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Larch specifications are
two-tiered. Each one
has a component
written in an algebraic
language and another
tailored to a
programming language.
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he use of suitable formalisms in

the specification of computer
programs and parts of computer pro-
grams offers significant advantages.'
Although there is considerable theo-
retical interest in this area,” practical
experience is rather limited. The Larch
Project, a research project intended to
have practical applications in the next
few years, is developing tools and
techniques to aid in the productive
application of formal specifications. A
major part of the project is a family of
specification languages. Each specifi-
cation has components written in two
languages. The Larch interface lan-
guages are particular to specific pro-
gramming languages, while the Larch
Shared Language is common to all
languages.

Some important aspects of the
Larch family of specification languages
are

e Composability. The Larch lan-
guages are designed for the incre-
mental construction of specifica-
tions from other specifications.

o Emphasis on presentation. The
Larch languages are designed to
be readable. Among other things,
Larch’s composition mechanisms
are defined as operations on spe-
cifications, rather than on theories
or models.

e Suitability for integrated inter-
active tools. The Larch languages
are designed to facilitate the inter-
active construction and incre-
mental checking of specifications.

e Semantic checking. The Larch
languages are designed to enable

0740-7459/85/0900/0024501.00 © 1985 IEEE

extensive checking of specifica-
tions as they are being con-
structed. An important aspect of
our approach is the use of a
powerful theorem prover for
semantic checking to supplement
the syntactic checking commonly
defined for specification lan-
guages.

o [ocalized programming language
dependencies. Each Larch inter-
face language encapsulates the
features needed to write concise
and comprehensible specifications
for a particular programming lan-
guage and incorporates Larch
Shared Language specifications
in a uniform way.

The Larch interface languages spec-
ify program modules, providing in-
formation needed to write programs
that use these modules (Figure 1)* A
critical part of the interface is how the
module communicates with its envi-
ronment, yet communication mecha-
nisms differ from programming lan-
guage to programming language,
sometimes in subtle ways. We have
found it easier to be precise about
communication when the specification
language reflects the programming
language. Such specifications are gen-
erally shorter than those written in a
“universal” interface language. They
also seem clearer to programmers who
implement modules and to program-
mers who use them.

Each Larch interface language deals
with what can be observed about the
behavior of programs written in a
particular programming language. It
provides a way to write assertions
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Figure 1. Two-tiered specification in

about program states. It incorporates
programming-language-specific
notions for constructs such as side
effects, exception handling, and itera-
tors, and its simplicity or complexity
depends largely upon the simplicity or
complexity of the observable state and
state transformations of its program-
ming language.

The Larch Shared Language is used
to define terms used in interface spec-
ifications, by generating theories that
are independent of any programming
language. The Larch Shared Language
is primarily algebraic: equations define
relations among operators, giving
meaning to the notion of equality
among terms that appear in interface
specifications.

Larch is intended to support a style
of program design in which data ab-
stractions play a prominent role”’ Each
Larch interface language has a
mechanism for specifying data ab-
stractions. If its programming lan-
guage provides direct support for data
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Larch.

abstractions, the Larch interface lan-
guage facility is modeled on that of
the programming language; if it does
not, the facility is designed to be com-
patible with other aspects of the pro-
gramming language.

The Larch Shared Language

This is not the place for a complete
description of either the syntax or the
semantics of the Larch Shared Lan-
guage. Both have been published else-
where (see bibliography in box on
p. 31). Instead, we present a series of
short examples that introduce virtually
the entire language a few features at a
time.

The trait is the basic unit of specifi-
cation in the Larch Shared Language.
A trait introduces operators and speci-
fies their properties. Sometimes the
collection of operators will correspond
to an abstract data type. Frequently,
however, it is useful to define proper-
ties that do not fully characterize a

type.

Our first example (below) is a trait
specifying a class of tables that store
values in indexed places. It is similar
to a conventional algebraic specifica-
tion in the style of Guttag and Horn-
ing® or Ehrig and Mahr/

TableSpec: trait
introduces
new: — Table
add: Table, Index, Val — Table
# ¢ # : Index, Table — Bool
eval: Table, Index — Val
isEmpty: Table — Bool
size: Table — Card
constrains new, add, ¢, eval, isEmpty,
size so that
for all [ind, indl: Index,
val: Val, 1. Table]
eval(add(t, ind, val), indl) =
if ind = indl
then val
else eval(s, indl)
ind € new = false
ind e add(1, indl, val) =
(ind=indl) | (ind e 1)
size(new) =0
size(add(t, ind, val)) =if ind e t
then size(t) else size(s) + 1
isEmpty(r) = (size(s) = 0)
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Kinds of specifications

We find it helpful to classify specifications and specification languages
in a variety of ways, each of which has important consequences for the
development, use, and evaluation of specifications.”

The first way is by class of constraint. Different specification languages
make it possible to specify different properties of programs. We dis-
tinguish two broad classes: those that constrain the behavior of imple-
mentations, and those that constrain their structure.

The second classification method is by viewpoint. The behavior of an
unobservable program is of no interest. What is considered observable
forms the interface of the program. A programming language provides a
useful standard definition of what may be observed about programs in
that language (e.g., values of nonlocal variables, input/output, excep-
tional conditions). When the constraints on programs are stated in
programming language terms we say the specifications are language-
oriented. Other important kinds of constraints may require a viewpoint
outside the programming language; for example, the significant behavior
may involve external devices whose behavior is controlled or interpreted
by humans, and may best be described in terms of abstractions derived
from the application domain. We call such specifications application-
oriented.

