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any object-oriented programming
M languages provide inheritance
mechanisms that allow program-

mers to define new data types as extensions
of previously existing types. By supporting
incremental modification, inheritance mecha-
nisms are generally thought to enhance
modularity and reusability. In this article, we
describe our experience adapting inheritance
mechanisms to a new application domain:
reliable distributed systems. We give an
overview of Avalon/C++, a programming
language under development at Carnegie
Mellon University. Avalon/C++ allows pro-
grammers to “customize” the synchroniza-
tion and fault-tolerance properties of new
data types by letting them inherit properties
such as serializability and crash recovery
from a library of basic types. We believe that
inheritance can facilitate implementing and
reasoning about programs that must cope
with the complex behavior associated with
concurrency and failures.

Reliable distributed systems are inher-
ently more complex than their conventional
sequential counterparts. In addition to the
usual concerns about functional correctness,
the programmer must address issues arising
from concurrency and fault-toterance. In the
presence of concurrency and failures, the
data these systems manage must satisfy
application-dependent consistency con-
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Programs in reliable
distributed systems
are more complex
than their sequential
counterparts. Avalon/C++
helps programmers cope
with the behavior
associated with
concurrency and failures.

straints, which can encompass objects stored
at multiple nodes in a distributed system.
The data must be highly available, that is,
highly likely to be accessible when needed.
Data must also be reliable, that is, unlikely to
be lost or corrupted by system failures.
Examples of applications that require such
properties include databases, airline reserva-
tions, and electronic banking systems, where
incorrector unavailable datacan be extremely
expensive.
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The following sections describe the trans-
action model used to organize distributed
computations, some relevant features of C++,
and an overview of the Avalon/C++ base
hierarchy. We then describe in more detail
each of the hierarchy’s classes and some
restrictions on their use that must be obeyed
to preserve their semantic intent. An ex-
tended example illustrates a directory-type
implementation that uses all three of the base
classes. Finally, we discuss related work.

Transaction model of
computation

A distributed system consists of multiple
computers (called nodes) that communicate
through a network. Distributed systems are
typically subject to several kinds of failures:
nodes can crash, perhaps destroying local
disk storage, and communications can fail,
via lost messages or network partitions. A
widely accepted technique for preserving
consistency in the presence of failures and
concurrency involves organizing computa-
tions as sequential processes called transac-
tions. Transactions are atomic, thatis, serial-
izable (transactions appear to execute in a
serial order), transaction consistent (a trans-
action either succeeds completely and com-
mits, or aborts and has no effect), and persis-
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tent (the effects of a committed transaction
survive failures).

A program in Avalon consists of a set of
servers, each of which encapsulates a set of
objects and exports a set of operations and a
set of constructors. A server resides at a
single physical node, but each node can be
home to multiple servers. An application
program can explicitly create a server at a
specified node by calling one of its construc-
tors. Rather than sharing data directly, serv-
ers communicate by calling one another’s
operations. An operation call is a remote
procedure call with call-by-value transmis-
sion of arguments and results. Objects within
a server can be stable or volatile; stable
objects survive crashes, while volatile ob-
jects do not. Avalon/C++ includes a variety
of primitives (not discussed here) for creat-
ing transactions in sequence or in parallel,
and for aborting and committing transac-
tions. Each transaction is the execution of a
sequence of operations and is identified with
a single process.

Transactions in Avalon/C++ canbe nested.
A subtransaction’s commit depends on its
parent’s; aborting a parent will roll back a
committed child’s effects. A transaction’s
effects become permanent only when it
commits at the top level. We use standard
tree terminology when discussing nested
transactions: A transaction T has a unique
parent, a (possibly empty) set of siblings, and
sets of ancestors and descendants. A transac-
tionis considered its own ancestor or descen-
dant.

Avalon/C++ provides transaction seman-
tics via atomic objects. Atomic objects en-
sure the serializability, transaction consis-
tency, and persistence of transactions that
use their operations. All objects shared by
transactions must be atomic. Avalon/C++
provides acollection of built-in atomic types,
and users can define their own atomic types
by inheritance from the built-in types.

Sometimes, guaranteeing atomicity at all
levels of a system can be too expensive.
Instead, implementing atomic objects from
nonatomic components is often useful. In
Avalon, such components, called recover-
able objects, guarantee persistence in the
presence of crashes.

