
Axioms for Concurrent Objects

Maurice P. Herlihy
(Herlihy@C.CS.CMU.EDU)

Jeannette M. Wing
(Wing@C.CS.CMU.EDU)

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213-3890

U.S.A.

Received 1 l/3/86

Abstract

Specification and verification techniques for abstract data
types that have been successful for sequential programs can
be extended in a natural way to provide the same benefits for
concurrent programs. We propose an approach to specifying
and verifying concurrent objects based on a novel
correctness condition, which we call “linearizability.”
Linearizability provides the illusion that each operation takes
effect instantaneously at some point between its invocation
and its response, implying that the meaning of a concurrent
object’s operations can still be given by pre- and POSt-
conditions. In this paper, we will define and discuss
linearizability, and then give examples of how to reason abOUt
concurrent objects and verify their implementations based On
their (sequential) axiomatic Specifications.

1. Int reduction

This paper shows that the specification and verification

techniques for abstract data types that have been successful

for sequential programs can be extended in a natural way to

provide the same benefits for concurrent programs. Our two

main contributions are:

. New techniques for using (sequential) axiomatic
specifications to reason about concurrent objects; and

l A novel correctness condition, which we call
linearizability.

Informally, a concurrent system consists of a collection of

sequential processes that communicate through shared

This research WBS SPOnSOred in part by the Defense A&and
&search ProimtS Agency (DOD), DARPA Order No. 4g76, monitored by
the Air Force Avionics Laboratory Under Contract ~=15-84.~.1=.
Additional SUPpOti for J. Wing was provided by the National Science
Foundation under grant DMC-sstQ254.

The view% and COnCkKiions contained in this document are those of the
authors and should not be interpreted as representing the official policim
eiMr expressed or implied, of the Defense Advanced Rwarch projects
Agency or the U.S. Government

typed objects. This model is appropriate for multiprocessor

systems in which processors communicate through reliable,

high-bandwidth shared memory. Whereas “memory”

suggests registers with read and write operations, we use the

term concurrent object to suggest a richer semantics. Each

object has a type, which defines a set of possible values and

a set of primitive operations that provide the only means to

create and manipulate that object. We can give an axiomatic

specification for a typed object to define the meaning of its

operations when they are invoked one at a time by a single

process. In a concurrent system, however, an object’s

operations can be invoked by concurrent processes, and it is

necessary to give a meaning to possible interleavings of

operation invocations.

Our approach to specifying and verifying concurrent

objects is based on the notion of linearizability. A concurrent

computation is linearizable if it is “equivalent,” in a Sense

formally defined in Section 3, to a legal sequential

computation. We interpret a data type’s (sequential)

axiomatic specification as permitting only linearizable

interleavings. Instead of leaving data uninterpreted,

linearizability exploits the semantics of abstract data types; it

permits a high degree of concurrency, yet it permits

programmers to specify and reason about concurrent objects

using known techniques from the sequential domain. Unlike

alternative correctness conditions such as sequential
consistency [17] or serializability [26], linearizability is a local

property: a system is linearizable if each individual object is

linearizable. Locality enhances modularity and concurrency,

since objects can be implemented and verified

independently, and run-time scheduling can be completely

decentralized. Linearizability is a simple and intuitively

appealing correctness condition that generalizes and unifies

Permission to copy without fee aI1 or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1987 0-89791-215-2/87/0100-0013 750 13

a number of correctness conditions both implicit and explicit

in the literature.

Using axiomatic specifications and our notion of

linearizability, we show that we can perform two kinds of

reasoning:

l We reason about concurrent computations by
transforming assertions about concurrent
computations into simpler assertions about sequential
computations. Familiar axiomatic techniques help
prove these transformed assertions.

l Implementations of concurrent objects are necessarily
more complex then their sequential counterparts. We
reason about the correctness of linearizable
implementations using new techniques that generalize
the notions of representation invariant and abstraction
function to the concurrent domain.

Section 2 presents our model of a concurrent system and

specification technique; Section 3 defines and discusses

linearizability, including its locality property; Section 4

illustrates reasoning about concurrent registers and queues;

Section 5 illustrates reasoning about an implementation of a

concurrent queue; Sections 6 and 7 contain discussions on

related work and the significance of linearizability.

2. System Model and Specification Technique

2.1. Histories

An execution of a concurrent system is modeled by a

history, which is a finite sequence of operation invocation

and response events. An operation invocation is written as x

opfargs’) A, where x is an object name, op is an operation

name, args* denotes a sequence of argument values, and A

is a process name. The response to an operation invocation

is written as x rerm(res*) A, where term is a termination

condition, and res* is a sequence of resutts. We use “Ok“ for

normal termination. A response marches an invocation if

their object names agree and their process names agree. An

invocation is pending in a history if no matching response

follows the invocation. If H is a history, complete(H) is the

longest subhistory of H consisting only of invocations and

matching responses.

A history H is sequential if:

1. The first event of H is an invocation.

2. Each invocation, except possibly the last, is
immediately followed by a matching response.

3. Each response, except possibly the last, is immediately
followed by an invocation.

A ~KXXJSS subhistory, HjP (H at P), of a history H is the

subsequence of events in H whose process names are P. An

object s&history Hjx is similarly defined for an object X. TWO

histories H and H’ are equivalent if for every process P, HIP *

H’(P. A history H is we//-formed if each process subhistory

Hjp of H is sequential. All histories considered in this paper

are assumed to be well-formed. Notice that whereas Process

subhistories of a well-formed history are necessarily

sequential, object subhistories are not.

An operafion, e, in a history is a pair COnSiStin Of an

invocation, inv(e), and the next matching response, res(e).

An operation eo lies within another operation e, in H if inv(e,)

precedes inv(eo) and res(eo) precedes res(e,) in H.

For example, let H, be the following history:

q End A
q End B

(History H,)

qW)B
qW)A
q Des0 B
q Wx) B
q DeqO A
q WY) A
q End A

H, is a well-formed history for a FIFO queue q providing Enq

and Deq operations. The first event is an invocation of Enq

with argument x by process A, and the fourth event is the

matching response with termination condition Ok and no

results. The “q Enq(y) B/q Ok() B” operation lies within the

“q Enq(x) A/q Ok() A” operation. The subhistory,

complete(H,), is H, with the last (pending) invocation of Enq

removed. Reordering the first two events yields one of many

histories equivalent to H,.

