Larch in Five Easy Pieces

J. V. Guttag, J. J. Horning, and J. M. Wing

)
o
L X
GOBRLS
Sy

IAL

AR
Y './'0"»"
A

The Larch Project and related research have been supported at MIT’s Laboratory for Computer Science
by DARPA under contract N00014-75-C-0661 and by the National Science Foundation under Grant
MCS-811984 6, at the Digital Equipment Corporation Systems Research Center and at the Xerox Palo
Alto Research Center by corporate funds, and at USC by the National Science Foundation under Grant
ECS-8403905.

A revised version of the Prelude and Piece I will be published as “The Larch Family of
Specification Languages,” by John V. Guttag, James J. Horning, and Jeannette M. Wing in
the September 1985 issue of IEEE Software. (©1985 Institute of Electrical and Electronics

Engineers, Inc. All rights reserved. Reprinted by permission of IEEE.

Revised versions of Pieces II and IIl will appear as “Report on the Larch Shared
Language,” and Piece IV as “A Larch Shared Language Handbook” in Science of Computer
Programming, vol. 6 (1986). (©1983 J. V. Guttag and J. J. Horning; revision ©1985
DIGITAL EQUIPMENT CORPORATION and J. V. Guttag. All Rights Reserved.

Piece V has also been submitted for publication as “Writing Larch Interface Language
Specifications.” (©1985 Jeannette M. Wing. All rights reserved.

All other contents ©DIGITAL EQUIPMENT CORPORATION 1985. All Rights

Reserved.

Copyright and reprint permissions: This work may not be copied or reproduced in
whole or in part for any commercial purpose. Permission to copy in whole or in part without
payment of fee for non-profit educational and research purposes is granted, provided that
all such whole or partial copies include the following: a notice that such copying is by
permission of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproduction or republishing
for any other purpose shall require a license with payment of fee to the Systems Research

Center.

Authors’ abstract:

The Larch Project is developing tools and tech-
niques intended to aid in the productive use of
formal specifications. A major part of the Larch
Project is a family of specification languages. Each
Larch specification has one component written in
a language derived from a programming language
and another component written in a language in-
dependent of any programming language. We call
the former Larch interface languages and the lat-

Capsule review:

The Larch approach is geared towards specify-
ing program modules (as if defining abstract data
types) to be implemented in particular program-
ming languages. Predicate-oriented interface lan-
guages are used to describe the intended behaviour
of procedures. Abstractions are formulated in the
Shared Language. Descriptions given in the inter-
face languages are given in terms of those abstrac-
tions and might also include descriptions of error-
reactions and implementation limits.

Similar in appearance to many algebraic specifica-
tion languages, the Shared Language can be used
for specifying abstract data types, but its focus is
on specifying “smaller” entities or properties (such
as commutativity, group theory, and generic prop-
erties of container-like types). Such entities are
expressed as independent, tractable, and reusable
building blocks.

The Shared Language offers a simple, syntactic
approach to modularization and composition. Units
of specifications, called traits, are combined by
syntactic inclusion; inclusions can be equipped with
renaming rules. Traits are never explicitly param-
eterized; the renaming mechanism makes any en-

ter the Larch Shared Language. We have gathered
together five documents about the Larch family
of languages: an overview, an informal description
of the Shared Language, a reference manual for
the Shared Language, a handbook of specifications
written in the Shared Language, and a report on
using Larch/CLU, which is one of the interface
languages.

J. V. Guttag, J. J. Horning, and J. M. Wing

tity of a trait a potential parameter. The meaning
of a trait is a first-order theory. It is obtained as
the conservative union of the theories associated
with included traits and the set of local axioms
of a trait. The local axioms are expressed as first-
order, quantified equations. The language allows —
and the design philosophy encourages — redundant
theorems to be stated, thus enabling considerable
amounts of consistency checking to be done (pos-
sibly by mechanical theorem proving).

The report contains introductory, motivating, and
reference information. A number of sample shared
language specifications and small examples of CLU
and Pascal interface language specifications are
given. Also included is a major (CLU) example
describing, step by step, how pieces of shared and
interface language specification are constructed.
The reference material consists of a terse refer-
ence manual, which defines the shared language as
a kernel and its syntactic extensions, and a ‘hand-
book’ of often-used abstractions, such as group
theory, lattices, sets, stacks, queues, mappings, and
graphs.

Sgren Prehn

Contents:

Prelude: The Larch Project

Piece
1.

2
3.
4

Piece

et

© 2 N ok

-
e

Piece

© ®° N oo e W

e
v = O

Piece

I: The Larch Family of Specification Languages
Introduction . .

The Larch Shared Language

Larch Interface Languages

Notes on Two-Tiered Specifications

II: The Larch Shared Language
Simple Algebraic Specifications
Getting Richer Theories
Combining Independent Traits
Combining Interacting Traits
Renaming

Recording Assumptions
Stating Intended Consequences
IfThenElse and Equality
Further Examples

Discussion

III: The Larch Shared Language Reference Manual
Structure of the Manual

Kernel Syntax Language

Simple Traits

Consequences and Exemptions

Constrains Clauses e e

Implicit Signatures and Partial OpForms

Mixfix Operators

Boolean Terms as Equations

External References

Modifications . ce . . .o
Implicit Incorporation of Boolean, IfThenElse, and Equa,hty
Semantic Checking

Reference Grammar for the Larch Shared Language

IV: A Larch Shared Language Handbook
Preface

Conventions

Basic Properties of Single Operators
Basic Properties of Binary Relations
Ordering Relations

S W W

14

22

25
25
27
28
29
30
32
34
36
37
41

45
45
46
47
49
50
51
52
53
54
55
56
58
60

61
61
62
62
63
64

10.
11.
12.
13.
14.

© 2 NS gk

Group Theory

Simple Numeric Types
Simple Data Structures
Container Properties
Container Classes

Generic Operators on Containers
Nonlinear Structures

Rings, Fields, and Numbers
Lattices S
Enumerated Data Types
Display Traits

Piece V: Writing Larch Interface Language Specifications

1.

2
3.
4

Introduction
An Informal Look at a Larch/CLU Interface Language
Incrementally Writing an Interface Specification

Implications of the Two-Tiered Approach

Postlude

Acknowledgments

References

66
68
70
72
75
78
80
83
85
86
88

91
91
95
101
111

113
113
113

Prelude
The Larch Project

The Larch Project at MIT’s Laboratory for Computer Science and DEC’s Systems
Research Center is the continuation of collaborative research into the uses of formal
specifications that started with the work reported in [Guttag 75]. The project is developing
both a family of specification languages and a set of tools to support their use, including
language-sensitive editors and semantic checkers based on a powerful theorem prover.

Larch is an effort to test our ideas about making formal specifications useful. To focus the
project, we made some assumptions that strongly influenced the directions it has taken:

e Local specifications. We started with the belief that behavioral specifications of
components of sequential programs could be useful in the near future. No conceptual
breakthroughs or theoretical advances seemed to be needed. Rather, we needed to
use what we already knew to design usable languages, develop some software support
tools, and educate some system designers and implementers.

e Errors. Our experience suggests that the process of writing specifications can be as
error-promne as the process of programming. We believe, therefore, that it is important
to do a substantial amount of checking of the specifications themselves. There are
two ways to detect errors: human inspection and mechanical checking. We want our
specification languages to make it easy to write readable specifications. We also want
them to incorporate redundancy that will allow mechanical checks to detect many

commaon errors.

e Scale. We want methods that are useful even when there are many requirements
to be recorded in a specification. Methods that are entirely adequate for one-page
specifications may fail utterly for hundred-page specifications. It is essential that large
specifications be composed from small ones that can be understood separately, and
that the task of understanding the ramifications of their combination be manageable.
For large specifications, as pointed out by [Burstall and Goguen 77|, the “putting
together” operations are more crucial than the details of the language used for the
pieces.

o Incremental construction. Large specifications, like large programs, must be con-
structed incrementally. Most specifications are unfinished during most of their useful
lifetime. Consequently, it is essential to reason about and to check unfinished specifi-

cations.

e Incompleteness. Many finished specifications are incomplete. Sometimes this
incompleteness is caused by abstraction from details that are irrelevant for a particular

purpose; for example, time, storage usage, and functionality might be specified
separately. Sometimes, however, it is a symptom of oversights in the design or
specification process. A specification checker should be able to distinguish between
oversights and intentional incompleteness.

Tools. We believe that tools have an important role to play in the specification process.
The number of tedious and error-prone tasks associated with maintaining a substantial
body of formal text in a consistent state is a serious bar to the practical use of formal
specifications. Tools can assist in managing the sheer bulk of large specifications,
in browsing through selected pieces, in detecting errors, in deriving interactions and
consequences, and in teaching a new methodology. Languages designed to exploit
powerful tools may be quite different from pencil-and-paper languages.

Reusability. It is inefficient to start each specification from scratch. We do not want
to keep reinventing the specifications of integers and sets—or even priority queues and
bitmaps. We need a repository of reusable specification components that have evolved
to handle the common cases well, and that can serve as models when we are faced
with uncommon cases. The collection should be open-ended, and include application-
oriented abstractions, as well as mathematical and implementation-oriented ones.

Language dependencies. The environment in which a program component is embed-
ded, and hence the nature of its observable behavior, is likely to depend in fundamental
ways on the semantic primitives of the programming language. Any attempt to dis-
guise this dependence will make specifications more obscure to both the component’s
clients and its implementers. On the other hand, many of the important abstractions
in most specifications can be defined independently of any programming language.

Piece I

The Larch Family of Specification Languages

1. Introduction

For well over a decade, researchers have suggested that the use of formal specification
techniques could play a valuable role in the development of software. Although there
has been considerable progress in developing a theoretical basis for such specifications,
practical experience is rather limited. This report describes the current state of a research
project intended to have practical applications in the next few years.

The Larch Project is developing tools and techniques to aid in the productive application
of formal specifications. It is based upon a two-tiered approach to specification. Each
Larch specification has components written in two languages: one designed for a specific
programming language and another common to all programming languages. We call the
former Larch interface languages, and the latter the Larch Shared Language.

We use interface languages to specify program components. Each interface specification
should provide the information needed to write programs that use the specified component.
A critical part of this interface is how the component communicates with its environment.
Communication mechanisms differ from programming language to programming language,
sometimes in subtle ways. We have found that it is easier to be precise about
communication when the specification language reflects the programming language. Such
specifications are generally shorter than those written in a “universal” interface language.
They also seem to be clearer to programmers who implement components and to
programmers who use them.

Each Larch interface language deals with what can be observed about the behavior of
components written in a particular programming language. It provides a way to write
assertions about program states; these assertions can be translated to predicate calculus
formulas. It incorporates programming-language-specific notations for constructs such as
side effects, exception handling, and iterators. Its simplicity or complexity depends largely
upon the simplicity or complexity of the observable state and state transformations of its
programming language.

Larch is intended to support a style of program design in which data abstractions play a
prominent role. Each interface language has a mechanism for specifying data abstractions.
If its programming language provides direct support for data abstractions, the interface
language facility is modeled on that of the programming language; if it does not, the facility
is designed to be compatible with other aspects of the programming language.

Piece I: The Larch Family of Specification Languages

Program unit
implementation (module, type, function, Programming language L
or procedure)

satisfies
A
Interface Specification Larch interface language (Larch/L)
based on
|
Local 1
specification < Root trait
l l incorporates
(includes, imports, { Larch
or assumes) Shared Language
Trait Trait
/ T\ /A

Figure 1. Two-Tiered Specification in Larch

The Shared Language is used to define terms used in interface specifications. It generates
theories that are independent of any programming language. The Shared Language is
primarily algebraic: equations define relations among operators, giving meaning to the

notion of equality between terms that appear in interface specifications.

The two-tiered structure of Larch specifications is illustrated in Figure 1, and discussed

more fully in Piece V.

1. Introduction

Some important aspects of the Larch family of specification languages are:

o Composability. The Larch languages are designed for the incremental construction of
specifications from other specifications.

e Emphasis on presentation. The Larch languages are designed to be readable.
Among other things, Larch’s composition mechanisms are defined as operations on
specifications, rather than on theories or models [Sannella and Tarlecki 85].

o Suitability for integrated, interactive tools. The Larch languages are designed to
facilitate the interactive construction and incremental checking of specifications.

* Semantic checking. The Larch languages are designed to enable extensive checking of
specifications as they are being constructed. An important aspect of our approach is
the use of a powerful theorem prover for semantic checking to supplement the syntactic
checking commonly defined for specification languages.

e Localized programming language dependencies. Each Larch interface language encap-
sulates the features needed to write concise and comprehensible specifications for a
particular programming language, and incorporates Shared Language specifications
in a uniform way.

The next two sections present the Larch Shared Language and two Larch interface
languages by means of a series of example specifications that also illustrate the way we
expect specifications to be structured.

Section 2 contains Larch Shared Language specifications for a number of abstractions
that would be useful in any programming language, culminating in specifications of the
data structures PriorityQueue and MultiSet. Section 3 contains Larch/Pascal and
Larch/CLU specifications of closely-related data types for Pascal and CLU. Issues such
as boundedness, preconditions, and exception-handling are dealt with in ways that are
appropriate to the respective programming languages. Section 4 contains some general
remarks about our two-tiered approach to writing specifications.

Piece I: The Larch Family of Specification Languages

2. The Larch Shared Language

The complete syntax and semantics of the Larch Shared Language are given in Pieces II
and III. Here we present a series of short examples that introduce most of the language, a
few features at a time.

The trait is the basic unit of specification in the Larch Shared Language. A trait
introduces operators and specifies their properties. Sometimes the collection of operators
will correspond to an abstract data type. Frequently, however, it is useful to define
properties that do not fully characterize a type.

Our first example is a trait specifying a class of tables that store values in indexed places.
It is similar to a conventional algebraic specification in the style of [Guttag and Horning 78]
or [Ehrig and Mahr 85].

TableSpec: trait
introduces
new: — Table
add: Table, Index, Val — Table
€ #: Index, Table — Bool
eval: Table, Index — Val
isEmpty: Table — Bool
gize: Table — Card
constrains new, add, €, eval, isEmpty, size sO that
for all | ind, ind;: Index, val: Val, & Table |
eval(add(t, ind, val), ind;) = if ind = ind; then val else eval(t, ind;)
ind € new = false
ind € add(t, indy, val) = (ind = ind,) | (ind € t)
size(new) =0
size(add(t, ind, val)) = if ind € ¢ then size(t) else size(t) + 1
isEmpty(t) = (size(t) = 0)

The part of the specification following introduces declares a set of operators, each with its
signature (the sorts of its domain and range). These signatures are used to sort-check terms
in much the same way as function calls are type-checked in programming languages. We use
the words “operator,” “sort,” and “term” in describing the Larch Shared Language to avoid
confusion with the similar concepts “function,” “type,” and “expression” in programming
languages.

The final part of the specification constrains the operators by means of equations that
relate terms containing them. In general, each equation involves several operators, and an
operator may appear in several equations.

2. The Larch Shared Language

The first equation resembles a recursive function definition, since the operator eval appears
on both the left and right sides. However, it does not fully define eval; it states a relation
that must hold among eval, add, and the built-in operator if then else. The second
and third equations together provide enough information to define the operator € (when
applied to any term built up using new and add) in terms of the built-in operators false

and |, and the operator = for sort Index.

The set of theorems that can be proved about the terms defined in a trait is called its
theory. It is the infinite set of predicate calculus formulas that consists of the trait’s
equations, the inequation —(true = false), and all of the theorems that can be derived
from these formulas plus the axioms and rules of inference of first order predicate calculus

with equality.

The theory associated with TableSpec contains formulas that can be proved by substi-
tuting equals for equals. However, there is no meta-rule stating that if two terms are not
provably equal, then they are unequal, nor is there a meta-rule stating that if two terms
are not provably unequal, then they are equal. For example, we cannot determine whether
add is permutative. The equation

add(add(t, ind, val), tnd;, val) = add(add(t, ind;, val), ind, val)

is not in TableSpec’s theory, but neither is any inequation that would distinguish between
the left and right hand sides. Later, we discuss Larch Shared Language constructs that can

be used to generate stronger (larger) theories containing the answers to such questions.

The next series of examples defines a number of properties that are finally combined in
different ways to define two traits that correspond to familiar abstract data types. Figure 2
may be used as a road map for these examples, which are presented in a bottom-up fashion,
with the exception of the handbook traits TotalOrder, Cardinal, and Equality, which
are used in the examples but not defined until Piece IV.

The trait Container abstracts the common properties of data structures that contain
elements, such as sets, multisets, queues, and stacks. We have found it useful both as a
starting point for specifications of many kinds of containers, and as an assumption when

defining generic operators.

The new construct in Container is the generated by clause. It indicates that each term
that does not contain any variables of sort C is equal to some term in which new and insert
are the only operators with range C. Thus, it introduces an inductive rule of inference that

can be used to prove properties that are true for all terms of sort C.

Piece I: The Larch Family of Specification Languages

(Priority OueuQ

assumes includes

(Enumerable J C MultiSet

. . . includes
includes {includes \includes mclud?ncludes assumes
Slze
assumes /imports

Container C Cardinal Equality

h
C Total Order)

Figure 2. Relations Among the Example Traits

Container: trait
introduces
new: — C
insert: C,E — C

constrains C so that C generated by [new, insert |

The trait IsEmpty builds on Container by assuming it. It constrains the new and insert
operators that it inherits from Container, as well as the operator that it introduces,

isEmpty.

The converts clause in IsEmpty adds nothing to its theory. It adds checkable redundancy
by indicating that this trait is intended to contain enough axioms to define isEmpty. That
is, any term with no variables of sort C should be provably equal to one that does not
contain isEmpty. Because of the generated by inherited from Container, this can be

proved by induction, using new as the basis and using insert(ec, €) in the induction step.

2. The Larch Shared Language

IsEmpty: trait
assumes Container
introduces isEmpty: C — Bool
constrains isEmpty, new, insert so that for all [¢: C, e: E |
isEmpty(new) = true
isEmpty(insert(c, €)) = false
implies converts | isEmpty |

Next and Rest also assume Container. Like converts, exempts is present only for
checking. The exempts clauses in Next and Rest indicate that the lack of equations for
next(new) and rest(new) in these traits is intentional. Even if Next or Rest is included into
a trait that claims the convertibility of next or rest, the terms next(new) and rest(new)

don’t have to be convertible.

Next: trait
assumes Container
introduces next: ¢ - E
constrains next, insert so that for all | e: E |
next(insert(new, €)) = e

exempts next(new)

Rest: trait
assumes Container
introduces rest: ¢ —» C
constrains rest, insert so that for all | e: E |
rest(insert(new, €)) = new

exempts rest(new)

Size assumes Container, and partially defines the size operator. The phrase imports
Cardinal means that the theory of the importing trait, Size, is a conservative ertension
of the theory of the imported trait, Cardinal. That is, Size’s theory contains Cardinal’s
theory, but does not further constrain any of the operators appearing in Cardinal, such as
0. Consequently, the operators of Cardinal can be understood independently, since they

must not be given any new properties in Size.

Piece I: The Larch Family of Specification Languages

Size: trait
assumes Container
imports Cardinal
introduces size: C — Card
constrains size so that

size(new) =0

The Enumerable trait specifies properties common to containers that keep their contents
in a definite order, such as stacks, queues, priority queues, sequences, and vectors. It
augments Container by combining it with IsEmpty, Next, and Rest. The includes clause
indicates that Enumerable is intended to inherit their operators and axioms and to further
constrain the operators. The assumption of Container by the traits Next, Rest and
IsEmpty is discharged in Enumerable by the explicit inclusion of Container.

The partitioned by clause indicates that next, rest, and isEmpty are sufficient to
distinguish any unequal terms of sort C. Thus, for any terms t; and to, if the equalities
next(t;) = next(tz), rest(ty) = rest(tz), and isEmpty(t;) = isEmpty(tz) all hold, we
may conclude that t; = ts.

Enumerable: trait
includes Container, Next, Rest, IsEmpty
constrains C so that C partitioned by [next, rest, isEmpty]

PriorityQueue specializes Enumerable by further constraining next, rest, and insert.
Sufficient axioms are given to convert next and rest. The axioms that convert isEmpty
are inherited from the trait Enumerable, which inherited them from the trait IsEmpty.

The with clause in the assumes clause indicates that the assumed trait is TotalOrder
with the sort E substituted for the sort T throughout its text.

PriorityQueue: trait
assumes TotalOrder with [E for T |
includes Enumerable
constrains next, rest, insert so that for all [g: C, e E]
next(insert(q, €)) =
if isEmpty(g) then e
else if next(q) < e then next(q) else e
rest(insert(q, €)) =
if isEmpty(¢) then new
else if next(g) < e then insert(rest(q), €) else ¢
implies converts | next, rest, isEmpty |

2. The Larch Shared Language

The final example, MultiSet, is a specialization of Container that does not satisfy
Enumerable. It combines Container, IsEmpty, and Size, and introduces three new

operators, count, delete, and numElements.

