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Abstract 

Specification and verification techniques for abstract data 
types that have been successful for sequential programs can 
be extended in a natural way to provide the same benefits for 
concurrent programs. We propose an approach to specifying 
and verifying concurrent objects based on a novel 
correctness condition, which we call “linearizability.” 
Linearizability provides the illusion that each operation takes 
effect instantaneously at some point between its invocation 
and its response, implying that the meaning of a concurrent 
object’s operations can still be given by pre- and POSt- 
conditions. In this paper, we will define and discuss 
linearizability, and then give examples of how to reason abOUt 
concurrent objects and verify their implementations based On 
their (sequential) axiomatic Specifications. 

1. Int reduction 

This paper shows that the specification and verification 

techniques for abstract data types that have been successful 

for sequential programs can be extended in a natural way to 

provide the same benefits for concurrent programs. Our two 

main contributions are: 

. New techniques for using (sequential) axiomatic 
specifications to reason about concurrent objects; and 

l A novel correctness condition, which we call 
linearizability. 

Informally, a concurrent system consists of a collection of 

sequential processes that communicate through shared 
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typed objects. This model is appropriate for multiprocessor 

systems in which processors communicate through reliable, 

high-bandwidth shared memory. Whereas “memory” 

suggests registers with read and write operations, we use the 

term concurrent object to suggest a richer semantics. Each 

object has a type, which defines a set of possible values and 

a set of primitive operations that provide the only means to 

create and manipulate that object. We can give an axiomatic 

specification for a typed object to define the meaning of its 

operations when they are invoked one at a time by a single 

process. In a concurrent system, however, an object’s 

operations can be invoked by concurrent processes, and it is 

necessary to give a meaning to possible interleavings of 

operation invocations. 

Our approach to specifying and verifying concurrent 

objects is based on the notion of linearizability. A concurrent 

computation is linearizable if it is “equivalent,” in a Sense 

formally defined in Section 3, to a legal sequential 

computation. We interpret a data type’s (sequential) 

axiomatic specification as permitting only linearizable 

interleavings. Instead of leaving data uninterpreted, 

linearizability exploits the semantics of abstract data types; it 

permits a high degree of concurrency, yet it permits 

programmers to specify and reason about concurrent objects 

using known techniques from the sequential domain. Unlike 

alternative correctness conditions such as sequential 
consistency [17] or serializability [26], linearizability is a local 

property: a system is linearizable if each individual object is 

linearizable. Locality enhances modularity and concurrency, 

since objects can be implemented and verified 

independently, and run-time scheduling can be completely 

decentralized. Linearizability is a simple and intuitively 

appealing correctness condition that generalizes and unifies 
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a number of correctness conditions both implicit and explicit 

in the literature. 

Using axiomatic specifications and our notion of 

linearizability, we show that we can perform two kinds of 

reasoning: 

l We reason about concurrent computations by 
transforming assertions about concurrent 
computations into simpler assertions about sequential 
computations. Familiar axiomatic techniques help 
prove these transformed assertions. 

l Implementations of concurrent objects are necessarily 
more complex then their sequential counterparts. We 
reason about the correctness of linearizable 
implementations using new techniques that generalize 
the notions of representation invariant and abstraction 
function to the concurrent domain. 

Section 2 presents our model of a concurrent system and 

specification technique; Section 3 defines and discusses 

linearizability, including its locality property; Section 4 

illustrates reasoning about concurrent registers and queues; 

Section 5 illustrates reasoning about an implementation of a 

concurrent queue; Sections 6 and 7 contain discussions on 

related work and the significance of linearizability. 

2. System Model and Specification Technique 

2.1. Histories 

An execution of a concurrent system is modeled by a 

history, which is a finite sequence of operation invocation 

and response events. An operation invocation is written as x 

opfargs’) A, where x is an object name, op is an operation 

name, args* denotes a sequence of argument values, and A 

is a process name. The response to an operation invocation 

is written as x rerm(res*) A, where term is a termination 

condition, and res* is a sequence of resutts. We use “Ok“ for 

normal termination. A response marches an invocation if 

their object names agree and their process names agree. An 

invocation is pending in a history if no matching response 

follows the invocation. If H is a history, complete(H) is the 

longest subhistory of H consisting only of invocations and 

matching responses. 

A history H is sequential if: 

1. The first event of H is an invocation. 

2. Each invocation, except possibly the last, is 
immediately followed by a matching response. 

3. Each response, except possibly the last, is immediately 
followed by an invocation. 

A ~KXXJSS subhistory, HjP (H at P), of a history H is the 

subsequence of events in H whose process names are P. An 

object s&history Hjx is similarly defined for an object X. TWO 

histories H and H’ are equivalent if for every process P, HIP * 

H’(P. A history H is we//-formed if each process subhistory 

Hjp of H is sequential. All histories considered in this paper 

are assumed to be well-formed. Notice that whereas Process 

subhistories of a well-formed history are necessarily 

sequential, object subhistories are not. 

An operafion, e, in a history is a pair COnSiStin Of an 

invocation, inv(e), and the next matching response, res(e). 

An operation eo lies within another operation e, in H if inv(e,) 

precedes inv(eo) and res(eo) precedes res(e,) in H. 

For example, let H, be the following history: 

q End A 
q End B 

(History H,) 

qW)B 
qW)A 
q Des0 B 
q Wx) B 
q DeqO A 
q WY) A 
q End A 

H, is a well-formed history for a FIFO queue q providing Enq 

and Deq operations. The first event is an invocation of Enq 

with argument x by process A, and the fourth event is the 

matching response with termination condition Ok and no 

results. The “q Enq(y) B/q Ok() B” operation lies within the 

“q Enq(x) A/q Ok() A” operation. The subhistory, 

complete(H,), is H, with the last (pending) invocation of Enq 

removed. Reordering the first two events yields one of many 

histories equivalent to H,. 