2.2. Specifications

A sequential history for an object can be summarized by

the object’s value at the end of the history. We use axiomatic

specifications to reason about object values. A specification

is a set of axioms of the form:

{PI
op(args*)/term(res*)

101

where P is a precondition on the object’s value and the

argument values that must be met before an invocation, and

Q is a post-condition on the object’s value and the result

values that is guaranteed to hold upon return for the given

termination condition. Identifiers in args* and res* denote

14

values of arguments and results. A sequential history H is

legal if for all object subhistories, Hlx, of H, each operation in

Hlx satisfies its axiomatic specification.

The axioms presented in this paper are essentially Larch

interface specifications [lo, 1 l] for operations of abstract

data types. For example, axioms for the Enq and Deq

operations for FIFO queues are shown in Figure 2-1. The

queue’s value before the operation is denoted by q and the

value after the operation by q’. The post-condition for Enq

states that upon termination, the new queue value is the old

queue value with e inserted. Notice that the specification for

Deq is partial: Deq is undefined for the empty queue.

The assertion language for the pre- and post-conditions is

based on the Larch Shared Specification Language. It is akin

to algebraic specification languages and is used to describe

the set of values of a typed object. The set of operators and

their signatures following introduces defines a vocabulary

of terms to denote values. For example, emp and ins(emp, 5)

denote two different queue values. The set of equations

following the constrains clause defines a meaning for the

terms, more precisely, an equivalence relation on the terms,

and hence on the valu& they denote. For example, from

QVals, we could prove that re.st(ins(ins(emp, 3), 5) =

ins(emp, 5). The generated by clause of QVals asserts that

emp and ins are sufficient operators to generate all values of

queues. Formally, it introduces an inductive rule of inference

that allows one to prove properties of all terms of sort 0. We

use the vocabulaty of traits to write the assertions in the pre-

and post-conditions of a type’s operations; we use the

meaning of equality to reason about its values. Hence, the

meaning of “ins” and “ =” in Axiom E’s post-condition is

given by the trait OVaIs.

Axiom E:
(true}

EndWOk
(4’ = insh e)l

Axiom D:
I-, isEmp(q)l
DeSO/OW

{q’ = rest(q) A e = first(q))

Figure 2-1: Axioms for Queue OperS~iOnS

QVals: trait
introduces
emp: -+ Q
ins:C?, E+Q

first: Q + E
rest: 0 -t 0
isEmp: 0 + Bool

constrains Q so that
Q generated by [emp, ins]
for all q: Q, 8: E

first(ins(emp), e)) = e
first(ins(q, e)) = if isEmp(q) then e

else first(q)
rest(ins(q, e)) = if isEmp(q) then emp

else ins(rest(q), e)
isEmp(emp) = true
isEmp(ins(q, e)) = false

Figure 2-2: Trait for Queue Values

3. Linearizabilfty

3.1. Definition

Axiomatic specifications have (as yet) no meaning for

histories that are not sequential. This section introduces the

notion of linearizability, the basic correctness condition that

allows us to apply algebraic specifications and axiomatic

reasoning to concurrent objects.

A history H induces an irreflexive partial order +” on

operations:

e, -$, e, if res(e,,) precedes inv(e,) in H.

(Where appropriate, the subscript is omitted.) Informally, -$

captures the “real-time” precedence ordering of operations

in H. Operations unrelated by -c,, are said to be concurrent.

If H is sequential, -$ is a total order.

A history H is linearizabie if can be extended (by

appending zero or more events) to some history H’ such that:

Ll: complete(H’) is equivalent to some legal sequential
history S, and

L2: -$&4s

Ll states that processes act as if they were interleaved at the

granularity of complete operations. L2 states that this

apparent sequential interleaving respects the real-time

precedence ordering of operations. We call S a linearization

of H.

The history H, shown in Section 2 is linearizable, because

HI’ = H, l q Ok() A is equivalent to the following sequential

history:

q EnWA
q Ok0 A
q End EJ
qWlB
q f-10 B

(History H,‘)

15

ci ok(x) B
q Des0 A
q ok(Y) A
q Endz) A
qCWA

The following history, H,, is not linearfzabfe:

q Ew(x) A
qOkOA
q End B
qOWB
q Da10 A
q WY) A

(History H.-J

because the Enq of x precedes the Enq of y, but y is

dequeued before x.

Linearizability does not rule out histories such as the

following history, Ha, in which an operation “takes effect”

before its return event occurs:

q EnqC4 A (History Ha)
q DeqO B
9 Wx) B

H, can be extended to H,’ = H, * q Ok() A, which can be

shown equivalent to the sequential history in which the

enqueue operation occurs before the dequeue.

Lamport’s notion of sequential consistency [17] requires

that a history be equivalent to a sequential history.

Sequential consistency is weaker than linearizability,

because it does not require the precedence ordering 4 to be

preserved. For example, H, is sequentially consistent, but

not linearirable. Serializability [26] requires that a history be

equivalent to a sequential history in which each process

(usually called a transaction) runs to completion without

interleaving with other processes. ’ Lamport [19] has

proposed that the standard definition of serializability be

strengthened to preserve the order of non-overlapping

transactions. Both notions of serializability are incomparable

to linearizability. For example, H, is linearizable, but not

serializable (in either sense), and H, is serializable, but not

linearizable.
3.2. Locality

Linearizability is a lo&/ property.

Theorem 1: H is linearizable if and OniY if HiX is
linearizable at each object x.

Proof: The “only if” part is obvious.
From the assumption that each object’s history is

finearizable, there exists for each object x an induced totat

’ In dat&$$e$, &aliz&ility is often provided in cot’@nCtion with fa&re
amm'city, ensuring that a transaction intempted by B fi%lUfe Will hEWe no

effect.

order Cx on its own operations, and by the well-formedness
criteria for histories, each process P induces a total order <,,
on its operations. We claim that the transitive closure of the
union of all <x and $, is a partial order, +. and hence can be
extended to a total order, <. Notice that each <x and <,, is
compatible with 4.

Suppose 4 is not a partial order. Then we can construct
a cycle e, l . . . l e,, where e, = en, such that e, + es 4 . . . -C
e,, where ei-, and ei, 1 < i 5 n, are related by some Cx or $
The contradiction is immediate if no pair is related by a <p,
because then all relations are induced by the same $, which
is assumed to be a total order. Otherwise, the cycle of
operations can be relabeled so that e, $, e2, for some
process P. Because processes are sequential, the response
of 8, precedes the invocation of ea, and because all relations
are consistent with 4, the invocation of es precedes the
response of en, which is identical to the response of 8,.
Hence the response of e, precedes itself, a contradiction. I

Henceforth, we consider only histories involving single

objects, omitting object names from events.