Avalon relies on the Camelot system' to
handle operating-system-level details of
transaction management, internode commu-
nication, commit protocols, and automatic
crash recovery.

C++

C++ is an object-oriented extension of
C* designed to combine advantages of C,
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such as concise syntax, efficient object code,
and portability, with important features of
object-oriented programming, such as ab-
stract data types, inheritance, and generic
functions.

C++ uses the class construct to define
abstract data types. (We use the terms “class™
and “data type” interchangeably.) A class
contains members, which are objects of any
C++type, including functions. For example,
one might enforce bounds checking on array
accesses by the vector class in Figure 1. The
elts and count members are private; opera-
tions of the vector class can access them, but
external clients of the class cannot. The other
members are public; they provide the only
means for clients to manipulate the object.
Bounds checking is ensured by allowing
clients to access the vector elements only
through the store and fetch operations. De-
claring store to be void indicates that the
operation returns no results.

We can also define new classes in C++ by
inheritance from an existing class. The old
class is the superclass, and the new class the
derivedclass. Eachderived class has asingle,
explicit superclass. (A newer version of C++
supports multiple inheritance, where a class
can inherit from more than one superclass.)
The public members of the superclass be-
come public members of the derived class.
The derived class cannot access the
superclass’s private members. Thus, even in
the derived-class implementation, the inher-
ited superclass object must be manipulated
using its public members.

For example, Figure 2 defines a vector2
class that extends the vector class by allow-
ing a lower index bound other than zero.
Vector2 keeps track of the index lower bound
in the private member Ibound. It directly
inherits the size operation, but it overloads
the fetch and store operations with slightly
modified operations that explicitly call the
corresponding operations of the superclass.
C++ allows us to declare operations of a
class to be virtual. A virtual operation of one
class can be overloaded by any of its derived
classes, butaderived class that does not need
a special version of a virtual operation need
not provide one. Instead, the operation of the
superclass (or its superclass, etc.) is used.
C++ guarantees that the most specific opera-
tion is invoked at runtime. Many other lan-
guages would call virtual operations “ge-
neric functions.”

Class vector is a public base class of class
vector2, so a public member of class vector
is a public member of vector2. Omitting the
keyword public from the definition would
result in a public member of the superclass
becoming a private member of the derived

class.

Recent versions of C++ also address the
occasional need for finer control over the
visibility of inherited members by adding a
new member classification called protecied.
Protected members are something of a
compromise between public and private
members; protected members of an inherited
class become private members of the derived
class.

Avalon/C++ base
hierarchy

Conventional sequential languages typi-
cally use inheritance to implement an object’s
functional properties, thatis, properties whose
meaning can be given by simple pre- and
postconditions. In Avalon/C++, however,
we use inheritance to implement more com-
plex, nonfunctional properties such as serial-
izability, transaction consistency, and per-
sistence.

The Avalon/C++ base hierarchy consists
of three classes, as shown in Figure 3. Each
base class provides primitives for imple-
mentors of derived classes to ensure the
nonfunctional properties of objects of the
derived classes. The recoverable class pro-
vides primitives forensuring persistence and
thus a means of defining recoverable types.
Both atomic and subatomic classes provide
primitives for ensuring atomicity and thus
twodifferent means of defining atomic types.
Putting the recoverable class at the root of the
hierarchy makes sense, since atomicity en-
compasses persistence. Moreover, factoring
out recoverable’s operations from those of
the other two classes lets programmers de-
fine nonatomic (but recoverable) objects,
such as objects for which synchronization is
not a concern (usually because correct syn-
chronization is provided by objects that
contain them at a higher level). The differ-
ence between the atomic and subatomic
classes is that subatomic gives programmers
a finer-grained control over synchronization
and crash recovery.