2.2. Specifications 

A sequential history for an object can be summarized by 

the object’s value at the end of the history. We use axiomatic 

specifications to reason about object values. A specification 

is a set of axioms of the form: 

{PI 
op(args*)/term(res*) 

101 

where P is a precondition on the object’s value and the 

argument values that must be met before an invocation, and 

Q is a post-condition on the object’s value and the result 

values that is guaranteed to hold upon return for the given 

termination condition. Identifiers in args* and res* denote 
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values of arguments and results. A sequential history H is 

legal if for all object subhistories, Hlx, of H, each operation in 

Hlx satisfies its axiomatic specification. 

The axioms presented in this paper are essentially Larch 

interface specifications [lo, 1 l] for operations of abstract 

data types. For example, axioms for the Enq and Deq 

operations for FIFO queues are shown in Figure 2-1. The 

queue’s value before the operation is denoted by q and the 

value after the operation by q’. The post-condition for Enq 

states that upon termination, the new queue value is the old 

queue value with e inserted. Notice that the specification for 

Deq is partial: Deq is undefined for the empty queue. 

The assertion language for the pre- and post-conditions is 

based on the Larch Shared Specification Language. It is akin 

to algebraic specification languages and is used to describe 

the set of values of a typed object. The set of operators and 

their signatures following introduces defines a vocabulary 

of terms to denote values. For example, emp and ins(emp, 5) 

denote two different queue values. The set of equations 

following the constrains clause defines a meaning for the 

terms, more precisely, an equivalence relation on the terms, 

and hence on the valu& they denote. For example, from 

QVals, we could prove that re.st(ins(ins(emp, 3), 5) = 

ins(emp, 5). The generated by clause of QVals asserts that 

emp and ins are sufficient operators to generate all values of 

queues. Formally, it introduces an inductive rule of inference 

that allows one to prove properties of all terms of sort 0. We 

use the vocabulaty of traits to write the assertions in the pre- 

and post-conditions of a type’s operations; we use the 

meaning of equality to reason about its values. Hence, the 

meaning of “ins” and “ =” in Axiom E’s post-condition is 

given by the trait OVaIs. 

Axiom E: 
(true} 

EndWOk 
(4’ = insh e)l 

Axiom D: 
I-, isEmp(q)l 
DeSO/OW 

{q’ = rest(q) A e = first(q)) 

Figure 2-1: Axioms for Queue OperS~iOnS 

QVals: trait 
introduces 
emp: -+ Q 
ins:C?, E+Q 

first: Q + E 
rest: 0 -t 0 
isEmp: 0 + Bool 

constrains Q so that 
Q generated by [ emp, ins] 
for all q: Q, 8: E 

first(ins(emp), e)) = e 
first(ins(q, e)) = if isEmp(q) then e 

else first(q) 
rest(ins(q, e)) = if isEmp(q) then emp 

else ins(rest(q), e) 
isEmp(emp) = true 
isEmp(ins(q, e)) = false 

Figure 2-2: Trait for Queue Values 

3. Linearizabilfty 

3.1. Definition 

Axiomatic specifications have (as yet) no meaning for 

histories that are not sequential. This section introduces the 

notion of linearizability, the basic correctness condition that 

allows us to apply algebraic specifications and axiomatic 

reasoning to concurrent objects. 

A history H induces an irreflexive partial order +” on 

operations: 

e, -$, e, if res(e,,) precedes inv(e,) in H. 

(Where appropriate, the subscript is omitted.) Informally, -$ 

captures the “real-time” precedence ordering of operations 

in H. Operations unrelated by -c,, are said to be concurrent. 

If H is sequential, -$ is a total order. 

A history H is linearizabie if can be extended (by 

appending zero or more events) to some history H’ such that: 

Ll: complete(H’) is equivalent to some legal sequential 
history S, and 

L2: -$&4s 

Ll states that processes act as if they were interleaved at the 

granularity of complete operations. L2 states that this 

apparent sequential interleaving respects the real-time 

precedence ordering of operations. We call S a linearization 

of H. 

The history H, shown in Section 2 is linearizable, because 

HI’ = H, l q Ok() A is equivalent to the following sequential 

history: 

q EnWA 
q Ok0 A 
q End EJ 
qWlB 
q f-10 B 

(History H,‘) 
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ci ok(x) B 
q Des0 A 
q ok(Y) A 
q Endz) A 
qCWA 

The following history, H,, is not linearfzabfe: 

q Ew(x) A 
qOkOA 
q End B 
qOWB 
q Da10 A 
q WY) A 

(History H.-J 

because the Enq of x precedes the Enq of y, but y is 

dequeued before x. 

Linearizability does not rule out histories such as the 

following history, Ha, in which an operation “takes effect” 

before its return event occurs: 

q EnqC4 A (History Ha) 
q DeqO B 
9 Wx) B 

H, can be extended to H,’ = H, * q Ok() A, which can be 

shown equivalent to the sequential history in which the 

enqueue operation occurs before the dequeue. 

Lamport’s notion of sequential consistency [17] requires 

that a history be equivalent to a sequential history. 

Sequential consistency is weaker than linearizability, 

because it does not require the precedence ordering 4 to be 

preserved. For example, H, is sequentially consistent, but 

not linearirable. Serializability [26] requires that a history be 

equivalent to a sequential history in which each process 

(usually called a transaction) runs to completion without 

interleaving with other processes. ’ Lamport [19] has 

proposed that the standard definition of serializability be 

strengthened to preserve the order of non-overlapping 

transactions. Both notions of serializability are incomparable 

to linearizability. For example, H, is linearizable, but not 

serializable (in either sense), and H, is serializable, but not 

linearizable. 
3.2. Locality 

Linearizability is a lo&/ property. 

Theorem 1: H is linearizable if and OniY if HiX is 
linearizable at each object x. 

Proof: The “only if” part is obvious. 
From the assumption that each object’s history is 

finearizable, there exists for each object x an induced totat 

’ In dat&$$e$, &aliz&ility is often provided in cot’@nCtion with fa&re 
amm'city, ensuring that a transaction intempted by B fi%lUfe Will hEWe no 

effect. 

order Cx on its own operations, and by the well-formedness 
criteria for histories, each process P induces a total order <,, 
on its operations. We claim that the transitive closure of the 
union of all <x and $, is a partial order, +. and hence can be 
extended to a total order, <. Notice that each <x and <,, is 
compatible with 4. 

