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\Ve describe the design of a transaction facilit y for a language that supports higher-order functions.

tVe factor transactions into four separable features: persistence, undoability, locking, and threads.

Then, relying on function composition, we show how we can put them together again. Our

modular approach toward building transactions enables us to construct a model of concurrent,

nested, multi threaded transactions, as well as other nontradi tional models where not all features

of traditional transactions are present. Key to our approach is the use of higher-order functions

to make transactions first-class. Not only do we get clean composability of transactional features,

but also we avoid the need to introduce special control and block-structured constructs as done

in more traditional transactional systems. We implemented our design in Standard ML of New

Jersey.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifi-

cations—appltcatt ue (anj u,ages; D,3,3 [Programming Languages]: Language Constructs and

Features—control structures; modules, packages; pToced,lres, functions, and subroutines; D.4.1

[Operating Systems]: Process Management—concurrency; mutual exclusion; synchronization;

D.4.5 [Operating Systems]. Reliability—jaulf -tolerance
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1. INTRODUCTION

Transactions are a well-known and fundamental control abstraction that arose from

the database community. They have three properties that distinguish them from

normal sequential processes: ( 1 ) A transaction is a sequence of operations that is

performed at omlcally ( “all-or-nothing”). If it completes successfully, it commds;

otherwise, it aborts and has no effects. (2) Concurrent transactions are sertalwable

(appear to occur one-at-a-time), supporting the principle of isolation. (3) Effects of

committed transactions are perwstent (survive failures). In our model, transactions

can be nested.
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The goal of our work is to provide modular support for transactions in a language

that supports higher-order functions, By “modular” we mean

—Fa et ored. Each key feature of transactions is supported independently of the

others.

—Composable. Each individual feature can be composed with any other in a mean-

ingful way. Furthermore, transactions themselves are composable with other

features of the language.

As part, of the Venari project, we chose to pursue these goals in the context of

Standard ML of New Jersey [hlilner et al. 1990]. SML/NJ supports higher-order

functions, has a powerful modules facility, is freely available, and has an easily

modified implementation. We broke transactions into these four separate features:

—Perslstenee. Effects of a computation can outlive the computation,

— Undoahtldy. Effects of a computation on the store can be undone.

—Threads. A computation may have multiple threads of control.

—Locks. Reader/writer (R/W) locks can be used to synchronize access to shared

mutable data.

All but the last of these are useful as independent features and represent significant

extensions to the semantics of SML We package each feature into an SML module;

each module exports some key higher-order functions. We then rely on higher-order

function application to enable seamless composition of transactional features.

In the rest of this section we describe our modular approach to transactions and

contrast It with a more traditional approach taken by the transaction community.

In SCci Ion 2 we describe our design: the four building blocks in our model of

transactions and how they compose In Section 3, we explain how we express

our design in SML. We close with discussions evaluating and summarizing our

contributions. Throughout, we discuss related work in relevant sections.

1 1 Our Approach

Essential LO our approach is linguistic support for higher-order functions, Given a

function f we want 10 be able to create a transactional version off by applying the

transact function to it. Thus,

(transact f) a

has the effect of applying f to a within a transaction. A more typical use is as

follows:

({transact f) a)
handle Abort => [some work]

The Abort exception handler allows some special action to be taken if the transac-

tion aborts. Since (transact f ) is simply a function and functions are first-class,

our approach yields first-class transactions,

Most importantly, we want to be able to treat the function f as a black box. We

want to he able to “wrap” transact around any f without changing the source

code of f (or at most by applying a mechanical transformation to it). Someone

else may have written f; it might even be multithreaded. Without being able to
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wrap simply a transaction around a nmltithreaded program, for instance, we would

be forced to recode each separate thread in f as a concurrent nested transaction

of a top-level transaction. This violates one aspect of modularity since the entire

program would have to be recoded.