Programmers define their own recover-
able or atomic types by derivation from the
appropriate class. We emphasize that persis-
tence and atomicity, like more conventional
functional properties, cannot be inherited
automatically. Instead, the base classes pro-
vide the means by which the implementor of
the derived class can ensure these properties.
Users of the derived class can thenrely on the
guarantee provided by the implementor. For
example, an implementor of an atomic_set
type would derive from the atomic class,
explicitly using the inherited locking primi-
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Users of the class atomic_set can then treat

objects of that type as atomic without addi-

tional explicit synchronization. Although class vector {
inheritance of persistence and atomicity is int* elts; // Array of elements.
not automatic, we will give simple guide- int count; /] Size of array.
lines that guarantee persistence of classes public:
derived from recoverable, and atomicity of vector(int s2) // Create vector.
classes derived from atomic. ~vector( ): // Destroy vector.
int size( ): J/ Number of elements.
h 1 virtual void store(int e, int i); J/ Store element at index.
The recoverable class virtual int fetch(int i); J/ Fetch element from index.
b
Recoverable—the most basic class in our
hierarchy—Ilets its derived classes ensure int vector::fetch(int i) {
persistence. The restored state of a recover- if (i < 0 Il i >= count) error(*‘vector index out of range”):
able object is guaranteed to reflect all opera- return eltsfil:
tions performed by transactions that com- }
mitted before the crash, and possibly some
operations of transactions uncommitted at // Implementations of other vector operations omitted . . .

the time of the crash. Before presenting the
class definition for recoverable, we describe ..
) Figure 1. The vector class.
our underlying model of storage.
Three-level storage model. Conceptu-
ally, there are three kinds of storage for
objects: volatile, nonvolatile, and stable. We

system’s nodes is structured as a virtual

memory system, where volatile semicon- class vector2: public vector {

ductor memory serves as acache formemory int Ibound; // Low bound.

pages from a nonvolatile backing store. such public:

asamagnetic disk. Recoverable objects reside vector2(int sz, int Ib); // Create vector.

in this local storage. Since nodes are subject ~vector2( ): // Destroy vector.

1o crashes that destroy all their local storage, int low( ). // Return low bound.
to survive such crashes recoverable objects void store(int e, int i): // Store element at index.
must be written to stable storage—a medium int fetch(int i): // Fetch from index.
with a high probability of surviving crashes. 1

(Stable storage can be implemented by rep-

licating data.) If we log every recoverable int vector2::fetch(int i) {

object to stable storage after performing return vector::fetch(i — Ibound):

modifying operations on it, we can recover a )

consistent state after a crash by “replaying”

the log. // Implementations of other vector2 operations omitted . . .

Replaying the log will restore a system’s
state (indeed. the Argus system® uses this
scheme). Nevertheless, recovering the sys-
tem state entirely from the log is time-con-
suming. Camelot hastens crash recovery by
dividing crashes into two classes: node fail-
ures and media failures. A media failure
e
age. while a node failure destroys only vola-
tile storage. In practice, node failures are far
more common than media failures. A proto-
col known as write-ahead logging® optimizes {
recovery from node failures by modifying an
object as follows:

Figure 2. The vector2 class.

recoverable |

atomic ‘ ] subatomic J

(1) The pages containing the object are
pinned in volatile storage: they can-
not be returned to nonvolatile storage  Figure 3. Inheritance hierarchy of the three Avalon/C++ base classes.

December 1988 59



class recoverable {
public:
virtual void pin (int size);
virtual void unpin (int size);

}

// Pins object in physical memory.
// Unpins and logs object to stable storage.

Figure 4. The recoverable class.

class rec_X: public recoverable {
X_type X;
public:
void modify( );
B

void rec_X::modify( ) {
pinning( ) {
//...modify X . ..
)
}

class rec_int_array: public recoverable {
int elts[100];
public:
rec_int_array(int initial = 0);
int fetch(int index);
void store(int index, int value);
void operator=(rec_int_array& source);

b

rec_int_array::rec_int_array(int initial) {
pinning ()

// Array copy.

for (int i = 0; i < 100; i++) elts[i] = initial;

void rec_int_array::store(int index, int value) {

pinning () elts[index] = value;

}

int rec_int_array::fetch(int index) {
return elts{index];

}

void rec_int_array::operator=(rec_int_array& source) {

pinning( )

for (int i = 0; i < 100; i++) elts[i] = source.fetch(i);

Figure 6. The rec_int_array class.

until they are unpinned.

(2) The object in volatile memory is modi-
fied.

(3) The modifications are logged on stable
storage.