Suppose 4 is not a partial order. Then we can construct 
a cycle e, l . . . l e,, where e, = en, such that e, + es 4 . . . -C 
e,, where ei-, and ei, 1 < i 5 n, are related by some Cx or $ 
The contradiction is immediate if no pair is related by a <p, 
because then all relations are induced by the same $, which 
is assumed to be a total order. Otherwise, the cycle of 
operations can be relabeled so that e, $, e2, for some 
process P. Because processes are sequential, the response 
of 8, precedes the invocation of ea, and because all relations 
are consistent with 4, the invocation of es precedes the 
response of en, which is identical to the response of 8,. 
Hence the response of e, precedes itself, a contradiction. I 

Henceforth, we consider only histories involving single 

objects, omitting object names from events. 

Locality is important because it allows concurrent 

systems to be designed and constructed in a modular 

fashion; linearizable objects can be implemented, verified, 

and executed independently. A concurrent system based On 

a non-local correctness property must either rely on a 

centralized scheduler for all objects, or else additional 

constraints must be placed on objects to ensure that they 

follow compatible scheduling protocols. 

Locality should not be taken for granted: the literature 

includes proposals for both alternative correctness 

properties that are not local. For example, Lamport’s notion 

of sequential consistency is not a local property. Consider 

the following sequential history H, in which processes A and 

B operate on queue obiects p and q. For brevity, matching 

responses are shown on the same lines as invocations. 

HIP 

P Enq(x)/Ok() A 
q EnqWOW B 
q EWWOkO A 
P Enq(y)/Ok() B 
P DeqO/Ok(y) A 
q Deq()/Ok(x) B 

and Hlq are not legal sequential histories, but they are 

sequentially consistent, although H itself is not. 

Also, serializability and Lamport’s strengthened notion Of 

serializability are both non-local. In the example above, Hip 

and Hjq are each serializable in either sense, but H itseff is 

not. 



3.3. Linearized Values 

Non-determinism is inherent in the notion of 

linearizability: (1) For each H, there may be more than one 

extension H’ satisfying the two conditions, Ll and L2, and (2) 

for each extension H’, there may be more than one 

linearization S. We call the value of an object at the end of a 

linearization a linearized value. Since a given history may 

have more than one linearization, an object may have more 

than one linearized value at the end of a history. We let 

M(H) denote the set of linearized values of H. 

Informally, a history’s linearized values represent thd 

objects possible values from the point of view of an external 

observer. Figure 3.1 shows a queue history with its set of 

linearized values after each event. (We use fl for emp and 

[x,y] for ins(ins(emp, x),y), etc.) Initially, only the empty 

queue is associated with the empty history. After the 

invocation of Enq(x), there are two linearized values, since 

the enqueue may or may not have taken effect. After the 

invocation of Enq(y), there are five linearized values: either 

Enq may or may not have occurred, and if both have 

occurred, either ordering is possible. After the response to 

Enq(y), y is known to have been enqueued, and after the 

History Linearized values 

m 
EnW A mbd1 
Em(y) B ~n~~~l~w~~~~Yl~rYl~~~ 
W B tM~[x~Yl~[Y,xll 
WI A m9Yl,[Ym 
Des0 C 
Wx) c 

$iYl~[xlYl.[YJll 

Figure 3- 1: Linearized Values 

response to Enq(x), both x and y must have been enqueued, 

although their order remains ambiguous until x is dequeued. 

4. Reasoning About Concurrent Objects 

So far, linearizability is defined in terms of histories. This 

historic (I) characterization is useful for motivating the 

property, and for demonstrating properties such as locality, 

but it is awkward for verification. For linearizable histories, 

however, assertions about interleaved histories can be 

transformed into assertions about sets of sequential histories, 

and thus, sets of values. The transformed assertions can be 

stated and proved with the help of familiar axiomatic methods 

developed for sequential programs. Sometimes it will be 

necessary or more convenient to reason in terms of sets of 

sequential histories, (see Pass below), and sometimes, simply 

in terms of sets of values, e.g., Lin(H) for some history H. In 

this section, we show how we reason about properties of 

concurrent objects by reasoning in terms of sets of 

linearizations; in the next section, we how how we do 

verification by reasoning in terms of sets of values. 

A possibility for a history H is a pair <S, P> where S is a 

linearization of H and P is the set of pending invocations not 

completed to construct S. We let Poss denote the set of 

possibilities of a history. If we only care about the final value 

of S, we use <v, P> to denote one of the <S, P> such that the 

value of S is v. The relationship between the set of 

possibilities and set of linearized values for a given history H 

is that for each <v, P> E Poss, v E Lin(H). 

H’s set of possibilities, and hence set of iinearized values, 

is captured by the following three axioms. The following 

ciosure axiom states that if S is a linearization of H, ‘inv A’ is a 

pending invocation in H that is not completed to form S, and 

s’ = S l inv A l res A is a legal sequentiai history, then s’ is 

also a linearization of l-l. 
Axiom C: 

<s, P> E Poss 
=$ [(V ‘inv A’ E P) (3 res) S l inv A l res A is legal 

e <S l inv A l res A, P - {inv A}> E Pass] 

The following invocation axiom states that any linearization of 

H is also a linearization of H l inv A. 
Axiom I: 

{<S, P> E Poss} 
inv A 

{<S, P U {inv A)> E PO&} 

Let last(S, A) be the response to A’s last invocation in the 

sequential history S, and let A E P mean there exists an 

invocation i such that ‘i A’ E P. The following response axiom 

states that any linearization of H in which the pending ‘inv A’ 

is completed with ‘res A’ is also a linearization of H l res A. 
Axiom R: 
{<S, P> E Poss and A C P and res A = last@, A)] 

resA 
(<S, P> E PO&) 

For a given history with m events, we use Possi to denote 

the set of possibilities for the ith prefix of H, for 0 s i 5 m. A 

derivafion that shows that <v, P> E Pass, is a sequence of 

implications of the form: 
<vo, PO> E Posse 
- . . . 
* <Vj, Pi> E Possk 
=a . . . 
* <V”, P”> E Pass,. 