The third classification method is by specification size. Specifications,
like programs, come in a great range of sizes. The processes of writing,
reading, and checking large specifications differ in important ways from
those for small ones. There is no precise boundary between small and
large specifications, but when the text of a specification exceeds a few
pages, problems of scale begin to dominate.

Three combinations of attributes are so common that we have found it
convenient to name them. System specifications are application-oriented
behavioral specifications of (typically large) collections of programs.
They express constraints on a system in terms of what can be observed
by its users. Local specifications are language-oriented behavioral spe-
cifications of single program units. They express constraints on a
program in programming language terms, and are typically much smaller
than system specifications. Larch interface languages are designed for
writing local specifications. Organizational specifications combine
structural specifications with behavioral specifications of the com-
ponents. We should be able to demonstrate that an organizational
specification implements a system specification by showing that the
system will satisfy its specification if each component satisfies its
specification.

Our classification is not intended to introduce sharp dichotomies, nor
to provide a complete taxonomy. However, it has helped us to focus more
carefully in posing and answering a number of key questions about
specifications, such as:

What is accomplished by constructing them?

What benefits result from their existence?

When shouid they be written?

Who should write them?

Who should read them?

Which properties should be used to evaluate them?

The answers can be very different for different kinds of specifications.
*This classification has been abstracted from an article by J.V. Guttag, J.J.

Horning, and J.M. Wing “Some Notes on Putting Formal Specifications to

Productive Use,” Science of Computer Programming, Vol. 2, Dec. 1982, pp. 53-68.
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The part of the specification follow-
ing introduces declares a set of opera-
tors, each with its signature (the sorts
of its domain and range). These signa-
tures are used to sort-check terms in
much the same way function calls are
type-checked in programming lan-
guages. We use operator, sort, and
term in describing the Shared Lan-
guage to avoid confusion with the
similar concepts function, type, and
expression in programming languages.

The final part of the specification
constrains the operators by means of
equations that relate terms containing
them. In general, each equation in-
volves several operators, and an
operator may appear in several equa-
tions.

The first equation resembles a re-
cursive function definition, since the
operator eval appears on both the left
and right sides. However, it does not
fully define eval; it states a relation
that must hold among eval, add, and
the built-in operator if then else. The
second and third equations together
provide enough information to define
the operator ¢ (when applied to any
term built up using new and add) in
terms of the built-in operators false
and |, and the operator = for sort
Index.

The set of theorems that can be
proved about the terms defined in a
trait is called its theory. It is the
infinite set of predicate calculus
formulas that consists of the trait’s
equations, the inequation ~(true =
false), and all theorems that can be
derived from these formulas plus the
axioms and rules of inference of first-
order predicate calculus with equality.

The theory associated with Table-
Spec contains equations and inequa-
tions that can be proved by substi-
tuting equals for equals. However,
there is no metarule stating that if
two terms are not provably equal,
then they are definitely unequal, nor is
there a converse metarule stating that
if two terms are not provably unequal,
then they are equal. For example, we
cannot determine whether add is
commutative, The equation
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Figure 2. Relations among sample traits.

add(add(t, ind, val), indl, val)

= add(add(z, indl, val), ind, val)
is not in TableSpec’s theory, but
neither is any inequation that would
distinguish between the left and right
sides. Later, we discuss Larch Shared
Language constructs that can be used
to generate stronger (larger) theories
that contain the answers to such
questions.

The next series of examples defines
a number of properties that are then
combined in different ways to define
two traits that correspond to familiar
abstract data types. Figure 2 may be
used as a road map for these examples,
which are presented in a bottom-up
fashion, with the exception of the
Handbook traits TotalOrder, Car-
dinal, and Equality, which are used in
the examples but not defined here (see
specifications box on p. 28 for more
details).

The trait Container abstracts the
common properties of those data
structures that contain elements, such
as sets, multisets, queues, and stacks.
We have found it useful both as a
starting point for specifications of
many kinds of containers and as an
assumption when defining generic
operators.

September 1985

The new construct in this trait is the
generated by clause. It indicates that
each variable-free term of sort C is
equal to some term in which new and
insert are the only operators with range
C. Thus, it introduces an inductive
rule of inference that can be used to
prove properties that are true for all
terms of sort C.

Container: trait
introduces
new: — C
insert: C, E —~C
constrains C so that
C generated by [ new, insert ]

The trait IsEmpty builds on Con-
tainer by assuming it. It constrains the
new and insert operators that it in-
herits from Container, as well as the
operator that it introduces, isSEmpty.