Locality is important because it allows concurrent

systems to be designed and constructed in a modular

fashion; linearizable objects can be implemented, verified,

and executed independently. A concurrent system based On

a non-local correctness property must either rely on a

centralized scheduler for all objects, or else additional

constraints must be placed on objects to ensure that they

follow compatible scheduling protocols.

Locality should not be taken for granted: the literature

includes proposals for both alternative correctness

properties that are not local. For example, Lamport’s notion

of sequential consistency is not a local property. Consider

the following sequential history H, in which processes A and

B operate on queue obiects p and q. For brevity, matching

responses are shown on the same lines as invocations.

HIP

P Enq(x)/Ok() A
q EnqWOW B
q EWWOkO A
P Enq(y)/Ok() B
P DeqO/Ok(y) A
q Deq()/Ok(x) B

and Hlq are not legal sequential histories, but they are

sequentially consistent, although H itself is not.

Also, serializability and Lamport’s strengthened notion Of

serializability are both non-local. In the example above, Hip

and Hjq are each serializable in either sense, but H itseff is

not.

3.3. Linearized Values

Non-determinism is inherent in the notion of

linearizability: (1) For each H, there may be more than one

extension H’ satisfying the two conditions, Ll and L2, and (2)

for each extension H’, there may be more than one

linearization S. We call the value of an object at the end of a

linearization a linearized value. Since a given history may

have more than one linearization, an object may have more

than one linearized value at the end of a history. We let

M(H) denote the set of linearized values of H.

Informally, a history’s linearized values represent thd

objects possible values from the point of view of an external

observer. Figure 3.1 shows a queue history with its set of

linearized values after each event. (We use fl for emp and

[x,y] for ins(ins(emp, x),y), etc.) Initially, only the empty

queue is associated with the empty history. After the

invocation of Enq(x), there are two linearized values, since

the enqueue may or may not have taken effect. After the

invocation of Enq(y), there are five linearized values: either

Enq may or may not have occurred, and if both have

occurred, either ordering is possible. After the response to

Enq(y), y is known to have been enqueued, and after the

History Linearized values

m
EnW A mbd1
Em(y) B ~n~~~l~w~~~~Yl~rYl~~~
W B tM~[x~Yl~[Y,xll
WI A m9Yl,[Ym
Des0 C
Wx) c

$iYl~[xlYl.[YJll

Figure 3- 1: Linearized Values

response to Enq(x), both x and y must have been enqueued,

although their order remains ambiguous until x is dequeued.

4. Reasoning About Concurrent Objects

So far, linearizability is defined in terms of histories. This

historic (I) characterization is useful for motivating the

property, and for demonstrating properties such as locality,

but it is awkward for verification. For linearizable histories,

however, assertions about interleaved histories can be

transformed into assertions about sets of sequential histories,

and thus, sets of values. The transformed assertions can be

stated and proved with the help of familiar axiomatic methods

developed for sequential programs. Sometimes it will be

necessary or more convenient to reason in terms of sets of

sequential histories, (see Pass below), and sometimes, simply

in terms of sets of values, e.g., Lin(H) for some history H. In

this section, we show how we reason about properties of

concurrent objects by reasoning in terms of sets of

linearizations; in the next section, we how how we do

verification by reasoning in terms of sets of values.

A possibility for a history H is a pair <S, P> where S is a

linearization of H and P is the set of pending invocations not

completed to construct S. We let Poss denote the set of

possibilities of a history. If we only care about the final value

of S, we use <v, P> to denote one of the <S, P> such that the

value of S is v. The relationship between the set of

possibilities and set of linearized values for a given history H

is that for each <v, P> E Poss, v E Lin(H).

H’s set of possibilities, and hence set of iinearized values,

is captured by the following three axioms. The following

ciosure axiom states that if S is a linearization of H, ‘inv A’ is a

pending invocation in H that is not completed to form S, and

s’ = S l inv A l res A is a legal sequentiai history, then s’ is

also a linearization of l-l.
Axiom C:

<s, P> E Poss
=$ [(V ‘inv A’ E P) (3 res) S l inv A l res A is legal

e <S l inv A l res A, P - {inv A}> E Pass]

The following invocation axiom states that any linearization of

H is also a linearization of H l inv A.
Axiom I:

{<S, P> E Poss}
inv A

{<S, P U {inv A)> E PO&}

Let last(S, A) be the response to A’s last invocation in the

sequential history S, and let A E P mean there exists an

invocation i such that ‘i A’ E P. The following response axiom

states that any linearization of H in which the pending ‘inv A’

is completed with ‘res A’ is also a linearization of H l res A.
Axiom R:
{<S, P> E Poss and A C P and res A = last@, A)]

resA
(<S, P> E PO&)

For a given history with m events, we use Possi to denote

the set of possibilities for the ith prefix of H, for 0 s i 5 m. A

derivafion that shows that <v, P> E Pass, is a sequence of

implications of the form:
<vo, PO> E Posse
- . . .
* <Vj, Pi> E Possk
=a . . .
* <V”, P”> E Pass,.

17

where vn = v, P, I P, and each implication is justified by

Axiom C, I, or R.

Intuitively, a derivation is like a history. Instead of

reasoning about histories directly, however, we use axiomatic

proof techniques to reason about derivations-each

implication in a derivation is like a step in a proof where each

step in the proof is justified by some axiom. For each

operation of a typed object, Axiom C is instantiated to yield

type-specific closure axioms, and similarly for Axioms I and

R.

In any derivation showing H is linearizable, the order in

which Axiom C is applied to pending invocations induces a

valid linearization ordering on the operations of H. Informally,

the following lemma states that an operation must appear to

“take effect” at some instant between its invocation and its

reSpOflSe.

Lemma 2: Let ‘inv A’ be the ith event of H, and let the
matching response ‘res A’ be the jth event. Any derivation
showing that H is linearizable must include an application of
Axiom C to infer:

<v, P> f Possk =+ <v’, P - {inv A}> E Pass,
forsomek.isk<j.

Proof: The only way to infer anything about Pass, from
Pass,., is to apply Axiom I as follows:

<u, Q> E Pass,-, 3 <u, Cl U {inv A}> E P-
Later in the derivation, the only way to infer anything about
Pass, from Posr+, is by applying Axiom R:

<w, R3 E Possj-, and ‘inv A’ It R e <w, R> E Poaq.
Between these two steps, the only way to remove ‘inv A’ from
the set of pending invocations is by applying Axiom C as
shown above. I

We use Lemma 2 and type-specific instantiations of

Axioms C, I, and R to prove properties about concurrent

objects. First, we look at

concurrent queues.