Consider a concrete (and the canonical) example where we want to transfer money

from a savings account to a checking account in a bank. The transfer involves

withdrawing money from the savings account and depositing it in the checking

account. We need to make sure that either both the withdrawal and the deposit

succeed, or that neither of them occurs. So, we use a transaction to effect the

desired behavior, where the actual work of the transfer is done by the do-transfer

function:

fun transfer (savings, checking, amount ) =

let fun do_transfer () =

(withdraw (savings, amount); (***)

deposit (checking, amount)) (***)

in

transact do.transfer ()

end

We wrap a transaction around the do.transf er function so that if anything goes

wrong, e.g., if withdraw raises an exception indicating that savings has insufficient

funds, the whole transfer will be aborted. According to our semantics for transact

(Section 3.2), if the transfer aborts, we reraise the exception that caused the abort.

The do-transfer function could even have been multithreaded. For instance, if

the lines marked with (***) above appeared as following:

(fork (fn () ‘> withdraw (savings, amount)) ;

deposit (checking, amount ) )

then do-transfer could still be turned into a transaction simply by applying

transact to it.

1.2 The Traditional Approach

In contrast, a more traditional approach supported by transactional systems and

languages such as CICS [Helland 1985], R* [Lindsay et al. 1984], Camelot [Ep-

pinger et al. 1991], Quicksilver [Haskin et al. 1988], Argus [Liskov and Scheifler

1983], Arjuna [Shrivastava et al. 1988], and Avalon/C++ [Detlefs et al. 1988], re-

qllires separate control constructs like begin-transaction and end-transaction

to delimit a transaction’s boundary.

For example, a skeleton of the bank transfer operation in Camelot would appear

as in Figure 1 [Eppinger et al. 1991]. There are several disadvantages to this

approach. It requires syntactic extensions to the language to support transactions.

Such textual extensions do not compose conveniently, nor can such transactions be

manipulated as first-class values. Also the lack of exception handling forces the use

of’ the special status variable. The programmer could easily forget to check the

status after a transaction, in which case aborts would be ignored. Furthermore it

is up to the programmer to propagate aborts in nested transactions.

ACM Transwtmn. on Programming Languages and Systems, Vol 16, No 6, November 1994



1722 . N. Haines et al.

BEGIN.TRANSACTION

. . .
if (savings.balance < amount) {

ABORT(ERROR-.INSUFFICIllNT_FUNDS) ;

}

. . transfer money . . .

END_TRANSACTION(status)

If (status == ERROR_INSUFFICIENT_FUNDS) {

Fig. 1. A bank transaction in Camelot.

2 DESIGN OVERVIEW

Transactions may execute at the top level (Figure 2a), be nesfed inside one another

(Figure 2b), or execute concurrently with each other (Figure 2c). Each may be

m ult Lth rea ded (Figure 2d) The combination of all these kinds of transactions yields

concurrent, nested, multithreaded transactions (Figure 2e). In our pictures, we use

a wavy line to denote a thread and a box to delimit the scope of a transaction;

time advances from left to right. We appeal to tree terminology in discussing

nested transactions: a transaction has a unique parent, a set of children, and sets

of ancestors and descendants. A transaction is considered its own ancestor and

descendant.

Sin ce we separate the basic transactional features into individual components,

we need to introduce terms that distinguish a regular transaction from one that

supports some but not all features. A regular transact~on is persistent, undoable,

and locking. We use the term perszst-only transaction for a computation that

supports only persistence; we use the term persistent transaction for a computation

that supports at least persistence. We use similar terms for undo and lockzng.

When we say “transaction” unqualified, wemeana transaction ofanykind (regular,

persist-only, undo-only, locking-only, etc.). We will argue in Section 2.2 that all

concurrent transactions need to be locking transactions as well.

In Section 2.1 we consider top-level and nested transactions of each flavor; in

Section 2.2, we discuss concurrency, and more generally, different combinations of

the features.