The converts clause adds nothing to
the theory of the trait. It adds check-
able redundancy to the specification
by indicating that this trait is intended
to contain enough axioms to define
isEmpty. That is, any variable-free
term should be provably equal to one
that does not contain isEmpty. Be-
cause of the generated by inherited
from Container, this can be proved by
induction over terms of sort C, using
new as the basis and using insert(c, )

in the induction step.
IsEmpty: trait

assumes Container

introduces isEmpty: C — Bool

constrains isEmpty, new, insert

so that forall[ ¢: C, e: E ]

isEmpty(new) = true
isEmpty(insert(c, e)) = false

implies converts [ isSEmpty ]

Next and Rest also assume Con-
tainer. Like converts, exempts clauses
are concerned with checking, and add
nothing to the theory. Here, they indi-
cate that the lack of equations for
next(new) and rest(new) is intentional.
Even if Next or Rest is included into a
trait that claims the convertibility of
next or rest, the terms next(new) and
rest(new) don’t have to be convertible.

Next: trait
assumes Container
introduces next: C — E
constrains next, insert so that
forall[ e E]
next(insert(new, e)) = e
exempts next(new)

Rest: trait
assumes Container
introduces rest: C — C
constrains rest, insert so that
forall[ e:E]
rest(insert(new, e)) = new
exempts rest(new)
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Size assumes Container, and par- such as stacks, queues, priority queues,
tially defines the size operator. The sequences, and vectors. It augments
phrase imports Cardinal means that Container by combining it with Is-
the theory of the importing trait, Size, Empty, Next, and Rest. The includes
is a conservative extension of the clause indicates that Enumerable is
theory of the imported trait, Cardinal.  intended to inherit their operators and
That is, Size’s theory contains Car- axioms and to further constrain the
dinal’s theory, but does not further operators. The assumption of Con-
constrain any operators appearing in tainer by the traits Next, Rest, and
Cardinal, such as 0. Consequently, the IsEmpty is discharged in Enumerable
operators of Cardinal can be under- by the explicit inclusion of Container.
stood independently since they must The partitioned by clause indicates
not be given any new properties in that next, rest, and isSEmpty are a
Size. complete set of observer functions.
That is, if

next(z/) = next(12),

rest(¢1) = rest(¢2), and

isEmpty(¢/) = isEmpty(¢2),
then ¢/ = 12.

Traits for
abstract data types

In a trait that corresponds to an
abstract data type (ADT), there
will generally be a distinguished
sort corresponding to what Gut-
tag’ calls the type of interest and
what Burstall and Goguen? call the
data sort. In such traits, the opera-
tors whose range is the distin-
guished sort can usually be par-
titioned into generators, operators
that the sort is generated by, and
extensions, which can be con-
verted into generators. Operators
whose domain includes the distin-
guished sort and whose range is
some other sort are called ob-
servers. Observers are usually con-
vertible, and the sort is usually par-
titioned by one or more subsets of
the observers and extensions.

Size: trait

assumes Container

imports Cardinal

introduces size: C — Card

constrains size so that
size(new) = 0 Enumerable: trait

includes Container, Next, Rest,
IsEmpty

constrains C so that C partitioned by
[ next, rest, isEmpty ]

The Enumerable trait specifies
properties common to containers that
For example, in PriorityQueue keep their contents in a definite order,
(see example in column 1, facing
page), the distinguished sort is C,
the generators are new and insert,
rest is an extension, and the ob-
servers are next and isEmpty.

Building a heritage of specifications

We almost never define new abstractions starting from first principles.
The Larch Shared Language examples given here (or any other sequence
of simple examples) may give a misleading image of how Larch specifi-
cations are developed. Many of the most useful abstractions are already
available in A Larch Shared Language Handbook, along with many useful
building blocks. For example, the traits Container, IsSEmpty, Next, Rest,
Size, Enumerable, and PriorityQueue are all in the handbook, and would
be used “off the shelf’” when needed. The handbook trait Bag introduces a
number of operators not needed for MultiSet, which causes no problem.
However, it is missing the operator numElements. In practice, we would
simply include Bag in MultiSet, introduce numElements, and constrain

A good heuristic for generating
enough equations to adequately
define an ADT is to write one for
each observer or extension applied
to each generator. For Priority-
Queue, this rule suggests axioms
for rest(new), next(new), isEmpty
(new), rest(insert(g, e)), next(in-
sert(q, e)), and isEmpty(insert
(g, e)). Note that the trait contains

explicit equations for two of the
six, and inherits equations for two
more from ISEmpty. The remaining
two, rest{(new) and next(new), are
exempted in Rest and Next.

References

1. J.V. Guttag, The Specification and
Application to Programming of Ab-
stract Data Types, PhD dissertation,
Computer Science Department, Uni-
versity of Toronto, Canada, 1975.

2. R. Burstall and J. Goguen, “An In-
formal Introduction to Specifications
Using CLEAR,” in The Correctness
Problem in Computer Science, R.
Boyer and J. Moore, eds., Academic
Press, New York, 1981, pp. 185-213.

numElements with two equations.

We expect Larch Shared Language traits to be the principal reusable
units in Larch. By reusing existing traits, specifiers will save time and
avoid errors. Reusing traits drawn from a generally accessible handbook
will also serve to standardize notation. We think of handbooks as the
concentrated essence of abstractions that experienced specifiers have
found useful. The current version contains sections on single-operator
properties, binary relations, ordering relations, group theory, numeric
types, simple data structures, containers, container operations, non-
linear structures, rings and fields, lattices, enumerated types, and
displays. Future versions will contain additional sections.