Constrains MSet is a shorthand for a constrains clause listing all the operators
whose signature includes MSet. The partitioned by indicates that count alone is
sufficient to distinguish unequal terms of sort MSet. That is, if for every term, u,

count(ty, u) = count(tz, u), then t; = t,.

Converts | isEmpty, count, delete, numElements, size] is a stronger assertion than
the combination of an explicit converts [count, delete, numElements, size] with the

inherited converts [isEmpty |.

The with clause calls for a substitution of the operator {} for the operator new, as well as
the sort MSet for the sort C.

MultiSet: trait
assumes Equality with [E for T |
includes IsEmpty, Size, Container with [MSet for C, {} for new |
introduces
count: MSet, E — Card
delete: MSet, E — MSet
numElements: MSet — Card
constrains MSet so that
MSet partitioned by [count]
for all | m: MSet, e, e3: E |
count({}, e1) = 0
count(insert(m, e;), e2) = count(m, e3) + (if e; = e; then 1 else 0)
size(insert(m, €;)) = size(m) + 1
numElements({}) = 0
numElements(insert(m, €;)) =
numElements(m) +(if count(m, e;) > 0 then 0 else 1)
delete({}, e;) = {}
delete(insert(m, €;), e3) =
if e; = e2 then m else insert(delete(m, e2), €;)

implies converts | isEmpty, count, delete, numElements, size]

11

12

Piece I: The Larch Family of Specification Languages

Total
Order
{on Card)

Cardinal

Enumerated

Priority Queue

Total Order
{on E)

Figure 3. Inclusion Relations Among the Theories of the Example Traits

The theory associated with any trait includes the theories of each of the traits that it
assumes, includes, or imports. Thus, Figure 3 is another way of viewing the relations

among traits that were shown in Figure 2.

The theories associated with MultiSet and PriorityQueue say quite a bit about their
respective data structures. These structures have much in common, and some important
differences (e.g., order of insertion is significant in PriorityQueue, and not in MultiSet).
Note also some things that have not yet been specified about these data structures. We
have not specified how they are to be represented. We have not chosen the algorithms
to manipulate them. We have not even said what routines are to be provided to operate
on them. We have not specified how errors are to be handled. Decisions of the latter
two kinds are recorded in interface specifications; the first two are in the province of the

implementation.

2. The Larch Shared Language

The Shared Language examples in this report (or any other sequence of simple examples)
may give a misleading image of the process of developing Larch specifications. We
almost never define new abstractions starting from first principles, because traits for
many of the most useful abstractions are already available. For example, the handbook
in Piece IV contains the traits Container, IsEmpty, Next, Rest, Size, Enumerable, and
PriorityQueue that have been used as examples. The handbook trait Bag introduces a
number of operators not needed for MultiSet, which causes no problem. However, it is
missing the operator numElements. In practice, we would simply include Bag in MultiSet,
introduce numElements, and constrain numElements with two equations.

We expect Shared Language traits to be the principal reusable units in Larch. By reusing
existing traits, specifiers will save time and avoid errors. Reusing traits drawn from
a generally accessible handbook will also serve to standardize notation. We think of
handbooks as the concentrated essence of abstractions that experienced specifiers have
found useful. Piece IV contains sections on single-operator properties, binary relations,
ordering relations, group theory, numeric types, simple data structures, containers,
container operations, nonlinear structures, rings and fields, lattices, enumerated types,
and displays. Future handbooks will specify further abstractions.

New traits are unlikely to have as much structure as is present in the various specializations
of Container and in other parts of our handbooks. This kind of structure tends to come
after a large number of related traits have been written and regularities recognized, or
when the abstraction represents a well-studied mathematical system. The development of
such structure represents a kind of intellectual capital that yields its dividends in future

applications.

138

14

Piece I: The Larch Family of Specification Languages

3. Larch Interface Languages

We now turn our attention to interface specifications. It is these specifications that actually
describe program components that are to be implemented. The role of the Shared Language
traits is to define the theories that give meaning to operators that appear in the interface
specifications.

Each Larch interface language is designed for a programming language, which influences ev-
erything from the modularization mechanisms to the choice of reserved words. Larch/CLU
and Larch/Pascal are presently the only two moderately well-developed Larch interface lan-
guages. A detailed description of the semantics of an early version of Larch/CLU is given
in [Wing 83]. No such description of Larch/Pascal is yet available. However, a discussion
of the style of Pascal programming that Larch/Pascal is designed to support is contained
in [Guttag and Liskov 86].

We will illustrate each of these interface languages by means of a small example.
Both Larch/Pascal and Larch/CLU support the specification of data and procedural
abstractions. Since data abstractions include procedural abstractions, we organize our
discussion around the former.

In both interface languages, a specification of a data abstraction (type) has three parts:
e A header giving the type name and the names of the externally visible routines,

e An associated trait and a mapping from the types in the data abstraction to sorts in
the trait, and

o Interface specifications for each routine (procedure or function) of the type. A

specification of a routine has three parts:

o A header giving the name of the routine, and the names and types of its formals

(parameters and returned values),

o An associated trait providing the theory of the operators that appear in the body
(in the examples, this trait is just the union of the traits associated with the types

in the routine’s header), and

o A body stating any requirements on the routine’s parameters and specifying the

effects the routine must have when those requirements are met.

The meaning of programming language reserved words is derived directly from their
meaning in the programming languages. For example, the meaning of var in Larch /Pascal
s derived from the meaning of var in a Pascal parameter list; the meaning of signals in
Larch/CLU is derived from the meaning of signals in CLU.

3. Larch Interface Languages

An Ezample Larch/Pascal Specification

Here is the Larch/Pascal specification of a data abstraction that provides a type, three

procedures, and one function:

type Bag exports bagInit, bagAdd, bagRemove, bagChoose

based on sort MSet from MultiSet with [integer for E |
procedure bagInit(var b: Bag)

modifies at most | b]

ensures bpost = {}
procedure bagAdd (var b: Bag; e: integer)

requires numElements(insert(b, e)) < 100

modifies at most [b |

ensures bpost = insert(b, e)

procedure bagRemove (var b: Bag; e: integer)
modifies at most | b |
ensures by, = delete(b, e)
function bagChoose (b: Bag; var e: integer) : boolean
modifies at most | e]
ensures if ~isEmpty(b)
then bagChoose & count(b, epost) > 0
else -bagChoose & modifies nothing
end Bag

The body of each routine’s specification places constraints on the arguments with which the
routine may properly be called, and defines the relevant aspects of the routine’s behavior
when it is properly called. It can be straightforwardly translated to a predicate over two
states in the style of [Hehner 84] by combining its three predicates into a single predicate
of the form:

Requires Predicate = (Modifies Predicate & Ensures Predicate).
An omitted requires is interpreted as true.

In the body of a Larch/Pascal specification, as in Pascal, the name of a function stands
for the value returned by that function. Formal parameters may appear unqualified or
qualified by post. An unqualified formal stands for the value of that formal when the
routine is called. A formal qualified by post, such as bpost, stands for the value of that
formal when the routine returns.

The predicate modifies at most | vy,...,v, | asserts that the routine changes the value
of no variable in the environment of the caller except possibly some subset of the variables

16

Piece I: The Larch Family of Specification Languages

denoted by the elements of {v1,...,vn}. Notice that this predicate is really an assertion
about all of those variables that do not appear in the list, rather than about those that
do. Modifies at most is a built-in programming-language-specific predicate. Each Larch
interface language comes equipped with its own set of built-in predicates.

The need to indicate the variables that may be modified and to distinguish between the
values of variables on entry to and return from routines arises because Pascal is a language
in which statements may alter memory. Since the operators in a Larch Shared Language
specification represent functions, this complication does not arise there, nor would it in an
interface language for a functional programming language.

In an interface specification, we give meaning to names appearing in programs by relating
them to names appearing in traits. Thus it is the names in an interface specification that
tie it to traits in the Larch Shared Language and to programs in its programming language.
Operators (e.g., insert), sorts (e.g., MSet), and trait names (e.g., MultiSet) provide the
link to a theory defined by a collection of traits. Names of routines (e.g., bagAdd), formal
parameters (e.g., €), and types (e.g., integer) provide the link to programs that implement
the specification. It is important not to confuse operators and sorts (from the Larch Shared
Language) with routines and types (from the programming language). Operators and sorts
appear in specifications, and in reasoning about specifications, but they do not appear in
programs. Conversely, routines and types appear in programs, but not in traits.

The based on clause associates the type Bag with the sort MSet that appears in trait
MultiSet. This association means that within this specification Shared Language terms
of sort MSet will be used to represent Pascal values of type Bag. For example, the term {}
is used to represent the value that b is to have when bagInit returns.

The requires clause of bagAdd states a precondition that is to be satisfied on each call.
It reflects the specifier’s concern with how this type can be implemented in Pascal. By
putting a bound on the number of distinct elements in the Bag, the specification allows a
fixed-size representation. It is quite natural for such considerations to surface in interface
specifications; it would not be so natural for them to appear in traits.

The most interesting routine is probably bagChoose. Its specification is nondeterministic,
because it says that bagChoose must set e to some value in b (if b isn’t empty), but
doesn’t say which value. Moreover, it doesn’t even require that different invocations of
bagChoose with the same value produce the same result. The implementation we give later
is abstractly nondeterministic, even though it is a deterministic program. The value to
which e is set depends upon the order in which elements have been added to and removed
from b, whereas this order does not affect b’s abstract value.

The Bag interface specification records a number of design decisions beyond those contained
in the trait MultiSet. It says which routines must be implemented, and for each routine it

3. Larch Interface Languages

indicates both the condition that must hold at the point of call and the condition that must
hold upon return. This constitutes a contract that establishes a “logical firewall” between
the implementers and the clients of type Bag. It allows them to proceed independently,

relying only on the interface specification.

The clients must establish the requires clause at each point of call. Having done that,
they may presume the truth of the ensures clause on return, and that only variables in
the modifies at most clause are changed. They need not be concerned with how this

happens.

The implementers are entitled to presume truth of the requires clause on entry. Given
that, they must establish the ensures clause on return, while respecting the modifies at

most clause.

Because the interface specification does not specify either the representation of the type
or the algorithms in routines, yet another tier of design is needed. Because this tier is
hidden from clients of the data type, the design may be changed without affecting their

correctness.

The specification of each routine in an interface can be understood without reference to
the specifications of other routines. This is in contrast to traits, where the specification
constrains the operators by giving relations among them. Of course, to understand the type
itself, to reason about it, or to design an efficient representation for it, the specifications

of all its routines must be taken into account.
An Ezxample Pascal Implementation

To illustrate the relation between an interface specification and an implementation, we
give a Pascal implementation of type Bag. Neither the data structure chosen for the
representation nor the program itself is very interesting. Many other implementations—

some of them very different—could satisfy the same interface specification.

Both the abstraction function and the representation invariant are presented informally
in this example. If we had included formal specifications of the array types used in the
representation, we could have presented the abstraction function and the representation
invariant formally, using a program annotation language [Luckham and von Henke 85].
Then they could be mechanically combined with the interface specifications already given

to derive a concrete specification for each routine, which could then be verified separately.

Notice that the implementation of bagAdd relies on the requires clause of its specification.

17

18 Piece I: The Larch Family of Specification Languages

const MaxBagSize = 100;

type
ElemVals = array [1..MaxBagSize| of integer;
ElemCounts = array [1..MaxBagSize| of integer;

Bag = record elems: ElemVals; counts: ElemCounts; end;

{Abstraction function: the abstract bag is equivalent to the result of inserting into the
empty bag each integer in elems a number of times equal to the corresponding

number in counts}

{Rep invariant: each integer in counts is at least zero and no integer appears in elems

more than once associated with a positive value in counts}

procedure bagInit(var b: Bag);
var i: 1..MaxBagSize;
begin
for 1 := 1 to MaxBagSize do b.counts|t] := 0
end {bagInit};

procedure bagAdd(var b: Bag; e: integer);
var t, lastEmpty: 1..MaxBagSize;
begin
t = 1;
while (i < MaxBagSize) and (b.elems[i] <> ¢) do
begin
if b.counts[i] = O then lastEmpty := 1;
t:=1+1
end;
if b.elems[i] = e then b.counts[i] := b.counts[s] + 1
else begin
if b.counts(t] = O then lastEmpty := 1;
b.elems|lastEmpty| 1= e;
b.counts|lastEmpty| := 1
end;
end {baghdd};

3. Larch Interface Languages 19

procedure bagRemove(var b: Bag; e: integer);
var i: 1..MaxBagSize;

begin
1= 1;
while (not((b.elems[i] = ¢) and (b.counts[i] > 0)) and (i < MaxBagSize)) do
t =1+ 1
if (b.elems[i] = €) and (b.counts[¢] > 0) then b.counts[i] := b.counts[i] — 1

end {bagRemove};

function bagChoose(b: Bag; var e: integer): boolean;
var i: 1..MaxBagSize;
begin
t = 1;
while (i < MaxBagSize) and (b.counts{i] = 0) do 1t := ¢ + 1;
if b.counts[t] = O then bagChoose := false {e not modified}
else begin
e := b.elems|i];
bagChoose := true
end
end {bagChoose};

Data Types and Induction

Induction is useful in reasoning about data abstractions. There are different induction
principles that can be applied on the Shared Language tier, on the interface language tier,
and on the programming language tier. They are all distinct, and are useful to prove
different kinds of theorems.

e Induction over a set of generating operators is used to prove theorems about all terms
of a sort. For example, we might use it to prove by induction over new and insert

that the sum of the counts of all the elements in any MSet is equal to its size.

e Induction over the specifications of a data type’s routines (often called data type
induction) is used to prove theorems about all legal values of a type. For example, we
might show by induction over bagInit, bagAdd, and bagRemove, that no Bag has more
than one hundred distinct elements. Such a proof would depend on the assumption
that objects of type Bag are manipulated only by legal calls on the routines in Bag’s
specification. Although this restriction is not enforced by the Pascal language, we

could adopt it as a programming convention [Guttag and Liskov 85].

20

Piece I: The Larch Family of Specification Languages

e Induction over the implementations of a type’s routines is outside the domain of
interface specifications and into that of program verification. It is used to prove
theorems about all computations or all reachable representations of a type, for
example, to prove that a representation invariant is established and preserved.

An Ezample Larch/CLU Specification

Now we use Larch/CLU to specify a bag type. The abstraction is different from the one
specified in Larch/Pascal because it exploits features of CLU that do not have analogs in

Pascal. But it is based on the same Larch Shared Language trait.

bag mutable type exports init, add, remove, choose
based on sort MSet from MultiSet with [int for E |
init = proc() returns(b: bag)
modifies nothing
ensures new(b) & b = {}
add = proc(b: bag, e: int)
modifies at most | b |
ensures b,,,: = insert(b, e)
remove = proc(b: bag, e: int)
modifies at most [b |
ensures b,,,: = delete(d, €)
choose = proc(b: bag) returns(e: int) signals (empty)
modifies nothing
ensures
normally count(b, ¢) > 0 except
signals empty when isEmpty(b)

This example illustrates some of the ways in which programming language dependencies
influence interfaces, specifications, and interface languages. Some of the programming
language dependencies are trivial: the syntax has been changed to resemble that of CLU,
and routine names don’t start with “bag,” since in CLU all calls are prefixed with the type

name. Some of the dependencies, however, are more substantial.

In the body of a Larch/CLU specification, an unqualified argument formal stands for the
value of the object bound to that argument on entry to the routine. An unqualified result
formal stands for the value of the object bound to that argument on exit from the routine.

New is a Larch/CLU built-in predicate. The constraint new (b) means that the object
bound to b when the routine returns must be distinct from all previously accessible objects.
Thus, init must not return an alias for an existing bag. Larch/Pascal has a built-in

3. Larch Interface Languages

predicate with a similar meaning, but it is used less often because fewer Pascal interfaces
deal with dynamically allocated variables.

The built-in types of CLU, unlike those of Pascal, offer no incentive to place an a prior:
bound on the size of objects. Thus there is no requires clause in the specification of add.

The use of signals is another CLU-specific aspect of the specification. The CLU choose
has a rather different header than does the Pascal bagChoose. CLU interfaces are typically
designed to use CLU’s exception handling mechanism rather than returning flag values. To
make it easy to specify permitted and required signals, Larch/CLU contains some special
syntactic sugar. A predicate of the form

normally Normal Predicate except
signals Signal Name; when Exception Guard,

signals Signal Name, when Exception Guard,,

is a shorthand for the predicate

(returns | signals Signal Name, | ... | signals Signal Name,,) &
(returns => (Normal Predicate &
—(Exception Guard, |...| Exception Guard,))) &
(signals Signal Name; => Exception Guard;) &
&

(signals Signal Name,, => Exception Guard,)

where returns and signals are Larch/CLU built-in predicates that deal with the possible
ways for routines to terminate.

21

22

Piece I: The Larch Family of Specification Languages

4. Notes on Two-Tiered Specifications

Larch can be used to write specifications that resemble operational specifications built on
abstract models (e.g., [Hoare 72|, [Berzins 79]). The Larch approach, however, differs in
several important respects. The Shared Language is used to specify a theory, rather than a
model, and the interface languages are built around predicate calculus rather than around
an operational notation. One consequence of these differences is that Larch specifications

are less prone to implementation bias.

Tt would be complicated to give semantic definitions of Larch/Pascal and Larch/CLU
directly, because Pascal and CLU are complicated. Instead, we define the interface
language semantics relative to the programming language semantics. This has two main
advantages: we can be quite precise about what it means for an implementation to satisfy a
specification, and we can provide a straightforward translation of a Larch interface language
into predicate calculus.

The Larch Shared Language has mechanisms for building one specification from another
(assumes, includes, and imports), and for inserting checkable redundancy into

specifications (constrains and converts). The Larch interface languages do not have
corresponding mechanisms. We wish to encourage a style of specification in which most of
the programming-language-independent complexity is pushed into the traits, and interface
specifications become almost trivial. We feel that specifiers are less likely to make serious
mistakes in the simpler domain. Furthermore, it should be easier to provide machine
support that will help them catch the mistakes that they do make. Finally, by encouraging
them to put effort into traits, we increase the likelihood that parts of specifications will be
reusable—not only for different specifications written in the same interface language, but

also for specifications written in different interface languages.

The semantics of the Larch Shared Language is quite simple—except for some of the static

error checking. This simplicity stems primarily from two decisions:

e All operators and sorts appearing in shared specifications are treated as “auxiliary.”
That is, operators and sorts are never implemented.

o Issues are not dealt with in the Shared Language if they must be dealt with in the

interface languages.

As a result of the first decision, there is no mechanism to support the hiding of operators
in the Shared Language. The hiding mechanisms of other specification languages allow the
introduction of auxiliary operators that don’t have to be implemented. These operators are
not completely hidden, since they must be read to understand the specification, and they

are likely to appear in reasoning based on the specification. Since none of the operators

4. Notes on Two-Tiered Specifications

appearing in a Shared Language specification are to be implemented, the introduction of
a hiding mechanism would have no effect.

As a result of the second decision, there is no mechanism other than sort checking for
restricting the domain of operators. Terms such as eval(new, i) in TableSpec are
considered to be well-formed. Furthermore, no special “error” elements are introduced
to represent the values of such terms. All preconditions and errors are handled in the
interface languages. The Shared Language does include a mechanism for indicating that
meanings of certain terms, such as eval(new, 1), have been intentionally left unconstrained.
It may be desirable to check that the meaning of an interface specification does not depend
on the meaning of exempt terms.

In this piece we present the Larch Shared Language before the Larch interface languages.
This does not mean that traits are always written before the interface specifications that
are based on them. In practice, we usually start by writing a trait, but we often go back
and amend traits as we write interface specifications. In particular, we frequently add

operators that enable us to write our predicates more concisely.

23

Piece 11

The Larch Shared Language

1. Simple Algebraic Specifications

Most of the constructs in the Larch Shared Language are designed to assist in structuring
specifications, for both reading and writing. The trait is our basic module of specification.
Recall our specification for tables that store values in indexed places:

TableSpec: trait
introduces
new: — Table
add: Table, Index, Val — Table
€ #: Index, Table — Bool
eval: Table, Index — Val
isEmpty: Table — Bool
size: Table — Card
constrains new, add, €, eval, isEmpty, size so that
for all [ind, ind;: Index, val: Val, t: Table]
eval(add(t, ind, val), ind,) = if ind = ind; then val else eval(t, ind,)
ind € new = false
ind € add(t, indy, val) = (ind = ind,) | (ind € t)
size(new) =0
size(add(t, ind, val)) = if ind € t then size(t) else size(t) + 1
isEmpty(t) = (size(t) = 0)

This is similar to a conventional algebraic specification. The part of the specification
following introduces declares a set of operators (function identifiers), each with its
signature (the sorts of its domain and range). These signatures are used to sort-check terms
(expressions) in much the same way as function calls are type-checked in programming
languages. The remainder of the specification constrains the operators by writing equations

that relate sort-correct terms containing them.

There are two things (aside from syntactic amenities) that distinguish this specification

from a specification written in our earlier algebraic specification languages:
e A name, TableSpec, is associated with the trait itself.

e The axioms are preceded by a constrains list.