(4) The pages are unpinned.

This protocol ensures that programmers can
returnarecoverable object to a consistent state
quickly and efficiently.! Of course, they must
still log modifications to stable storage to
protect against media failure.
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Class definition. Figure 4 shows the
class header for recoverable. Classes de-
rived from recoverable inherit pin and unpin
operations, which can ensure persistence
for the derived class. The pin operation
causes the pages containing the object to be
pinned as required by the write-ahead log-
ging protocol, while unpin logs the modifi-
cations to the object and unpins its pages. A
recoverable object must be pinned before it
ismodified and unpinned afterwards. After
a crash, a recoverable object will be re-

stored to a previous state in which it was not
pinned. Further, if a transaction makes nested
pincalls, then the changes made within inner
pin/unpin pairs do not become persistent
until the outermost unpin is executed. This
allows implementors of classes derived from
recoverable to guarantee persistence by
enclosing all modifications between calls to
pin and unpin.

Programmers usually do not explicitly call
the pinand unpin operations; instead, Avalon/
C++ provides a special control structure, the
pinning block, both for syntactic conven-
ience and as a safety measure. The statement

pinning (object) <stmnt>;
is equivalent to

object—>pin(sizeof(*object));
<stmnt>;
object—>unpin(sizeof(*object));

with the additional guarantee that the unpin
will execute even if <stmnt> passes control
outside the block prematurely, such as by
executing a break or return. If a pinning
statement within a class definition omits the
object name, it defaults to the value “this,”
which refers to the object whose member is
being defined.

Using the recoverable class. Figure 5
shows a class definition for a class rec_X
derived from recoverable and containing a
member X, and an operation modify that
modifies X. Without the pinning block, the
modification to X would never be written to
stable storage. Persistence could then be
violated if a transaction that executed the
rec_X operation committed. If a crash oc-
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curred, that transaction’s effects would not
survive.

Since the pin and unpin operations are
public members of recoverable, they are
public members of classes derived from
recoverable. To see why it is useful to make
pin and unpin public, consider a recoverable
array of integers, rec_int_array. An object of
this type should provide normal array opera-
tions such as store and fetch, but should do so
in a way that ensures persistence. We could
implement rec_int_array as a derived class
of recoverable as shown in Figure 6.

Now, suppose we have a rec_int_array of
100 integers, and we want to add | to each
element. We can use a loop where each
element is fetched, incremented, and stored
back into the array. Given the above implem-
entation of store, we would make 100 calls
eachtopinand unpin. Unfortunately, unpin’s
log write is expensive in terms of both stable
storage, which is a scarce resource, and time.
Clients can avoid this expense by explicitly
enclosing the loop in a pinning block (see
Figure 7). Here, the pin and unpin calls made
by store are much less expensive, because
the implementations of pin and unpin recog-
nize when an object is already pinned, and
return immediately.

The pin and unpin operations can be over-
loaded. Consider implementing a recover-
able array whose size can be adjusted dy-
namically. The dynamic array is implemented
as a list in which each element includes a
100-element integer array, a size indicating
how much of that array is used, and a pointer
to the next list element, possibly null (see
Figure 8). This implementation has the dis-
advantage that the pin operation exported by
rec_dyn_array pins only the first list ele-
ment. If the array is repeatedly updated in a
loop, as discussed above, then each access to
asubsequent listelement will generate a new
log record.

A simple remedy is to overload the pinand
unpin operations to dereference and pin the
next list element (see Figure 9). The rede-
fined pin pins the first element by an explicit
call to the pin operation provided by recov-
erable and then recursively pins its succes-
sor. This example illustrates how the combi-
nation of inheritance and overloading can
help customize properties such as failure
recovery.

In summary, we can define recoverable
types as subclasses of recoverable. If an
operation that modifies a recoverable object
calls the inherited pin and unpin operations
properly, the object will be persistent. If a
clientcalls an object’s operations many times,
as in a loop, then enclosing those operations
in a pinning block can enhance performance.
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// Pin and log only once instead of 100 times.

pinning(&a)

for (int 1= 0: 1 < 100; i++) a.store(i, a.fetch(i) + 1);

Figure 7. A pinning block for the rec_int_array class.

class rec_dyn_array : public recoverable {
int elts[ 100];
int size;
rec_dyn_array* next:
public:

1

// 100 element array
// How much of elts is used
// Null => end of list

Figure 8. Implementation of a recoverable dynamic array.

void rec_dyn_array::pin(int size) {
recoverable::pin(size);
if (next) next—>pin(sizeof(*next)):

}

void rec_dyn_array::unpin(int size) {
recoverable::unpin(size);
if (next) next—>unpin(sizeof(*next)):

!