New traits are unlikely to have as much structure as is present in the
various specializations of Container and in other parts of the handbook.
This kind of structure tends to come after a large number of related traits
have been written and regularities recognized, or when the abstraction
represents a well-studied mathematical system. The development of such
structure represents a kind of intellectual capital that yields its dividends
in future applications.
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PriorityQueue specializes Enumer-
able by further constraining next, rest,
and insert. Sufficient axioms are given
to convert next and rest. The axioms
that convert isEmpty are inherited
from the trait Enumerable, which in-
herited them from the trait IsEmpty.

The with clause indicates that the
assumed trait is TotalOrder with the
sort E substituted for the sort T
throughout its text.

PriorityQueue: trait

assumes TotalOrder with [ E for T ]
includes Enumerable
constrains next, rest, insert so that
forall[ g:C, e E]
next(insert(q, ¢)) =
if sEmpty(q) then e
else if next(q) < e then next(q)
else e
rest(insert(g, e)) =
if isEmpty(q) then new
else if next(g) <e
then insert(rest(q), ) else g
implies converts[ next, rest, isSEmpty ]

Finally, MultiSet is a specialization
of Container that does not satisfy
Enumerable. It combines Container,
IsEmpty, and Size, and introduces
three new operators.

Constrains MSet is a shorthand for
a constrains clause listing all operators
whose signature includes MSet. The
partitioned by indicates that count
alone is sufficient to distinguish un-
equal terms of sort MSet. Converts
[ isEmpty, count, delete, numElements,
size ] is a stronger assertion than the
combination of an explicit converts
[ count, delete, numElements, size ] with
the inherited converts [ isEmpty ].

The with clause calls for a substitu-
tion of the operator { } for the operator
new, as well as the sort MSet for the
sort C.

MultiSet: trait
assumes Equality with [ E for T ]
includes IsEmpty, Size, Container
with [ MSet for C, { } for new ]
introduces
count: MSet, E — Card
delete: MSet, E — MSet
numElements: MSet — Card
constrains MSet so that
MSet partitioned by [ count ]
for all[ c: MSet, ¢, el, €2 : E]
count( {},el) =0
count(insert(c, el), e2) =
count(c, e2) +
(if el = €2 then | else 0)

size(insert(c, €)) = size(c) + 1

numElements({}) =0
numElements(insert(c, ¢)) =
numElements(c) +
(if count(c, ¢) >0
then 0 else 1)

delete({}), el) = {}
delete(insert(c, el), e2) =
if el = e2 then c else
insert(delete(c, e2), el)
implies converts [ isEmpty, count,
delete, numElements, size ]

The theory associated with any trait
includes the theory of each trait that it
assumes, includes, or imports. Thus,
Figure 3 is another way of viewing the
relations among traits shown in
Figure 2.

The theories associated with Multi-
Set and PriorityQueue say quite a bit
about their respective data structures.
These structures have much in com-
mon, yet also have important differ-
ences, such as the order of insertion,
which is significant in PriorityQueue
but not in MultiSet. Note also some
things that have not yet been specified
about these data structures. We have

Priority Queue

Enumerated

Total Order
(on E)

Cardinal

Figure 3. Inclusion relations among the theories of the sample traits.
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not specified how they are to be repre-
sented. We have not chosen the algo-
rithms to manipulate them. We have
not even said what routines are to be
provided to operate on them. We have
not specified how errors are to be
handled. The last two decisions are
recorded in interface specifications; the
first two are made during implemen-
tation.

Larch interface languages

We now turn our attention to inter-
face specifications. It is these specifi-
cations that actually describe program
units to be implemented. The role of
the Larch Shared Language traits is to
define the theories that give meaning
to operators that appear in the inter-
face specifications.

Each Larch interface language is
designed for a particular programming
language. Everything from the modu-
larization mechanisms to the choice of
reserved words is influenced by the
programming language. Larch/Pascal
and Larch/CLU are the only two
moderately well-developed Larch in-
terface languages to date. A detailed
description of the semantics of Larch/
Pascal is not yet available, but such a
description for an early version of
Larch/CLU is given by Wing® A dis-
cussion of the style of Pascal pro-
gramming that Larch/Pascal is de-
signed to support is given by Guttag
and Liskov.

We hope to give the flavor of these
Larch interface languages with the
two small examples that follow. The
meaning of programming-language-
reserved words is derived directly from
their meaning in the programming
language. For example, the meaning
of var in Larch/Pascal is derived from
the meaning of var in a Pascal param-
eter list; the meaning of signals in
Larch/CLU is derived from the mean-
ing of signals in CLU.

Both Larch/ Pascal and Larch/CLU
support the specification of data and
procedural abstractions. For each
language, we consider one data ab-
straction, containing several pro-
cedural abstractions.
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The Larch Project

The Larch Project at MIT’s Laboratory for Computer Science and
DEC’'s Systems Research Center is the continuation of collaborative
research into the uses of formal specifications that started with the work
reported by J. Guttag in 1975 (see bibliography below). It is developing
both a family of specification languages and a set of tools to support their
use, including language-sensitive editors and semantic checkers based
on a powerful theorem prover.

Larch is an effort to test our ideas about making formal specifications
useful. To focus the project, we made a number of assumptions, which
strongly influenced the directions it has taken.

Local specifications. We started with the belief that behavioral specifi-
cations of program units could be useful in the near future. No conceptual
breakthroughs or theoretical advances seemed to be needed. Rather, we
needed to use what we already knew to design usable languages, develop
some software support tools, and educate some system designers and
implementers.