25

26

Piece II: The Larch Shared Language

The name of a trait is logically unrelated to any of the names appearing within it. In
particular, we do not use sort identifiers to name units of specification. A trait need not
correspond to a single abstract data type (ADT), and often does not.

The constrains list contains all of the operators that the immediately following axioms
are intended to constrain. It is the responsibility of a specification checker to ensure that
the specification conforms to this intent. The constrained operators will generally be a
proper subset of the operators appearing in the axioms. In this example the constrains list
informs us that the axioms are not to put any constraints on the properties of if then else,
false, O, 1, +, |, and =, despite their occurrence in the axioms. The judicious use of
constrains lists is an important step in modularizing specifications.

We associate a theory with every trait. A theory is a set of well-formed formulas (wff’s)
of typed first-order predicate calculus with equations as atomic formulas.

The theory, call it Th, associated with a trait written in the Larch Shared Language is
defined by:

e Azioms: Each equation, universally quantified by the variable declarations of the
containing constrains clause, is in Th.

o Inequation: —(true = false) is in Th. All other inequations in Th are derivable from
this one and the meaning of =.

e First-order predicate calculus with equality: Th contains the axioms of conventional
typed first-order predicate calculus with equality and is closed under its rules of
inference.

The equations and inequations in Th are derivable from the presence of axioms in the
trait—never from their absence. It is important to prove theorems about specifications
before they are complete, without worrying that adding new operators and equations will

later invalidate some of them.

2. Getting Richer Theories

While the relatively small theory described above is often a useful one to associate with
a set of axioms, there are times when a larger theory is needed, e.g., when specifying an
abstract data type. Generated by and partitioned by give different ways of specifying
larger theories.

Section 1 does not include an induction schema. Such a schema is not appropriate until
the set of generators for a sort is complete. Saying that a sort is generated by a set of
operators adds an inductive rule of inference. Intuitively, it asserts that the set contains
sufficient operators to generate all values of the sort. For example, the natural numbers
are generated by O and successor and the integers are generated by 0, successor,
and predecessor.

The clause Table generated by | new, add | can be used to derive theorems such as
Vt: Table | (t = new) | (3ind: Index [ind € t]) |
that would otherwise not be in the theory.

The rules of Section 1 allow equations to be derived by equational substitution, but not
by the absence of inequations, since we do not want the addition of more equations to
remove anything from the theory of a trait. Saying that sort S is partitioned by a set of
operators, Ops, asserts that if two terms of sort S are unequal, a difference can be observed
using an operator in Ops. Therefore, they must be equal if they cannot be distinguished
using any of the operators in Ops. This adds new equations to the theory associated with
a trait, thus reducing the number of equivalence classes in the equality relation.

The clause Table partitioned by | €, eval | can be used to derive theorems such as
add(add(t, ind, v), indy, v) = add(add(t, ind;, v), ind, v)

that would otherwise not be in the theory.

27

28

Piece II: The Larch Shared Language

3. Combining Independent Traits

TableSpec contains a number of totally unconstrained operators, e.g., false and +. Such
traits are not very useful. A straightforward thing to do is to augment the specification with
additional clauses dealing with these operators. One way to do this is by trait smportation.
We might add to trait TableSpec:

imports Cardinal, Boolean

The theory associated with the importing trait is the theory associated with the union of
all of the introduces and constrains clauses of the trait body and the imported traits.

Importation is used both to structure specifications to make them easier to read and to
introduce extra checking. Operators appearing in imported traits may not be constrained
by either the importing trait or by any other imported trait. This guarantees that imported
traits don’t “interfere” with one another in unexpected ways. Le., it guarantees that the
theory associated with a trait is a conservative eztension of the theory associated with
each of its imported traits. (Theory Thl is a conservative extension of theory Th2 if the
set of Th1’s wffs that are in the language of Th2 is exactly Th2.) The operators of each
imported trait can therefore be fully understood independently of the context into which
the trait is imported.

As a syntactic amenity, trait Boolean is automatically imported into all other traits.

4. Combining Interacting Traits

While the modularity imposed by importation is often helpful, it can sometimes be too
restrictive. It is often convenient to combine several traits dealing with different aspects of
the same operator. This is common when specifying something that is not easily thought
of as an abstract data type. Trait inclusion involves the same union of clauses as trait
importation, but allows the included operators to be further constrained. Consider, for

example:

Reflexive: trait
introduces # @© #: T, T — Bool
constrains (O so that for all [¢: T]
t®t = true
Symmetric: trait
introduces # @ #: T, T — Bool
constrains (@ so that for all [¢, to: T |
L@tz =t @ty
Transitive: trait
introduces # @ #: T, T — Bool
constrains O so that for all | ¢, t;, t5: T |
(((t1 @ t2) & (t2 © t3))) = (t1 @ t3)) = true
Equivalence: trait
includes Reflexive, Symmetric, Transitive

Equivalence has the same associated theory as the less structured trait
Equivalencel: trait
introduces # @® #: T, T — Bool
constrains © so that for all | ¢, ¢, t3: T |
t; ® t; = true
t1 @t =12 @ t;
(((t1 @ t2) & (t2 © t3)) = (t1 ® t3)) = true

Any legal trait importation may be replaced by trait inclusion without either making the
trait illegal or changing the associated theory. However, such a replacement sacrifices the
checking that ensures that the imported traits may be understood independently of the
context in which they are used. We use importation when we can incorporate a theory

unchanged, inclusion when we cannot.

29

30

Piece II: The Larch Shared Language

5. Renaming

The specification of Equivalence in the previous section relied heavily on the coincidental
use of the operator @ and the sort identifier T in three separate traits. In the absence of
such happy coincidences, renaming can force names to coincide, keep them from coinciding,
or simply replace them with more suitable names.

The phrase
Tr with [1d; for id; |

stands for the trait Tr with every occurrence of :1d; (which must be either a sort or operator
identifier) replaced by i#d;. Notice that if #1ds is a sort identifier this renaming may change
the signatures associated with some operators.

If TableSpec contains the generated by and partitioned by of section 2, the
specification

ArraySpec: trait
imports IntegerSpec
includes TableSpec with | defined for # € #, assign for add, read for eval,
Array for Table, Integer for Index |

stands for

ArraySpec: trait
imports IntegerSpec
introduces
new: — Array
assign: Array, Integer, Val — Array
defined: Integer, Array — Bool
read: Array, Integer — Val
isEmpty: Array — Bool
size: Table — Card
constrains new, assign, defined, read, isEmpty so that
Array generated by [new, assign]
Array partitioned by | defined, read |
for all [ind, ind;: Integer, val: Val, t: Array |
read(assign(t, ind, val), ind;) =
if ind = ind, then val else read(t, ind,)
defined(ind, new) = false
defined(ind;, assign(t, ind, val)) = ((ind = ind;) | defined(ind,, t))

5. Renaming 31

size(new) =0
size(add(t, ind, val)) =

if defined(ind, t) then size(t) else size(t) + 1
isEmpty(t) = (size(t) = 0)

It is important to distinguish between the history of a specification (how it was constructed)
and the structure presented to a reader. A reader familiar with TableSpec might prefer to
read the first version of ArraySpec; others might find it distracting to have to understand
the more general structure before understanding ArraySpec.

32

Piece II: The Larch Shared Language

6. Recording Assumptions

We often construct fairly general specifications that we anticipate will later be specialized

in a variety of ways. Consider, for example,

BagSpec: trait
introduces
{}: — Bag
insert: Bag, Elem — Bag
delete: Bag, Elem — Bag
€ #: Bag, Elem — Bool
constrains {}, insert, delete, € so that
Bag generated by [{}, insert |
Bag partitioned by [delete, €]
for all [b: Bag, e, €;: Elem |
e € {} = false
e € insert(b, e1) = (e = €1) | (e € b)
delete({}, ¢) = {}
delete(insert(b, €), 1) =
if e = ¢; then b else insert(delete(b, e1), €)

We might specialize this to IntBag by renaming Elem to Integer and including it in a

trait in which operators dealing with Integer are specified, e.g.,

IntBag: trait
imports IntegerSpec
includes BagSpec with [Integer for Elen |

The interactions between BagSpec and IntegerSpec are very limited. Nothing in BagSpec
makes any assumptions about the meaning of the operators (other than =) that occur in
IntegerSpec, e.g., 0, +, and <. Consider, however, extending BagSpec to BagSpecl by

adding an operator rangeCount,

6. Recording Assumptions 33

BagSpecl: trait

imports BagSpec, Cardinal

introduces
rangeCount: Bag, Elem, Elem — Integer
< #: Elem, Elem — Bool

constrains rangeCount so that for all | e;, ez, e3: Elem, b: Bag |
rangeCount({}, €1, €2) =0
rangeCount(insert(b, es), €1, €2)) =

rangeCount (b, e, e2) + (if (e; < e3)&(e3 < e2) then 1 else 0)

BagSpec1 makes no assumptions about the properties of the < operator. Suppose, however,
that this is not what we intend. We might have definite ideas about the properties that
< must have in any specialization, e.g., that it should define a total ordering. We specify
such a restriction with an assumption:

BagSpec2: trait
assumes Ordered with | Elem for T |
imports BagSpec, Cardinal
introduces
rangeCount: Bag, Elem, Elem — Integer
constrains rangeCount so that for all | e;, e2, es: Elem, b: Bag]
rangeCount({}, €1, e2) =0
rangeCount(insert(b, es), €, €2) =
rangeCount(b, e, e2) + (if (e1 < e3)&(e3 < e2) then 1 else 0)

The theory associated with BagSpec2, is the same as if
Ordered with [Elen for T |

had been included. This could be used to derive various properties of BagSpec2, e.g., that
rangeCount is monotonic in its last argument.

Whenever BagSpec?2 is imported or included in another trait, however, the assumption will
have to be discharged. In

IntBagl: trait
includes BagSpec2 with | Integer for Elen |
imports IntegerSpec

this would amount to showing that the (renamed) theory associated with Ordered is a
subset of the theory associated with IntegerSpec. Often, the assumptions of a trait are
used to discharge the assumptions of traits it imports or includes.

34

Piece II: The Larch Shared Language

7. Stating Intended Consequences

We have now looked at those parts of the Larch Shared Language that determine the
theory associated with a legal trait. That subset of the language contains some checkable
redundancy; e.g., assumptions are checked when a trait is included or imported, and
constrains lists are checked against the axioms associated with them. We now turn to a
part of the language whose only purpose is to introduce checkable redundancy, in the form
of assertions about the theory associated with a trait.

There are two kinds of consequence assertions:
o That the theory associated with a trait contains another theory.

e That the theory associated with a trait adequately defines a set of operators in terms

of other operators.

The first kind of assertion is made using implies. Consider, for example, adding to
BagSpec2,

implies for all [b: Bag, e, €2, €3: Elen |
(e < e3) = (rangeCount(d, ey, €2) < rangeCount(b, €1, €3))

Implies can be used to indicate intended consequences of a specification, both for checking
and to increase the reader’s insight. The theory to be implied can be specified using the full
power of the language, e.g., by using generated by and partitioned by, or by referring
to traits defined elsewhere.

The second kind of assertion is made using converts | Ops]. Converts is used to say
that the specification adequately defines a collection of operators, i.e., that each term that
contains no variables of any sort appearing in a generated by clause is provably equal
to a term that does not contain any of the operators in Ops. A common problem with
axiomatic systems is deciding whether there are enough axioms. Converts provides a
way of making a checkable statement about the adequacy of a set of axioms. Consider, for
example, adding to TableSpec:

converts | isEmpty |

This says that terms such as isEmpty(new) or isEmpty(add(new, ind, val)), are provably
equal to terms that do not contain isEmpty.

Now consider adding to TableSpec the stronger assertion:

converts | isEmpty, eval |

7. Stating Intended Consequences
Terms containing subterms of the form eval(new, ind) are not convertible to terms that
do not contain eval, so an error message of the form

eval(new, ind) not convertible

would be generated. This incompleteness could be resolved by adding another axiom, for
example

eval(new, tnd) = errorVal

However, this requires recording a decision that might not be appropriate in such a trait,
since it relies on the existence of an errorVal operator for sort Val. We therefore provide
an exempts clause to indicate that the unconvertibility of certain terms is acceptable. If
TableSpec were modifed to include

exempts for all [ind: Index | eval(new, ind)

the checking associated with the converts would now require that, for any term, t, which
contains no variables of sort Table, the theory associated with TableSpec must contain
either

e an equation, t = t;, where t; has no occurrences of isEmpty or eval, or

e an equation t’ = t;, where t’ is a subterm of t, and t; is an instantiation of
eval(new, ind).

This checking ensures that each term containing operators in the converts list is either
defined by the axioms (in terms of operators not in the list) or explicitly exempted.

85

36

Piece II: The Larch Shared Language

8. IfThenElse and Equality

In our examples we made use of some apparently unconstrained operators: if then else
and =, with a variety of signatures. The use of these operators leads to the implicit
incorporation of the traits IfThenElse and Equality.

Whenever a term of the form if b then t; else t; occurs in a trait we replace the mixfix
symbol if then else by the prefix symbol ifThenElse. If t; and t; are of the same sort,
T1, we also import the trait

IfThenElse with [T1 for T |
into the enclosing trait.

Whenever a term of the form t; = tg occurs in a trait, if t; and t; are of the same sort,
T1, we append the trait

Equality with [T1 for T]
to the consequences of the enclosing trait. These traits are defined in Piece III.

The operators ifThenElse and = are examples of operator overloading. In the Larch
Shared Language, every operator is made up of an identifier or operator symbol and a
signature. If the signature is deducible from context, it need not be written. This is why
signatures appear only in the introduces clauses of the examples in this paper.

9. Further Examples

The following series of examples is adapted from Piece IV. Several of the examples have
already been discussed in Piece I, section 2. We repeat them here to illustrate the
coordinated use of the facilities introduced above, to introduce some syntactic sugar, and

to serve as the basis for the definition of a generic operator at the end of the section.

The trait Container abstracts the common properties of those data structures that contain
elements, e.g., sets, multisets, queues, and stacks. We have found it useful both as a starting
point for specifications of many kinds of containers, and as an assumption when defining

generic operators.

The generated by clause in Container indicates that each term that does not contain any
variables of sort C is equal to some term in which new and insert are the only operators
with range C. This assertion remains even if Container is included in another trait that
introduces additional operators with range C. This means that any theorems proved by

induction over new and insert will remain valid.

Container: trait
introduces
new: — C
insert: C,E — C

constrains C so that C generated by [new, insert]

The trait IsEmpty builds on Container by assuming it. It constrains the new and insert
operators that it inherits from Container, as well as the operator that it introduces,
isEmpty. The converts clause adds nothing to the theory of the trait. It adds checkable
redundancy to the specification by indicating that this trait is intended to contain enough

axioms to define isEmpty.

The two explicit axioms do not appear to be equations. This is because we have used
a syntactic sugar that interprets single terms of sort Bool as equations by appending

“— true”.

87

38 Piece II: The Larch Shared Language

IsEmpty: trait
assumes Container
introduces isEmpty: C — Bool
constrains isEmpty, new, insert so that for all [¢: C, e: E |
isEmpty(new)
—isEmpty(insert(c, €))
implies converts | isEmpty |

Next and Rest also assume Container. Like converts, the exempts clauses are concerned
with checking, and add nothing to the theory. They indicate that the lack of equations for

next(new) and rest(new) is intentional.

Next: trait
assumes Container
introduces next: ¢ — E
constrains next, insert so that for all [e: E |
next(insert(new, €¢)) = e

exempts next(new)

Rest: trait
assumes Container
introduces rest: C — C
constrains rest, insert so that for all [e: E |
rest(insert(new, €)) = new

exempts rest(new)

Enumerable augments Container by combining it with IsEmpty, Next, and Rest. The
includes clause indicates that Enumerable is intended to inherit their operators and
axioms and to further constrain the operators. The assumption of Container by the
traits Next, Rest and IsEmpty is discharged in Enumerable by the explicit inclusion of

Container.

The partitioned by clause indicates that next, rest, and isEmpty form a complete
set of observer operators for sort C. This means that, for any terms t; and to, if the
equalities next(t;) = next(tz), rest(t1) = rest(tz), and isEmpty(t,) = isEmpty(tz) all

hold, then we may conclude that t; = to.

9. Further Exzamples

Enumerable: trait
includes Container, Next, Rest, IsEmpty
constrains C so that C partitioned by [next, rest, isEmpty |

PriorityQueue specializes Enumerable by further constraining next, rest, and insert.
Sufficient axioms are given to convert next and rest. The axioms that convert isEmpty

are inherited from the trait Enumerable, which inherited them from the trait IsEmpty.

The with clause indicates that the assumed trait is TotalOrder with the sort E
substituted for the sort T throughout its text.

PriorityQueue: trait
assumes TotalOrder with [E for T]
includes Enumerable
constrains next, rest, insert so that for all [¢: C, e: E]
next(insert(q, €)) =
if isEmpty(q) then e
else if next(g) < e then next(q) else e
rest(insert(q, €)) =
if isEmpty(¢) then new
else if next(q) < e then insert(rest(q), ¢) else ¢
implies converts [next, rest, isEmpty |

Unlike the preceding traits in this section, PriorityQueue corresponds naturally to an
abstract data type. In such a trait there will generally be a distinguished sort corresponding
to the “type of interest” of [Guttag 75] or “data sort” of [Burstall and Goguen 81]. In such
traits, it is usually possible to partition the operators whose range is the distinguished sort
into generators, those operators which the sort is generated by, and ertensions, which
can be converted into generators. Operators whose domain includes the distinguished sort
and whose range is some other sort are called observers. Observers are usually convertible,
and the sort is usually partitioned by one or more subsets of the observers and extensions.

For example, in PriorityQueue, C is the distinguished sort, new and insert are generators,

rest is an extension, and next and isEmpty are observers.

A good heuristic for generating enough equations to adequately define an abstract data
type is to write one equation for each observer or extension applied to each generator.
For PriorityQueue, this rule suggests axioms for rest(new), next(new), isEmpty(new),
rest(insert(q, ¢)), next(insert(q, ¢)), and isEmpty(insert(q, €)). Note that the trait
contains explicit equations for two of the six, and inherits equations for two more from
IsEmpty. The remaining two, rest(new) and next(new), are exempted in Rest and Next.

39

40

Piece II: The Larch Shared Language

The two remaining traits in this section specify generic operators. We assume Enumerable
to ensure that these traits are used to define operators only on containers for which it is
possible to enumerate the contained elements. (To understand why we assume Enumerable
rather than Container, imagine defining extOp for a MultiSet.)

The exempts indicates that we do not intend to fully define the meaning of applying
extOp to containers of unequal size. Notice that elemOp is totally unconstrained in this

trait. This prevents us from having many interesting implications to state at this stage.

PairwiseExtension: trait

assumes Enumerable

introduces
elemOp: E,E — E
extOp: C,C — C

constrains ext0p so that for all | ¢y, cz: C, €1, €3: E |
extOp(new, new) = new
extOp(insert(cy, €1), insert(cz, e2)) =

insert(ext0Op(c1, ¢2), elemOp(e1, €2))

implies converts | extOp]

exempts for all [¢: C, e: E |
ext0Op(new, insert(c, €)),
extOp(insert(c, €), new)

Now we specialize PairwiseExtension by binding elem0Op to + over Cardinals:

PairwisePlus: trait
assumes Enumerable
imports Cardinal
includes PairwiseExtension with
[#+4# for elemOp, #-+# for extOp, Card for E |
implies Commutative with [#+# for o, C for T |

Trait Commutative appears in Piece IV. The validity of the implication that + (of sort C) is
commutative stems from the replacement of elemOp by + (of sort Card), whose constraints
(in trait Cardinal) imply its commutativity.

10. Discussion

We felt that it was important to carry the design of the Larch Shared Language through
to the smallest details. This ensured that we did not overlook things that would turn out
to be less trivial than they appeared. It allowed us to complete and check a fair number of
examples. Finally, it was a necessary preliminary to the development of the support tools
that we envision for Larch. The language embodies a large number of decisions, some of
them more fundamental than others.

Among the less fundamental decisions are those dealing with syntax. We tried to make the
surface syntax of the Shared Language comprehensible to readers of specifications, even
at the expense of requiring quite a lot of punctuation (e.g., many lengthy reserved words).
However, there is still room for experimentation and improvement here. It might make
sense to adopt a more terse basic notation, and provide a variety of reading aids (e.g.,
prettyprinters, cross-reference tools) in a full-blown system.

The rest of this section touches on more fundamental decisions. These decisions may be
wrong, but it would probably not be easy to change any of them without significantly
affecting the character of the language.

A key assumption underlying our design was that specifications should be constructed and
reasoned about incrementally. This led us to a design that ensures that adding things
to a trait never removes formulas from its associated theory. The desire to maintain
this monotonicity property led us to construe the equations of a trait as denoting a first-
order theory. Had we chosen to take the theory associated with either the initial or final
interpretation of a set of equations (as in [ADJ 78] and [Wand 79]), the monotonicity
property would have been lost.