17 



where vn = v, P, I P, and each implication is justified by 

Axiom C, I, or R. 

Intuitively, a derivation is like a history. Instead of 

reasoning about histories directly, however, we use axiomatic 

proof techniques to reason about derivations-each 

implication in a derivation is like a step in a proof where each 

step in the proof is justified by some axiom. For each 

operation of a typed object, Axiom C is instantiated to yield 

type-specific closure axioms, and similarly for Axioms I and 

R. 

In any derivation showing H is linearizable, the order in 

which Axiom C is applied to pending invocations induces a 

valid linearization ordering on the operations of H. Informally, 

the following lemma states that an operation must appear to 

“take effect” at some instant between its invocation and its 

reSpOflSe. 

Lemma 2: Let ‘inv A’ be the ith event of H, and let the 
matching response ‘res A’ be the jth event. Any derivation 
showing that H is linearizable must include an application of 
Axiom C to infer: 

<v, P> f Possk =+ <v’, P - {inv A}> E Pass, 
forsomek.isk<j. 

Proof: The only way to infer anything about Pass, from 
Pass,., is to apply Axiom I as follows: 

<u, Q> E Pass,-, 3 <u, Cl U {inv A}> E P- 
Later in the derivation, the only way to infer anything about 
Pass, from Posr+, is by applying Axiom R: 

<w, R3 E Possj-, and ‘inv A’ It R e <w, R> E Poaq. 
Between these two steps, the only way to remove ‘inv A’ from 
the set of pending invocations is by applying Axiom C as 
shown above. I 

We use Lemma 2 and type-specific instantiations of 

Axioms C, I, and R to prove properties about concurrent 

objects. First, we look at 

concurrent queues. 

4.1. Concurrent Registers 

Here are axioms for Read 

concurrent register objects, r: 

concurrent registers, then 

and Write operations for all 

{true} 
Read()/Qk(v) 

(fetch(r) = fetch(r’) = v} 

{true} 
Write(v)JQk() 
(fetch(r’) = v} 

where the Larch Shared Language specification for register 

values ia: 

RVals: trait 
introduces 

new: + R 
store:R,V+R 
Fetch: R + V 
dontcare: -+ V 

constrains R so that for all e R, v: V 
fetch(new) = dontcare 
fetch(store(r, v)) = v 

These sequential axioms can be combined with our 

linearizability condition to prove assertions about the 

interleavings permitted by concurrent registers. Notice that 

we do not need to essume that all values written to the 

register are unique. 

Every value read was written, but not overwritten. 

Theorem 3: If the last event of H is the Read response 
‘ok(v) A’, then H includes an earlier Write invocation ‘Write(v) 
B’, and if the Write operation is complete, then it precedes no 
other complete Write operation. 

Proof: If the Read response is the mth event of H, then <v, 
P> E Pass,. In any derivation showing that H is linearizable, 
the last application of Axiom C for a Write invocation must 
have the form: 

<u, Q> c Pass, * <v, Q - {Write(v) B}> E Pass, 
This inference is legal only if B’s Write is pending at event k. 
By Lemma 2. if B’s Write is complete and precedes another 
complete Write, then the derivation must include a later 
application of Axiom C for a Write invocation, contradicting 
our assumotion that B’s was the last. a 

Register values are persistent in the absence of Write 

operations. 

Theorem 4: An interval in a history is a sequence of 
contiguous events. If I is an interval that does not overlap any 
Write operations, then all Read operations that lie within I 
return the same value. 

Proof: Pick two Read operations that lie within the 
interval that return distinct values v and v’. If H is linearizable, 
there exists a derivation showing that <v, P> E Possj and <v’, 
Q> E Possk where one Read is pending at event j and the 
other at event k, where j 5 k. The only way to deduce that 
<v’, Q> < Pass, from <v, P> E Possi is to apply Axiom C to a 
pending Write at some intermediate step, which is 
permissibte only if some Write operation overlaps 1. I 

4.2. Concurrent Queues 

The proofs of the following theorems about concurrent 

queues use Axioms E and D of Figure 2-1 and the trait of 

Figure 2-2. We make use of the following fact about queues: 

Lemma 5: If Q is a sequential queue history where x is 
enqueued before y, then ,x is not dequeued after y. 

Proof: From Axioms E and D. I 
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Theorem 6: If Enq(x)/Ok(), Enq(y)/Ok(), Deq()/Ok(x), 
and Deq()/Ok(y) are complete operations of H such that x’s 
Enq precedes y’s Enq, then y’s Deq does not precede x’s 

De9. (Le., either x’s Deq precedes y’s, or they are 
concurrent.) 

Proof: Pick a derivation showing H is linearizabfe. 
Lemma 2 implies that Axiom C is applied to all four 
invocations, since the operations are complete. Moreover, 
because the enqueue of x precedes the enqueue of y, the 
derivation must apply Axiom C to x’s Enq first. By Lemma 5, 
the derivation must also apply Axiom C to x’s Deq before y’s 
Deq, thus y’s Deq operation cannot precede x’s De& I 

Gottlieb et al. [7] adopt the property proved in Theorem 6 

as the desired correctness property for their concurrent 

queue implementation. The difficulty of reasoning directly 

about interleaved histories is illustrated by observing that 

Theorem 6 by itself is incomplete as a concurrent queue 

specification, since it does not prohibit implementations in 

which enqueued items spontaneously disappear from the 

queue, or new items spontaneously appear. Such behavior is 

easily ruled out by thefollowing two theorems: 

Items do not spontaneously vanish from the queue. 

Theorem 7: If the Enq of x precedes the Enq of y, and if y 
has been dequeued, then either x has been dequeued or 
there is a pending Deq concurrent with the Deq of y. 

Proof: Any derivation showing that H is linearizable must 
use Axiom C to enqueue x before enqueuing y, hence by 
Lemma 5 the derivation must apply Axiom C to dequeue x 
before it can dequeue y. The Deq invocation that removed x 
may have returned, or it may ba pending. I 

Items do not spontaneously appear in the queue. 