Sequential programs. We focused on specifications of the behavior of
program units in nonconcurrent environments. We are aware of the im-
portance of concurrency, and of many of the additional problems it
introduces. However, we find it hard enough to deal adequately with the
sequential case. Furthermore, any useful method for dealing with con-
currency must incorporate a way to specify atomic actions.

Scale. Methods that are entirely adequate for one-page specifications
may fail utterly for hundred-page specifications. Large specifications
must be composed from small ones that can be understood separately,
and the task of understanding the ramifications of their combination must
be manageable. For large specifications, as Burstall and Goquen have
pointed out (see bibliography betow), the “putting together” operations
are more crucial than the details of the language used for the pieces.

Incompleteness. Realistically, most specifications are going to be par-
tial. Sometimes incompleteness refiects abstraction from details that are
irrelevant for a particular purpose; for example, time, storage usage, and
functionality might be specified separately. Sometimes it reflects an
intentional choice to delay certain design decisions, and sometimes it
reflects oversights in design or specification. The checker must be able
to detect oversights without rejecting intentional incompleteness.

Errors. Our experience suggests that the process of writing specifi-
cations can be as error-prone as the process of programming. We believe
that a substantial amount of checking of the specifications themselves
must be done. There are two ways to detect errors: human inspection
and mechanical checking. We want our specification languages to
facilitate the writing of readable specifications. We also want them to
incorporate redundancy that will allow mechanical checks to detect the
most common errors.

Tools. A serious bar to practical use of formal specifications is the
number of tedious and/or error-prone tasks associated with maintaining
the consistency of a substantial body of formal text. Tools can assist in
managing the sheer bulk of large specifications, in browsing through

(continued on page 31)
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(Continued from page 30)
selected pieces, in deriving interactions and consequences, and in
teaching a new methodology. Thinking about such tools has changed
our ideas about what it is important to include in specification languages.
We were strongly influenced by our experience with Affirm (see Musser
in bibliography below).

Handbooks. It is inefficient to start each specification from scratch. We
need a repository of reusable specification components that have evolved
to handle the common cases well, and that can serve as models when
faced with uncommon cases. It is no more reasonable to keep rein-
venting the specifications of priority queues and bit maps than to
axiomatize integers and sets every time they are used. The collection
should be open-ended, and include application-oriented abstractions, as
well as mathematical and implementation-oriented ones.

Language dependencies. The environment in which a program unit is
embedded, and hence the nature of its observable behavior, is likely to
depend in fundamental ways on the semantic primitives of the pro-
gramming language. Any attempt to disguise this dependence will make
specifications more obscure to both the unit’s clients and its imple-
menters. On the other hand, many important abstractions in most
specifications can be defined independently of any programming

language.
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In both Larch interface languages,
a specification of a data abstraction
(type) has three parts. The first is a
header giving the type name and the
names of the externally visible rou-
tines. The second is an associated trait
and a mapping from the types in the
data abstraction to sorts in the trait.
The third comprises the interface spe-
cifications for each routine (procedure
or function) of the type. A specifica-
tion of a routine has three parts: (1) a
header giving the name of the routine
and the names and types of its formals
(parameters and returned values),
(2) an associated trait providing the
theory of the operators that appear in
the body (in the examples, this trait is
just the union of the traits associated
with the types in the routine’s header),
and (3) a body stating any require-
ments on the routine’s parameters and
specifying the effects the routine must
have when those requirements are met.

A sample Larch/Pascal specifica-
tion. The following Larch/Pascal spe-
cification of a data abstraction provides
a type, three procedures, and one
function:

type Bag exports baglnit, bagAdd,
bagRemove, bagChoose
based on sort MSet from MuitiSet
with [ integer for E ]
procedure baglnit(var b: Bag)
modifies at most [ & ]
ensures bposs = {}
procedure bagAdd
(var b: Bag; e: integer)
requires numElements (insert(b,
e)) <100
modifies at most [ b ]
ensures by = insert(b, e)
procedure bagRemove
(var b: Bag; e: integer)
modifies at most [ 5 ]
ensures bpos: = delete(d, e)
function bagChoose
(b: Bag; var e: integer) : boolean
modifies at most [ e ]
ensures
if ~isEmpty(d)
then bagChoose &
count(b, €post) >0
else ~bagChoose &
modifies nothing
end Bag

The body of each routine’s specifi-
cation places constraints on proper
arguments for calls on the routine and
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How names tie languages together

In an interface specification, we give meaning to names appearing in
programs by relating them to names appearing in traits. Thus, itis the
names in an interface specification that tie it to traits in the Larch
Shared Language and to programs in the programming language.
Operators, such as insert; sorts, such as MSet; and trait names, such as
MultiSet, provide the link to a theory defined by a collection of traits.
Names of routines, such as bagAdd; formal parameters, such as e; and
types, such as integer, provide the link to programs that implement the
specification. Itis important not to confuse operators and sorts from the
Larch Shared Language with routines and types from the programming
language. Operators and sorts appear in specifications, and in reason-
ing about specifications, but they do not appear in programs. Con-
versely, routines and types appear in programs but not in traits.

