q:: Eng(m: message) / Ok() ::U
requires class(U) = operator v
class(U) = faculty
ensures q' = ins(q, m)

:: Eng(m: message) / Unauthorized() ::U
requires —(class(U) = operator v
class(U) = facuity)
ensures q'=q

:: Deq() / Ok{(m: message) ::U
requires class(U) = mailer v
class(U) = operator

ensures q' = del(q, m)

.. Deq() / Unauthorized() ::U
requires —(class(U) = mailer
v class{U) = operator)
ensures q' =q

:: Cancel(m: message) / Ok() ::U
requires
[class(U) = operator A isin(q. m)] v
[class(U) = faculty A sender(m) = id(U)
A isin(g, m)]
ensures q' = del(g, m)

:: Cancel(m: message) / Unauthorized() ::U
requires [class(u) = student] v
[class(u) = faculty A sender(m) = id(u)]
ensures q' = g

:: Cancel(m: message) / Absent() ::U
requires [class(U) = operator A —isIn(q, m)} v
[class(U) = faculty A —isin(qg, m}]
ensures g’ = del(g, m)

. List() / Ok(p: queue) ::U
requires class(U) = operator v
class(U) = faculty
ensures q=q’ A
class(U) = operator =
v m.(isln(p’, m) < isin(g, m)) A
class(U) = faculty =
v m.{isin(p’, m) < (isin(q, m) A
sender(m) = id(U)))

i List() / Unauthorized() ::U
requires —(class(U) = operator v
class(U) = faculty)
ensuresq=q'

Figure 3-2: Interfaces for Secure Mail Queue

52

behaviors clearly forms a relaxation lattice. The relaxation
lattice characterizes the extent to which the resulting
insecure behavior is close to the preferred secure
behavior.

Suppose Alice is a faculty member and Bob a student.
Ideally, the following constraints hold (among many

others):
S1 Alice cannot dequeue messages.
S2 Bob cannot list Alice’s message.

If Alice discovers a way to relax constraint S1, then the
specification for Deq would change as shown in Figure

3-3. Note that because Alice is always free to refrain from

exploiting her knowledge, the precondition for the
Unauthorized signal remains unchanged, and the
corresponding automaton accepts a strictly larger

language. Note also that the specification is independent
of how Alice manages to circumvent the prohibition

against dequeuing messages. Similarly, Bob might relax

g:: Deq() / Ok(m: message) ::U
requires class(U) = mailer v
class(U) = operator v id(U) = Alice
ensures q' = del(gq, m)

q:: Deq() / Unauthorized() ::U
requires —(class(U) = mailer v
class(U) = operator)
ensures g = q

Figure 3-3: Interfaces if Alice Can Dequeue Messages

constraint S2 if he learns Alice’s password. The resulting
specification for List is shown in Figure 3-4. Here too,
since Bob can always refrain from using Alice's password,
the precondition for the Unauthorized exception is
unchanged, and the set of possible behaviors is strictly
larger. Finally, an even larger set of behaviors is possible

if both constraints are relaxed.



q:: List() / Ok(p: queue) ::U
requires class(U) = operator v
class(U) = faculty v
id(U) = Bob
ensures q=q A
class(U) = operator =
v m.(isin(p’, m) & isln(q, m)) A
class(U) = faculty =
v m.(isIn{p’, m) < (isin(g, m) A
sender(m) = id(U))) A
id(U) = Bob =
v m.(isIn(p’, m) <= (isln(g, m) A
sender(m) = Alice))

q:: List() / Unauthorized() ::U
requires —(class(U) = operator v
class(U) = faculty)
ensuresg=aq’

Figure 3-4: Interfaces if Bob Learns Alice's Password

4, Summary
in general, our relaxation lattice method suggests the

following design strategy:

e« ldentfy a set of constraints C that
characterizes the preferred behavior. This set
induces a lattice 2€.

« Not all elements in the lattice may correspond
to an intuitively meaningful behavior, let alone
an acceptable one. The homomorphism ¢
determines which elements in the lattice of
automata represent acceptable behaviors.

« Given the lattices of constraints and
automata, the cost function determines the
price one must pay in moving up the lattice of
automata toward the preterred behavior.

For the security domain, the objects are the protected
resources, the processes that invoke operations on the
objects are the people and programs that have access to
the resources, and the set of constraints to satisfy is the
complement of the set of capabilities of users for
accessing the resources.

The relaxation lattice method is a natural way to
capture graceful degradation in large, complex, realistic

systems. Moreover, the method is quite flexible. Here, we
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have applied the method to the security domain. We have
found it to be an equally appropriate and intuitively
appealing method for capturing graceful degradation of
replicated objects in fault-tolerant distributed systems, and
of highly concurrent objects in transaction-based database
systems [10].
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