4.1. Concurrent Registers

Here are axioms for Read

concurrent register objects, r:

concurrent registers, then

and Write operations for all

{true}
Read()/Qk(v)

(fetch(r) = fetch(r’) = v}

{true}
Write(v)JQk()
(fetch(r’) = v}

where the Larch Shared Language specification for register

values ia:

RVals: trait
introduces

new: + R
store:R,V+R
Fetch: R + V
dontcare: -+ V

constrains R so that for all e R, v: V
fetch(new) = dontcare
fetch(store(r, v)) = v

These sequential axioms can be combined with our

linearizability condition to prove assertions about the

interleavings permitted by concurrent registers. Notice that

we do not need to essume that all values written to the

register are unique.

Every value read was written, but not overwritten.

Theorem 3: If the last event of H is the Read response
‘ok(v) A’, then H includes an earlier Write invocation ‘Write(v)
B’, and if the Write operation is complete, then it precedes no
other complete Write operation.

Proof: If the Read response is the mth event of H, then <v,
P> E Pass,. In any derivation showing that H is linearizable,
the last application of Axiom C for a Write invocation must
have the form:

<u, Q> c Pass, * <v, Q - {Write(v) B}> E Pass,
This inference is legal only if B’s Write is pending at event k.
By Lemma 2. if B’s Write is complete and precedes another
complete Write, then the derivation must include a later
application of Axiom C for a Write invocation, contradicting
our assumotion that B’s was the last. a

Register values are persistent in the absence of Write

operations.

Theorem 4: An interval in a history is a sequence of
contiguous events. If I is an interval that does not overlap any
Write operations, then all Read operations that lie within I
return the same value.

Proof: Pick two Read operations that lie within the
interval that return distinct values v and v’. If H is linearizable,
there exists a derivation showing that <v, P> E Possj and <v’,
Q> E Possk where one Read is pending at event j and the
other at event k, where j 5 k. The only way to deduce that
<v’, Q> < Pass, from <v, P> E Possi is to apply Axiom C to a
pending Write at some intermediate step, which is
permissibte only if some Write operation overlaps 1. I

4.2. Concurrent Queues

The proofs of the following theorems about concurrent

queues use Axioms E and D of Figure 2-1 and the trait of

Figure 2-2. We make use of the following fact about queues:

Lemma 5: If Q is a sequential queue history where x is
enqueued before y, then ,x is not dequeued after y.

Proof: From Axioms E and D. I

18

Theorem 6: If Enq(x)/Ok(), Enq(y)/Ok(), Deq()/Ok(x),
and Deq()/Ok(y) are complete operations of H such that x’s
Enq precedes y’s Enq, then y’s Deq does not precede x’s

De9. (Le., either x’s Deq precedes y’s, or they are
concurrent.)

Proof: Pick a derivation showing H is linearizabfe.
Lemma 2 implies that Axiom C is applied to all four
invocations, since the operations are complete. Moreover,
because the enqueue of x precedes the enqueue of y, the
derivation must apply Axiom C to x’s Enq first. By Lemma 5,
the derivation must also apply Axiom C to x’s Deq before y’s
Deq, thus y’s Deq operation cannot precede x’s De& I

Gottlieb et al. [7] adopt the property proved in Theorem 6

as the desired correctness property for their concurrent

queue implementation. The difficulty of reasoning directly

about interleaved histories is illustrated by observing that

Theorem 6 by itself is incomplete as a concurrent queue

specification, since it does not prohibit implementations in

which enqueued items spontaneously disappear from the

queue, or new items spontaneously appear. Such behavior is

easily ruled out by thefollowing two theorems:

Items do not spontaneously vanish from the queue.

Theorem 7: If the Enq of x precedes the Enq of y, and if y
has been dequeued, then either x has been dequeued or
there is a pending Deq concurrent with the Deq of y.

Proof: Any derivation showing that H is linearizable must
use Axiom C to enqueue x before enqueuing y, hence by
Lemma 5 the derivation must apply Axiom C to dequeue x
before it can dequeue y. The Deq invocation that removed x
may have returned, or it may ba pending. I

Items do not spontaneously appear in the queue.

Theorem 8: If x has been dequeued, then it was
enqueued, and the Deq operation does not precede the Enq.

Proof: Any derivation showing that (q, P) E Pass, and x
= first(q) must include an earlier application of Axiom C
showing that:

<q’, P’> E Possj * <ins(q’,x), P’ - {Enq(x) A}> E Possi
which is legal only if the invocation has occurred. I

4.2.1. Two Lemmas about Concurrent Queues

Before we turn to verification of implementations, we state

and prove two lemmas about queues that will be used to help

verify the queue implementation of the next section.

In a derivation, an Enq inierence for x is an instantiation of

Axiom C of the form:

<qi, Pi> E Possk =+ <ins(qi,x), Pi - {Enq(x) A)> c Pass,

A Deq inference is defined analogously.

Two inferences commute in a derivation if their order can

be reversed without invalidating the derivation. A derivation

showing that <q, P> E Pass, is in canonical form if each Enq

inference for an item in q occurs “as late as possible,” i.e., it

does not commute with the next inference in the derivation.

Lemma 9 implies that if x is in q, the event following the

Enq inference for x is either the return event for x, or the

return event for an item that follows x in q.

Lemma 9: If 6 is a canonical derivation showing that <q,
P> E Pass,, and x is an item in q, then the inference following
the Enq inference for x is either the Enq inference for the item
following x in q, or an application of Axiom R for the matching
response to Enq(x).

Proof: We show that x’s Enq inference commutes with all
other inferences. If the next inference in 6 is the Deq
inference for an item y, then 6 cannot be canonical, because:

<I+ Pi> E Pass,
* <ins(qj,x), Pi - {Enq(x) A)> E Possk
* <rest(ms(qi,x)), Pi - {Enq(x) A, Deq() B}> E Posq,

is equivalent to:

<qi’ Pi’ E Pass,
* <rest(q$),P. - (Deq() B)> E Pass,
* <ins(rest(ql),x), Pi - {Enq(x) A, Deq() B)> E Posq,

Here, we exploit the observation that because x is in q, qi
must be non-empty, hence rest(ins(q.,x)) = ins(rest(q.),x).