2.1 The Pieces

2.1.1 Persistence. A persistent value is one that outlives the computation that

created it. In particular, a persistent value will survive a “crash. ” We support a

model of persistence popularized by the persistent programming language commu-

nity [Atkinsonet al. 1983]: orthogonal persistence. In this model, all data reachable

by pointer dereferencing from a distinguished location, the persistent root, are per-

sistent. Figure 3a depicts the execution of a function f in a top-level persist-only

transaction; when it terminates, all persistent data modified by the transaction are
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Fig. 2. Nesting, concurrency, and multithreading.
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Fig. 3. Persistence and undoability,

atomically saved to stable storage. If a crash occurs during the execution of f,

we recover the last committed state from stable storage. All data not reachable

from the persistent root are lost. Conceptually, a crash aborts ali top-level trans-

actions (of any flavor) and terminates all threads, so there 1s no mechanism for a

persist- oniy transaction to abort in isolation.

A variety of approaches can be taken to guarantee that the effects of top-level

transactions on stable storage are atomic. I?orexample, ourimplementation makes

the effects of nested transactions permanent only when the enclosing top-level trans-

action commits. This approach simplifies crash recovery but assumes that the num-

ber of modifications done by nested transactions is relatively small. An alternative

approach would make nested transactions’ effects permanent when they commit,

but then crash recovery would have to undo such effects.

2.1.2 Undoabllzty. A top-level undo-only transaction has no special effect if it

commits. If it aborts then all changes it made to the store are undone. Our

semantics for undo differs from traditional transactional systems because changes to

volatile data are undone in addition to changes to persistent data. Figure 3b depicts

the execution of a function f whose effects may possibly be undone. At the start

(conceptually) a checkpoint of the store is made. If it terminates successfully, then

nothing unusual happens; if not, then f‘s effects are rolled back to the checkpointed

state, at which point a possibly different computation g can begin.

Undo-only transactions may commit or abort regardless of whether they are

nested. However, since a nested transaction’s commit is relative to the action of its

parent, if the parent aborts then the effects of the (committed) nested transaction

must be undone along with the parent’s other changes. Thus, when a child trans-

action commits it hands back ( “antiinherits” ) to its parent its set of changes to the

store.
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2.1.3 Threads. Threads are lightweight processes that communicate using shared

mutable data and synchronize by acquiring and releasing mutual exclusion (mutex)

locks. Individual threads may fork and start other computations, thereby providing

a way to begin concurrent, nested transactions.

We do not require threads within a transaction to be serializable; thus, they can

engage in two-way communication using shared mutable data. Otherwise, we could

not wrap transact around existing multithreaded code without modification.

2.1.4 Locks. Two-phase reader/writer (R/ W) locks are a well-known mechanism

for ensuring serializability. Alone, they provide no support for commit or abort.

A transaction acquires a R/W lock and holds it until the transaction commits or

aborts, thereby avoiding the problem of “cascading aborts.” Write locks guarantee

that any two concurrent transactions modify disjoint sets of data in the store, unless

one is a descendant of the other.

Under Moss’s standard locking rules for nested transactions [Moss 1985], trans-

actions acquire locks subject to the following rules:

—A transaction may acquire a read lock if all writers are ancestors of the transac-

tion.

A transaction may acquire a write lock if all readers and writers are ancestors of

the transaction.

When a transaction commits, all its locks are antzznhertted, i.e., handed off to

the parent or released if the transaction is top-level. If the transaction aborts,

all its locks are released.

In our model, however, a parent transaction may run concurrently with its children,

so we use a variation of these rules in which we must check that the read (or

write) condition holds not only when a lock is acquired, but also every time the

transaction reads (or writes) the associated data object. This check is reasonable

for SML programs, which use mutable data infrequently, in contrast to imperative

languages such as C.

22 Putting the Pieces Together

Nesting enables us to construct a top-level regular transaction from an undo-only

transaction nested inside a top-level persist-only transaction (Figure 3c]. If the

undo-only transaction commits then all changes to the stable store are saved by

the persist-only transaction. If the undo-only transaction aborts, all changes are

rolled back. Thus when the persist-only transaction saves all changes to the stable

store, there will be no changes on behalf of the aborted undo-only transaction to

save; the net effect is that the stable store is in the same state as at the beginning

of the transaction.

More generally, each combination of the different kinds of transactions has a well-

defined meaning. For example, an undo-only transaction can have a persist-only

transaction nested within it, and vice versa. A transaction can have nested within

it concurrent transactions of different flavors.