Nondeterminism and incompleteness

Nondeterminism in an interface should not be confused with in-
completeness in a trait. We often intentionally introduce operators in
traits without giving enough axioms to fuily define them (for example,
size in Size and new in Container). Sometimes further properties will be
given in other traits; sometimes the weaker theory allows greater
flexibility in the implementation of an interface. However, it is always
the case that for every term t, t = t. The whole mathematical basis of
algebra and of the Larch Shared Language depends on the ability to
freely substitute equals for equals. This property would be destroyed by
the introduction of nondeterministic functions.

Three kinds of induction

Different induction principles can be applied at the Larch Shared
Language level, at the interface language level, and at the programming
language level. They are all distinct and are useful in proving different
kinds of theorems.

Induction over a set of generating operators is used to prove theorems
that assert something about all terms of a sort. For example, we might
use it to prove by induction over new and insert that hte sum of the
counts of all elements in any MSet is equal to its size.

Induction over the specification (often called data type induction) is
used to prove something about all legal values of a type. For example,
we might show by induction over baginit, bagAdd, and bagRemove,
that no Bag has more than 100 distinct elements. Such a proof would
depend on the assumption that objects of type Bag are manipulated
only by legal calls on the routines in Bag's specification. Although this
restriction is not enforced by Pascal, we could adopt it as a pro-
gramming convention (see reference 9 at the end of this article).

induction over an implementation of the type is outside the domain of
interface specifications. Rather, it falls under program verification. It
can be used, for example, to prove that a representation invariant has
been established and preserved.
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defines the relevant aspects of the
routine’s behavior when it is properly
called. It can be straightforwardly
translated to a predicate over two
states in the style of Hehner'® by
combining its three predicates into a
single predicate of the form

requires predicate =>

(modifies predicate &

ensures predicate).
An omitted requires is interpreted as
true.

In the body of a Larch/Pascal spe-
cification, as in Pascal, the name of a
function stands for the value returned
by that function. Formal parameters
may appear unqualified or qualified
by post. An unqualified formal stands
for the value of that formal when the
routine is called. A formal qualified by
post, for example, bpos;, stands for the
value of that formal when the routine
returns.

The values of variables on entry to
and return from routines must be
distinguished because Pascal is a lan-
guage in which statements may alter
memory. Since the operators in a
Larch Shared Language specification
represent functions, this complication
does not arise there, nor would it in an
interface language for a functional
programming language.

The modifies predicate is also re-
lated to the imperative nature of Pas-
cal. The predicate modifies at most
[vi, ..., va] asserts that the routine
changes the value of no variable in the
environment of the caller except pos-
sibly some subset of the variables de-
noted by the elements of {vi, ..., vi}.
Notice that this predicate is really an
assertion about all variables that do
not appear in the list, not about those
that do. Modifies at most is a built-in
predicate specific to the programming
language. Each Larch interface lan-
guage comes with its own set of built-
in predicates.

The based on clause associates the
type Bag with the sort MSet that
appears in trait MultiSet. This associa-
tion means that Larch Shared Lan-
guage terms of sort MSet are used to
represent Pascal values of type Bag.
For example, the term {} is used to
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represent the value that b is to have
when baglnit returns.

The requires clause of bagAdd states
a precondition that is to be satisfied
on each call. It reflects the specifier’s
concern with how this type can be im-
plemented in Pascal. By putting a
bound on the number of distinct ele-
ments in the Bag, the specification
allows a fixed-size representation. It is
quite natural for such considerations
to surface in interface specifications; it
would not be so natural for them to
appear in traits.

The most interesting routine is
probably bagChoose. Its specification
says that it must set ¢ to some value in
b (if b isn’t empty), but doesn’t say
which value. Moreover, it doesn’t even
require that different invocations of
bagChoose with the same value pro-
duce the same result; in other words,
the implementation may be nondeter-
ministic. OQur implementation is ab-
stractly nondeterministic, even though
it is a deterministic program (see box
at left). The value to which e is set
depends on the order in which ele-
ments have been added to and re-
moved from b; whereas this order
does not affect b’s abstract value.

This interface specification has re-
corded a number of design decisions
beyond those contained in the trait
MuitiSet. It says which routines must
be implemented, and for each routine,
it indicates both the condition that
must hold at the point of call and the
condition that must hold upon return.
Thus, a contract that provides a “logi-
cal firewall” has been established be-
tween the implementers and the cli-
ents of type Bag. They can then pro-
ceed independently, relying only on
the interface specification.

The clients must establish the re-
quires clause at each point of call
Having done that, they may presume
the truth of the ensures clause on
return, and that only variables in the
modifies at most clause are changed.
They need not be concerned with how
this happens.

The implementers are entitled to
presume truth of the requires clause
on entry. Given that, they must estab-
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lish the ensures clause on return, while
respecting the modifies at most clause.

Because the interface specification
does not specify either the represen-
tation of the type or the algorithms in
routines, yet another level of design is
needed. Because this level is hidden
from clients of the data type, the
design may be changed without af-
fecting their correctness.

The specification of each routine in
an interface can be understood with-
out reference to the specifications of
other routines—unlike traits, in which
the specification constrains the oper-
ators by giving relations among them.
Of course, to understand the type
itself, to reason about it, or to design
an efficient representation for it, the
specifications of all its routines must
be taken into account.