// Pin next element

// Unpin next element

Figure 9. Redefinition of pin and unpin.

The atomic class

Atomic, the second base class in our hier-
archy, is a subclass of recoverable, special-
ized to provide two-phase read/write locking
and automatic recovery. Locking ensures
serializability, and an automatic recovery
mechanism for objects derived from the
atomic class ensures transaction consistency.
(Note that we differentiate between objects
derived from the atomic class and atomic
objects as defined in the section “Transac-
tion model of computation.”)

Class definition. Think of objects derived
from the atomic class as containing long-
term locks (see Figure 10). Read_lock gains
a read lock for its caller. Many transactions
can simultaneously hold read locks on an
object. Write_lock gains a write lock for its
caller; if one transaction holds a write lock on
an object, no other transaction can hold ei-
ther kind of lock. Transactions hold locks
until they commit or abort. Read_lock and
write_lock suspend the calling transaction
until the requested lock can be granted, which
can involve waiting for other transactions to

61



class atomic: public recoverable {
public:

/{ **Pin’" and “unpin” are inherited from “recoverable.”

virtual void write_lock( );
virtual void read_lock( );

// Atomically obtains a long-term write lock.
// Atomically obtains a long-term read lock.

Figure 10. The atomic class.

class at_int_array: public atomic {
rec_int_array elems;

public:

at_int_array(int initial = 0) : elems(initial) { };

void store(int index, int value) {
write_lock( );
elems.store(index, value);

int fetch(int index) {
read_lock( );
return elems.fetch(index);

Figure 11. An at_int_array class that inherits from atomic.

complete and release their locks. If read _lock
orwrite_lock is called while the calling trans-
action already holds the appropriate lock on
an object, it returns immediately.

Classes derived from atomic should di-
vide their operations into writers and read-
ers, that is, operations that do and do not
modify the objects of the class. To ensure
serializability, reader operations should call
read_lock on entry, and writer operations
should call write_lock. Note that no short-
term mutual exclusion lock on the object is
necessary: If any transaction holds a read
lock on an object, then no transaction holds
a write lock, so all are free to read the object
without fear of its being modified as they
read it. Conversely, if one transaction holds
awrite lock on an object, no other transaction
can hold either type of lock, so it need not
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fear interference.

Atomic objects must also be transaction
consistent, that is, the effects of aborted
transactions. including those aborted by
crashes, must be undone. The Avalon run-
time system guarantees transaction consis-
tency by performing special abort process-
ing. Thus, implementors of atomic types
derived from the atomic class need not pro-
vide explicit commit or abort operations.

Finally, persistence is inherited from re-
coverable. Since atomic is a subclass of
recoverable. the pin and unpin operations of
recoverable are public operations of atomic
and can ensure persistence.

Using the atomic class. Figure 11 shows
an implementation of an at_int_array class
that inherits from atomic. Since write_lock

andread_lock are public operations of atomic,
clients of classes derived from atomic can
call them. Clients could call these operations
explicitly to decrease the likelihood of dead-
lock. Two transactions, T1 and T2, might
each want to obtain write locks on objects A
and B; if T1 gets A, and T2 gets B, deadlock
will occur—neither can make any progress.
Deadlock can be avoided if all transactions
obtain locks on the objects they require in
some system-wide canonical order. There-
fore, clients could structure their code so that
each transaction obtains all the locks it re-
quires before executing any operations. They
would do this with explicit calls to read_lock
and write_lock.

The atomic class uses specially optimized
facilities provided by the Camelot system, It
is probably appropriate for deriving most
atomic types.