To support complete “mixing-and-matching” of features, however, we impose two

rules, one to deal with concurrency and one to deal with arbitrary nesting:
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(1) All accesses to mutable data shared among concurrent transactions (of any

flavor) must be coordinated by R/W locks.

(2) Modifications to the persistent store will survive a crash only if the transaction

cent aining the modifications and all its ancestors commit.

The first rule is needed to guarantee the serializability (i.e., noninterference) of

transactions We enforce the rule by checking on each access of a mutable object

that the appropriate read or write condition holds,

The second rule gives programmers consistency guarantees regarding the state of

stable storage. Our implementation uses this rule to justify delaying writes to stable

storage until the commits of top-level transactions. Delaying writes is reasonable

for our application domain (short-lived, small transactions) and avoids rolling back

partially completed transactions.

Finally, programmers using threads outside of any transaction should not expect

strong consistency guarantees: otherwise they should use transactions. Such threads

have no interaction with the undo mechanism; their effects cannot be undone. Such

threads may modify the persistent store, but since they do so outside of a persistent

transaction, programmers cannot expect these changes to be immediately reflected

in stable storage. We choose to write such changes to stable storage whenever a

top-level persistent transaction completes; we must do such writes at these times

because the committing transaction may have depended on the value of persistent

data modified by the thread. Other transactional facilities that allow threads to

exist outside transactions, e.g., Camelot [Eppinger et al, 1991] and Encina (Dixon

1993 private communication), have similar caveats.

3 EXPRESSING OUR DESIGN IN SML

We are able to express our design in a simple, straightforward, and elegant manner

in SML. In the next three sections we first individually describe the SML interfaces

for the four transactional building blocks, then show how we put them all together,

and finally show how we can use our constructs to implement the bank example.

Implementation details for persistence are discussed in greater detail by Nettles and

Wing [1992]; for undoability, by Nettles and Wing [1992] and Morrisett [1993]; and

for threads in SML, by Cooper and Morrisett [1990] In Figures 4–8 we show only

the port Ions of the PERS, UNDO, RWLOCK, and THREADS interfaces that are relevant to

this article. The Venari/ML technical report gives further details of these interfaces

and examples showing their use [Wing et al. 1993].

3.1 The Pieces

31 1 Persistence. The key higher-order function exported by PERS 1s persist 1

The expression (persist f ) a has the effect of evaluating f a. If it is the outer-

most call of persist and f a terminates, f‘s changes to persistent data are saved

to disk. If f does not terminate, e.g., a crash occurs during its execution, none of

f‘s changes are saved.

All data reachable from the persistent root are persistent, and thus, recoverable.

Any SML value can be made persistent simply by arranging that it be reachable

1 We use the underscore character, as in ~-a and ~-b, for weak (imperative) type variables [Milner

et al. 1990].
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signature PERS = sig

val persist : (’a -> ‘_b) -> ‘a -> ‘_b

val bind : identifier * ~a -> unit

val unbind : identifier -> unit

val retrieve : identifier -> ‘a

. . .

end

Fig. 4. PERS interface.

signature UNDD = sig

val undoably : (’a-> ‘_b) -> ‘a-> ‘_b

exception Restore of exn

. . .

end

Fig. 5. UNDO interface.

from the persistent root. The other functions of IPERS allow manipulation of a

symbol table that stores bindings between identifiers and values; the table itself

is reachable, Thus, we can store and retrieve persistent values by name.

Our implementation uses a separate persistent heap to store all values reachable

from the persistent root. Modifications to these values may cause values in the

volatile heap to become reachable as well. On commit, any newly reachable values

must be moved into the persistent heap, and all modifications to persistent values

must be written to stable storage. We use the Recoverable Virtual Memory sys-

tem [Satyanarayanan et al. 1993] to provide an efficient implementation of stable

storage based on logging.