A sample Larch/CLU specification.
Now we use Larch/CLU to specify a
bag type. The abstraction is different
from the one specified in Larch/Pascal
because it exploits features of CLU
that do not have analogs in Pascal.
However, it is based on the same
Larch Shared Language trait.

This example illustrates some of the
ways in which programming language
dependencies influence interfaces,
specifications, and interface lan-
guages. Some programming language
dependencies are trivial: the syntax
has been changed to resemble that of
CLU, and routine names don’t start
with “bag,” since in CLU all calls are
prefixed with the type name. Some
dependencies, however, are more sub-
stantial.

bag mutable type exports init, add,
remove, choose

based on sort MSet from MultiSet
with [ int for E ]

init = proc() returns(b: bag)
modifies nothing
ensures new(b) & b = {}

add = proc(b: bag, e: int)
modifies at most [ b ]
ensures bpo = insert(b, e)

remove = proc(b: bag, e: int)
modifies at most[ b ]
ensures by, = delete(b, e)

choose = proc(b: bag) returns(e: int)
signals (empty)
modifies nothing
ensures
normally count(b, e) >0 except
signals empty when iSEmpty(b)
In the body of a Larch/ CLU speci-
fication, an unqualified argument
formal stands for the value of the
object bound to that argument on
entry to the routine. An unqualified
result formal stands for the value of
the object bound to that argument on
exit from the routine.

New is a Larch/CLU built-in
predicate. New(b) in the specification
of init asserts that the object bound to

One way to conduct
a design review

Formal specifications have many
uses. Much research has been
done on their application in formal
program verification. However,
they can also be useful when
formal verification is not con-
templated. They can, for example,
be used to make design reviews
more productive.

The following sequence of steps
for reviewing the specification of a
program unit is adapted from an
article by J. Guttag and J. Horning
(see reference 6 at the end of this
article).

(1) Introduce the unit informally.

(2) Present the language-inde-
pendent portion of the design: the
trait.

(3) Formulate questions (or
accusations) about the abstraction
defined by the trait.

(4) Examine the trait to answer
the questions.

(5) Discuss the suitability of the
answers and the virtues of other
possible answers.

(6) Present the language-depen-
dent portion of the design: the in-
terface specification.

(7) Formulate questions/accusa-
tions about the interface.

(8) Examine the interface speci-
fication to answer the questions.

(9) Discuss their suitability and
the virtues of other possibilities.
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A sample Pascal implementation

To illustrate the relation between an interface specification and an implemen-
tation, we give a Pascal implementation of type Bag. Neither the data structure
chosen for the representation nor the program itself is very interesting. One of
the main goals of data abstraction is to ensure that clients of data types do not
need to be interested in their implementations.

Both the abstraction function and the representation invariant are presented
informally. If we had included a formal specification of the type used in the
representation, we could have presented them formally, using a program
annotation language. Then, they could be mechanically combined with the
interface specifications already given to derive a concrete specification for each
routine, which could then be verified separately.

Notice that the implementation of bagAdd relies on the requires clause of its
specification.

const MaxBagSize = 100;
type
ElemVals = array [1..MaxBagSize] of integer;
ElemCounts = array [1..MaxBagSize] of integer,
Bag = record elems: ElemVals; counts: ElemCounts; end;
{Abstraction function: the abstract bag is equivalent to the result
of inserting into the empty bag each integer in elems
a number of times equal to the corresponding number in counts}
{Rep invariant: each integer in counts is at least zero and
no integer appears in elems more than once associated
with a positive value in counts]
procedure baginit(var b: Bag);
var i: 1..MaxBagSize;
begin for i := 1 to MaxBagSize do b.counts[i] := 0 end {baginit};
procedure bagAdd(var b: Bag; e: integer);
var i, lastEmpty: 1..MaxBagSize;
begin
i=1;
while (i < MaxBagSize) and (b.elems|[i] <>e) do

begin
if b.counts{i] = O then lastEmpty :=i;
=i+ 1;
end;
if b.elemsfi] = e
then b.counts[i] := b.counts[i] + 1
else begin

if b.cohnts[i] <> 0 then lastEmpty :=i;
b.elems[lastEmpty] := e;
b.counts[lastEmpty] := 1
end;
end {bagAdd};
procedure bagRemove(var b: Bag; e: integer);
var i: 1..MaxBagSize;
begin
=1,
while ( not((b.elems[i] = e) and (b.counts[i] > 0})) and
i < MaxBagSize ) do

=i
it (b.elems][i] = e) and (b.counts[i] > 0) then
b.counts[i] := b.counts[i] — 1

end {bagRemove};
function bagChoose(b: Bag; var e: integer): boolean;
var i: 1..MaxBagSize;

begin
=1
while (i < MaxBagSize) and (b.counts[i] =0)doi =i+ 1;
it b.counts[i] =0

then bagChoose := false {e not modified}
else begin e := b.elems][i]; bagChoose := true end
end {bagChoose};

b when the routine returns is distinct
from all previously accessible objects.
This forbids init to return an alias for
an existing bag. Larch/Pascal has a
built-in predicate with a similar
meaning, but it is used less often
because fewer Pascal interfaces deal
with dynamically allocated variables.

The built-in types of CLU, unlike
those of Pascal, offer no incentive to
place an a priori bound on the size of
objects. Thus, there is no requires
clause in the specification of add.