Theorem 8: If x has been dequeued, then it was 
enqueued, and the Deq operation does not precede the Enq. 

Proof: Any derivation showing that (q, P) E Pass, and x 
= first(q) must include an earlier application of Axiom C 
showing that: 

<q’, P’> E Possj * <ins(q’,x), P’ - {Enq(x) A}> E Possi 
which is legal only if the invocation has occurred. I 

4.2.1. Two Lemmas about Concurrent Queues 

Before we turn to verification of implementations, we state 

and prove two lemmas about queues that will be used to help 

verify the queue implementation of the next section. 

In a derivation, an Enq inierence for x is an instantiation of 

Axiom C of the form: 

<qi, Pi> E Possk =+ <ins(qi,x), Pi - {Enq(x) A)> c Pass, 

A Deq inference is defined analogously. 

Two inferences commute in a derivation if their order can 

be reversed without invalidating the derivation. A derivation 

showing that <q, P> E Pass, is in canonical form if each Enq 

inference for an item in q occurs “as late as possible,” i.e., it 

does not commute with the next inference in the derivation. 

Lemma 9 implies that if x is in q, the event following the 

Enq inference for x is either the return event for x, or the 

return event for an item that follows x in q. 

Lemma 9: If 6 is a canonical derivation showing that <q, 
P> E Pass,, and x is an item in q, then the inference following 
the Enq inference for x is either the Enq inference for the item 
following x in q, or an application of Axiom R for the matching 
response to Enq(x). 

Proof: We show that x’s Enq inference commutes with all 
other inferences. If the next inference in 6 is the Deq 
inference for an item y, then 6 cannot be canonical, because: 

<I+ Pi> E Pass, 
* <ins(qj,x), Pi - {Enq(x) A)> E Possk 
* <rest(ms(qi,x)), Pi - {Enq(x) A, Deq() B}> E Posq, 

is equivalent to: 

<qi’ Pi’ E Pass, 
* <rest(q$),P. - (Deq() B)> E Pass, 
* <ins(rest(ql),x), Pi - {Enq(x) A, Deq() B)> E Posq, 

Here, we exploit the observation that because x is in q, qi 
must be non-empty, hence rest(ins(q.,x)) = ins(rest(q.),x). 

Similar arguments show that x’s i&q inference cAmmutes 
with all applications of Axiom I, and with a)l applications of 
Axiom R for non-matching response events. Finally, we 
observe that any Enq inference for an item in q must follow all 
Enq inferences for items whose Deq inferences appear in 6. I 

Lemma 10 states that we can consider equivalence 

classes of queues rather than individual queues. 

Lemma 10: If <q, P> E Pass,, and q* is a queue value 
constructed by rearranging the items of q in an order 
consistent with the partial precedence order of their Enq 
operations, then <q*, P> E Pass,. 

Proof: We argue inductively that if there exists a 
canonical n-step derivation that <q, P> E Pass,, there also 
exists a canonical n-step derivation that <q*, P> E Pass,. 

Base step: Trivial for n = 0 where q = emp. 
Induction hypothesis: If <q, P> E Pass, has a canonical 

derivation of length less than n, <q*, P> E Pass,.,, has a 
canonical derivation of the same length. 

Induction step: Given an n-step canonical derivation 6 
that <q, P> E Pass,, we construct an n-step canonical 
derivation 6’ that <q*, P> E Pass,. If the last step of S is an 

application of Axiom I or R, then q,., = qn, and we have an 
n-l step canonical derivation that <q,, P,,,) E Poss,.,,,. The 
induction hypothesis yields an n-l step canonical derivation 

that <q* , PJ E Poss,~, , and reapplying the last inference 

yields a derivation that (q’, P,,) E Pass,. 
Otherwise, the last step of 6 is an Enq or Deq inference, 

which can be discarded to yield an n-l Step CanOniCal 

derivation that <q,., , P,,,> E Pass,. Suppose the discarded 
inference is an Enq inference for x by A. Define q,., * to be q* 

19 



with x deleted from the queue. By the induction hypothesis, 
there exists an n- 1 step canonical derivation a,-, l that <qh-, l , 
P,-,> < Pass,. If x is the last element in q*, then we 
construct 6’ using Axiom C to enqueue x to q,,,*. 
Otherwise, let y be the item immediately following x in q’, let 
B be the process that enqueued y, and let the jth inference of 
6 ,,, l be the Enq inference for y. By Lemma 9, the next event 
in the history is the return event for some item z that follows x 
in q’. Since z’s Enq operation is concurrent with x’s Enq 
operation, ‘Enq(x) A’ E Pi’. We construct 6’ as follows: all 
inferences before j are unchanged, and the jth inference of 
6’ is x’s Enq inference: 

<qi*, Pi’> E Pass, 
=3 <ins(qi’,x), Pi* - (Enq(x) A}> < Pass, 

which is justified because ‘Enq(x) A’ is in Pi’. For j < k < n, 
the kth inference of 6’ is the (k.l)st inference of 6, with 
ins(qi+,x) substituted for qi* and P,’ for Pk. To show that 6* 
is sound, we must check that each axiom’s pre-condition is 
still satisfied. The result is immediate for applications of 
Axioms I and R, as well as for Enq inferences, since it is 
always legal to append an Enq to a history. For Deq 
inferences, we observe that every daqueued item was 
enqueued before x, hence at each Deq inference, the value at 
the front of the queue is unchanged. Finally, 6’ is canonical 
because the Enq inferences for x and y do not commute. 

Suppose the discarded inference was a Deq inference, 
where first(qJ = x. Define q,,; to be the queue value 
such that first(q,-,*) = x and rest(q,-,*) = q*. By the 
induction hypothesis, there exists a canonical n-l step 
derivation S,., l that <q,-, l , P,.,> E Poss,. Since ‘Deq() A’ E 
P “-,, we can use Axiom C to extend IS,,, * to a canonical 
derivation 6’ such that <rest(q,.,*), P,,, - {Deq() A}> = <q’, 
P,> E Pass,. I 

5. Verification: Abstraction Functions Revisited 

This section proposes a verification methodology for 

implementations of linearizable concurrent objects. We 

propose a model for data type implementations and define a 

correctness condition in Section 5.1. We give an example of 

a queue implementation and prove its correctness in Section 

5.2. 