While we felt that many traits would correspond to complete abstract data types, we felt
that many would not. This led us to introduce generated by and partitioned by as
independent constructs. Generated by is used to close a set of constructors of a sort,
and partitioned by to close a set of observers. Separating these constructs affords the
specifier considerable flexibility.

Great flexibility is also afforded by the freedom to substitute, in a with list, for any
operator or sort identifier in a trait. In effect, all such identifiers in a trait are formals. In
an earlier version of the Larch Shared Language we had explicit lambda abstraction. We
discovered, however, that our initial assumptions about which names to make parameters
were often incorrect. In particular, we discovered that often we wished to substitute for a
name that we had failed to make a parameter. On the other hand, we frequently used the
same identifier for the actual as the formal, because in specific instances we did not need

to use all the potential parameters.

41

42

Piece II: The Larch Shared Language

Another important aspect of names in the Larch Shared Language is that operator names
are qualified by a signature rather than by a single sort or by a trait. This is in contrast to
many programming languages, e.g., CLU. This decision was forced upon us by our desire
to make heavy use of overloading in specifications.

Reading specifications is an important activity, and what one sees when reading a
specification is a syntactic object, i.e., a trait, rather than the theory. For this reason,
we chose to use syntactic transformations to define the mechanisms for combining Larch
Shared Language specifications. However, for each of our combining operations on traits,
there is a corresponding operation on theories such that the theory associated with any
combination of traits is the same as the combination of their associated theories. In
an earlier version of the Larch Shared Language [Guttag and Horning 83b], we had one
mechanism that violated this property, without.

We devoted a great deal of attention to mechanisms for introducing checkable redundancy
into specifications. Assumes, imports, and includes differ only in the checking
associated with each. Constrains lists and the consequences section have no effect on
the theory associated with a trait. They exist only to supply checkable redundancy. We
chose to make the introduction of redundancy relatively fine-grained. Thus, for example,
we have constrains lists of operators rather than lists of “protected” sorts.

The introduction of mechanisms to facilitate checking was not without some cost. The
Larch Shared Language would be considerably smaller without them. Furthermore,
experience indicates that it takes people roughly as long to learn those parts of the language
involved with checking as it does to learn the part required to generate theories.

In contrast to our emphasis on syntactic mechanisms for building traits, we included a
number of semantic constraints on the legality of traits, which were chosen to detect
classes of errors that we expected to be common. A theorem prover will be the heart of
any implementation of the Larch Shared Language. Most of the properties to be checked
are undecidable. Thus the best that any checker can do is to answer “definitely OK,”
“definitely bad,” or “too hard.” We think that for most of the checks, the third answer
will not occur too frequently. Although we don’t yet have much experience to support this
belief, we are encouraged by recent progress in the area of rewrite rule systems generally,
and the Reve system specifically [Forgaard 84}, [Lescanne 83].

In many respects, the Larch Shared Language is distinguished as much by what it doesn’t
include as by what it does.

The Shared Language provides no mechanism for “hiding” operators. The hiding
mechanisms of other specification languages allow one to introduce auxiliary operators that
don’t have to be implemented. These operators are not completely hidden, since they must

10. Discusston

be read to understand the specification, and they are likely to appear in reasoning based
on the specification. However, the operators appearing in a Shared Language specification
are all auxiliary. Thus the introduction of a hiding mechanism would have no effect.
Alternatively, we could say that the entire Shared Language tier is hidden.

There is no mechanism other than sort checking for restricting the domain of operators.
Terms such as eval(new, ¢) are considered to be well-formed. Furthermore, no special
“error” elements are introduced to represent the value of such terms. As discussed in the

previous section, preconditions and errors are handled in the interface languages.

Similarly, nondeterminism is left to the interface languages. It is frequently useful to
write incomplete specifications that admit distinct equivalence relations on terms (and
non-isomorphic models). That is to say there are distinct terms that are neither provably
equal nor provably unequal. However, it is always the case that for every term t, t = t.
The whole mathematical basis of algebra and the Larch Shared Language depends on the
ability to freely substitute “equals for equals.” This property would be destroyed by the
introduction of “nondeterministic functions.”

Since our approach to specification frequently leads us to construct traits in which many
things are left unconstrained, we do not include “completeness” among the properties
that are required of a well-formed trait. Instead, we provide mechanisms (converts and
exempts) that allow the specifier to state which completeness properties are to be checked.
The choice will often depend on the intended interaction between a trait and the interface
specifications that use it.

We have chosen not to use “higher-order” entities in the Larch Shared Language. Traits
are simple textual objects. Their associated theories are first-order theories. ~We
have completely sidestepped the subtle semantic problems associated with parameterized
theories, theory parameters, and the like [Ehrig, et al. 80].

43

Piece III

The Larch Shared Language Reference Manual

Structure of the Manual

This piece is a self-contained reference manual for the Larch Shared Language. In it we
give the syntax and static semantics of the Larch Shared Language. We also define how
theories are associated with traits.

e Section 1 presents a grammar for the kernel subset of the Larch Shared Language.

e Section 2 defines the context sensitive checking and the theory associated with each

specification written in the kernel subset.

e Section 3 extends the kernel subset by introducing mechanisms for specifying intended
consequences of a specification written in the kernel subset.

e Sections 4-10 define successive extensions to the language. They extend the grammar
to introduce additional aspects of the language and describe any additional context
sensitive checking required. They also provide a translation from the newly extended
language to the previously defined subset. The result of this translation is subject
to the checking applicable to the target subset. The theory associated with any
specification written in the full language is the same as the theory associated with its
translation to the kernel subset.

e Section 11 describes additional checks, defined in terms of the theories associated with
traits, that are associated with various language features. To be legal, a specification
and each of the parts from which it is built must satisfy these checks in addition to
the context sensitive checks described earlier.

e Section 12 collects the reference grammar for the entire language.

45

46

Piece III: The Larch Shared Language Reference Manual

1. Kernel Language Syntax

trait
traitBody
simpleTrait
opPart
opDcl
signature
domain
range
propPart
props
generators
partitions
bylist
sortedOp
axioms
varDcl
equation
term

opld
opForm
opSym
traitld
sortld
varld

Comments start with 9% and terminate with end of line. They may appear after any token.

= traitld : trait traitBody
simpleTrait

H

{opPart} propPart*

introduces opDcl*

opld : signature

domain — range
sortld*,

sortld

asserts props

li

::= generators* partitions* axioms*

sortld generated bylist*,

sortld partitioned bylist*,

by [sortedOp*, |

opDcl

2= for all [varDcl*, | equation®
varld*, : sortld

term = term

sortedOp { ’(term*,’) } | varld
alphaNumerict | opForm

{ # } opSym (# opSym)* { # }

specialChar?t | . alphaNumeric™t

I

I

alphaNumerict

alphaNumerict

alphaNumerict

Syntactic conventions

|
{e}

b

et

alpha
alpha
()
(e)

alternative separator

e is optional

Zero or more e’s

zero or more e’s, separated by commas

one or more e’s

alpha is a nonterminal symbol

alpha is a terminal symbol

parentheses as terminal symbols

parentheses for grouping syntactic expressions

47

2. Simple Traits

Context sensitive checking

simpleTrait:
e The sets of varlds, sortlds and opIds appearing in the simpleTrait must be disjoint.

e Each sortld and each sortedOp appearing anywhere in the simpleTrait must appear
in its opPart.

opDcl:

e If the opld is an opForm it must have the same number of #’s as the number of
occurrences of sortlds in the signature’s domain.

generators:
e The range of each sortedOp must be the sortld of the generators.

e At least one sortedOp in each bylist must have a domain in which the sortld of the
generators does not occur.

partitions:
e The domain of each sortedOp must include the sortld of the partitions.

e The range of at least one sortedOp in each bylist must be different from the sortld of
the partitions.

axioms:
e Each varld used in a term must appear in exactly one varDcl.

e No varld may occur more than once in | varDcl*, .

equation:
e The sorts of both terms must be the same, where

o The sort of a term of the form sortedOp { ’(term*, ’) } is the range of the
sortedOp.

o The sort of a term of the form varld is the sortld of the varDcl in which the varld
is declared.

term:

e In sortedOp { ’(term*,’) } the domain of the sortedOp must be the sequence of the

sorts of the terms in term®, .

48

Piece III: The Larch Shared Language Reference Manual

Associated theory

We associate a theory with each trait. A theory is an inference-closed set of well-formed
formulas (wffs) of typed first-order predicate calculus with equality. This section defines
the theory associated with a simpleTrait.

We adopt the conventional meanings of the equality symbol (=), the propositional
connectives (&, |, -, =, ...), and the quantifiers (Vv and 3). Since we use the same
symbols to denote connectives as to denote the operators of the built-in traits Boolean
and Equality, wifs containing unquantified terms can be ambiguous. However, since traits
Boolean and Equality give the propositional connectives and = the same meanings as
the corresponding predicate connectives, the ambiguity is harmless.

The theory, call it Th, associated with a simpleTrait is defined by:

e Arioms: Each equation, universally quantified by the varDcls of its containing axioms,
is in Th.

e Inequation: —(true:—Bool = false:—Bool) is in Th.

o First-order predicate calculus with equality: Th contains the axioms of conventional
typed first-order predicate calculus with equality and is closed under its rules of

inference.

e Induction: If the trait has a generators with sortld S and a bylist by [0P1, - -» ODPn),
and P(s) is a wif with a free variable, s, of sort S, Th contains the wff
V[s: S] P(s)
if for each op; in [op1, ..., OPn]
Qi = P(op;(x1, .-+, xx)) is in Th,
where k is the arity of op;,
the x;’s are variables that do not appear free in P, and
Q; is the conjunction of P(x;), for each j such that the j-th argument of op;

is of sort S.

e Reduction: If the trait has a partitions with sortld S and a bylist by [op1,. - .,0pr}, Th
contains the wif
V[s1, s2: S|(Q => 81 = s2)
where Q is the conjunction, for each op; in [0p1,.. +sOPn)>
and each j such that the j-th argument of op; is of sort S of:
V[z1: Si,. .., Tkt Sk (Subst(opi, J, 81) = Subst(ops, 7, s2)), Where
Sy, ..., Sk is the domain of op;, and
Subst(op, 7, §) is op(z1, - -+ zx) with s substituted for z;.

3. Consequences and Exemptions

Exempts and consequences affect only the checking (see section 11) and do not affect the
theory. We add to the grammar the productions:

trait = traitld : trait traitBody {consequences} {exempts}
consequences := implies conseqProps {converts}

conseqProps = props

converts = converts conversion*,

conversion = [sortedOp*,]

exempts = exempts exemptTerms*

exemptTerms = {for all [varDcl*,] } term*,

Context sensitive checking

conseqProps:

e If the props of the conseqProps is appended to the propPart of the containing trait,
the resulting trait must satisfy the checks of section 2.

exempts:

e Each term must satisfy the checks of section 2.

49

50

Piece III: The Larch Shared Language Reference Manual

4, Constrains Clauses

Constrains clauses affect only the checking (see section 11), not the theory. We add to the

grammar the productions:

propPart ::= constrains props
constrains ::= constrains (sortld | sortedOp*,) so that
Translation

e Replace the constrains by asserts.

5. Implicit Signatures and Partial OpForms

In the kernel language each sortedOp is an opDcl. Here we relax this restriction to allow
omitted and partial signatures and omitted #’s. We add to the grammar the production:

sortedOp 2= opld { — range}
Context sensitive checking

e There must be a unique mapping from occurrences of sortedOps to opDcls of the
traitBody such that the translation described below produces a legal traitBody and
for each sortedOp, opDcl pair:

o The oplds match, i.e.,
They are the same, or

They are both opForms and the one in the sortedOp is the same as the one

in the opDcl with all #’s removed.

o If the sortedOp includes — range, it is the same as the range of the opDcl.
Translation

e The checking ensures that each occurrence of a sortedOp corresponds to a unique
opDcl. The translation is simply to replace it by that opDcl.

51

52

Piece III* The Larch Shared Language Reference Manual

6. Mixfix Operators

In the language presented thus far, all operators are treated as either nullary or prefix.

Here we relax that restriction. We replace the grammar for term by:

term ::= secondary | if secondary then secondary else term
secondary ::= { opSym } primary (opSym primary)* { opSym }
primary .= sortedOp { ’(term*,) } | varld | ’(term ’)
Translation
equation:

o It is necessary to resolve the grammatical ambiguity between the = connective in
equations and the = opSym. In any equation the first occurrence of = that is not
bracketed by parentheses or within an if then else is the equation connective; the
remainder are opSyms. Parentheses can be used to enforce any desired parsing.

term:

e Translate each term of the form if b then t; else t; into a term of the form
ifThenElse(b, t1, t2).

secondary:

e Translate each secondary containing opSyms into a primary of the form
opld °(term*,’),
where

o opld is derived by replacing each primary in the secondary by #.
o term*, is the sequence of primarys.
primary:

e After the previous translations have been performed, remove the outer parentheses

from primarys of the form ’(term).

7. Boolean Terms as Equations

It is convenient to use terms of sort Bool as equations.

production:

equation = term
Context sensitive checking

e The term must be of sort Bool.
Translation

e Replace the term by the equation
term = true

We add to the grammar the

58

54 Piece III: The Larch Shared Language Reference Manual

8. External References

We add to the kernel grammar the productions:

traitBody := externals simpleTrait

externals = {assumes} {imports} {includes}
assumes .= assumes traitRef*,

imports = imports traitRef*,

includes = includes traitRef*,

traitRef = traitld

conseqProps = traitRef*, props

Contexzt sensitive checking

externals:

e Recursive externals are not permitted; i.e., the traitld of the containing trait may not

appear in an externals, nor in any partial translation of a traitRef in its externals.

Translation

The translation of a trait is derived bottom-up; i.e., before a trait with traitRefs is
translated, each of its traitRefs is replaced by the translation of the trait labeled by
that traitRefs traitld. Let T be a trait whose simpleTrait is S and let E consist of the
translations of the traitRefs in T’s externals. The translation of T consists of:

o An opPart containing S’s opDcls and E’s opDcls.

e A propPart* containing S’s propParts and E’s propParts.

e A consequences containing the props of
o T’s conseqProps.
o the propParts of the translations of the traitRefs in T’s conseqProps.
o E’s consequences.

e An exempts containing T’s exemptTerms and E’s exemptTerms.

9. Modifications

We add to the grammar the productions:
traitRef = traitld {renaming}
with [(sortRename | opRename)*, |

renaming

sortRename = sortld for oldSort
oldSort = sortld

opRename ::= opld for oldOp
oldOp = sortedOp

Context sensitive checking

traitRef:
¢ No sortedOp may occur more than once as an oldOp.
e No sortld may occur more than once as an oldSort.

e Each oldSort must appear in an opDcl in the translation of the trait labeled by the
traitld.

¢ There must be a unique mapping from 0ldOps to opDcls of the translation of the trait
labeled by the traitld, such that for each 0ldOp, opDcl pair:

o The oplds match (see section 5),
o If the 0ldOp includes a domain, it is the same as the domain of the opDcl.

o If the oldOp includes — range, it is the same as the range of the opDcl.

Translation
e The translation of the trait labeled by the traitld of the traitRef is modified by
applying first the opRenames, and then the sortRenames:

o Simultaneously, for each opRename, replace the opld part of each occurrence of
the opDcl to which the oldOp maps by the opld of the opRename.

o Then, simultaneously, for each sortRename, replace each occurrence of its oldSort
by its sortld.

55

56

Piece IIT: The Larch Shared Language Reference Manual

10. Implicit Incorporation of Boolean, IfThenElse, and Equality

Three traits, Boolean, IfThenElse, and Equality, are implicitly incorporated into various

other traits to assure uniform meanings for the operators they constrain.
Translation

e Append the traitRef
Boolean

to the imports of each trait except Boolean.

e Append the traitRef
IfThenElse with [T1 for T]
to the imports of each trait containing a term of the form
if b then t; else t;
in which t; and t2 have the same sort, T1.

e Append the traitRef
Equality with [T1 for T]
to the traitRef* of the conseqProps of each trait (except Equality) containing a term
of the form
t, = to
in which t; and t, have the same sort, T1.

10. Implicit Incorporation of Boolean, IfThenElse, and Equality

Built-in traits

Boolean: trait
introduces
true: — Bool
false: — Bool
- #: Bool — Bool
& #: Bool, Bool — Bool
| #: Bool, Bool — Bool
= #: Bool, Bool — Bool
= #: Bool, Bool — Bool
asserts Bool generated by [true, false |
for all [b: Bool]
—true = false
—false = true
true & b) = b
false & b) = false

true = b) = b
false = b) = b
implies converts [-, &, | , =, =]

IfThenElse: trait
introduces ifThenElse: Bool, T, T — T
asserts for all [ty, to: T]
ifThenElse(true, ¢, t2) = t;
ifThenElse(false, t;, tp) = to
implies converts | ifThenElse |

Equality: trait
introduces # = #: T, T — Bool
asserts T partitioned by [= |
forall [z, y, 2 T]
(s=2)
(z=y) = (y=2)
(2=v) & (y=2)) = (2=2)

57

58

Piece III: The Larch Shared Language Reference Manual

11. Semantic Checking

In addition to the syntactic constraints specified above, we require that each trait be
logically consistent, discharge the assumptions of its external traits, be a conservative

extension of its imports, be properly constraining, and imply its consequences.

Consistency

A traitBody is consistent if its associated theory does not contain the equation

true:—Bool = false:—Bool

Assumptions

Let A(T) be all of the assumes of the traits imported or included in T, and R(T) be the
result of translating T after removing these assumes. A(T) is discharged by T if the theory

associated with the translation of each traitRef of A(T) is a subset of the theory associated
with R(T).

Imports

The theory associated with a trait must be a conservative extension of the theory associated
with the translation of each traitRef in its imports; i.e., if trait T1 imports T2 and Wisa
wif containing only operators introduced in T2, W is in the theory associated with T1 if
and only if it is in the theory associated with T2.

Constraints

A propPart is properly-constraining if it implies properties of only the operators in its
constrains. The occurrence of a sortld in a constrains stands for the list of all sortedOps
in the containing trait’s opPart whose signatures include that sortld.

Let T be a trait and P be the propPart

constrains sortedOp*, so that props.
P is properly-constraining in the trait consisting of T plus P if and only if each wff in the
theory associated with T plus P is also in the theory associated with T or else contains a
sortedOp listed in sortedOp*.

Since the translation of a traitRef converts constrains to asserts, this check is performed

only on traits in which constrains appears explicitly.

11. Semantic Checking

Consequences

A trait implies its consequences if the theory associated with its conseqProps is a subset of
the theory associated with the trait and the [sortedOp*, | in each converts is convertible.
Convertibility is defined using the theory and exempts of a trait.

conseqProps:

e The theory associated with conseqProps must be a subset of the theory of the trait
in which the consequences appears. The theory associated with a conseqProps is the
theory associated with the traitBody

includes traitRef*,

opPart

asserts props
where traitRef*, and props form the conseqProps, and opPart is the opPart of the
trait in which the consequences appears.

conversion:

e Let C be a conversion. For each term, t, that contains no variables of any sort
appearing in a generators in the containing trait, the theory of the containing trait

must either

o contain an equation t = t;, where t; contains no sortedOp appearing in C’s

sortedOp*, or

o contain an equation t’ = t;, where t’ is a subterm of t, and t; is an instantiation
of a term appearing in an exempts of the containing trait.

59

Piece III: The Larch Shared Language Reference Manual

12. Reference Grammar for The Larch Shared Language

trait
traitBody
externals
assumes
imports
includes
traitRef
renaming
sortRename
oldSort
opRename
oldOp
sortedOp
simpleTrait
opPart
opDcl
signature
domain
range
propPart
constrains
props
generators
partitions
bylist
axioms
varDcl
equation
term
secondary
primary
opld
opForm
opSym
traitld
sortld
varld
consequences
conseqProps
converts
conversion
exempts
exemptTerms

|

i

i

|

I

H

fi

1

Il

traitld : trait traitBody {consequences} {exempts}
externals simpleTrait

{assumes} {imports} {includes}

assumes traitRef*,

imports traitRef*,

includes traitRef*,

traitld {renaming}

with | (sortRename | opRename)*, |
sortld for oldSort

sortld

opld for oldOp

sortedOp

opDcl | opld { — range }

{opPart} propPart*

introduces opDcl*

opld : signature

domain — range

sortld*,

sortld

(asserts | constrains) props

constrains (sortld | sortedOp*,) so that
generators* partitions* axioms*

sortld generated bylist*,

sortld partitioned bylist*,

by [sortedOp*, |

for all [varDcl¥,] equation*

varld*, : sortld

term { = term }

secondary | if secondary then secondary else term
{ opSym } primary (opSym primary }* { opSym }
sortedOp { ’(term*,’) } | varld | ’(term’)
alphaNumerict | opForm

{ # } opSym (# opSym)* { # }
specialChart | . alphaNumerict
alphaNumeric*t

alphaNumerict

alphaNumeric*t

implies conseqProps {converts}

traitRef*, props

converts conversion®,

[sortedOp*, |

exempts exemptTerms*

{ for all [varDcl*, | } term*,

Piece IV
A Larch Shared Language Handbook

Preface

This handbook consists of a collection of traits written in the Larch Shared Language. It
is intended to serve three purposes:

e Provide a set of illustrative examples that help people to understand the Larch Shared
Language.

e Provide a set of components that can be directly incorporated into other specifications.
e Provide a set of models upon which other specifications can be based.