Similar arguments show that x’s i&q inference cAmmutes
with all applications of Axiom I, and with a)l applications of
Axiom R for non-matching response events. Finally, we
observe that any Enq inference for an item in q must follow all
Enq inferences for items whose Deq inferences appear in 6. I

Lemma 10 states that we can consider equivalence

classes of queues rather than individual queues.

Lemma 10: If <q, P> E Pass,, and q* is a queue value
constructed by rearranging the items of q in an order
consistent with the partial precedence order of their Enq
operations, then <q*, P> E Pass,.

Proof: We argue inductively that if there exists a
canonical n-step derivation that <q, P> E Pass,, there also
exists a canonical n-step derivation that <q*, P> E Pass,.

Base step: Trivial for n = 0 where q = emp.
Induction hypothesis: If <q, P> E Pass, has a canonical

derivation of length less than n, <q*, P> E Pass,.,, has a
canonical derivation of the same length.

Induction step: Given an n-step canonical derivation 6
that <q, P> E Pass,, we construct an n-step canonical
derivation 6’ that <q*, P> E Pass,. If the last step of S is an

application of Axiom I or R, then q,., = qn, and we have an
n-l step canonical derivation that <q,, P,,,) E Poss,.,,,. The
induction hypothesis yields an n-l step canonical derivation

that <q* , PJ E Poss,~, , and reapplying the last inference

yields a derivation that (q’, P,,) E Pass,.
Otherwise, the last step of 6 is an Enq or Deq inference,

which can be discarded to yield an n-l Step CanOniCal

derivation that <q,., , P,,,> E Pass,. Suppose the discarded
inference is an Enq inference for x by A. Define q,., * to be q*

19

with x deleted from the queue. By the induction hypothesis,
there exists an n- 1 step canonical derivation a,-, l that <qh-, l ,
P,-,> < Pass,. If x is the last element in q*, then we
construct 6’ using Axiom C to enqueue x to q,,,*.
Otherwise, let y be the item immediately following x in q’, let
B be the process that enqueued y, and let the jth inference of
6 ,,, l be the Enq inference for y. By Lemma 9, the next event
in the history is the return event for some item z that follows x
in q’. Since z’s Enq operation is concurrent with x’s Enq
operation, ‘Enq(x) A’ E Pi’. We construct 6’ as follows: all
inferences before j are unchanged, and the jth inference of
6’ is x’s Enq inference:

<qi*, Pi’> E Pass,
=3 <ins(qi’,x), Pi* - (Enq(x) A}> < Pass,

which is justified because ‘Enq(x) A’ is in Pi’. For j < k < n,
the kth inference of 6’ is the (k.l)st inference of 6, with
ins(qi+,x) substituted for qi* and P,’ for Pk. To show that 6*
is sound, we must check that each axiom’s pre-condition is
still satisfied. The result is immediate for applications of
Axioms I and R, as well as for Enq inferences, since it is
always legal to append an Enq to a history. For Deq
inferences, we observe that every daqueued item was
enqueued before x, hence at each Deq inference, the value at
the front of the queue is unchanged. Finally, 6’ is canonical
because the Enq inferences for x and y do not commute.

Suppose the discarded inference was a Deq inference,
where first(qJ = x. Define q,,; to be the queue value
such that first(q,-,*) = x and rest(q,-,*) = q*. By the
induction hypothesis, there exists a canonical n-l step
derivation S,., l that <q,-, l , P,.,> E Poss,. Since ‘Deq() A’ E
P “-,, we can use Axiom C to extend IS,,, * to a canonical
derivation 6’ such that <rest(q,.,*), P,,, - {Deq() A}> = <q’,
P,> E Pass,. I

5. Verification: Abstraction Functions Revisited

This section proposes a verification methodology for

implementations of linearizable concurrent objects. We

propose a model for data type implementations and define a

correctness condition in Section 5.1. We give an example of

a queue implementation and prove its correctness in Section

5.2.

As a first step, let us review how to verify a sequential data

type implementation [14,9]. An implementation consists of

an abstract type A, the type being implemented, and a

representation (or rep) type R, the type used to implement

A. The subset of R values that are legal representations is

characterized by a predicate called the rep invariant, 9: R +

bool. The meaning of a legal rep is given by an a&fraction

function, A: R -+ A, defined only for values that satisfy the

invariant.

An abstract operation u is implemented by a sequence, p,

of rep operations that carries the rep from one legal value to

another, perhaps passing through intermediate values where

the abstraction function is undefined. The rep invariant is

thus part of both the precondition and post-condition for

each operation’s implementation; it must be satisfied

between abstract operations, although it may be temporarily

violated while an operation is in progress. An

implementation, p, of an abstract operation, a, is correct if

there exists a rep invariant, f, and abstraction function, A,

such that whenever p carries one legal rep value r to another

r’, a carries the abstract value from A(r) to J(r’).

For sequential objects, the rep invariant must hold at the

start and finish of each abstract operation, but it may bs

violated while an operation is in progress. For concurrent

objects, however, it no longer makes sense to View the

object’s representation as assuming meaningful values Only

between abstract operations. Instead, operations must be

implemented to behave correctly for rep values that reflect

the incomplete effects of concurrent operations. To capture

the effects of interleaving, the notions of rep invariant and

abstraction function must be extended to encompass

transient representation values reflecting the incomplete

effects of concurrent operations.

5.1. Definitions

An implementation is a set of histories in which events of

two objects, a representation object r of type R and an

abstract object a of type A, are interleaved in a constrained

way: for each history H in the implementation, (1) the

subhistories Hlr and H(a satisfy the usual well-formedness

conditions; and (2) for each process P, each rep operation in

HIP lies within an abstract operation. Informally, an abstract

operation is implemented by the sequence of rep operations

that occur within it.

An implementation is correct if for every history H in the

implementation, H]a is linearizable.

The rep invariant f must be continually satisfied and the

abstraction function continually defined not only between

abstract operations, but also between each step in the

sequence of rep operations implementing an abstract

operation. The non-determinism inherent in a concurrent

computation gives our abstraction functions a different flavor

from their sequential counterparts. We redefine the
abstraction function so that it maps each rep value to a (non-

empty) set of abstract values:

A:R-t2A

20

To show correctness, the verification technique for

sequential implementations is generalized as follows.