3.1.2 Undoabzltty. UNDO exports the undoably function, which allows users to

make undoable changes to the store, an essential feature of a transaction that may

abort. The undoably function is a wrapper for any function f such that if the

exception Restore is raised while executing f, all of f’s effects on the store are

undone; undoably f behaves exactly like f ifno exception is raised. The changes

undone include those done within any nested transactions.

Thesemantics ofuncloably isdefined only with respect tothe store. In particular,

a transaction’s effects through 1/0 (e.g., writing to a terminal) are undefined.

We implement undo by logging the location and o] d value of every mutation.

Upon abort we replay the log in reverse order to restore the old values. To anLi-

inherit changes to the store we splice the child transaction’s log onto the parent’s

log.

In most imperative languages this implementation would have unacceptable per-

formance. In SML/NJ it works well for several reasons. First, assignments are

relative rare. Second, the locations of many assignments are already logged to

support generational garbage collection [Lieberman and Hewitt 1983; Ungar 1984].
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signature RW.LOCK = sig

eqtype rw.lock

val create.rw_lock:

val acquire.read :

val acquire_write :

. . .

end

Fig 6

signature RW_REF = sig

type ‘a rw_ref

type rw_lock

unit -> rw_lock

rw_lock -> unit

rw_lock -> unit

RWLOCK interface

exception Read_Not_Held

exception Write_Not_Held

val create_rw_ref : ‘_a * rw_lock -> ‘_a rw-ref

val rw_get ‘a rw_ref –> ‘a

val rw_set : ‘a rw_ref -> ‘a –> unit

val lock_of : ‘a rw_ref -> rw_lock

. . .

end

Fig. 7. RW-REF (safe state) interface.

We have simply extended these logs to capture all assignments and to record old

values.

Our implementation for both persistence and undoability assumes that concur-

rent transactions modify disjoint sets of data in the store; this assumption 1s easily

discharged by our first rule (Section 2.2) that concurrent transactions use write

locks for accessing data.

3.1.3 R/W Locks and Safe State

R/WLocks. WeprovideR/MTlockstoenable the programmertoe nforceisolation

and serializability among concurrent transactions. These locks are associated with

mutable objects (see below) and are held per transaction.

A lock is created by a call to createrwlock. It is acqun-ed for reading or

writing by a call to acquirezeador acquire-write respectively. A thread wlthm

a transaction can perform reads and writes on the data protected by a lock, subject

to our variation of Moss’s rules stated in Section 2,1,4. lVhen a transaction commits,

all R/W locks are antlinherited to the parent transaction (if any), or are released

if the transaction is top-level If a transaction aborts, all locks are released.

,$’afe ,State. The only mutable data types in SML are refs and arrays. ‘Thus,

it is easy to provide two structures (the one for refs is shown above) that ensure

that a mutable object is only accessed safely (i.e., when the appropriate locks are
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signature THREADS = sig

val fork : (unit -> unit) -> unit

type mutex

val create. mutex : unit -> mutex

val acquire : mutex -> unit

val release : mutex -> unit

. . .

end

Fig. 8. THREADS interface.

signature SKEIN = sig

datatype ‘a result = Result of ‘a

I Exception of exn

exception Abort

val skein:

(unit -> unit) -> (* initializer*)

(’_b result -> ‘-b result) -> (* completer*)

(’a-> ‘_b) -> (* body *)
~a -> ) b (* result *)

end

Fig.9. SKEIN interface.

held) [Tolmachand Appel 1991; Morrisett and Tolmach 1993]. Reader-wrzterrefs

(RWJtEF) are refs protected by R/W locks; in order for a transaction to access these

objects, it must hold the rw_lock (for reading or writing, as appropriate).

The RWltEFsignature subsunles the SMLpervasive REF signature. The accessing

functions (rw-get ,rw.set) verify that the appropriate read or write conditions hold

according to our variation on Moss’s locking rules (see Section 2.1.4). If the lock is

not held in the appropriate mode, the ReadIotIeld or Write-NotIeld exception

is raised. The lock_of function returns the lock associated with arw_ref.