We have tried to isolate the smallest useful increments of specification that it might be
reasonable to use in other specifications. In particular, we have tried to provide traits
that will make it convenient to specify the weak assumptions that characterize many of
the more widely applicable specifications, especially in Sections 7 and 8. The traits in
these sections are smaller and more numerous than is typical in specifications written from
scratch, which sometimes leads to a somewhat overstructured appearance.

In addition to traits that we expect to be directly incorporated in specifications, we have
included a number of traits intended primarily as patterns. Section 9 contains several such
traits. Specifiers are more likely to edit these traits than to include them, because they
will need similar operators with different arities.

We have mostly stuck to familiar examples. Since they describe well-understood
mathematical entities, many of the traits, e.g., Integer, are atypically complete. In general,
we expect most specifications to supply constraints, rather than complete definitions.
Section 14 is more typical in this respect.

The support tools envisioned for Larch are not yet available. Transcriptions of traits in
this paper have been mechanically checked for some properties. Several errors were found
and corrected as a result of this checking, but others may not have been detected and
some additional transcription errors may have crept in. Thus these traits should be given
the same sort of credence as carefully written programs that have not been checked by a
compiler.

We would like to be able to present specifications with the clarity and rigor of a
mathematics text, as advocated in [Abrial 80]. In particular, the formal text should be
accompanied by a substantial amount of informal commentary. However, the present
Handbook contains only the formal material, and corresponds more nearly to an appendix

of “collected formulas” than to a text.

61

62 Piece IV: A Larch Shared Language Handbook

Conventions

e The identifier T is used to identify the only interesting sort in generic traits.
e The identifiers C and E are used for “containing” and “element” sorts.

e The infix symbol #o# is used to denote a generic binary operator.

The infix symbol #@®# is used to denote a generic relational operator.

An asserts clause is used rather than a constrains clause when constrains would
supply no information (e.g., because there is only one operator).

1. Basic Properties of Single Operators

Associative: trait
introduces #o#: T, T —= T
asserts for all [z, y, 20 T |
(zoy)oz==zo0 (yoz)

Commutative: trait
introduces #o#: T, T — Range
asserts for all [z, y: T |
roy=yorx

Idempotent: trait
introduces op: T — T
asserts for all [z: T |

op(op(z)) = op(z)

Involutive: trait
introduces op: T — T

op(op(z)) = 2

2. Basic Properties of Binary Relations

Relation: trait
introduces #®#: T, T — Bool

TotalRelation: trait
includes Relation
asserts for all [z, y: T |

(z@)| (v © 2)

Reflexive: trait
includes Relation
asserts for all [z: T |

t @z

Irreflexive: trait
includes Relation
asserts for all [z: T |

~(z © z)

Transitive: trait
includes Relation
asserts for all [z, y, z: T]

(z®@y) & (y®2) = (z O 2)

ReflexiveTransitive: trait
includes Reflexive, Transitive

Symmetric: trait
includes Relation
asserts for all [z, y: T |
(z®@vy)=(v©1)

implies Commutative with [@ for o, Bool for Range |

Equivalence: trait
includes ReflexiveTransitive with [.eq for @ |,
Symmetric with [.eq for @]

63

64

Piece IV: A Larch Shared Language Handbook

3. Ordering Relations

PartialOrder: trait
imports ReflexiveTransitive with | < for @]

TotalOrder: trait
includes PartialOrder, TotalRelation with [< for @ |

OrderEquivalence: trait
assumes PartialOrder
introduces #.eq#: T, T — Bool
constrains .eq so that for all [z, y: T |
(z.eqy) = (2 < y) & (v < z)
implies Equivalence
converts | .eq |

OrderEquality: trait
assumes PartialOrder
includes Equality, OrderEquivalence with [= for .eq |

PartialOrderWithEquality: trait
includes PartialOrder, OrderEquality

TotalOrderWithEquality: trait
includes TotalOrder, OrderEquality

DerivedOrders: trait

assumes PartialOrder

introduces
#<#: T, T — Bool
#>#: T, T — Bool
#>#: T, T — Bool

constrains < so that for all [z, y: T]
(<) = ((z < v) & (-(v < 2)))

constrains > so that for all [z, y: T |
(z2y) =(y<2)

constrains > so that for all [z, y: T |
(z>y)=(v<2)

implies Transitive with [< for @ |,
Transitive with [> for @ |,
PartialOrder with | > for < |

converts [<, >, >]

3. Ordering Relations

PartiallyOrdered: trait
imports PartialOrderWithEquality
includes DerivedOrders
implies PartialOrderWithEquality with [> for <]

Ordered: trait
imports TotalOrderWithEquality
includes DerivedOrders
implies PartiallyOrdered, TotalOrder WithEquality with [> for <]

65

66 Piece IV: A Larch Shared Language Handbook

4. Group Theory

LeftIdentity: trait
introduces
#Ho#: T, T—>T
unit: — T
asserts for all [z: T |

unito z =z

Rightldentity: trait
introduces
#o#: T, T - T
unit: — T
asserts for all [z: T]

z o unit =z
Identity: trait includes LeftIdentity, RightIdentity

LeftInverse: trait
assumes LeftIdentity
introduces inv: T —» T
asserts for all [z: T |
inv(z) o z = unit

RightInverse: trait
assumes RightIdentity
introduces inv: T — T
asserts for all [z: T |

z o inv(z) = unit

Inverse: trait
assumes Identity
includes LeftInverse, RightInverse

Abelian: trait imports Commutative with [T for Range]
Semigroup: trait includes Associative, Equality

LeftMonoid: trait includes Semigroup, LeftIdentity

RightMonoid: trait includes Semigroup, Rightldentity

4. Group Theory

Monoid: trait includes LeftMonoid, RightMonoid

Group: trait
includes LeftMonoid, LeftInverse
implies RightMonoid, RightInverse, Involutive with [inv for op |

AbelianSemigroup: trait includes Abelian, Semigroup

AbelianMonoid: trait
includes Abelian, LeftMonoid
implies Monoid

AbelianGroup: trait includes Abelian, Group

Distributive: trait

introduces
#+#: T, T—>T
#x#: T, T > T

asserts for all [z, y, z: T]
zx(y+2)=(z*xy)+ (z*2)
(y+2)*xz=(y*xz)+ (2 *z)

67

68 Piece IV: A Larch Shared Language Handbook

5. Simple Numeric Types

Ordinal: trait
includes Ordered with [Ord for T |
introduces
first: — Ord
succ: Ord — Ord
asserts Ord generated by [first, succ |
Ord partitioned by [< |
for all | z, y: Ord |
first < z
~(succ(z) < first)
(succ(z) < succ(y)) = (z < y)
converts | =, <, <, >, > |

Cardinal: trait
imports Ordinal with [0 for first, Card for Ord |
introduces
1: — Card
#+44: Card, Card — Card
#x+H#: Card, Card — Card
#o4t: Card, Card — Card
constrains 1 so that 1 = succ(0)
constrains + so that for all [z, y: Card |
z+0==z
z + succ(y) = succ(z + y)
constrains * so that for all [z, y: Card]
z%0=0
zxsucc(y) =z + (z *y)
constrains © so that for all | z, y: Card |
06z=0
0=z
succ(z) O succ(y) =z 60 y
implies
Cardinal2
Card generated by [1, +, ©]
Card partitioned by [>], by [=], by [<], by [>]
forall [z,y: Card]z <y = ((z©) = 0)
converts [1,6, +, ¥, =, <, >, <, >]

5. Simple Numeric Types

Cardinal2: trait % Alternate definition. Compare with Cardinal above.
includes AbelianMonoid with [+ for o, 0 for unit, Card for T |,
AbelianMonoid with [* for o, 1 for unit, Card for T |,
Distributive with | Card for T |,
Ordered with | Card for T |
introduces
#6#: Card, Card — Card
succ: Card — Card
asserts Card generated by [0, 1, + |
for all [z, y: Card |
z<(z+1)
(z+y)oy=2
06z=0
succ(z) =z + 1
implies Cardinal

69

70 Piece IV: A Larch Shared Language Handbook

6. Simple Data Structures

Pair: trait
introduces
(#, #): T1, T2 = C
#.first: C — T1
#.second: C — T2
asserts C generated by [(#, #) |
C partitioned by [.first, .second |
for all | f: T1, s: T2]
{f, s).first = f
(f, s).second = s
implies converts | .first, .second |

Triple: trait
introduces
(#, #, #): T1, T2, T3 - C
#.first: C - T1
#.second: C — T2
#.third: C —» T3
asserts C generated by [(#, #, #) |
C partitioned by | .first, .second, .third |
for all [f: T1, s: T2, t: T3]
{f, s, t).first =f
{f, s, t).second = s
{f, s, t).third =t
implies converts [.first, .second, .third |

6. Stmple Data Structures

FiniteMapping: trait
assumes Equality with [Index for T |
introduces
new: — C
bind: C, Index, E — C
#[#]: C, Index — E
defined: C, Index — Bool
asserts C generated by [new, bind |
C partitioned by [#[#], defined]
constrains C so that
for all [¢: C, 1, i1 Index, e: E]
bind(c, 11, €)[f] = if ¢ = 4; then e else ¢[s]
—defined(new, 1)
defined(bind(e, 1, €), 1) = (¢ = 4;) | defined(e,)
implies converts | #[#], defined |
exempts for all [i: Index | new[s]

71

72

Piece IV: A Larch Shared Language Handbook

7. Container Properties

Container: trait
introduces
new: — C
insert: C,E — C
asserts C generated by [new, insert |

Singleton: trait
assumes Container
introduces singleton: E — C
constrains singleton so that for all [e: E |
singleton(e) = insert(new, e)
implies converts | singleton |

IsEmpty: trait
assumes Container
introduces isEmpty: C — Bool
asserts for all [c: C, e: E|
isEmpty (new)
-isEmpty(insert(c, €))
implies converts [isEmpty]

Size: trait
assumes Container
imports Cardinal
introduces size: C — Card
constrains size so that

size(new) = 0

AdditiveSize: trait
assumes Container
includes Size
constrains size, insert so that for all [¢: C, e: E]
size(insert(c, €)) = size(c) + 1
implies converts | size |

7. Container Properties

Join: trait

assumes Container

introduces #.join#: C,C — C

constrains .join so that for all [¢, ¢;: C, e: E |
¢ .join new = ¢
¢ .join insert(¢;, ¢) = insert(c .join ¢y, €)

implies Associative with [.join for o |

converts [.join |

ElementEquality: trait imports Equality with [E for T |

Member: trait
assumes Container, ElementEquality
introduces #€#: E, C — Bool
constrains €, insert so that for all [¢: C, e, €1: E |
—(e € new)
e € insert(c, e;) = (e = e1) | (¢ € ¢)
implies converts | €]

ElemCount: trait

assumes Container, ElementEquality

imports Cardinal

introduces count: C, E — Card

constrains count, insert so that for all [e, e;: E, ¢: C |
count(new, €¢) =0
count(insert(c, €), €1) = count(c, €) + (if e = e, then 1 else 0)

implies converts | count]

Delete: trait
assumes Container
introduces delete: C, E — C
constrains delete so that for all | e: E |
delete(new, e) = new

Containment: trait
assumes Container
includes PartiallyOrdered with
[€ for <, D for >, C for <, D for >, C for T]
constrains C so that for all [e: E, ¢: C]
¢ C insert(c, €)
implies for all | ¢: C]
new C ¢

73

7% Piece IV: A Larch Shared Language Handbook

Next: trait
assumes Container
introduces next: C — E
constrains next, insert so that for all [e: E |
next(insert(new, €)) = e
exempts next(new)

Rest: trait
assumes Container
introduces rest: C — C
constrains rest so that for all [e: E |
rest(insert(new, e)) = new
exempts rest(new)

Remainder: trait

assumes Container, Rest

imports Cardinal

introduces remainder: C, Card — C

constrains remainder so that for all [¢: C, i: Card |
remainder(c, 0) = ¢
remainder(¢, ¢ + 1) = remainder(rest(c), 1)

implies converts | remainder |

Index: trait

assumes Container, Next, Rest

imports Cardinal

introduces #[#]: C, Card — E

constrains #[#] so that for all [¢: C, i Card |
¢[1] = next(e)
c[(i + 1)] = rest(c)[¢]

implies converts [#[#] |

exempts for all [¢: C] ¢[0]

8. Container Classes

SetBasics: trait
assumes ElementEquality, Container with | {} for new |
includes Size with | {} for new], Member with [{} for new |
introduces delete: C, E —» C
constrains C so that
C partitioned by [€ |
for all [s: C, ¢, ¢;: E |
size(insert(s, e)) = size(s) +
e; € delete(s, €) = (e; € s)
implies Delete with | {} for new]
converts | size, delete, €]

(if e € s then O else 1)
& (~(e = e))

BagBasics: trait

assumes ElementEquality, Container with [{} for new |
imports AdditiveSize with | {} for new |,

ElemCount with | {} for new]
includes Member with [{} for new |
introduces delete: C, E — C
constrains C so that

C partitioned by | count]

for all [b: C, e, e1: E]

count(delete(b, €), e1) = count(b, ;) — (if e = e; then 1 else 0)

implies Delete with [{} for new |

converts [size, delete, count, €]

CollectionExtensions: trait

assumes ElementEquality, Container with [{} for new |

imports IsEmpty with [{} for new |,
Singleton with [{} for new, {#} for singleton],
Containment with [{} for new |,
Join with [{} for new, U for .join]

includes Equality with [C for T |

implies converts | {#}, isEmpty, U |

75

76 Piece IV: A Larch Shared Language Handbook

SetIntersection: trait
assumes SetBasics
introduces #N#: C,C — C
constrains N so that for all [s, s;: C, e: E]
e€ (sNs)=(e€s)&(ec€ s)
converts [N]

Set: trait
assumes ElementEquality
imports SetBasics, SetIntersection
includes CollectionExtensions
implies Abelian with [U for o, C for T]
Abelian with [N for o, C for T |
converts | size, delete, €, N, U, {#}, isEmpty, =, &, 2, C, D]

Bag: trait
assumes ElementEquality
imports BagBasics
includes CollectionExtensions
implies Abelian with [U for o, C for T |
converts [size, delete, count, €, U, {#}, isEmpty, =, G, D,C, D

Enumerable: trait
imports IsEmpty, Next, Rest
includes Container
constrains C so that C partitioned by [next, rest, isEmpty]

Stack: trait
includes Enumerable with [push for insert, top for next, pop for rest |
constrains push, pop, top so that for all [stk: C, e: E |
top(push(stk, €)) = e
pop(push(stk, €)) = stk

Queue: trait
includes Enumerable with [first for next |
constrains first, rest, insert so that for all{¢: C,e: E]
first(insert(g, ¢)) = if isEmpty(q) then e else first(q)
rest(insert(g, e)) = if isEmpty(g) then new else insert(rest(q), €)

8. Container Classes 77

Dequeue: trait
includes Stack with [insert for push, first for top, rest for pop s
Stack with [enter for push, last for top, prefix for pop]
constrains C so that for all [¢: C, ¢, ¢1: E |
insert(new, e) = enter(new, e)
insert(enter(¢, €), e;) = enter(insert(c, e,), €)
implies Queue, Queue with [enter for insert, last for first, prefix for rest |
converts [insert, first, last, rest, prefix], [enter, first, last, rest, prefix |

Sequence: trait
imports Dequeue, AdditiveSize
includes Index with [first for next |,
Join with [|| for .join]
implies C partitioned by [size, #[#] |

SubSequence: trait
imports Sequence
includes Remainder with | #[#...] for remainder |,
Remainder with [#]...#]| for remainder, prefix for rest]

PriorityQueue: trait
assumes TotalOrder with [E for T |
includes Enumerable
constrains next, rest, insert so that for all[¢: C, e: E]
next(insert(q, €)) = if isEmpty(q) then e
else if next(¢q) < e then next(g) else e
rest(insert(q, e)) = if isEmpty(q) then new
else if next(g) < e then insert(rest(q), €) else ¢
implies converts | next, rest, isEmpty |

78 Piece IV: A Larch Shared Language Handbook

9. Generic Operators on Containers

CoerceContainer: trait
assumes Container with [DC for C |,
Container with [RC for C |
introduces coerce: DC — RC
constrains coerce so that for all [de: DC, e: E |
coerce(new) = new
coerce(insert(de, €)) = insert(coerce(dc), e)

implies converts | coerce |

Reduce: trait
assumes Enumerable, RightIdentity with [E for T |
introduces reduce: C — E
constrains reduce so that for all [¢: C]
reduce(c) = if isEmpty(c) then unit else next(c) o reduce(rest(c))

implies converts | reduce]

SomePass: trait

assumes Container

introduces
test: E, T — Bool
somePass: C, T — Bool

constrains somePass so that for all [¢: C, e: E, t: T |
—somePass(new, t)
somePass(insert(c, €), t) = test(e, t) | somePass(c, t)

implies converts | somePass |

AllPass: trait
assumes Container
introduces
test: E, T — Bool
allPass: C, T — Bool
constrains allPass so that for all [¢: C, e: B, t: T |
allPass(new, t)
allPass(insert(ec, €), t) = test(e, t) & allPass(c, t)
implies converts | allPass |

9. Generic Operators on Containers

Sift: trait
assumes Container
introduces
test: E, T — Bool
sift: C, T — C
constrains sift so that for all [¢: C, e: E, ¢t: T |
sift(new, t) = new
sift(insert(c, €), t) = if test(e, t) then insert(sift(c, t), e) else sift(c, t)
implies converts [sift]

PairwiseExtension: trait
assumes Enumerable
introduces
extOp: C,C —» C
elemOp: E, E — E
constrains extOp so that for all | ¢1, ¢2: C, €1, €2: E]
extOp(new, new) = new
extOp(insert(c;, €1), insert(cz, €2)) =
insert(extOp(c1, ¢2), elemOp(ey, €2))
implies converts [extOp]
exempts for all [¢: C, e: E]
extOp(new, insert(c, €)),
extOp(insert(c, €), new)

Pointwiselmage: trait

assumes Container with [DC for C, DE for E |,
Container with [RC for C, RE for E]

introduces
extOp: DC — RC
pointOp: DE — RE

constrains extOp so that for all | de: DC, de: DE |
extOp(new) = new
extOp(insert(dc, de)) = insert(extOp(dc), pointOp(de))

implies converts [extOp]

79

80 Piece IV: A Larch Shared Language Handbook

10. Nonlinear Structures

BinaryTree: trait
imports Cardinal
introduces
(#): E—-C
(#, #): C,C > C
#.left: C - C
#.right: C — C
size: C — Card
isLeaf: C — Bool
content: C — E
constrains C so that
C generated by [(#), (#, #) |
C partitioned by [.left, .right, content, isLeaf]
for all [¢, tr: C, e: E]
((¢, tr)).left =t
((#1, tr)).right = tr
size((e)) = 1
size((tl, tr)) = size(tl) + size(tr)
isLeaf((e))
—isLeaf((¢l, tr))
content((e)) = e
implies for all [t: C] isLeaf(t) = (size(t) = 1)
converts [.left, .right, size, isLeaf, content]
exempts for all [tl, tr: C, e: E | ((e)).left, ({¢)).right, content((tl, tr))

10. Nonlinear Structures 81

BasicGraph: trait
assumes Equality with | Node for T]
imports Set with [NodeSet for C, Node for E |,

Pair with [Edge for C, Node for T1, Node for T2 |
introduces
empty: — Graph
addNode: Graph, Node — Graph
addEdge: Graph, Edge — Graph
nodes: Graph — NodeSet
adj: Node, Graph — NodeSet
constrains Graph so that
Graph generated by | empty, addNode, addEdge]
Graph partitioned by [nodes, adj |
for all [g: Graph, e: Edge, n, n;: Node |
nodes(empty) = {}
nodes(addNode(g, n)) = insert(nodes(g), n)
nodes(addEdge(g, €)) = insert(insert(nodes(g), e.first), e.second)
adj(n, empty) = {}
adj(n, addNode(yg, n1)) = adj(n, g)
adj(n, addEdge(g, ¢)) =
if n = (e.first) then insert(adj(n, ¢), e.second) else adj(n, g)
implies converts | nodes, adj |

Connectivity: trait
assumes Equality with [Node for T], BasicGraph
introduces
reach: NodeSet, Graph — NodeSet
allReach: NodeSet, NodeSet, Graph — Bool
connected: Graph — Bool
constrains reach, allReach, connected so that
for all | g: Graph, e: Edge, ns, ns;: NodeSet, n: Node]
reach(ns, empty) = {}
reach(ns, addNode(g, n)) = reach(ns, g)
allReach({}, ns, g)
allReach(insert(ns, n), ns;, g) =
allReach(ns, nsy, g) & (ns; C reach({n}, g))
connected(g) = allReach(nodes(g), nodes(g), 9)
implies converts [allReach, connected]