Assume that the implementation of r is correct, hence Hir is

iinearizable for all H in the implementation. Let Lin(H(x) be

the set of linearized values for x in H. Our verification

technique focuses on showing the following property:
For all r in Lin(Hlr), 3(r) holds and A(r) E Lin(l-ila)

This condition implies that Lin(H(a) is non-empty, hence

that Hla is linearizable. Note that the set inclusion is

necessary in one direction only; there may be linearized

abstract values that have no corresponding representation

values. Such a situation arises when the representation

“chooses” to linearize concurrent operations in one of

several permissible ways.

5.2. Queue Example

Consider the following concurrent queue implementation.

The representation is a record with two components: ifems 1s

an array having a low bound of 1 and a (conceptually) infinite

high bound, and back is the (integer) index of the next

unused position in items.
rep = record {back: int, items: array [i tern]}

Each element of items is initialized to a special null value, and

back is initialized to 1.

Enq and Deq are implemented as foliows:
Enq = proc (q: cvt, x: item)

i: int := INC(q.back) X Allocate .a new slot.
STORE(q.items[i], x) '6 Fill it.
end enq

Deq = proc (q: cvt) returns (item)
while true do

range: int := FETCH(q.b&ck)-1
for i : int in 1.. range do

x: item := SWAP(q.itams[i].null)
if x -= null then return(x) end
end

end
end deq

An Enq execution occurs in two atomic steps: an array slot is

reserved by atomically incrementing back, and the new item

is stored in items. * Deq traverses the array in ascending

order, starting at index 1. For each element, it atomiCallY

swaps null with the current contents. If the value returned iS

not equal to null, Deq returns that value, otherwise it tries the

next slot. If the index reaches back-i without enCOUntering a

non-null element, the operation is restarted. All atomic steps

can be interleaved with steps of other operations. For brevity,

we leave out the axioms and traitq for records and arrays,

which can be straightforwardly given (see [20, lo]).

Let R be a complete history for a queue representation,

and let items(R) be the set of items stored in the array, but not

swapped out. Let -+ be the partial order suck that x +R y if

the STORE operation for x precedes the INC operation for y

in R. If r is a linearized value for R, items(r) = items(R)

corresponds to the set of non-null items in the array, and 4r

= -$ is their partial order. Finally, we extend the trait of

Figure 2-2 by defining the total order, <q, and the operator,

items, such that:
first(q) <q first(rest(cj))
items(emp) = {}
items(ins(q, e)) = {e) U items(q)

The implementation has the following rep invariant:
3(r) = (r.back 2 1)

A (i 2 r.back s r.items[i] I null)
A (Ibound(r.items) = 1)

and the following abstraction function:
A(r) = {q I items(r) = items(q) A +r E <J

In other words, a queue representation value corresponds

to the set of queues whose items are the items in the array,

sorted in some order consistent with the precedence order of

their Enq operations. Thus, our implementation allows for an

item with a higher index to be removed from the array before

an item with a lower index, but only if the items were

enqueued concurrently.

Figure 5-l shows a sequence of abstract operations of

Figure 3-l along with their implementing sequence of rep

operations. Column two is the set of abstracted linearized

rep values. Column three is the set of linearized abstract

values. Our correctness criterion requires showing that each

set in column two is a subset of the corresponding set in

column three.

*lNC returns the value of its aqument from before the invocation, not
the new incremented value.

21

History

EnNO A
INC(q.back) A
WV A
STORE(q.items[l].x) A

EnqM B
INC(q.back) B
ok(2) B
STORE(q.items[2],y) B
WI B

WI B
WI A

WI A
WO C
FETCH(q.back) C
w4 c
SWAP(q.items[l],null) C
Wx) c

Wx) c

“rCLin(H@)

m
I[11
Ull
msx11
mxl)
mw
mx11
m~[xl~[Yl~~x~Yl~
aYldx~Yl1
~[YISX~YII
fb*Yll
~hYl1
UX~YII

:Ki
~~::YlsYll
{[Yll
{[Yll

Lin(Hla)

Figure 5.1: A Queue History

Figure 5.2: Annotated Queue Implementation

Figure 5-2 shows the Enq and Deq implementation

annotated with assertions that are true before and after each

abstract invocation and response and each rep operation. It

is convenient to keep as implicit auxiliary data the partial

order, -+ on items in the array, and the set, P, that contains

the invocations that have not yet been applied to the rep.

If I is a set of items partially ordered by 4, define:

(I, -4 = {q II = items(q) and 4 C_ <a}

and

<(I. -4, P> = {<cl* P> I q E (I, 41

The partially ordered set of queue items, (I, -4, captures

the nonquiescent abstract state of the queue, i.e., the

possible values of the queue while there are concurrent Enq

and Deq operations or pending invocations. Notice that we

can rewrite the abstraction function as A(r) = (items(r), +$

<(I, 4), P> identifies each of the possible sets of queue values

with a set of pending invocations, thereby forming a set of

(queue) possibilities.

Lemma 11: If x is a maximal element with respect to 4, x
C I, ‘Enq(x) A’ B P, and <(I, +), P U (Enq(x) A)> c Pass, then
<(I u {x), 4) P> c Pass.

Proof: Pick any q E (I, +), and any q’ f (I U (x}, 4).
Since <q, P U (Enq(x) A]> c Pass, <ins(q,x), P> E POSS by
Axiom C. Since ins(q,x) is an element of (I U {x}, 4), <q’, P> E
Pass by Lemma 10. I

Lemma 12: If <(I, +), P U (Deq() A}> C Pass, then for all
x such that x is a minimal element of I, <(I - {x), -4 P> C

Pass.
Proof: Pick any q E (I,+) such that first(q) = x, and any

q’ E (I - 1x1, -4. Since <q, P U {Oeq() A}> E Pass, <rest(q),
P> E Pass by Axiom C. Since rest(q) is an element of (I - (x},
4) <q’, P> E Pass by Lemma IO. I

Lemma 11 will allow us to show that the set of linearized

queue values does not change over a STORE operation and

similarly, Lemma 12, for a SWAP operation, by using 4, for +

and by recalling that for each <v, P> E Pass, v is a linearized

value. We use the next two lemmas to satisfy the conditions

of the previous two lemmas.

Lemma 13: Enq enqueues an item x that is maximal with
respect to +

Proof: Suppose not. Then after the STORE there exists
some non-null item y such that x +r y. By definition of -$, we
have that the STORE for x precedes the INC for y. Thus,
index(q.items, x) < index(q.items, y). Since index(q.items, x)
= q.back, then q.back < index(q.items, y). By the rep
invariant, for all i, i 2 q.back, q.items[i] = null so that
q.items[index(q.items, y)] = null, i.e., y = null, a
contradiction. I

Lemma 14: Deq removes and returns an item x that is
minimal with respect to -$.