As a first step, let us review how to verify a sequential data 

type implementation [14,9]. An implementation consists of 

an abstract type A, the type being implemented, and a 

representation (or rep) type R, the type used to implement 

A. The subset of R values that are legal representations is 

characterized by a predicate called the rep invariant, 9: R + 

bool. The meaning of a legal rep is given by an a&fraction 

function, A: R -+ A, defined only for values that satisfy the 

invariant. 

An abstract operation u is implemented by a sequence, p, 

of rep operations that carries the rep from one legal value to 

another, perhaps passing through intermediate values where 

the abstraction function is undefined. The rep invariant is 

thus part of both the precondition and post-condition for 

each operation’s implementation; it must be satisfied 

between abstract operations, although it may be temporarily 

violated while an operation is in progress. An 

implementation, p, of an abstract operation, a, is correct if 

there exists a rep invariant, f, and abstraction function, A, 

such that whenever p carries one legal rep value r to another 

r’, a carries the abstract value from A(r) to J(r’). 

For sequential objects, the rep invariant must hold at the 

start and finish of each abstract operation, but it may bs 

violated while an operation is in progress. For concurrent 

objects, however, it no longer makes sense to View the 

object’s representation as assuming meaningful values Only 

between abstract operations. Instead, operations must be 

implemented to behave correctly for rep values that reflect 

the incomplete effects of concurrent operations. To capture 

the effects of interleaving, the notions of rep invariant and 

abstraction function must be extended to encompass 

transient representation values reflecting the incomplete 

effects of concurrent operations. 

5.1. Definitions 

An implementation is a set of histories in which events of 

two objects, a representation object r of type R and an 

abstract object a of type A, are interleaved in a constrained 

way: for each history H in the implementation, (1) the 

subhistories Hlr and H(a satisfy the usual well-formedness 

conditions; and (2) for each process P, each rep operation in 

HIP lies within an abstract operation. Informally, an abstract 

operation is implemented by the sequence of rep operations 

that occur within it. 

An implementation is correct if for every history H in the 

implementation, H]a is linearizable. 

The rep invariant f must be continually satisfied and the 

abstraction function continually defined not only between 

abstract operations, but also between each step in the 

sequence of rep operations implementing an abstract 

operation. The non-determinism inherent in a concurrent 

computation gives our abstraction functions a different flavor 

from their sequential counterparts. We redefine the 
abstraction function so that it maps each rep value to a (non- 

empty) set of abstract values: 

A:R-t2A 
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To show correctness, the verification technique for 

sequential implementations is generalized as follows. 

Assume that the implementation of r is correct, hence Hir is 

iinearizable for all H in the implementation. Let Lin(H(x) be 

the set of linearized values for x in H. Our verification 

technique focuses on showing the following property: 
For all r in Lin(Hlr), 3(r) holds and A(r) E Lin(l-ila) 

This condition implies that Lin(H(a) is non-empty, hence 

that Hla is linearizable. Note that the set inclusion is 

necessary in one direction only; there may be linearized 

abstract values that have no corresponding representation 

values. Such a situation arises when the representation 

“chooses” to linearize concurrent operations in one of 

several permissible ways. 

5.2. Queue Example 

Consider the following concurrent queue implementation. 

The representation is a record with two components: ifems 1s 

an array having a low bound of 1 and a (conceptually) infinite 

high bound, and back is the (integer) index of the next 

unused position in items. 
rep = record {back: int, items: array [i tern]} 

Each element of items is initialized to a special null value, and 

back is initialized to 1. 

Enq and Deq are implemented as foliows: 
Enq = proc (q: cvt, x: item) 

i: int := INC(q.back) X Allocate .a new slot. 
STORE(q.items[i], x) '6 Fill it. 
end enq 

Deq = proc (q: cvt) returns (item) 
while true do 

range: int := FETCH(q.b&ck)-1 
for i : int in 1.. range do 

x: item := SWAP(q.itams[i].null) 
if x -= null then return(x) end 
end 

end 
end deq 

An Enq execution occurs in two atomic steps: an array slot is 

reserved by atomically incrementing back, and the new item 

is stored in items. * Deq traverses the array in ascending 

order, starting at index 1. For each element, it atomiCallY 

swaps null with the current contents. If the value returned iS 

not equal to null, Deq returns that value, otherwise it tries the 

next slot. If the index reaches back-i without enCOUntering a 

non-null element, the operation is restarted. All atomic steps 

can be interleaved with steps of other operations. For brevity, 

we leave out the axioms and traitq for records and arrays, 

which can be straightforwardly given (see [20, lo]). 

Let R be a complete history for a queue representation, 

and let items(R) be the set of items stored in the array, but not 

swapped out. Let -+ be the partial order suck that x +R y if 

the STORE operation for x precedes the INC operation for y 

in R. If r is a linearized value for R, items(r) = items(R) 

corresponds to the set of non-null items in the array, and 4r 

= -$ is their partial order. Finally, we extend the trait of 

Figure 2-2 by defining the total order, <q, and the operator, 

items, such that: 
first(q) <q first(rest(cj)) 
items(emp) = {} 
items(ins(q, e)) = {e) U items(q) 

The implementation has the following rep invariant: 
3(r) = (r.back 2 1) 

A (i 2 r.back s r.items[i] I null) 
A (Ibound(r.items) = 1) 

and the following abstraction function: 
A(r) = {q I items(r) = items(q) A +r E <J 

In other words, a queue representation value corresponds 

to the set of queues whose items are the items in the array, 

sorted in some order consistent with the precedence order of 

their Enq operations. Thus, our implementation allows for an 

item with a higher index to be removed from the array before 

an item with a lower index, but only if the items were 

enqueued concurrently. 