82 Piece IV: A Larch Shared Language Handbook

Graph: trait
assumes Equality with | Node for T |
imports BasicGraph
includes Connectivity,
Connectivity with [stronglyConnected for connected, pathReach for reach,
allPathReach for allReach |
constrains reach, allReach, connected so that
for all [g: Graph, e: Edge, ns: NodeSet |
reach(ns, addEdge(g, €)) =
reach(ns, g) U
(if (e.first) € ns
then insert(reach({(e.second)}, g), (e.second))
else if (e.second) € ns
then insert(reach({(e.first)}, g), (e.first))
else {})
constrains pathReach, allPathReach, stronglyConnected so that
for all [g: Graph, e: Edge, ns: NodeSet |
pathReach(ns, addEdge(g, €)) =
pathReach(ns, g) U
(if (e.first) € ns
then insert(pathReach({(e.second)}, ¢), (e.second))
else {})
implies converts | reach, allReach, connected, pathReach, allPathReach,

stronglyConnected]

11. Rings, Fields, and Numbers

Ring: trait
includes AbelianGroup with [+ for o, 0 for unit, —# for inv |,
Semigroup with [* for o |,

Distributive

RingWithUnit: trait
includes Ring, Identity with [* for o, 1 for unit |

InfixInverse: trait
assumes Inverse
introduces #0+#: T, T —- T
constrains #@# so that for all [z, y: T |
@y =zoinv(y)
implies converts | #0# |

Integer: trait

includes RingWithUnit with [Int for T |,

Ordered with [Int for T |,

InfixInverse with [+ for o, —# for inv, — for @, Int for T]
asserts Int generated by [1, +, —#]

for all [z: Int |

z<(z+1)

converts [0, x, #—#,=, <, >, <, > |

Field: trait
includes RingWithUnit
introduces #°!: T > T
constrains x, ! so that for all [z: T |
(2 = 0) | ((z+(z™) = 1)

exempts 071

83

84 Piece IV: A Larch Shared Language Handbook

Rational: trait
includes Field with [R for T |,
Ordered with [R for T |,
InfixInverse with [+ for o, —# for inv, — for @, R for T |
InfixInverse with [* for o, #~! for inv, / for @, R for T |
asserts
R generated by [1, +, —#, 71]
for all [z, y, 2z R
0<1
(c+2)<(y+2)=(z<y)
(v =0) | (0 < (z7) = (0 < 2)
[0,

implies converts f, #H—F#, [, =<, >, <, >]

12. Lattices

ExtremalBound: trait
assumes PartialOrder
includes AbelianSemigroup with [.glb for o |
constrains .glb so that for all | z, y, z: T |
(z glby) <z
(z <z) & (2 < y))=(z < (z .glb y))

Semilattice: trait
includes PartiallyOrdered,
ExtremalBound,
ExtremalBound with [> for <, .lub for .glb |
introduces 1: — T
constrains | so that for all [z: T |
z> 1
implies AbelianMonoid with | L for unit, .lub for o]

Lattice: trait
includes Semilattice
introduces T7: —» T
constrains T so that for all [z: T |
z < T
implies Lattice with [T for L, 1 for T, .glb for .lub, .lub for .glb,
> for <, < for >, > for <, < for > |

85

86 Piece IV: A Larch Shared Language Handbook

13. Enumerated Data Types

Enumerated: trait
imports Ordinal
includes Ordered
introduces
first: - T
last: —» T
succ: T —» T
pred: T —» T
ord: T — Ord
asserts T generated by | first, succ |
T partitioned by [ord]
for all [z, y: T
ord(first) = first
ord(succ(z)) = if z = last then ord(last) else succ(ord(z))
pred(succ(z)) = if z = last then pred(last) else z
(z < v) = (0rd(s) < ord(y))
implies T generated by | last, pred |
for all [z: T |
succ(pred(z)) = if z = first then succ(pred(first)) else z
first < z
z < last
converts [=, <, >, <, > |

13. Enumerated Data Types

Rainbow: trait
includes Enumerated with [Color for T |
introduces
red: — Color
orange: — Color
yellow: — Color
green: — Color
blue: — Color
violet: — Color
asserts
Color generated by | red, orange, yellow, green, blue, violet]
first = red
last = violet
succ(red) = orange
succ(orange) = yellow
succ(yellow) = green
succ(green) = blue
succ(blue) = violet
implies converts
[pred, last, ord, =, , <, >, red, orange, yellow, green, blue, violet],

>
[succ, first, ord, =, <, >, <, >, red, orange, yellow, green, blue, violet |

87

88

Piece IV: A Larch Shared Language Handbook

14. Display Traits

% The following traits represent a fairly straightforward translation of the specifications
% in “Formal Specification as a Design Tool” [Guttag and Horning 80]. We have

% not attempted to improve the design presented there, merely to translate it into Larch.
Coordinate: trait introduces minus: Coordinate, Coordinate — Coordinate
Illumination: trait introduces combine: Illumination, Illumination — Illumination
Boundary: trait introduces apply: Boundary, Coordinate — Bool
Transform: trait introduces apply: Transformation, Coordinate — Coordinate

Displayable: trait
introduces
appearance: T, Coordinate — Illumination

in: T, Coordinate — Bool

Picture: trait
assumes Boundary, Transform, Illumination,
Displayable with | Contents for T |
includes Displayable with [Picture for T |
introduces makePicture: Contents, Boundary, Transformation — Picture
constrains Picture so that
Picture generated by | makePicture |
for all [ecn: Contents, b: Boundary, ¢: Transformation, ¢d: Coordinate |
appearance(makePicture(cn, b, t), ed) =
appearance(cn, apply(t, cd))
in(makePicture(cn, b, t), cd) = apply(b, cd)
implies converts | appearance: Picture, Coordinate — Illumination,

in: Picture, Coordinate — Bool |

14. Display Trasts 89

Contents: trait
assumes Coordinate, Illumination, Displayable with [Component for T]
includes Displayable with [Contents for T]
introduces
empty: — Contents
addComponent: Contents, Component, Coordinate — Contents
constrains Contents so that
Contents generated by [empty, addComponent |
for all | ¢n: Contents, cm: Component, ¢d, edy: Coordinate]
appearance(addComponent(cn, cm, ¢dy, c¢d)) =
if in(cm, minus(cd, cd;))
then (if in(cn, cd)
then combine(appearance(cm, minus(ed, cdi)),
(cn, cd))
else appearance(cm, minus(cd, edy)))
else appearance(cn, cd)
—in(empty, cd)
in(addComponent(cn, ¢m, cdy), cd) =
in(¢m, minus(cd, edy)) | in(en, ed)
implies converts [appearance: Contents, Coordinate — Illumination,
in: Contents, Coordinate — Bool]
exempts for all [ed: Coordinate | appearance(empty, cd)

Component: trait
assumes Displayable with [View for T |,
Displayable with | Text for T |,
Displayable with [Figure for T |
includes ComponentCoercion with [View for T |,
ComponentCoercion with [Text for T |,
ComponentCoercion with [Figure for T |

ComponentCoercion: trait
assumes Displayable
includes Displayable with [Component for T |
introduces coerce: T — Component
constrains Component so that for all [¢: T, cd: Coordinate]
appearance(coerce(t), cd) = appearance(t, cd)
in(coerce(t), ¢d) = in(t, cd)

90

Piece IV: A Larch Shared Language Handbook

View: trait

assumes Displayable with [Picture for T |,
Equality with [Pictureld for T |,
Container with [IdList for C, Pictureld for E |,
Coordinate

includes Displayable with | View for T |

introduces
empty: — View
addPicture: View, Coordinate, Pictureld, Picture — View
findPictures: View, Coordinate — IdList
deletePicture: View, Pictureld — View

constrains View so that
View generated by | empty, addPicture |
for all | v: View, ed, ¢d;: Coordinate, id, id;: Pictureld, p: Picture]

appearance(addPicture(v, ¢dy, id, p), cd) =
if in(p, minus(ed, cdy))
then appearance(p, minus(ed, cd;))
else appearance(v, cd)

—in(empty, cd)
in(addPicture(v, cdi, 1d, p), ¢d) = (in(p, minus(cd, cdy)) | in(v, cd))

findPictures(empty, cd) = new
findPictures(addPicture(v, cdy, id, p), ¢d) =
if in(p, minus(cd, cd;))
then insert(id, findPictures(v, cd))
else findPictures(v, ¢d)

deletePicture(empty, 1d) = empty
deletePicture(addPicture(v, cdy, tdy, p), id) =
if 1d = id; then v else addPicture(deletePicture(v, 1d), cd, idy, p)

implies converts | findPictures, deletePicture,
appearance:View, Coordinate — Illumination,
in:View, Coordinate — Bool |

exempts for all | ¢d: Coordinate | appearance(empty, ¢d)

Display: trait
assumes Boundary, Transform, Illumination, Coordinate,
Equality with [Pictureld for T |,
Container with [IdList for C, Pictureld for E |
includes Picture, Contents, Component, View

Piece V

Writing Larch Interface Language Specifications

1. Introduction

Motivation

Current research in specifications is emphasizing the practical use of specifications in the
programming process. People have already benefited from using informal specifications
in most phases of this process. Writing informal specifications is widely accepted as a
useful way of organizing ideas, documentating design decisions, and informally arguing
the correctness of programs. Software design methods that include some form of informal
specification have been in use in industry for some time [Caine and Gordon 75, Jackson 75,
Katzan 76, Yourdon and Constantine 78].

Thus far, formal specifications have played a less influential role in the programming
process than have informal specifications. We believe that using formal specifications early,
in the design phase of the process, can be especially beneficial. A specification is formal
if it is written in a language with explicitly and precisely defined syntax and semantics.
Hence, one virtue of formal specifications is their precision. Precision leaves no room for
ambiguity. The process of writing formal specifications can often reveal ambiguities in
a client’s problem statement and errors in a program’s design. Uncovering bugs early
can thus save the cost of uncovering them later during testing and debugging. Precision
also implies that we can formally argue the correctness of programs. Another virtue of
formal specifications is their amenability to machine-manipulation. With the help from
appropriate machine-support, such as theorem provers, we can handle more specifications
and more complex ones, and thus formally reason about a larger set of specifications and

programs than if we had to rely on only pencil and paper.

In this piece we focus on the formal specifications of program modules. We are interested in
specifying program modules as a means of specifying a program composed of them. Given
a specification of a program module, a program designer can choose to use the module
without knowing how it is to be implemented. Similarly, a programmer can implement
the module without knowing how it is to be used. Thus, from either the designer’s
or implementer’s point of view, replacing one correct implementation of the module by

another should not affect the program’s design.

91

92

Piece V: Writing Larch Interface Language Specifications

Review: Larch’s Two-Tiered Approach

The Larch languages were designed to support a two-tiered specification technique
introduced in [Guttag and Horning 80| and elaborated in [Wing 83]. This approach
separates the specification of underlying abstractions from the specification of state
transformations. The specification of each program module has a component on each
tier. The Larch Shared Language is used for the component that specifies underlying
abstractions and a Larch interface language is used for the component that specifies state
transformations.

We gain the following advantages by separating specifications into two tiers:

e A separation of concerns. Shared Language components can be written independently
of interface language components. Application-oriented design decisions can be

recorded separately from implementation-oriented decisions.

e Reuseability. Shared Language components can be reused by different interface
language components. Some of them can be developed for particular applications;

a few central ones can be useful in many applications.

The environment in which a program module is embedded, and hence the nature of its
observable behavior, is likely to depend in fundamental ways on the semantic primitives
of the programming language. Attempts to hide this dependence will make specifications
more obscure to both the module’s users and its implementers. Thus, we intentionally
design each interface language to be suitable for a particular programming language, and
keep the Shared Language independent of any programming language. To capitalize on this
separation of a specification into two tiers, we isolate programming language dependent
issues—such as side effects, error handling, and resource allocation—into the interface
component of a specification.

We use the term “interface” because an interface specification defines only the observable
behavior of a program module. Users of a module read its interface specification to
understand its behavior, without considering its internal structure. We use the term
“shared” because all the Larch interface languages rely on the same language to define
underlying abstractions.

Focus of this Prece

This piece focuses on Larch interface language specifications. Its purpose is to explain in
more detail what interface language specifications are, what they look like, and how they
are intended to be written, used, and evaluated. A significant subgoal of this piece is to

explain their interaction with Shared Language specifications. In Section 2 we present

1. Introduction

an informal description of an early version of Larch/CLU, an interface language for the
programming language CLU [Liskov, et al. 77, Liskov, et al. 81]; in Section 3, we illustrate
how to incrementally construct a two-tiered specification; in Section 4, we discuss some
consequences of the two-tiered approach.

Related Work

Specification Methods: Formal specifications have been used extensively to describe simple
programs and abstract data types, leading to two different approaches, sometimes referred
to as “operational” and “definitional.” A survey of these approaches can be found in
[Liskov and Berzins 79).

In the operational approach, a specification gives a constructive definition of the program
or abstract data type. Examples of the operational approach include Parnas’s work on
state-machines [Parnas 72|, Robinson and Roubines’s extensions to them with V-, O-,
and OV-functions [Robinson and Roubine 77|, Berzins’s abstract models [Berzins 79}, and
Jones’s model-oriented specifications [Jones 80].

In the definitional approach, the specification of a program or an abstract data type gives
its required properties, rather than a method of constructing it. The definitional approach
can be broken into two categories, sometimes referred to as “axiomatic” and “algebraic.”

The axiomatic approach stems from Hoare’s work on proofs of correctness of programs
[Hoare 69] and of implementations of data types [Hoare 72], where predicate logic pre- and
post-conditions are used for the specification of the input-output behavior of programs and
of each operation of an abstract data type. Other work using the axiomatic approach is
described in [Standish 73] and [Nakajima, et al. 80].

The algebraic approach uses axioms to specify properties of programs and abstract data
types, but the axioms are restricted to equations. This approach defines data types to
be heterogeneous algebras [Birkhoff and Lipson 70]. Much work has been done on the
algebraic specification of abstract data types [ADJ 75, Guttag 75, Zilles, Burstall and
Goguen 77, Ehrich 78, Wand 79, Kamin 83] including the handling of error values {Goguen
77, ADJ 75, Kapur 80|, nondeterminism [Kapur 80], and parameterization [Thatcher, et
al. 78, Goguen 81, Ehrig, et al. 80].

Our work is related to both these approaches. Interface languages are axiomatic and the
Shared Language is algebraic.

Specification Languages: Some of the more widely-known specification languages are
CLEAR [Burstall and Goguen 77, Burstall and Goguen 81], Iota [Nakajima, et al. 80,
ACT-ONE [Ehrig and Mahr 85], SPECIAL [Robinson and Roubine 77], Z [Abrial 80},

93

94

Piece V: Writing Larch Interface Language Specifications

VDM'’s Meta-IV [Bjgrner and Jones 78], Ina Jo [Scheid and Anderson 85], Gypsy [Good,
et al. 78], and PAISLey [Zave 82]. Of these, the ones most closely related to ours are
CLEAR, Iota, ACT-ONE, and SPECIAL.

CLEAR, Iota, and ACT-ONE support the definitional approach to describing abstract
data types. Unlike the Larch Shared Language, CLEAR and Iota do not provide a simple
way to specify side effects and error handling. CLEAR and ACT-ONE are based on initial
algebra semantics; the Larch Shared Language is not. CLEAR, Iota, and ACT-ONE do
not isolate the programming-language-dependent parts of a specification.

SPECIAL is based on the operational approach, but is closely related to our two-tiered
viewpoint. It separates an “assertion” part, analogous to our Shared Language component,
from a “specification” part, analogous to our interface language component. However, in
SPECIAL a type is restricted to be either a primitive type, a subtype, or a structured
type, each of which comes with a set of pre-defined functions. Larch does not restrict the
assertion language to a fixed set of primitives, and allows the specifier to use the Shared
Language to define exactly the desired operators. Since the assertion language in SPECIAL
is restricted, most of the work of writing a specification is done in the specification part.
We take the opposite viewpoint and expect most of the work of writing a specification to
be done in the Shared Language component.

2. An Informal Look at a Larch/CLU Interface Language

This section presents part of an interface language for the programming language CLU.
Instead of giving a formal description of Larch/CLU,* we will illustrate its salient features

through some simple examples. Its complete formal definition can be found in [Wing 83].

The meaning of a Larch interface language is dependent on both the Larch Shared
Language and a programming language. Pieces I-IV have presented the Shared Language.
The next section reviews those parts of CLU that are needed to understand our example
interface specifications.t We refer the reader to [Liskov, et al. 81] for details about CLU.
Then we give examples of both a Larch/CLU procedure specification and a Larch/CLU
cluster specification.

An Overview of CLU

CLU has the primitive notions of object and state. An object is an entity that can be
manipulated by a program. Two important properties of an object are its type, which
never changes, and its value, which may change. A state consists of a set of objects, a
mapping from program variables (object identifiers) to objects, and a mapping from objects
to values. Two important observable state changes are when a new object is created and
when the value of an existing object changes. An object whose value can change is said
to be mutable; one whose value cannot change is said to be tmmutable. A type is mutable

if objects of that type are mutable. For example, integers are immutable, but arrays are
mutable in CLU.

In CLU, an object, A, can be the value of another object, B, in which case we say “B
contains A.” Sharing of objects arises when two or more objects contain the same object.
Because of sharing of mutable objects, it is not sufficient that the value of a containing
object refer to the value of the contained object; it must refer to the identity of the contained
object itself. Therefore, we must be able to distinguish in our specifications between an
object’s identity and its value.

It is important not to confuse an object and its type, which are CLU concepts, with a
term and its sort, which are Larch Shared Language concepts. The connection between
the CLU and the Larch Shared Language concepts is that (typed) objects have values
that are denotable by (sorted) terms. Through the Larch/CLU interface specifications of

The Larch/CLU used in this Piece is a predecessor of the one in Piece I. Although the

surface syntax is somewhat different, the underlying semantics is essentially the same.
In this piece we ignore the following features of CLU: iterators, own data, and parameter-

ized modules. They are all carefully treated in [Wing 83].

95

96

Piece V: Writing Larch Interface Language Specifications

choose = proc (s: set) returns (i: int)
uses SetOfE
requires —isEmpty(spre)
modifies at most [s |
ensures has(spre, ipost) & Spost = remove(Spre, lpost)
end

Figure 1. A Procedure Specification

procedures and clusters, we establish a link between the values that objects can have and
the terms defined by Shared Language components.

A CLU program consists of a set of modules, each of which is either a procedure or a
cluster. A procedure performs an action on a set of objects, and terminates returning
a set of objects. Communication between a procedure and its invoker occurs through
these objects. A cluster names a type and defines a set of procedures that create and
manipulate objects of that type. Users of this type are constrained to treat objects of the
type abstractly. That is, objects can be manipulated only via the procedures defined by
the cluster so, in particular, information about how objects are represented may not be
used.

Larch/CLU Procedure Specifications

Figure 1 gives a Larch/CLU specification of a choose procedure that selects a member of
a set, removes it, and returns it. It consists of a header, a link to its Shared Language
component, and a body. The header indicates that the input argument is of type set, and
the output argument is of type int. The identifiers, s and i, denote objects, not values.
The link from the interface component to the shared component is given by the used trait,
SetOfE, which is presented in Figure 2. The body contains a pre/mutates/post triple.
The pre-condition of choose is an assertion that is satisfied if the initial value of the input
argument is not empty. The modifies at most clause asserts that the choose procedure
may mutate no object other than the object bound to s. The post-condition is an assertion
about the initial and final values of the set object and the final value of the int object. The
operator names, isEmpty, has, and remove, and the meaning of the equality symbol, =,
all come from SetOfE.

Associated with a procedure specification is the predicate,
PRE = (MUTATES & POST)

where PRE and POST are the assertions in the requires and ensures clauses, respectively,
and MUTATES is the assertion associated with the modifies at most clause. The clause

2. An Informal Look at a Larch/CLU Interface Language

SetOfE: trait
includes Integer
introduces
empty: — SI
add: SI, E — SI
remove: SI, E — SI
has: SI, E — Bool
isEmpty: SI — Bool
card: SI — Int
constrains empty, add, remove, has, isEmpty, card so that
SI generated by [empty, add]
for all [s: SI, e, el: E|
remove(empty, €) = empty
remove(add(s, e}, el) =
if e = el then remove(s, el) else add(remove(s, el), e)
—has(empty, €)
has(add(s, e), el) = if e = el then true else has(s, el)
isEmpty (empty)
—isEmpty(add(s, e))
card (empty) = 0
card(add(s, e)) = if has(s, e) then card(s) else 1 + card(s)

Figure 2. SetOfE Trait

modifies at most | x1, ..., X, | asserts that the procedure changes the value of no object
in the environment of the caller except possibly some subset of {X1, ..., Xn}.

The following points are important to notice about a procedure specification:

e We distinguish between an object and its value by using a plain object identifier to
denote an object, and a subscripted object identifier to denote its value in a state.

e We distinguish between the initial and final values of an object by using an object
identifier subscripted by pre to denote the object’s initial value, and subscripted by
post to denote its final value. Thus the assertion spre = Spost says that the value of
the object s is unchanged.

e The headers for a CLU procedure and a CLU procedure specification are intentionally
similar. The only difference is that object identifiers, such as i, are introduced for
returned objects in the header of a procedure specification. This is to provide a way

to denote them in the assertions.