3.1.4 Threads and Skeins

Threads. The THREADS module exports essential functions for creating a thread,

and for acquiring and releasing mutex locks. Other functions, not relevant here,

support rnanipulatin gcondition variables and thread state. Our interface is similar

to other threads packages for C [Cooper and Draves 1988], Modula-2+ [Rovner

1986], and iModula-3 [Harbison 1992].

The function create-nmtex creates anew mutex value. The function acquire

attempts to lock a mutex and blocks the calling thread until it succeeds. At most

one thread may hold a given mutex at any time. The function release unlocks

a mutex, giving other threads a chance to acquire it. Unlike R/W locks, mutex

locks are short-term, i.e., they are not held for the duration of a transaction. Pro-
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grammers have complete control over when to release them Furthermore, R/W

locks areused tocoordinate transactions, while mutexlocks areused to coordinate

threads within a transaction.

Skezns. We introduce a new abstraction, called a skezn ,2 for encapsulating the

difficult control aspects of a transaction Conceptually a sliem 1s a “generic” tram-

action and implements each of the boxes drawn in Figures 2 and 3. Wlthm a skein

some SML function (the body) is executed The body Itself may fork threads We

assume a barrier synchronization model for skein termmation. The skein will not

finish until the body thread returns a value and all other threads have finished; only

one thread ever leaves a skein. In this respect, a skein is similar to a Qlisp “heavy-

weight future” [Goldman et al. 1989]. All held mutexes must be released before

return. If any thread (including the body thread) running inside a skein raises an

uncaught exception, the skein aborts. Any extant forked threads and child skeins

are killed, and the exception is propagated to the outside. A skein also holds i%/W

locks that are shared among its threads,

A transaction might need to execute certain code within a skein (while the R/W

locks are still held), but after all threads within that skein have completed or died,

Such code might, for example, commit persistent changes to disk or release R/W

locks. Thus, our skein abstraction has the following interface

The body of a skein is executed m a subthread within the skein, while a coufml

thread waits for it to complete. The first two arguments to skein are (1) an

initializer function, which is called in the control thread before the body thread is

forked, and (2) a completer function, which is called in the control thread after the

body has returned and any extant threads have ended. The completer is applied to

the value returned by the body or the exception that caused premature termination,

and it returns a result value that is in turn presented as the result of the call to

skein,

If the body of a skein finishes while subskeins are still executing, the subskeins

are terminated, calling their completer functions with the Abort exception. The

parent skein’s completing function is not called until all subskeins have completed.

We use skeins to implement multithreaded transactions of all kinds, e g , persist-

only and undo-only transactions, by passing in appropriate initializer and completer

functions.

32 Putting It All Together

Putting all these pieces together into a single SML module culminates in our main

VENARI interface, shown in Figure 10. It provides a way for apphcation program-

mers to create and manipulate concurrent, nested, multithreaded transactions. A

transaction is a locklng skezn of threads whose effects are undone if the transac-

tion aborts or made persistent if it terminates normally. lVe require that each

transaction access only safe state

2A skein is a collection of threads.
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signature VENARI = sig

val transact : (’a -> ‘_b) -> ‘a -> ‘_b

structure Pers : PERS

structure Undo : U~DO

structure RW_Lock : RW_LOCK

structure RW_Ref : RW.REF

structure RW_Array : RW_ARRAY

structure Skein : SKEIN

structure Threads : THREADS

end

Fig. 10. Transaction interface.

The various features described inthe previous sections are all used in VENARI’s

main function, transact, which evaluates its argument within a transaction. We

implement transact as a special case of a skein, reusing the initializer and com-

pleter functions defined for persist-only andundo-only transactions:

val init_transact = Undo.init_undo o Pers.init–pers

val complete_transact = Pers.complete_pers o Undo. complete_undo

val transact = Skein skein init_transact cornplete_transact

3.3 implementation of the Bank Example

We give an implementationofa bank account inFigurell. Listhe Venari.RW-.Lock

substructure; Ris Venari.RW_Ref; andvisvenari. The account is arefto areal

(initially O.O), protected bya R/Wlock. Assuming that amount isnonnegative, the

deposit function first acquires the lock associated with the account inwrite mode;

it then updates theaccount’s value to thesumofthe old value and the new amount.