Figure 5-l shows a sequence of abstract operations of 

Figure 3-l along with their implementing sequence of rep 

operations. Column two is the set of abstracted linearized 

rep values. Column three is the set of linearized abstract 

values. Our correctness criterion requires showing that each 

set in column two is a subset of the corresponding set in 

column three. 

*lNC returns the value of its aqument from before the invocation, not 
the new incremented value. 
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History 

EnNO A 
INC(q.back) A 
WV A 
STORE(q.items[l].x) A 

EnqM B 
INC(q.back) B 
ok(2) B 
STORE(q.items[2],y) B 
WI B 

WI B 
WI A 

WI A 
WO C 
FETCH(q.back) C 
w4 c 
SWAP(q.items[l],null) C 
Wx) c 

Wx) c 

“rCLin(H@) 

m 
I[11 
Ull 
msx11 
mxl) 
mw 
mx11 
m~[xl~[Yl~~x~Yl~ 
aYldx~Yl1 
~[YISX~YII 
fb*Yll 
~hYl1 
UX~YII 

:Ki 
~~::YlsYll 
{[Yll 
{[Yll 

Lin(Hla) 

Figure 5.1: A Queue History 

Figure 5.2: Annotated Queue Implementation 

Figure 5-2 shows the Enq and Deq implementation 

annotated with assertions that are true before and after each 

abstract invocation and response and each rep operation. It 

is convenient to keep as implicit auxiliary data the partial 

order, -+ on items in the array, and the set, P, that contains 

the invocations that have not yet been applied to the rep. 

If I is a set of items partially ordered by 4, define: 

(I, -4 = {q II = items(q) and 4 C_ <a} 

and 

<(I. -4, P> = {<cl* P> I q E (I, 41 

The partially ordered set of queue items, (I, -4, captures 

the nonquiescent abstract state of the queue, i.e., the 

possible values of the queue while there are concurrent Enq 

and Deq operations or pending invocations. Notice that we 

can rewrite the abstraction function as A(r) = (items(r), +$ 

<(I, 4), P> identifies each of the possible sets of queue values 

with a set of pending invocations, thereby forming a set of 

(queue) possibilities. 

Lemma 11: If x is a maximal element with respect to 4, x 
C I, ‘Enq(x) A’ B P, and <(I, +), P U (Enq(x) A)> c Pass, then 
<(I u {x), 4) P> c Pass. 

Proof: Pick any q E (I, +), and any q’ f (I U (x}, 4). 
Since <q, P U (Enq(x) A]> c Pass, <ins(q,x), P> E POSS by 
Axiom C. Since ins(q,x) is an element of (I U {x}, 4), <q’, P> E 
Pass by Lemma 10. I 

Lemma 12: If <(I, +), P U (Deq() A}> C Pass, then for all 
x such that x is a minimal element of I, <(I - {x), -4 P> C 

Pass. 
Proof: Pick any q E (I,+) such that first(q) = x, and any 

q’ E (I - 1x1, -4. Since <q, P U {Oeq() A}> E Pass, <rest(q), 
P> E Pass by Axiom C. Since rest(q) is an element of (I - (x}, 
4) <q’, P> E Pass by Lemma IO. I 

Lemma 11 will allow us to show that the set of linearized 

queue values does not change over a STORE operation and 

similarly, Lemma 12, for a SWAP operation, by using 4, for + 

and by recalling that for each <v, P> E Pass, v is a linearized 

value. We use the next two lemmas to satisfy the conditions 

of the previous two lemmas. 

Lemma 13: Enq enqueues an item x that is maximal with 
respect to + 

Proof: Suppose not. Then after the STORE there exists 
some non-null item y such that x +r y. By definition of -$, we 
have that the STORE for x precedes the INC for y. Thus, 
index(q.items, x) < index(q.items, y). Since index(q.items, x) 
= q.back, then q.back < index(q.items, y). By the rep 
invariant, for all i, i 2 q.back, q.items[i] = null so that 
q.items[index(q.items, y)] = null, i.e., y = null, a 
contradiction. I 

Lemma 14: Deq removes and returns an item x that is 
minimal with respect to -$. 

Proof: Suppose not. Then there exists non-null Y such 
that Y +r X. For x to be returned from within the for loop, the 
SWAP of x must happen before the STORE of y. The STORE 
of x must happen before the SWAP of x and the 1NC Of x 
before the STORE of x, so then the INC of x must Occur 
before the STORE of y, which implies that x and Y are 
incomparable, a contradiction, I 

Here is a proof of correctness. 
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{true} 
Enq = proc (q: cvt, x: item) 
{I=’ = P U lEnqM AJJ 

itruel 
i: lnt := INC(q.back) 
(q.back’ = q.back + 7 /\i = q.backJ 

{‘Enqlr) A’ E PJ 
STORE(q.items[iJ, x) 
{P’ = P - {Enqh) A) h index(q.items’, XJ = t h 

x E max(items(q’JJ h q.back <@back’) 
X A concurrent Enq might bump q.back before the Store. 

{true) 
end Enq 
{‘Enqtx) A’ 4 P’J 

{true) 
Deq = proc (q: cvt) returns (item) 
(P’ = P U lDeqOAJJ 

while true do 

UrueJ 
range: in! := FETCH( q.back)-1 
{range = q.back-lJ 

for i : int in 1. . range do 

WueJ 
x: item := SWAP(q.items[l],null) 
P’ = P - {Des/) A) A lx = null V x E min(items(q’JJJJ 

if x -= null then return(x) end 
end 

end 
end Deq 

Figure 5-2: Annotated Queue Implementation 

Theorem 15: The queue implementation is correct. 

Proof: Assuming every rep history is linearizable, we 
need to show that every queue history, H]q, is linearizable. It 
suffices to show that the “subset” property, 
UrELin i&r) C Lin(Hjq), remains invariant over abstract 
invoca ion and responses and over complete rep operations. I- 
Thus, it can be conjoined to the pre- and post-conditions of 
Figure 5-2 as justified by the Owicki-Gries proof method [23]. 
Axioms I and R give us the result for abstract invocation and 
response events. INC and FET’CH leave the abstraction 
function the same. Thus, we are left with two cases, STORE 
and SWAP. By Lemma 13 we know that STORE adds a 
maximal item and thus, we can apply lemma Ii to show that 
the subset property is preserved. Similarly, by Lemma 14 we 
know that SWAP removes a minimal item and thus, we can 
apply Lemma 12 to show that the subset property is 
preserved. 