The subatomic class

The third, and perhaps most interesting,
base class in our hierarchy is subatomic.
Like atomic, subatomic allows objects of its
derived classes to ensure atomicity. While
atomic provides a quick and convenient way
to define new atomic objects, subatomic
provides more complex primitives to give
programmers more detailed control over their
objects’ synchronization and recovery
mechanisms. Programmers can use this
control to exploit type-specific properties of
objects, permitting higher levels of concur-
rency and more-efficient recovery.

Transaction identifiers. The Avalon
trans_id class creates and tests transaction
identifiers. (see Figure 12). Note that Avalon/
C++ defines bool to be an enumeration type
with TRUE set to 1 and FALSE set to 0.

A new trans_id is created by a call to the
constructor:

trans_id tid = trans_id();

Rather than simply retumning the calling
transaction’s identifier, the trans_id construc-
torcreates and commits adummy subtransac-
tion, returning the subtransaction’s trans_id
to the parent. We chose this alternative
semantics because it is often convenient for
a transaction to generate multiple trans_ids
(for example, one for each of its operations)
ordered in the order of their creation.

We can test the system’s knowledge about
the transaction serialization ordering by the
overloaded operators < and >. For example,
if the expression t1 < t2 evaluates to true,
thenif t2 commits, t1 will alsocommit and be
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serialized before t2. Note that < induces a
partial order on trans_ids; if t1 and t2 are
active concurrently, both t1 <t2 and 2 < tl
will evaluate to false.

It is sometimes convenient to test whether
one transaction is a descendant of another in
the transaction tree. If descendant(tl, t2)
evaluates to true, then t1 is a descendant of
12. (A friend in C++ is a nonmember opera-
tion that is allowed access to the private part
of a class.)

Class definition. A subatomic object must
synchronize concurrent accesses at two lev-
els: short-term synchronization ensures that
concurrently invoked operations are exe-
cuted in mutual exclusion, and long-term
synchronization ensures that the effects of
transactions are serializable. Short-term
synchronization helps to guarantee opera-
tion consistency of objects derived from
subatomic. Operation consistency means that
an operation completes entirely or not at all.
Since a transaction is a sequence of opera-
tions, operation consistency is a weaker
property than transaction consistency; it
permits the effects of aborted transactions to
be observed, while transaction consistency
does not.

Subatomic provides the seize, release, and
pause operations for operation-level syn-
chronization (see Figure 13). Each subatomic
object contains a short-term lock, similar to
amonitor lock or semaphore. Only one trans-
action can hold the short-term lock at a time.
The seize operation obtains the lock, and
release relinquishes it. Pause releases the
lock, waits for some duration, and reacquires
it before returning. Thus, these operations
allow transactions mutually exclusive ac-
cess to subatomic objects. Note that these
operations are protected members of the
subatomic class. They are not provided to
clients of derived classes. since it would not
be useful for clients to call them.

Like pinand unpin, Avalon/C++ program-
mers typically do not call these operations
directly. Instead, Avalon/C++ provides a
special control construct, the when state-
ment, to enhance safety and syntactic con-
venience:

when (<TEST>) {
<...BODY.. >

The when statement is a kind of conditional
critical region. The calling process calls seize
to acquire the object’s short-term lock, re-
peatedly calls pause until the condition be-
comes true, and then executes the body. It
calls release when control leaves the body,
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class trans_id: public recoverable {

public:
trans_id( );
bool operator==(trans_id& t);
bool operator<(trans_id& t):
bool operator>(trans_id& t);
// Is 1st a child of 2nd?

// Hidden representation.

// Constructor.

// Equality.

// Serialized before?
// Serialized after?

friend bool descendant(trans_id& t1, trans_id& 12);

Figure 12. The trans_id class.

class subatomic: public recoverable {
protected:
void seize( );
void release( );
void pause( );
public:

// Gains short-term lock.
// Releases short-term lock.

// Temporarily releases short term lock.

// *Pin” and “‘unpin” are public, by inheritance from “recoverable.”

virtual void commit(trans_id& t);
virtual void abort(trans_id& t);

}

// Called after transaction commit.
// Called after transaction abort.