97

Piece V: Writing Larch Interface Language Specifications

set = cluster is pair, union, intersect, member, size
uses SetOfE i th Uset b ST nt bs 3

provides mutable set from SI

pair = proc (i, j: int) returns (s: set)
ensures (spoet = add(add(empty, ipre), jpre)) & new [s]
end

union = proc (sl, s2: set)

modifies at most [s2 |

ensures V j: E [has(s2p0st, J) = (has(slpre,) | has(s2pre,)
end

intersect = proc (sl, s2: set)

modifies at most | s2 |

ensures V j: E [has(s2p00t, j) = (has(slpre, j) & has(s2pre, j))]
end

member = proc (s: set, i: int) returns (b: bool)
ensures byost = has(spre, ipre)
end

size = proc (s: set) returns (i: int)
ensures ipost = card(spre)
end

end set

Figure 3. A Set Cluster Specification

e The name of the used trait denotes the Shared Language component.

e The modifies at most clause is an assertion that is given meaning as if it were
conjoined to the post-condition (see above). It is syntactically separated from the
post-condition to highlight a procedure’s potential side effect on the values of objects.
It is an example of a spectal assertion; each interface language comes equipped with its
own set of special assertions. They can be regarded as syntactic sugar for first-order

assertions about state.

2. An Informal Look at a Larch/CLU Interface Language

A Larch/CLU Cluster Specification

Figure 3 gives a Larch/CLU specification for a set cluster. It consists of a header, a link
to its Shared Language component, and a body. The header consists of the type identifier,
set, and a list of the procedure identifiers, pair, union, intersect, member, and size.

Notice that set is the name of a type, not a sort. It is also the name of the cluster
specification and is different from any trait name. The link from the interface component
to the shared component is given by the used trait, SetOfE, and a provides clause. SetOfE
supplies all sort and operator identifiers that appear in the assertions of the procedure
specifications of the cluster specification. For example, the sort identifier, E, which appears
in the post-condition of union, comes from SetOfE, and is used for terms denoting integer
values. The provides clause gives a mapping from the type identifier, set, to the sort
identifier, SI, which also comes from SetOfE. This type-to-sort mapping determines the
values over which set objects can range. All set objects are restricted to values denotable
by terms of sort SI. The provides clause also indicates whether the type is mutable or
not. The body of a cluster specification consists of specifications of the procedures, which
are of the form described for procedure specifications.

Two additional features of Larch/CLU are illustrated in the specification of pair: omitted
modifies at most clauses, and new assertions. First, the omission of a modifies at
most clause means that no objects may be mutated by the procedure—for each call, the
value of each object must be the same on return as on entry. Second, we use new assertions
to indicate objects that must not be the same as any existing object. For example, pair’s
specification states that it must not return a set object that existed when pair was invoked.

Let us consider writing a different set cluster specification, set2, that defines a different
set type—one with a slightly different specification for the intersect procedure. Let the
specification of set2 be the same as that of set in Figure 3 except that intersect2 returns
the intersection of its two arguments only if they are not disjoint; otherwise, it terminates
exceptionally, signaling “disjoint.” That is, let intersect2 be:

intersect2 = proc (s1, s2: set) signals (disjoint) e M
requires -3 j: E [has(slprer iy & astZre,) Y
modifies at most [s2]
ensures

normally V j: E [has(s2p0st,) = (has(slpre, j) & has(s2pre, j))]Jexcept
signals disjoint when —3 j: E [has(slpre, j) & has(s2pre, j)]
ensuring modifies nothing

end

99

100

Piece V: Writing Larch Interface Language Specifications

Even though set and set2 specify different types, they both use the same trait, SetOfE.
Therefore, set objects defined by set of Figure 3 range over values denoted by the same
terms as set objects defined by set2. This difference illustrates that there is a clear
distinction between a sort identifier and a type identifier. Although the trait SetOfE
introduces the term empty of sort SI to denote the “empty” value, no object of type set2
will ever have such a value since only nonempty set objects can be constructed by set2’s

(constructor) operations, pair, union, and intersect2.

An additional feature of Larch/CLU is illustrated by the specification of intersect2. CLU
procedures may either terminate normally or terminate by signalling an exception. The
clause beginning with normally asserts that if s1 and s2 have no element in common,
‘ntersect2 raises the exception disjoint and modifies nothing. Otherwise, intersect2 returns
normally and modifies s2 so that its final value is the intersection of the initial values of s1
and s2. Demarcating these individual cases enhances the readability of the specification
and disciplines the specifier to consider all possible cases in a stylized way.

3. Incrementally Writing an Interface Specification

As mentioned in the Introduction, writing Larch specifications is intended to occur during
the design process with the help of machine-support. In this section, we will illustrate how
to write an interface specification following Larch’s two-tiered approach as intertwined with
a typical top-down design process. We will also mention some of the machine-support a
specifier might expect as a two-tiered specification is written.

Following the Approach

We sketch below a typical top-down design strategy that could be used in following the
two-tiered approach.

e Develop an approximate intuition of the problem to be solved. This requires close,

often verbal, interaction with the client who is posing the problem.
e Decide on the major abstractions.

o Interface language tier: Write the header information of the interface language

components.

o Shared Language tier: Write the syntactic information of the Shared Language
components of the specification, namely, the sort identifiers, operator identifiers,

and operator signatures.
e Fill in the blanks.

o Interface language tier: Fill in the information in the bodies of the interface
language components, by writing the assertions for the bodies of the procedure
specifications. Note any additional operator and sort identifiers used, so they can

be defined in the Shared Language components.

o Link between the two tiers: Define the explicit link to the Shared Language

components of the specification.

o Shared Language tier: Fill in the semantic information in the bodies of the Shared
Language components of the specification, namely, the theory of equality for

terms.

e Check one’s understanding of the problem and its formalization; repeat previous steps

until they converge.

During this process of writing a specification, the specifier should also evaluate it for
certain properties, such as consistency and completeness. Checking for these properties

as a specification develops can increase confidence that a specification is on the right

101

102 Piece V: Writing Larch Interface Language Specifications

Interface Language Components

dictionary = cluster is ...
uses DictVals
provides dictionary from ...

end dictionary

word = cluster is ...
uses WordVals
provides word from ...

end word

definition = cluster is .
uses DefVals
provides definition from ...

end definition

Shared Language Components

DictVals: trait
introduces

constrains

WordVals: trait
introduces

constrains

DefVals: trait
introduces

constrains

Figure 4. Dictionary Specification: Snapshot 1

8. Incrementally Writing an Interface Specification

track. In the example of the next subsection, we will describe a check for one such
property, totality, to illustrate how feedback from evaluating a specification can influence
the specifier. In Section 4, we discuss two other checkable properties of interfaces, protection

and nondeterminism.*

As with any overall design method, many iterations over the steps may be necessary.
Writing a specification sharpens a specifier’s intuition of the problem. Hidden design
decisions surface. Addressing postponed decisions often requires modifications of decisions
made earlier. Specifiers should be willing to discard large chunks of a specification in the
process of refining the abstractions. Specifiers (as well as designers and programmers) are
often reluctant to start anew or to try alternative tactics. However, good support from
the machine should help to overcome this reluctance.

An Ezample Nlustrating the Two-Tiered Approach

In this section we trace one iteration of the strategy outlined in the previous section with
a series of snapshots that show the incremental development of a specification. We use a
simple example to keep the details from obscuring the points we wish to make.

Suppose we want to write a specification of a dictionary that contains the definitions of
words and that can be used to check the spelling of words. For simplicity, let us assume that
a word can appear only once in a dictionary, and each word has exactly one definition.
Furthermore, if a word is not in the dictionary, then the word is either misspelled or
unknown to the dictionary (e.g., a rarely used word might not be found in an abridged
dictionary). Intuitively, a dictionary is like a table that stores key-value pairs, where words

are the keys and definitions are the values.

From this informal description of a dictionary and an intuitive understanding of its usage,
we next have to decide on the major abstractions. We choose the data types of interest to
be dictionary, word, and definition. Therefore, we need to write cluster specifications for
each of the three types and appropriate traits for the values of objects of each type. Since
we need a used trait for each cluster specification, let us name them DictVals, WordVals,
and DefVals. Figure 4 depicts the situation so far. We are presuming the use of a syntax-
directed specification editor that displays the templates shown in the figure and prompts

us to fill in each “...”.

We begin by further developing the dictionary cluster specification and the corresponding
DictVals trait, and postpone developing the other specification components until later.
Given the informal description of the usage of a dictionary, we have to decide what

A more detailed discussion of these and other properties of interface specifications can be
found in [Wing 83, Wing 84].

103

104 Piece V: Writing Larch Interface Language Specifications

dictionary = cluster is create, add_word, get_definition, check_word
uses DictVals
provides dictionary from ...

create = proc () returns (d: dictionary)
requires .
modifies at most ...
ensures ..

end

add_word = proc (d: dictionary, w: word, def: definition)
requires ..
modifies at most ...
ensures ...

end

get_definition = proc (d: dictionary, w: word) returns (def: definition)
requires ...
modifies at most ...
ensures ...

end

check_word = proc (d: dictionary, w: word) returns (b: bool)
requires ...
modifies at most ...
ensures ...

end

end dictionary

DictVals: trait
introduces

constrains

Figure 5. Dictionary Specification: Snapshot 2

3. Incrementally Writing an Interface Specification 105

operations would most likely be performed on dictionaries. Some of the table-like
operations we might want to perform are to create a dictionary, add a new word and
its definition to a dictionary, get the definition of a word, and check to see if a word is in a
dictionary. After filling in some syntactic information for dictionary, we have the situation

as shown in Figure 5. Visible changes from one snapshot to the next are shown in italics.

Next we start filling in the bodies of the procedure specifications and simultaneously
generate sort and operator identifiers that must be supplied by DictVals. We start with
create. We do not want any restrictions on the computation state in creating a new
dictionary, nor do we want any objects to be mutated; we want the value of the returned
dictionary to be empty and we want the dictionary itself to be some new object. So for

create we have (notice the deletion of the modifies at most clause):

create = proc () returns (d: dictionary)
ensures (d,ost = empty) & new [d]
end

In order to denote the empty value of a dictionary, we used the operator identifier, empty,
in create’s post-condition. The empty operator must be defined in DictVals by first giving
empty a signature, which in turn causes us to introduce a sort identifier, D, to which the
type identifier dictionary can map. Consequently, we can define the type-to-sort mapping
in the provides clause of dictionary. We now have the situation shown in Figure 6.

Next we turn to filling in the body of add_word. We want to add a word and its definition
to a dictionary only if the word is not already in the dictionary. We state this constraint
in the pre-condition of add_word. We have:

add_word = proc (d: dictionary, w: word, def: definition)
requires —isIn(dyre, Wpre)
oA modifies at most [d |

ensures d,,st = insert(dpre, Wpre, defp,)
—5 end

Notice a design decision we have made: by allowing the dictionary input to add_word to
be possibly mutated, we have decided to make dictionary a mutable type. We document

this decision in the provides clause of dictionary with the keyword modifies-at-mest. m “7‘7“4

pperahs L . .
The definitions of the fupy(,ft(ions isIn and insert are still pending in DictVals. To give a

signature for insert, we introduce the sort identifiers W and Dfn, corresponding to the
types word and definition r}.?p/, respectively. Thus, we can refine the specifications of the
types word and definition in Figure 4 by completing their provides clauses. We can also
write equations in DictVals to define the operators already introduced. Figure 7 shows the

situation so far for dictionary and DictVals.

106 Piece V: Writing Larch Interface Language Specifications

dictionary = cluster is create, add_word, get_definition, check_word
uses DictVals
provides dictionary from D

create = proc () returns (d: dictionary)
ensures (dpos: = empty) & new [d |
end

add_word = proc (d: dictionary, w: word, def: definition)
requires ...
modifies at most ...
ensures ...

end

get_definition = proc (d: dictionary, w: word) returns (def: definition)
requires ...
modifies at most ...
ensures ...

end

check_word = proc (d: dictionary, w: word) returns (b: bool)
requires ...
modifies at most ...
ensures ...

end

end dictionary

DictVals: trait
introduces

empty: — D

constrains

Figure 6. Dictionary Specification: Snapshot 3

3. Incrementally Writing an Interface Specification 107

dictionary = cluster is create, add_word, get_definition, check_word

uses DictVals

provides mutable dictionary from D

create = proc () returns (d: dictionary)
ensures (dp,s; = empty) & new [d]
end

add_word = proc (d: dictionary, w: word, def: definition)
requires —isIn(dp,e, Wpre)
modifies at most [d |
ensures dpost = insert(dpre, Wpre, defore)

end

get_definition = proc (d: dictionary, w: word) returns (def: definition)
requires ..
modifies at most ...
ensures ...

end

check_word = proc (d: dictionary, w: word) returns (b: bool)
requires ...
modifies at most ...

DictVals: trait

ensures ...
end
end dictionary
introduces
empty: — D

insert: D, W, Dfn — D
tsIn: D, W — Bool

constrains empty, insert, isIn so that

for all [d: Pvswl: W, dfn: Dfn] F—
—isIn(emp gq /

isIn(insert w,/dfn), wl) = (w = wi) | isIn(d, wi)

Figure 7. Dictionary Specification: Snapshot 4

108 Piece V: Writing Larch Interface Language Specifications

dictionary = cluster is create, add_word, get_definition, check_word
uses DictVals

provides mutable dictionary from D

create = proc () returns (d: dictionary)
ensures (dpo, = empty) & new [d |
end

add_word = proc (d: dictionary, w: word, def: definition)
requires —isIn(dpre, Wpre)
modifies at most [d |
ensures dpost = insert(dpre, Wpre» defpre)

end

get_definition = proc (d: dictionary, w: word) returns (def: definition)
requires tsIn(dpre, Wpre)
ensures defpost = lookup(dpre, Wpre)

end

check_word = proc (d: dictionary, w: word) returns (b: bool)
ensures bpost = t5In(dpre, Wpre)
end

end dictionary

DictVals: trait

introduces
empty: — D
insert: D, W, Dfn — D
isIn: D, W — Bool
lookup: D, W — Dfn

constrains empty, insert, isIn, lookup so that
for all [d

: wl: W, dfn: Dfn]
"‘P —isIn(empty /3

isIn(insert{dyw, dfn), wl) = (w = wl) | isIn(d, w1)
lookup(insert(d, w, dfn), w1) = if w = wl then dfn else lookup(d, w1)

Figure 8. Dictionary Specification: Snapshot 5

3. Incrementally Writing an Interface Specification 109

Continuing this process by filling in the bodies of get_definition and check_word causes us

to introduce only one more f‘M identifier, lookup. After adding an equation to define &i
lookup in DictVals, we end up with a dictionary specification and a DictVals trait as shown
in Figure 8.

Evaluating the Dictionary Cluster Specification So Far: At this point, before proceeding
to the word and definition cluster specifications, it is worth reflecting on the dictionary
specification we have just written. During the incremental development of a specification,
it is useful to see if it can be improved and to check whether we are still on the right track.
In this section we will discuss the evaluation of interface specifications for the property of
totality.

Notice that the pre-condition of the add_word specification is not (identically) true, which
means that the behavior of an add_word procedure is left unspecified for some possible
states in which it can be invoked. We say the add.word specification is not total [Wing
83]. Upon checking add_word for totality, we may be inclined to make it total and handle
the case for which the word we attempt to add to the dictionary is already in the dictionary.

We might modify add_word to terminate exceptionally in this case:

add_word = proc (d: dictionary, w: word, def: definition) signals (alreadyln)
modifies at most [d]
ensures - V
normally d,cs: = insert(dpre, Wpre; defy,.) except ,&ft\“%
signals alreadyln when isIn(dpye, wp,e) e_r__t_slr_igg rzoii__}‘ies nothing
end lpol 4

Similarly, get_definition is also not total. We choose to make it total and handle the case

in which a word is not in the dictionary:

get_definition = proc (d: dictionary, w: word) returns (def: definition) ., \(
signals (wordNotIn) \\((rf“
ensures
normally defyost = lookup(dpre, wp,e) except
signals wordNotIn when —isIn(dp,., Wpre)

end /

If we were to decide to leave a procedure specification not total, then the implementer would
be free to choose the behavior of the procedure for the unspecified cases. Unfortunately,
implementers may often forget to handle unspecified cases, which may lead to surprising
or erroneous behavior. On the other hand, it may not be necessary to handle unspecified
cases that can never arise. For example, the choose procedure specification of Figure 1 is
not total. If it were defined to operate on sets as defined by the set2 cluster specification

110

Piece V: Writing Larch Interface Language Specifications

described in Section 2, there would be no need to handle the empty set since it would
never arise (assuming a correct implementation of set2).

Completing the Remaining Interface Specifications: We now turn to filling in the blanks for
the word and definition cluster specifications and the WordVals and DefVals traits. Recall
that the informal description of the usage of a dictionary requires that we must be able to
check the spelling of a given word against the spellings of the words in the dictionary. This
requirement implies that the word cluster must have a procedure that tests for equality
between two words. No other requirements or constraints were made on words, such as
if words are sequences of only alphabetic characters (perhaps numerals and punctuation
symbols are allowed) or if there exists a “null” word. Therefore, until further constraints
are made by the client, it suffices to include in the word cluster specification a specification
of an equal procedure.

Finally, we turn to definition and DefVals. We have even less information about definitions
of words in a dictionary than we have about words. For instance, we do not know
whether definitions are sentences, phrases, or combinations of both, or whether they
must conform to a fixed format. The only information we can include in the definition
cluster specification is the type-to-sort mapping in the provides clause. Recall that we
generated this information when we introduced the insert function for the dictionary cluster

specification.

We have essentially gone through one iteration of the strategy as outlined above. At
this point, we need to return to the client and ask for more information. After further
elaboration of the problem description, appropriate additions and modifications can then
be made to the specification.

4. Implications of the Two-Tiered Approach

Interactions Between the Two Tiers

Interface specifications describe what is to be implemented; traits do not. Operations
defined in interface specifications are intended to be implemented by procedures, but
operators of traits are not. Thus, for example, the pair operation of the set type as
specified in Figure 3 is to be implemented by some CLU procedure, but the add operator
of the SetOfE trait is not.

When suitable abstractions have been defined in the Shared Language components, the
interface language components of specifications often appear to be trivial. In order to keep
the interface language component simple, we generally place the complexity of a two-tiered
specification in the Shared Language component. Complexity in the interface component
may be a symptom that an abstraction is missing in the shared component. For example,
it might have been better to define set intersection in trait SetOfE (Figure 2), rather than
in intersect’s ensures clause (Figure 3).

Protection and nondeterminism both illustrate ways in which the two tiers interact.
Protection is related to the sufficient-completeness of an algebraic specification [Guttag
75]. The Larch Shared Language does not require that traits be sufficiently-complete, and
provides a construct, exempts, for indicating that the meaning of certain terms need not
be defined. We avoid using such terms in interface language components by supplying
pre-conditions to ensure that the meaning of an interface does not depend on the meaning
of exempt terms. For example, the DictVals trait is not sufficiently-complete because the
meaning of lookup(empty, w) is left unconstrained. However, a requires clause ensures
that get_definition’s meaning is independent of the meaning of lookup(empty, w). Thus,
get_definition is protective of DictVals.

Nondeterminism deals with a different kind of incompleteness—that of underconstraining
final values of objects. For example, the specification of choose in Figure 1 is nondetermin-
istic. Nondeterminism cannot be introduced by traits. The mathematical basis of algebra
and of the Larch Shared Language depends on the ability to freely substitute equals for
equals. This property would be destroyed if trait operators were allowed to represent

“nondeterministic functions.”

111

112

Piece V: Writing Larch Interface Language Specifications

Important Properties for the Two-Tiered Approach

Most of the advantages of two-tiered specifications are independent of the details of Larch.

The properties that make the Larch family of languages well-suited to the two-tiered

approach are as follows:

There is a clear syntactic and semantic distinction between specifications of properties
of underlying abstractions and specifications of properties of program components.

The set of abstractions used in specifying interfaces is open-ended, yet each abstraction
is precisely defined.

Specifications of abstractions can be easily reused, even for program components

written in different languages.

Each interface language can be optimized for communicating the important properties

of interfaces in a particular programming language.

The most delicate piece of the specification language design can be shared by
specification languages for many different programming languages.

118

Postlude

Acknowledgments

Butler Lampson, Mary-Claire van Leunen, and Sgren Prehn have been diligent in helping
us to improve the exposition of our ideas. Several members of the Larch Project have
contributed ideas, criticism, and trial implementations to the development of Larch. Dave
Detlefs, Randy Forgaard, Ron Kownacki, and Joe Zachary deserve special thanks.

IFIP Working Group 2.3 (Programming Methodology) provided both a continuing
education and a constructively critical sounding board. Jean-Raymond Abrial, Sharon
Anderson, Rod Burstall, Susan Gerhart, Cliff Jones, Barbara Liskov, Bill McKeeman,
Dave Musser, Doug Ross, Mary Shaw, Jim Thatcher, and Steve Zilles were all, in their
own ways, significant influences on this work.