Proofs of non-interference between pre- and post- 
conditions and that the rep invariant holds are 
straightforward. I 

An Aside: Handling Critical Regions 

An implementation without critical regions, such as the 

previous queue example, can be verified by defining a rep 

invariant that is continually satisfied, and an abstraction 

function that is continually defined. That is, each step of the 

sequence of representation operations implementing an 

abstract operation must preserve the rep invariant, and 

exactly one such step causes the operation’s effects to 

become visible to other operations. 

If an operation creates a temporary inconsistency, 

perhaps hidden from concurrent operations by some form of 

critical region, then it may not be possible to define a 

meaningful abstraction function directly in terms of the 

representation. Such inconsistencies can be eliminated by 

augmenting the representation with appropriate auxiliary 

data, and similar proof techniques as used in our queue 

example can be used for verification, 
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6. Related Work 

The axiomatic approach to specifying sequential 

programs has its origins in Hoare’s early work on verification 

[13] and later work on proofs of correctness of 

implementations of abstract data types [14], where first-order 

predicate logic pre- and post-conditions are used for the 

specification of each operation of the type. The algebraic 

approach, which defines data types to be heterogeneous 

algebras [3], uses axioms to specify properties of programs 

and abstract data types, but the axioms are restricted to 

equations. Much work has been done on algebraic 

specifications for abstract data types [l ,6,8, 29,4,5,28, 161; 

we use more recent work on Larch specifications [lo, 1 l] for 

sequential program modules. 

Owicki and Gries extended Hoare’s axiomatic approach 

to handle concurrent programs [24] by including axioms for 

general concurrent programming language constructs. Apt 

et al. [2] use a similar approach for CSP [15] in particular, 

These approaches differ from ours by focusing on control 

structures such as the parallel operator, leaving data 

uninterpreted. 

Lamport [la] has proposed a model and assertion 

language for specifying properties of concurrent objects. His 

approach is more general than ours, as it addresses liveness 

as well as safety properties, and non-linearizable as well as 

linearizable behavior. Our approach, however, focuses 

exclusively on a subset of concurrent computations that we 

believe to be the most interesting and useful. 

Our notion of linearizability generalizes and unifies similar 

notions found in specific examples in the literature. Lamport 

gives a specification for a linearizabte concurrent queue 

permitting one enqueuing process and one dequeuing 

process. The queue’s state is defined as a COlleCtiOn Of Stats 

functions mapping time to algebraic values. One State 

function takes on queue values; it may change only while 

operations ace in progress. The values of the other State 

functions are used as control flags to prevent operations from 

taking effect more than once. His queue-valued state 

function roughly corresponds to our abstraction function 

except that the state function maps to a single queue value, 

not a set of queue values. His technique, therefore, could not 

be used to prove our queue implementation correct because 

of the inherent nondeterminism in our example. 

Misra [22] has proposed an axiomatic treatment of 

concurrent hardware registers in which the register’s value is 

expressed as a function of time. Restricted to registers, our 

axiomatic treatment is equivalent to his in the sense that both 

characterize the full sat of linearizable register histories. 

Theorems 3 and 4 capture two properties of Misra’s registers. 

Misra’s explicit use of time in axioms is appropriate for 

hardware, where reasoning in terms of the register’s 

hypothetical value is useful as a guide to hardware designers. 

Our approach, however, is also appropriate for objects 

implemented in software, as we have found that reasoning 

directly in terms of partial orders generalizes more effectively 

to data types having a richer set of operations. 

Gottlieb et al. [7] have investigated architectural support 

for implementing concurrent objects without critical regions, 

an approach illustrated by our linearizable implementation of 

a FIFO queue. They present a linearizable implementation of 

a concurrent queue (different from ours). The correctness 

condition asserted for their queue, however, is the property 

stated in Theorem 6, which by itself is incomplete as a 

concurrent queue specification since it does not prohibit 

implementations in which enqueued items spontaneously 

disappear from the queue, or new items spontaneously 

appear. As shown by Theorems 7 and 8, such anomalous 

behavior is easily ruled out by our queue axioms and the 

assumption of linearizability. 

7. Discussion 

Without linearizability, the meaning of an operation may 

depend on how it is interleaved with concurrent operations. 

Specifying such behavior would require a more complex 

specification language, as well as producing more complex 

specifications (e.g., Lamport’s [18]). Linearizability provides 

the illusion that each operation takes effect instantaneously 

at some point between its invocation and its response, 

implying that the meaning of a concurrent object’s operations 

can still be given by pre- and post-conditions. 

The role of linearizability for concurrent objects Is 

analogous to the rote of serializability for data base theory: it 

facilitates certain kinds of formal (and informal) reasoning by 

transforming assertions about complex concurrent behavior 

into assertions about simpler sequential behavior. Like 

serializability, linearizability is a safety property; it states that 

certain interleavings cannot occur, but makes no guarantees 
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about what must occur. Other techniques, such as temporal 

logic {27,25, l&18,21], must be used to reaSOn about 

liveness properties like fairness or priority. 

An implementation of a concurrent object need nOt 

realize all interleavings permitted by linearizability,. but all 

interleavings it does realize must be linearizable. The actual 

set of interleavings permitted by a particular implementation 

may be quite difficult to specify at the abstract level, being the 

result of engineering trade-offs at lower levels. As long as the 

object’s client relies only on linearizability to reason about 
safety properties, the object’s implementor is free to support 

any level of concurrency that appears to be cost-effective. 

Linearizability provides benefits for specifying, 

implementing, and verifying concurrent objects in 

multiprocessor systems. Rather than introducing complex 

new formalisms to reason directly about concurrent 

computations, we feel it is more effective to transform 

problems in the concurrent domain into simpler problems in 

the sequential domain. 
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