Proof: Suppose not. Then there exists non-null Y such
that Y +r X. For x to be returned from within the for loop, the
SWAP of x must happen before the STORE of y. The STORE
of x must happen before the SWAP of x and the 1NC Of x
before the STORE of x, so then the INC of x must Occur
before the STORE of y, which implies that x and Y are
incomparable, a contradiction, I

Here is a proof of correctness.

22

{true}
Enq = proc (q: cvt, x: item)
{I=’ = P U lEnqM AJJ

itruel
i: lnt := INC(q.back)
(q.back’ = q.back + 7 /\i = q.backJ

{‘Enqlr) A’ E PJ
STORE(q.items[iJ, x)
{P’ = P - {Enqh) A) h index(q.items’, XJ = t h

x E max(items(q’JJ h q.back <@back’)
X A concurrent Enq might bump q.back before the Store.

{true)
end Enq
{‘Enqtx) A’ 4 P’J

{true)
Deq = proc (q: cvt) returns (item)
(P’ = P U lDeqOAJJ

while true do

UrueJ
range: in! := FETCH(q.back)-1
{range = q.back-lJ

for i : int in 1. . range do

WueJ
x: item := SWAP(q.items[l],null)
P’ = P - {Des/) A) A lx = null V x E min(items(q’JJJJ

if x -= null then return(x) end
end

end
end Deq

Figure 5-2: Annotated Queue Implementation

Theorem 15: The queue implementation is correct.

Proof: Assuming every rep history is linearizable, we
need to show that every queue history, H]q, is linearizable. It
suffices to show that the “subset” property,
UrELin i&r) C Lin(Hjq), remains invariant over abstract
invoca ion and responses and over complete rep operations. I-
Thus, it can be conjoined to the pre- and post-conditions of
Figure 5-2 as justified by the Owicki-Gries proof method [23].
Axioms I and R give us the result for abstract invocation and
response events. INC and FET’CH leave the abstraction
function the same. Thus, we are left with two cases, STORE
and SWAP. By Lemma 13 we know that STORE adds a
maximal item and thus, we can apply lemma Ii to show that
the subset property is preserved. Similarly, by Lemma 14 we
know that SWAP removes a minimal item and thus, we can
apply Lemma 12 to show that the subset property is
preserved.

Proofs of non-interference between pre- and post-
conditions and that the rep invariant holds are
straightforward. I

An Aside: Handling Critical Regions

An implementation without critical regions, such as the

previous queue example, can be verified by defining a rep

invariant that is continually satisfied, and an abstraction

function that is continually defined. That is, each step of the

sequence of representation operations implementing an

abstract operation must preserve the rep invariant, and

exactly one such step causes the operation’s effects to

become visible to other operations.

If an operation creates a temporary inconsistency,

perhaps hidden from concurrent operations by some form of

critical region, then it may not be possible to define a

meaningful abstraction function directly in terms of the

representation. Such inconsistencies can be eliminated by

augmenting the representation with appropriate auxiliary

data, and similar proof techniques as used in our queue

example can be used for verification,

23

6. Related Work

The axiomatic approach to specifying sequential

programs has its origins in Hoare’s early work on verification

[13] and later work on proofs of correctness of

implementations of abstract data types [14], where first-order

predicate logic pre- and post-conditions are used for the

specification of each operation of the type. The algebraic

approach, which defines data types to be heterogeneous

algebras [3], uses axioms to specify properties of programs

and abstract data types, but the axioms are restricted to

equations. Much work has been done on algebraic

specifications for abstract data types [l ,6,8, 29,4,5,28, 161;

we use more recent work on Larch specifications [lo, 1 l] for

sequential program modules.

Owicki and Gries extended Hoare’s axiomatic approach

to handle concurrent programs [24] by including axioms for

general concurrent programming language constructs. Apt

et al. [2] use a similar approach for CSP [15] in particular,

These approaches differ from ours by focusing on control

structures such as the parallel operator, leaving data

uninterpreted.

Lamport [la] has proposed a model and assertion

language for specifying properties of concurrent objects. His

approach is more general than ours, as it addresses liveness

as well as safety properties, and non-linearizable as well as

linearizable behavior. Our approach, however, focuses

exclusively on a subset of concurrent computations that we

believe to be the most interesting and useful.

Our notion of linearizability generalizes and unifies similar

notions found in specific examples in the literature. Lamport

gives a specification for a linearizabte concurrent queue

permitting one enqueuing process and one dequeuing

process. The queue’s state is defined as a COlleCtiOn Of Stats

functions mapping time to algebraic values. One State

function takes on queue values; it may change only while

operations ace in progress. The values of the other State

functions are used as control flags to prevent operations from

taking effect more than once. His queue-valued state

function roughly corresponds to our abstraction function

except that the state function maps to a single queue value,

not a set of queue values. His technique, therefore, could not

be used to prove our queue implementation correct because

of the inherent nondeterminism in our example.

Misra [22] has proposed an axiomatic treatment of

concurrent hardware registers in which the register’s value is

expressed as a function of time. Restricted to registers, our

axiomatic treatment is equivalent to his in the sense that both

characterize the full sat of linearizable register histories.

Theorems 3 and 4 capture two properties of Misra’s registers.

Misra’s explicit use of time in axioms is appropriate for

hardware, where reasoning in terms of the register’s

hypothetical value is useful as a guide to hardware designers.

Our approach, however, is also appropriate for objects

implemented in software, as we have found that reasoning

directly in terms of partial orders generalizes more effectively

to data types having a richer set of operations.

Gottlieb et al. [7] have investigated architectural support

for implementing concurrent objects without critical regions,

an approach illustrated by our linearizable implementation of

a FIFO queue. They present a linearizable implementation of

a concurrent queue (different from ours). The correctness

condition asserted for their queue, however, is the property

stated in Theorem 6, which by itself is incomplete as a

concurrent queue specification since it does not prohibit

implementations in which enqueued items spontaneously

disappear from the queue, or new items spontaneously

appear. As shown by Theorems 7 and 8, such anomalous

behavior is easily ruled out by our queue axioms and the

assumption of linearizability.

7. Discussion

Without linearizability, the meaning of an operation may

depend on how it is interleaved with concurrent operations.