Figure 13. The subatomic class.

either normally or by statements such as
break or return. In addition, the when state-
ment can ensure operation consistency:
Avalon guarantees that no partial effects are
observed if a failure occurs while executing
a when,

To implement transaction consistency,
subatomic provides commit and abort opera-
tions. Whenever a top-level transaction
commits (or aborts), the Avalon runtime
system calls the commit (or abort) operation
of all objects derived from subatomic ac-
cessed by that transaction or its descendants.
Abort operations are also called when nested
transactions “voluntarily™ abort. Abort op-
erations usually undo the effects of aborted
transactions, while commit operations dis-
card recovery information no longer needed.
Since commit and abort are C++ virtual
operations, classes derived from subatomic
are allowed (and, in this case, expected) to

reimplement these operations. When the
system calls commit or abort, the most spe-
cific implementation for the object will be
called. Thus, subatomic allows type-specific
commit and abort processing, which is use-
ful and often necessary when implementing
user-defined atomic types efficiently. Note
that users need not invoke commit and abort
explicitly; the system automatically invokes
them when appropriate.

Finally, since subatomic is a subclass of
recoverable, it inherits persistence from re-
coverable (as did atomic).

Using the subatomic class. Consider the
implementation of an atomic FIFO queue.
The easiest way to define such a queue is to
inherit from the atomic class. A limitation of
this approach is that enqueue and dequeue
operations would both be classified as writ-
ers, permitting little concurrency. Instead,
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struct enq_rec {
int item; // Item enqueued.

trans_id enqr; // Who enqueued it.

enq_rec(int i, trans_id& en) { item =i; enqr =en; }

B

struct deq_rec {

int item; // Ttem dequeued.
trans_id engr; // Who enqueued it.
trans_id deqr; // Who dequeued it.

deq_rec(int i, trans_id& en, trans_id& de);
{ item = i; enqr = en; deqr = de; }

B

Figure 14. Enqueue and dequeue records.

class atomic_queue : public subatomic {

deq_stack deqd; /1 Stack of deq records.

enqg_heap enqd; // Heap of enq records.
public:

atomic_queue( ) {}; // Create empty queue.

void enq(int item); // Enqueue an item.

int deq( ); // Dequeue an item.

void commit(trans_id& t);
void abort(trans_id& t);
~atomic_queue( ); // Destroy queue.

Figure 15. Implementation of an atomic FIFO queue.

void atomic_queue::enq(int item) {
trans_id tid = trans_id( );
when (deqd.is_empty( ) Il (deqd.top( )—>engr < tid))
enqd.insert(item, tid);

}

int atomic_queue::deq( ) {
trans_id tid = trans_id( );
when ((deqd.is_empty( ) ll deqd.top( }—>deqr < tid)

&& enqd.min_exists( ) && (enqd.get_min( }->engqr < tid)) {

enq_rec* min_er = enqd.delete_min( );
deq_rec dr(*min_er, tid);
deqd.push(dr);

return min_er—>item;

Figure 16. Implementations of enq and deq.
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we willimplement a highly concurrent atomic
FIFO queue by inheritance from subatomic.
Our implementation supports more concur-
rency thancommutativity-based concurrency
control schemes such as two-phase locking.
For example, it permits concurrent enq op-
erations, even though engs do not commute.
The implementation also supports more
concurrency than any locking-based proto-
col because it takes advantage of state infor-
mation. For example, it permits concurrent
eng and deq operations while the queue is
nonempty.

The representation. Information about enq
invocations is recorded in the struct in Figure
14. The item component is the enqueued
item. The engr component is a trans_id
generated by the enqueuing transaction, and
the last component defines a constructor
operation for initializing the struct. Informa-
tion about deq invocations is recorded simi-
larly (see Figure 14).

The queue is represented in Figure 15. The
deqd component is a stack of deq_recs used
to undo aborted deq operations. The enqd
component is a partially ordered heap of
enq_recs, ordered by their engr fields. A
partially ordered heap provides operations to
enqueue an enq_rec, to test whether a unique
oldest enq_rec exists, to dequeue it if it does,
and to discard all enq_rec’s committed with
respect to a particular transaction identifier.

Our implementation satisfies the follow-
ing representation invariant:

¢ Assuming all enqueued items are dis-

tinct, an item is either enqueued or de-
queued, not both. If an enq_rec contain-
ing [x, enq_tid] is in the enqd compo-
nent, then there is no deq_rec containing
[x, enq_tid, deq_tid] in the deqd compo-
nent, and vice-versa.