References

[Abrial 80] J. Abrial
The Specification Language Z: Syntar and Semantics
Oxford University Computing Laboratory, Programming Research Group, Apr. 1980.

[ADJ 75] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright
“Abstract Data Types as Initial Algebras and Correctness of Data Representations”
Proc. ACM Conf. Computer Graphics, Pattern Recognition and Data Structures
May 1975, 89-93.

[ADJ 78] J. A. Goguen, J. W. Thatcher, and E. G. Wagner
“Initial Algebra Approach to the Specification, Correctness, and Implementation of
Abstract Data Types,” in R. T. Yeh (ed.)
Current Trends in Programming Methodology, Vol. IV, Data Structuring
Prentice-Hall, 1978.

[Atreya 82] S. K. Atreya
“Formal Specification of a Specification Library”
S.M. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1982.

[Berzins 79] V. A. Berzins
“Abstract Model Specifications for Data Abstractions”
Laboratory for Computer Science, Massachusetts Institute of Technology,
MIT/LCS/TR-221, July 1979.

114 Postlude:

[Birkhoff and Lipson 70] G. Birkhoff and J. D. Lipson
“Heterogeneous Algebras” J. Combinatorial Theory, vol. 8, 1970, 115-133.

[Bjgrner and Jones 78] D. Bjgrner and C. G. Jones
The Vienna Development Method: the Meta-language
Springer-Verlag Lecture Notes in Computer Science, vol. 61, 1978.

[Burstall and Darlington 77] R. M. Burstall and J. Darlington
«A Transformation System for Developing Recursive Programs”
J. ACM, vol. 24, no. 1, Jan. 1977, 44-67.

[Burstall and Goguen 77] R. M. Burstall and J. A. Goguen
“Putting Theories Together to Make Specifications”
Proc. 5th International Joint Conference on Artificial Intelligence
1977, 1045-1058.

[Burstall and Goguen 81] R. M. Burstall and J. A. Goguen
«An Informal Introduction to Specifications Using CLEAR”
in R. Boyer and J. Moore (eds.), The Correctness Problem in Computer Science
Academic Press, New York, 1981, 185-213.

[Caine and Gordon 75] S. H. Caine and E. K. Gordon
«“PDL—A Tool for Software Design”
Proc. 1975 NCC, 271-276.

[Ehrich 78] H.-D. Ehrich
“Extensions and Implementations of Abstract Data Type Specifications”
Proc. Mathematical Foundations of Computer Science 1978
Springer-Verlag Lecture Notes in Computer Science, vol. 64, 155-164.

[Ehrig and Kreowski 82] H. Ehrig and H.-J. Kreowski
“Parameter Passing Commutes with Implementation of Parameterized Data Types”
Proc. 9th Colloguium on Automata, Languages and Programming
Springer Verlag, 1982, 197-211.

[Ehrig and Mahr 85] H. Ehrig and B. Mahr
Fundamentals of Algebraic Specification 1: Equations and Initial Semantics
Springer-Verlag, EATCS Monographs on Theoretical Computer Science, vol. 6, 1985.

[Ehrig, et al. 80] H. Ehrig, H.-J. Kreowski, J. Thatcher, E. Wagner, and J. Wright
«parameterized Data Types in Algebraic Specification Languages”
Automata, Languages, and Programming
Springer-Verlag Lecture Notes in Computer Science, vol. 85, July 1980, 157-168.

References 115

[Forgaard 85] R. Forgaard
“A Program for Generating and Analyzing Term Rewriting Systems”
S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,
MIT/LCS/TR-343, 1985.

[Goguen 77] J. A. Goguen
«Abstract Errors for Abstract Data Types”
Proc. IFIP Working Conference on Formal Basis of Programming Concepts
North-Holland, 1977, 21.1-21.32.

[Goguen and Parsaye-Ghomi 81] J. A. Goguen and K. Parsay-Ghomi
“Algebraic Denotational Semantics Using Parameterized Abstract Modules”
Technical Report CSL-119, Stanford Research Institute, Feb. 1981.

[Good, et al. 78] D. I Good, R. M. Cohen, C. G. Hoch, L. W. Hunter, and D. F. Hare
“Report on the Language Gypsy, Version 2.0”
Technical Report ICSCA-CMP-10, Certifiable Minicomputer Project,
University of Texas at Austin, Sept. 1978.

[Guttag 75] J. V. Guttag
“The Specification and Application to Programming of Abstract Data Types”
Ph.D. Thesis, Computer Science Department, University of Toronto, 1975.

[Guttag and Horning 78] J. V. Guttag and J. J. Horning
“The Algebraic Specification of Abstract Data Types”
Acta Informatica, vol. 10, 1978, 27-52.

[Guttag and Horning 80] J. V. Guttag and J. J. Horning
“Formal Specification as a Design Tool”
Proc. Tth ACM Symposium on Principles of Programming Languages
Jan. 1980, 251-261.

[Guttag and Horning 83a] J.V. Guttag and J. J. Horning
“An Introduction to the Larch Shared Language”
Proc. IFIP Congress 83, North-Holland, 1983.

[Guttag and Horning 83b] J. V. Guttag and J. J. Horning
Preliminary Report on the Larch Shared Language
Technical Report MIT/LCS/TR-307, Laboratory for Computer Science,
Massachusetts Institute of Technology, October 1983;
also issued as Technical Report CSL-83-6, Computer Science Laboratory,
Xerox Palo Alto Research Center, December 1983.

116 Postlude:

[Guttag and Horning 85a] J. V. Guttag and J. J. Horning
“Report on the Larch Shared Language”
Science of Computer Programming, to appear.

[Guttag and Horning 85b] J. V. Guttag and J. J. Horning
“A Larch Shared Language Handbook”
Science of Computer Programming, to appear.

[Guttag, Horning, and Wing 82|
J. V. Guttag, J. J. Horning, and J. M. Wing
“Some Notes on Putting Formal Specifications to Productive Use”

Science of Computer Programming, vol. 2, Dec. 1982, 53-68.

|Guttag, Horning, and Wing 85|
John V. Guttag, James J. Horning, and Jeannette M. Wing,
“The Larch Family of Specification Languages”
IEEE Software, vol. 2., no. 4, Sept. 1985.

[Guttag and Liskov 86] J. V. Guttag and B. H. Liskov
Abstraction and Specification in Program Design
MIT Press/McGraw Hill, to appear 1986.

[Hehner 84] E. C. R. Hehner
“Predicative Programming, Parts I and II”
Comm. ACM, vol. 27, Feb. 1984, 134-151.

[Hoare 69] C. A. R. Hoare
“An Axiomatic Basis for Computer Programming”
Comm. ACM, vol. 12, no. 10, Oct. 1969, 576-583.

[Hoare 72] C. A. R. Hoare
“Proof of Correctness of Data Representations”
Acta Informatica, vol. 1, 1972, 271-281.

[Horning 85] J. J. Horning
“Combining Algebraic and Predicative Specifications in Larch”
in [TAPSOFT 85| vol. 2, 12-26.

[Jackson 75] M. A. Jackson
Principles of Program Design. Academic Press, 1975.

[Jones 77] C. B. Jones
“Implementation Bias in Constructive Specifications,” manuscript, Sept. 1977.

[Jones 80] C. B. Jones
Software Development: A Rigorous Approach. Prentice-Hall International, 1980.

References 117

[Kamin 83] S. Kamin
“Final Data Types and Their Specification”
ACM Trans. Programming Languages and Systems, vol. 5, no. 1, Jan. 1983, 97-121.

[Kapur 80] D. Kapur
“Towards a Theory for Abstract Data Types”
Laboratory for Computer Science, Massachusetts Institute of Technology,

Technical Report MIT/LCS/TR-237, May 1980.

[Katzan 76] H. Katzan, Jr.
Systems Design and Documentation: An Introduction to the HIPO Method
Van Nostrand Reinhold, 1976.

[Kownacki 84] R. Kownacki
“Semantic Checking of Formal Specifications”
S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,

1984.
[Lamport 85] Leslie Lamport
«“What It Means for a Concurrent Program to Satisfy a Specification: Why No One

Has Specified Priority”
Proc. 12th ACM Symposium on the Principles of Programming Languages, Jan. 1985.

[Lescanne 83] P. Lescanne
“Computer Experiments with the REVE Term Rewriting System Generator”

Proc. 10th ACM Symposium on the Principles of Programming Languages
Jan. 1983, 99-108.

[Liskov and Berzins 79] B. H. Liskov and V. Berzins

“An Appraisal of Program Specifications”
in P. Wegner (ed.), Research Directions in Software Technology

MIT Press, 1979, 276-301.

[Liskov, et al. 77] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert

“ Abstraction Mechanisms in CLU”
Comm. ACM, vol. 20, no. 8, Aug. 1977, 564-576.

[Liskov, et al. 81]
B. Liskov, R. Atkinson, T. Blum, E. Moss, C. Schaffert, R. Scheifler, A. Snyder
CLU Reference Manual
Springer-Verlag Lecture Notes in Computer Science, vol. 114, 1981.
[Luckham and von Henke 85] David Luckham and Friedrich W. von Henke
“«An Overview of Anna, a Specification Language for Ada”

IEEE Software, vol. 2, no. 2, Mar. 1985, 9-22.

118 Postlude:

[Meyer 85] Bertrand Meyer
“On Formalism in Specifications”
IEEE Software, vol. 2, no. 1, Jan. 1985, 6-26.

[Musser 80] D. R. Musser

“Abstract Data Type Specification in the Affirm System”
IEEE Trans. Software Engineering, vol. SE-6, no. 1, Jan. 1980, 24-32.

[Nakajima, et al. 80] R. Nakajima, M. Honda, and H. Nakahara
“Hierarchical Program Specification and Verification—A Many-sorted
Logical Approach”

Acta Informatica, vol. 14, 1980, 135-155.

[Parnas 72] D. L. Parnas
“A Technique for Software Module Specification with Examples”
Comm. ACM, vol. 15, no. 5, May 1972, 330-336.

[Robinson and Roubine 77] L. Robinson and O. Roubine
“SPECIAL—A Specification and Assertion Language”
Technical Report CSL-46, Stanford Research Institute, 1977.

[Sannella and Tarlecki 85] Donald Sannella and Andrzej Tarlecki
“Some Thoughts on Algebraic Specification,” to appear.

[Scheid and Anderson 85] J. Scheid and S. Anderson
“The Ina Jo Specification Language Reference Manual”
Technical Report TM-(L)-6021/001/01, System Development Corporation, March
1985.

[Shaw 84] Mary Shaw
« Abstraction Techniques in Modern Programming Languages”
IEEE Software, vol. 1, no. 4, October 1984, 10-26.

[Standish 73] T. A. Standish
“Data Structures: An Axiomatic Approach”
Technical Report 2639, Bolt Beranek, and Newman, Inc., Aug. 1973.

[TAPSOFT 85]
Proc. International Joint Conference on Theory and Practice of Software Development
Volume 1: Mathematical Foundations of Software Development
Volume 2: Formal Methods and Software Development
Springer-Verlag Lecture Notes in Computer Science, vols. 185-6, 1985.

References

[Thatcher, et al. 78] J. W. Thatcher, E. G. Wagner, and J. B. Wright
“Data Type Specification: Parameterization and the Power Of Specification Tech-

niques”
Proc. 10th ACM Symposium on Theory of Computing, May 1978, 119-132.

[Wand 79] M. Wand
“Final Algebra Semantics and Data Type Extensions”
J. Computer and System Sciences, vol. 19, no. 1, Aug. 1979, 27-44.

[Wing 83] J. M. Wing
“A Two-Tiered Approach to Specifying Programs”
Ph.D. Thesis, Laboratory for Computer Science, Massachusetts Institute of

Technology, May 1983, MIT /LCS/TR-299.

[Wing 84] J. M. Wing
“Helping Specifiers Evaluate Their Specifications”
Proc. 2nd ACFET Software Engineering Conference, June 1984, 179-191.

[Wing 85] J. M. Wing
“Writing Larch Interface Language Specifications,” submitted for publication.

[Yourdon and Constantine 78] E. Yourdon and L. L. Constantine
Structured Design: Fundamentals of A Discipline of Computer Programs and System

Design, 2nd edition, Yourdon Press, 1978.

[Zachary 83] J. L. Zachary
“A Syntax-Directed Specification Editor”
S.M. Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,

Mar. 1983.

[Zave 82] P. Zave
“An Operational Approach to Requirements Specification for Embedded Systems”
IEEE Trans. Software Engineering, vol. 8, no. 3, May 1982, 250-269.

(Zilles] S. N. Zilles
“Abstract Specifications for Data Types”
Technical Report, IBM San Jose Research Laboratory.

119

Index

= disambiguated 52
= operator 36

abstract data type versus trait 6, 26, 39
algebraic specifications, conventional: vs. Larch 6, 22-23, 25-26, 41-43
ArraySpec trait 30-31
Associative trait 62
assumes
described 32-33
introduced 10-11
semantic checking of assumptions 58
semantics of 54, 58
versus imports and includes 9-10, 29, 42
axioms
and "constrains" list 25-26
context-sensitive checking of 47
in the theory of a trait 48
to resolve incompleteness 35
see also equations

Bag
bag type Larch/CLU specification 20-21
Bag type Larch/Pascal specification 15-17
Bag type Pascal implementation 17-19
BagSpec trait 32-34
trait mentioned 13
binary relations traits 63
body of interface language specification 96
Boolean
implicit incorporation of 28, 56
terms as equations 53
terms sugared as = true 37, 53
trait 57
built-in traits 56-57

checking 26, 28
accidental vs. deliberate incompleteness 2
consequence assertions 34-35
context-sensitive for Shared Language kernel 47
mechanical 1
sacrificed by inclusion 29
see also redundancy
semantic 5, 22, 42, 58-59
sort-checking of terms 6
choose procedure specification 96
combining
theories 42
traits 28ff., 42
comments in Shared Language kernel 46
Commutative trait 62
completeness: see instead incompleteness
composability: and incremental construction 1, 5, 13, 22, 41
conseqProps: context-sensitive checking of 49
consequences 34-35
and theory of a trait 42
semantic checking of 59

semantics of 54

see also conseqProps
conservative extension of theory 9, 28, 58
consistency: semantic checking of 58
constrains

generated by clause 7

introduced 6

list 25-26

list and theory of a trait 42

semantic checking of constraints 58

semantics of 50

shorthand for constrains clause 11
Container trait 7-8, 37
context—-free grammar

for entire Shared Language 60

for Shared Language kernel 46
context-sensitive checking

for Shared Language kernel 47

of axioms 47

of consegProps 49

of equation 47

of exempts 49

of generators 47

of opDcl 47

of partitions 47

of simpleTrait 47

of term 47
converts

and consequence assertions 34-35

defined 49, 59

introduced 8

motivated 43

data abstraction specification 14

data sort: see distinguished sort 39
data types: induction principles 19-20
DerivedOrders trait 64

design of the Shared Language 41-43
dictionary specification 102-110
discharging assumptions 33, 58
distinguished sort 39

domain, operator 6, 25

Enumerable trait 10, 38-39
Equality trait 36, 57
implicit incorporation of 56
equality: in the theory of a trait 48
equation
context-sensitive checking of 47
in constrains clause 6-9
Equivalence: trait 29, 63
error elements discussed 43
errors, see checking
exempts 9, 38
and consequence assertions 35
context-sensitive checking of 49

motivated 43
expression 6, see term
extensions 39
extensions to Shared Language kernel 49ff.
external references: semantics of 54

function , see operator 6

generated by 7, 37
defined 47
motivated 41
see also generators
yields larger theories 27
generators 39
context-sensitive checking of 47
incomplete set 27
grammar
of entire Shared Language 60
of Shared Language kernel 46
group theory traits 66-67

Handbook for the Shared Language: Piece IV 61-90
header of interface language specification 96
hidden operators: discussed 42

higher-order entities: discussed 43

Idempotent trait 62
if then else operator 7, 36, 56

semantics of 52
IfThenElse trait 36, 57

implicit incorporation of 56
implies 9

and consequence assertions 34

defined 49, 59
imports 28

semantic checking of 58

semantics of 54

versus assumes and includes 9-10, 29, 42
includes 10, 29, 38

semantics of 54, 59

versus imports and assumes 9-10, 29, 42
incomplete set of generators 27
incompleteness 1-2, 43

axiom to resolve 35

see also checking
incremental construction 101-110

and composability 1, 5, 13, 22, 41
induction 19-20, 27, 48
inequation: in the theory of a trait 7, 26, 48
interface languages 14-21

introduced 3

Piece V 91-112

see also Larch/Pascal, Larch/CLU
introduces 6, 25
Involutive trait 62
Irreflexive trait 63

IsEmpty trait 9, 37-38

kernel of Shared Language 46-48
extensions to 49ff.

Larch Project 1, 3

goals (assumptions) 1
Larch/CLU

informal overview 95-100

introduced 14

specification examples 20-21, 102-110
Larch/Pascal

introduced 14

specification example 15-17
legality

legal values of type 19

of a specification 45

of trait importation 29

see also checking
link of interface language specification 96
local specifications 1

Manual for Shared Language: Piece III 45-60
modifications: semantics of 55

modifies at most 15-16, 20, 98
monotonicity 41

MultiSet trait 11

naming of traits 25-26

see also renaming
Next trait 9, 38
nondeterminism 16, 43, 111

object, in CLU: versus Shared Language "term" 95
observer operators 10, 27, 39
opDcl: context-sensitive checking of 47
operators 6, 25
discussed 42-43
hidden 42
mixfix 36
mixfix, semantics of 52
names qualified by signature 42
operator overloading 36, 42
operator property traits 62
sort of domain and range 6, 25
traits 40
opForm: partial 51
opIld: in Shared Language kernel 46
opPart: in Shared Language kernel 46
opSym: in Shared Language kernel 46
Ordered trait 65
OrderEquality trait 64
OrderEquivalence trait 64
ordering relations traits 64-65

PairwiseExtension trait 40

PairwisePlus trait 40
PartiallyOrdered trait 65
PartialOrder trait 64
PartialOrderWithEquality trait 64
partitioned by 10, 38-39

defined 47

motivated 41

vields larger theories 27

see also partitions
partitions: context-sensitive checking of 47
Pascal implementation example 17-19
predicate calculus: in the theory of a trait 7, 26, 48
PriorityQueue trait 10-11, 39
procedure specification example 96
programming-language dependencies 2, 5, 14
Project, see Larch Project
protected sorts 42, see instead constrains lists

range, operator 6, 25
readability

and renaning 31

discussed 41

emphasis on presentation 5
reduction: in the theory of a trait 48
redundancy: 1, 9, 22, 34, 42
Reference Manual for Shared Language: Piece III 45-60
references, external: semantics of 54
Reflexive trait 29, 63
ReflexiveTransitive trait 63
Relation trait 63
relations traits

binary 63

ordering 64-65
renaming

"with" clause introduced 10

of sorts and operators 30-31

uses of 30, 41-42
reserved words 14
Rest trait 9, 38
reusability 2
review of related work 93-94

scale 1
semantic checking 5, 22, 42, 58-59
sequence, see Enumerable trait
set cluster specification 98
SetOfE trait 97
Shared Language
discussion 41-43
entire grammar 60
introduced 4-5
kernel grammar 46
mentioned 3
Piece II (Report) 25-43
Piece III (Reference Manual) 45-60
Piece IV (Handbook) 61-90

semantics of 22

traits 6-11
signature 6, 25

deducible from context 36

implicit 51

motivated 42
simpleTrait: context-sensitive checking of 47
Size trait 9-10
sort identifiers, not used as trait names 26
sort of operator domain and range 6, 25
sort—-checking of terms 6, 25
stack, see Enumerable trait
Symmetric trait 29, 63
syntax, in the design of the Shared Language 41

TableSpec trait 6-7, 25-30
term 6, 25
context-sensitive checking of 47
equations relate terms 6-9
mentioned 19
theory
"adequately™ defines operators 34
and inclusion 29
combining theories 42
conservative extension of 9, 28, 58
construing equations as first-order 41
contains another theory 34
defined 26
figure showing theories of traits on page 12
of a simple trait, defined 48
of a trait 7, 26
of a trait, and consequences 42
of a trait, and constrains list 42
richer (larger) 27
tools 2, 5, 61
TotalOrder trait 64
TotalOrderWithEquality trait 64
TotalRelation trait 63
trait 6, 25
combining traits 28ff., 42
complexity 22
examples 6-11, 25-34 passim
figure showing relations among examples on page 8
Handbook of Traits, Piece IV 61-90
importing 28
naming 25-26
simplicity of 43
Transitive trait 29, 63
two-tiered approach 3
figure on page 4
notes on 22-23
reconsidered 111-112
reviewed 92
type of interest: see distinguished sort 39
type specification 14
type, in CLU: versus Shared Language "sort™ 95

type: see sort 6
types: induction principles 19-20

with 10, 30-31, 39
semantics of 55
with list motivated 41