The use of signals is another CLU-
specific aspect of the specification.
The CLU choose has a rather different
header than does the Pascal bag-
Choose. CLU interfaces are typically
designed to use CLU’s exception-
handling mechanism rather than re-
turning flag values. To make it easy to
specify permitted and required signals,
Larch/ CLU contains some special syn-
tactic sugar. A predicate of the form

normally Normal Predicate except
signals Signal Name
when Exception Guard

is a shorthand for the predicate

(returns | signals Signal Name) &

(returns => (~ Exception Guard &
Normal Predicate)) &

(signals Signal Name =>
Exception Guard)

where returns and signals are
Larch/CLU built-in predicates that
deal with the possible ways for rou-
tines to terminate.

Notes on two-tiered
specifications

Larch can be used to write speci-
fications that resemble operational
specifications built on abstract
models.!"'? The Larch approach,
however, differs in several important
respects. The Larch Shared Language
is used to specify a theory, rather than
a model, and the Larch interface lan-
guages are built around predicate cal-
culus rather than around an opera-
tional notation. One consequence of
these differences is that Larch specifi-
cations are less prone to implementa-
tion bias.

It would be complicated to give
semantic definitions of Larch/Pascal



and Larch/CLU directly, because
Pascal and CLU are complicated. In-
stead, we define the interface language
semantics relative to the programming
language semantics. This approach has
two main advantages: we can be quite
precise about what it means for an
implementation to satisfy a specifi-
cation, and we can provide a straight-
forward translation of a Larch inter-
face language into predicate calculus.

The Larch Shared Language has
mechanisms for building one specifi-
cation from another (assumes, in-
cludes, and imports), and for inserting
checkable redundancy into specifica-
tions (constrains and converts). The
Larch interface languages do not have
corresponding mechanisms. We wish
to encourage a style of specification in
which most of the programming-lan-
guage-independent complexity is
pushed into the traits, allowing inter-
face specifications to become almost
trivial. We feel that specifiers are less
likely to make serious mistakes in the
simpler domain. Furthermore, it
should be easier to provide machine
support to help them catch the mis-
takes they do make. Finally, by en-
couraging specifiers to concentrate
their efforts on the traits, we increase
the likelihood that parts of specifica-
tions will be reusable—not only for
different specifications written in the
same Larch interface language, but
also across specifications written in
different Larch interface languages.

The semantics of the Larch Shared
Language are quite simple—except for
some of the static error checking. This
simplicity stems primarily from two
decisions:

(1) All operators and sorts appear-
ing in shared specifications are treated
as “auxiliary”; that is, operators and
sorts need never be implemented.

(2) Issues are not dealt with in the
Larch Shared Language if they must
also be dealt with at the Larch inter-
face language level.

As a result of the first decision,
there is no mechanism to support the
hiding of operators in the Larch
Shared Language. The hiding mecha-
nisms of other specification languages
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allow the introduction of auxiliary
operators that don’t have to be im-
plemented. These operators are not
completely hidden, since they must be
read to understand the specification,
and they are likely to appear in rea-
soning based on the specification.
Since none of the operators appearing
in a Larch Shared Language specifi-
cation are to be implemented, the
introduction of a hiding mechanism
would have no effect.

As a result of the second decision,
there is no mechanism other than sort
checking for restricting the domain of
operators. Terms such as eval(new, i)
in TableSpec are considered well-
formed. Furthermore, no special error
elements are introduced to represent
the values of such terms. All precon-
ditions and errors are handled at the
Larch interface language level. The
Larch Shared Language does include
a mechanism for indicating that mean-
ings of certain terms, such as eval
(new, i), have been intentionally left
unconstrained. It may be desirable to
check that the meaning of an interface
specification does not depend on the
meaning of exempt terms.

In this article we have discussed the
Larch Shared Language before the
Larch interface languages. This does
not mean that traits are always written
before the interface specifications that
are based on them. In practice, we
usually start by writing a trait, but we
often go back and amend traits as we
write interface specifications. In par-
ticular, we frequently add operators
that enable us to write our predicates
more concisely.

T he ideas behind the Larch Project
are more important than its de-
tails—although a large number of de-
tails must be gotten right before the
pieces can fit together. A useful
method is more than a collection of
separately good ideas.

It is too soon to draw conclusions
about the utility of Larch in software
development. We have written a sig-
nificant number of Larch Shared
Language specifications. On the whole,
we were pleased with the specifica-

tions, and with the ease of constructing
them. Some relatively primitive tools
uncovered many errors for us. We un-
covered some more subtle design
errors by inspection; we are encour-
aged by the fact that many of these
errors would have been uncovered by
(as yet unimplemented) checks called
for in the language definition. How-
ever, until we have completed better
tools that allow us to gain some ex-
perience with automated semantic
checking, we cannot know just how
helpful these checks will be.

We have not yet written many spe-
cifications in Larch interface lan-
guages. The experience we have had,
however, leaves us optimistic. In par-
ticular, we have been pleased with the
Larch style of two-tiered specification.
We are presently in the process of
designing and documenting some
Larch interface languages and plan to
begin writing some specifications in
them. That experience should give us
a much firmer basis for evaluating the
Larch Shared Language, Larch inter-
face languages, and the Larch style of
specification. O
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