Specifying such behavior would require a more complex

specification language, as well as producing more complex

specifications (e.g., Lamport’s [18]). Linearizability provides

the illusion that each operation takes effect instantaneously

at some point between its invocation and its response,

implying that the meaning of a concurrent object’s operations

can still be given by pre- and post-conditions.

The role of linearizability for concurrent objects Is

analogous to the rote of serializability for data base theory: it

facilitates certain kinds of formal (and informal) reasoning by

transforming assertions about complex concurrent behavior

into assertions about simpler sequential behavior. Like

serializability, linearizability is a safety property; it states that

certain interleavings cannot occur, but makes no guarantees

24

about what must occur. Other techniques, such as temporal

logic {27,25, l&18,21], must be used to reaSOn about

liveness properties like fairness or priority.

An implementation of a concurrent object need nOt

realize all interleavings permitted by linearizability,. but all

interleavings it does realize must be linearizable. The actual

set of interleavings permitted by a particular implementation

may be quite difficult to specify at the abstract level, being the

result of engineering trade-offs at lower levels. As long as the

object’s client relies only on linearizability to reason about
safety properties, the object’s implementor is free to support

any level of concurrency that appears to be cost-effective.

Linearizability provides benefits for specifying,

implementing, and verifying concurrent objects in

multiprocessor systems. Rather than introducing complex

new formalisms to reason directly about concurrent

computations, we feel it is more effective to transform

problems in the concurrent domain into simpler problems in

the sequential domain.

Acknowledgments

The authors thank David Detlefs, Jim Horning, Leslie

Lamport, Larry Rudolph, and William Weihl for lively verbal

and electronic disctissions about our notions of linearizability

and correctness, and for their feedback on our extended

abstract.

References

[II J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B.
Wright. Abstract Data Types as Initial Algebras and
Correctness of Data Representations. In Proceedings from
the Conference of Computer Graphics, Pattern Recognition
and Data Structures, pages 89-93. ACM, May, 1975.

PI K.R. Apt, N. Francez, and W.P. DeRoever. A Proof
System for Communicating Sequential Processes. ACM
Transactions on Programming Languages and Systems
2(3):359-x%5,1980.

131 G. Birkhoff and J.D. Lipson. Heterogeneous Algebras.
Journal of Combinatorial Theory 8:115-133, 1970.

[41 R.M. Burstall and J.A. ‘Goguen. Putting Theories
Together to Make Specifications. In Fifth fnfernational Joint
Conference on Artificial Intelligence, pages 1045-1058.
August, 1977. Invited paper.

KJI H.-D. Ehrich. Extensions and Implementations of
Abstract Data Type Specifications. Lecture Notes in
Computer Science. Volume 64,Mathematical Foundations of
Computer Science 1978 Proceedings. Springer-Verfag,
Poland, 1978, pages 155-184. 7th Symposium.

PI H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification 1. Springer-Verlag, Berlin, 1985.

171 A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic
Techniques For the Efficient Coordination of Very Large
Numbers of Cooperating Sequential Processors. ACM
Transactions on Programming Languages and Systems
5(2):184-l 89, April, 1983.

PI J.V. Guttag. The Specification and Application to
Programming of Abstract Data Types. PhD thesis, University
of Toronto, Toronto, Canada, September, 1975.

WI J.V. Guttag, E. Horowitz, and D.R. Musser. Abstract
Data Types and Software Validation. CACM
21(12):1048-1084, December, 1978.

[lo] J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in
Five Easy Pieces. Technical Report 5, DEC Systems
Research Center, July, 1985.

[l l] J.V. Guttag, J.J. Horning, and J.M. Wing. The Larch
Family of Specification Languages. /EEE Software
2(5):24-X September, 1985.

(121 B.T. Hailpern and S. Owicki. Verifying Network
Protocols Using Temporal Logic. In Proceedings Trends and
Applications 7980: Computer Network Protocols, pages
18-28. IEEE Computer Society, 1960..

[13] C.A.R. Hoare. An Axiomatic Basis for Computer
Programming. Communications of the ACM 12(10):576-583,
October, 1969.

[14] C.A.R. Hoare. Proof of Correctness of Data
Representations. Acta lntormatica l(l):271 -281,1972.

[15] C.A.R. Hoare. Communicating Sequential Processes.
Communications of the ACM 21(8):666-677, August, 1978.

1161 S. Kamin. Final Oata Types and Their Specification.
ACM Transactions on Programming Languages and SyStt?mS
5(1):97-l 21, January, 1983.

[l7] L. Lamport. How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Programs. lEf%
Transactions on Computers C-28(9):690, September, 1979.

[la] L. Lamport. Specifying Concurrent Program Modules.
ACM Transactions on Programming languages and SyStemS
5(2):190-222, April, 1983.

[19] L. Lamport. On lnterprocess Communication.
Technical Report 8, DEC Systems Research Center, 1985.
To appear in Distributed Computing.

[20] B.H. Liskov and J.V. Guttag. Abstraction and
Specificafion in Program Development. The MIT Press, 1968.

[21] 2. Manna and A. Pnueli. Verification of Concurrent
Programs, Part I: The Temporal Framework. Technical
Report STAN-CS-81.838, Dept. of Computer Science,
Stanford University, June, 1981.

[22] J. Misra. Axioms for Memory Awess in Asynchronous
Hardware Systems. ACM Transactions on Programming
Languages and Systems 8(1):142-153, January, 1986.

25

[23] S. Owicki and D. Gries. An Axiomatic Proof
Technique for Parallel Programs. Acfalnformafice
q4):319-340,1976.

[24] S. Cwicki and D. Gries. Verifying Properties of
Parallel Programs: An Axiomatic Approach. Communicatfons
of the ACM 19(5):279-285, May, 1976.

[25] S. Owicki and L. Lamport. Proving Liveness
Properties of Concurrent Programs. ACM Transactions on
Programming Languages and Systems 4(3):4!55-495, July,
1992.

[29] C.H. Papadimitriou. The Serializability of Concurrent
Database Updates. Journal of the ACM 29(4):931-933,
October, 1979.

[27] A. Pnueli. The Temporal Logic of Programs. In 7818
Annual Symposium on Foundations of Computer Science,
pages 46-57. Providence, RI, Oct. 31 - Nov. 2,1977.

[28] M. Wand. Final Algebra Semantics and Data Type
Extensions. Journal of Computer and System Sciences
19(1):27-44, August, 1979.

[2Q] S.N. Zilles. Abstract Specifications for Data Types.
IBM Research Laboratory, San Jose, CA, 1975.

26