The withdraw function is slightly more cornplicatedsince itneeds tocheck whether

there is sufficient money in the account before the withdrawal occurs. Raising the

unhandled Insufficlentlunds exception would cause the transaction to abort.

Using this interface we can implement a bank transfer as described in Section 1.1.

4, EVALUATION

In the introduction we stated two goals of our work: factoring transactions into

individual features and composing these features with each other and with other

features of SML. For the most part, we succeeded in accomplishing both goals

and are able to express our results concretely through our Venari/ML interfaces.

In this section we evaluate the successes and limitations of our work. We also

compare Venari/ML to Avalon/C++.

We achieve composability by making transactions with higher-order functions.

NIaking transact higher-order means tllattransact caneasily be used as a wrap-

per function. This kind of composability facilitates code reuse. For example, sup-

pose we have an interface along with a nontransactional implementation. We can

Implement a transactional version of this interface by wrapping a transact around

each of the nontransactional functions without any knowledge of their internal

structure.
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functor Account (structure Venari: VENARI)

: ACCOUNT = struct

type account = real R.rw_ref

fun new_account () =

R.rw_ref (0.0, L.create_rw_locko)

fun deposit account amount =

let fun do.deposit () =

(L.acquire_write (R.lock_of account);

R.rw_set account ((R.rw_get account) + amount))

in

V.transact do_deposit ()

end

exception Insufficient_Funds

fun withdraw account amount =

let fun do.withdraw () =

(L.acquire_write (R.lock_of account);

let val bal = (R.rw-get account)

m

if bal < amount then

raise Insufficient_Funds

else

R.rw_set account (bal - amount)

end)

in

V.transact do_withdraw ()

end

end

F]g. 11. Bank account Implementation,

Theonefeature of the New Jcrseyimplementation of SMLwith which ourtrans-

actional extensions do not interact well is first-class continuations, We use contin-

uations extensively in our implementation of threads. However, we cannot export

continuations directly to the user because they do not interact well with SML’S

exception handhng, which we use to deal with aborted transactions m a graceful

manner. Llnfortunately, when a continuation is invoked, a new exception handler

context is installed. Consequently, we cannot guarantee that a computation will

pass though our handlers. For example, if continuations were exported to the

user, we could not guarantee that askein’s completer function would be called. A

solution to this problem would be to implement a mechanism similar to Scheme’s

unwind-protect [Friedman and Haynes 1985; Rees 1992].

We also successfully achieved afactorization oftransactions illtotheir col~lponent

parts. We found that to allow transactions of any type to execute concurrently
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requires the use of R/TV locks. That support for concurrency needs support for

synchronization should come as little surprise. More surprising was that we were

successful at decoupling the other three features from each other.

One advantage of decoupling transaction features is that each feature can be used

independently. For example, undoability is useful for implementing backtracking

search. Typical Prolog implementations use an explicit mutation log, called a trazl,

which is used to undo variable bindings when backtracking [Warren 1983]. Undo

would allow the elimination of the trail and allow the desired functionality to be

expressed directly using undoably.

Another benefit of this factorization is that it helped us recognize new abstrac-

tions, In our implementation of undo, the ability to save and restore the state of the

store is implicit and governed by rules about nesting transactions. Inspired by this

work and the semantics of imperative programming languages, Morrisett [1993] has

recently proposed and implemented a new programming language feature, refined

first-class stores. In his system the current store can be captured and saved away

like any other first-class value, At any later point during the program’s execution

the saved store can be restored.

A final benefit to factoring our design has been in factoring our implementation.

Our original implementation of the persistence and undo subsystems was factored

largely for convenience of implementation, At the same time, our original threads

implementation was built completely independently of the transaction system. Sur-

prisingly, adding support for concurrent, multithreaded transactions has not forced

these implementations to merge and become monolithic. Instead the mutation log

serves as a common data structure used independently by the undo and persistence

subsystems, and is maintained on a per transaction basis. Needless to say the

factored nature of the implementation has made it easier to build and maintain.

We have not yet attempted to design and implement support for distributed

transactions. If we were to attempt such support, our factored implementation as

well as the notion of first-class stores mentioned above would be useful. Committing

a distributed transaction requires a two-phase protocol. In the first phase the

current state of the transaction must be made persistent in such a way that it can

be undone. We can achieve this effect by capturing the store as a first-class value

and then making that value persistent. C,iven support for some kind of distribution,

adding distributed transactions should be straightforward.

We deliberately chose not to explore support for other ways to ensure serializ-

ability, since this issue has been thoroughly addressed by the database community.

Also, we intentionally avoided the hard problems of undoing 1/0 (as in undoing

the dispensing of cash from an ATM machine [Pausch 1988].)

Mre have also made significant progress in measuring and improving the perfor-

mance of our system. Recently O’Toole et al. [1993] added a concurrent garbage

collector for the persistent heap. They show that the performance of both the

collector and the persistence subsystem is good—comparable to a simpler system

that supports neither orthogonal persistence nor garbage collection. Nettles [1994]

is currently completing a more thorough performance evaluation that will allow us

to improve the performance of our system substantially.

Avalon/C++ [Detlefs et al. 1988] superficially shares part of the factorization

of transactional concepts with Venari/ML. Avalon/C++’s recoverable, atomic,
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and subatomic classes provide functions similar to those provided in Venari/ML’s

persistence, R/W locks, and threads modules. Avalon/C++ exploits C++’s class

inheritance mechanism to achieve composition of features. For example, one way

to define an atomic array class would be to inherit from class at omit, to use a

regular C++ array to represent an atomic array, and to implement atomic array

operations in terms of regular C++ array operations plus R/W lock operations

inherited from atomic. Composition of features in terms of higher-order functions

as done in Venari/ML would not be possible in Avalon/C++ because functions

cannot be returned as results m C++.

Unlike Venari/ML, Avalon/C++ does not separate the undoability feature from

transactions at all, does not separate persistence from R/W or mutex locks, and

does not support multithreaded transactions. Avalon/C++, however, does support

distributed transactions. Finally, Avalon/C++ is implemented in a completely

different runtime environment, i.e., Camelot; Venari/ML uses RVM, which provides

only a small subset of Camelot’s functionality.

5. SUMMARY OF CONTRIBUTIONS

The main contribution of our work is to show that transactions can be broken into

separable components, each supporting a different aspect of a traditional transac-

tional model: persistence, undoability, locking, and threads. These components can

then be composed to build the traditional model or even new models with weaker

semantics.

Two technical ideas resulted from pushing hard to achieve our goal of conlposabil-

ity. One is the idea of a general-purpose control abstraction, the skein, with which

we can budd variations of the transactional model as simple special cases. The other

is a set of guarantees, captured by our variation of Moss’s rules, that gives a rea-

sonable semantics to nested, rnultithreaded transactions. Heretofore other systems

either permit only a single thread of control to execute with a transaction [Liskov

and Schelfler 1983; Detlefs et al. 1988] or support multithreaded transactions with

no semantic guarantees [Eppinger et al. 1991]. Except for Humm [1993] we are not

aware of any other work that attempts to give nested, multithreaded transactions

such guarantees.

A mort= concrete contribution is our specific set of extensions to SML/NJ in sup-

port of concurrent, nested, multithreaded transactions. In our design, we exploited

SML’s higher-order functions and modules facility. We use its exception-handling

mechanism to give control to the programmer in case a transaction aborts. Our

implementation uses the New Jersey implementation of SML in some critical ways,

e.g., its support for continuations and the logs used by its garbage collector. Our

current implementation is based on SML/NJ (0.80) and runs in the Mach 2.5 en-

vironment.

By adding such extensions to an advanced programming language like SML, we

have provided application programmers with some high-level constructs (above the

operating system level) to use transactions unintrusively. By using simple wrapper

functions, programmers need not worry about formatting and unformatting data

into files m order to achieve persistence; they can undo effects to the store if desired

(e.g., for backtracking); and they have explicit control over concurrent access to

shared mutable data through mutex and R/JV locks.
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