® The stack order of two items mirrors

both their enqueuing order and their de-
queuing order. If d1 is below d2 in the
deqd stack, then d1.engr < d2.engr and
dl.degr < d2.deqr.

® Any dequeued item must have been

enqueued previously. Forall deq_recsd,
d.engr < d.deqr.

The operations. Enq and deq operations
can proceed under the following conditions.
A transaction P candequeue anitem if (1) the
most recent dequeuing transaction is com-
mitted with respect to P, and (2) a unique
oldest element exists in the queue whose
enqueuing transaction is committed with
respect to P. The first condition ensures that
P will not dequeue the wrong item if the
earlier dequeuer aborts, and the second con-
dition ensures that there is something for P to
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dequeuc. Similarly. P can enqueue an item if
the last item dequeued was enqueued by a
transaction Q committed with respect to P.
This condition ensures that P will not be
serialized before Q. violating the FIFO or-
dering.

Given these conditions, enq and deq are
implemented as shown in Figure 16. Enq
checks whether the item most recently de-
queued was enqueued by a transaction
committed with respect to the caller. If so,
the current trans_id and the new item are
inserted in enqd. Otherwise. the transaction
releases the short-term lock and tries again
later. Deq tests whether the most recent
dequeuing transaction has committed with
respect to the caller and whether enqd has a
unique oldest item. If the transaction that
enqueued this item has committed with re-
spect to the caller. it removes the item from
enqd and records it in deqd. Otherwise, the
caller releases the short-term lock. suspends
execution, and tries again later.

Commit and abort are implemented as
shown in Figure 17. When a top-level trans-
actioncommits. itdiscards deq_recs no longer
needed for recovery. (The representation
invariant ensures that all deq_recs below the
top are also superfluous and can be dis-
carded.) Abort has more work to do. It un-
does every operation executed by a transac-
tion that is a descendant of the aborting
transaction. It interprets deqd as an undo log.
popping records for aborted operations and
inserting the items back in enqd. Abort then
flushes all items enqueued by the aborted
transaction and its descendants.

Restrictions on
containers

Some types are (conceptually) parameter-
1ized over the types of objects they can con-
tain. To preserve atype's intended meaning.
some restrictions are necessary on the types
that can instantiate these parameterized
container types.

Restrictions for recoverable. Consider
the class rec_array. a generalization of the
rec_int_array class parameterized over the
element type of the array. We must ask what
kinds of objects we can put in rec_arrays and
still maintain persistence of the array object
considered as a whole. First, any type stored
in-line is permissible. An in-line type is any
type that contains no pointers. The funda-
mental types of C++ (char, int. or float) are
in-line. A struct whose members are all in-
line is itself in-line. Similarly. a C++ array
whose elements arc all in-line is also in-line.
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void atomic_queue::commit(trans_id& committer) {

when (TRUE)

if (!deqd.is_empty( ) && descendant(deqd.top( )->deqr. committer)) {

deqd.clear( ).

J

void atomic_queue::abort(trans_id& aborter) |

when (TRUE) {

while (!deqd.is_empty( ) && descendant(deqd.top( »->deqr. aborter)) |

deq_rec* d = deqd.pop( ):
enqd.insert(d—>item. d->enqr):
}

engd.discard(aborter):

Figure 17. Implementations of commit and abort.

Note thatif arec_array has anin-line element
type. then logging the array to stable storage
will log all the elements as well.

Problems arise when we consider pointer
types. If we declare A to be a rec_array of
pointers to ints, is A persistent? The answer
is no, since A[ 1] points to an int. which is not
a recoverable object. We could change the
value of this int during a transaction. thus
conceptually modifying the state of the ar-
ray. but no record of this moditication would
ever reach stable storage. violating persis-
tence.

Here. then.isarule forensuring thatatype
is persistent: If objects of a type can contain
other objects. and if the containing type is
intended to be persistent. then the contained
objects must be an in-line type or a pointer to
a recoverable object. This rule ensures that
the latest version of a recoverable object will
be written to stable storage every time an
operation that modifies it completes.

The inverse problem occurs with an object
notmeantto be persistent. but which concep-
tually contains some recoverable object. The
Camelot system requires allocation of re-
coverable and nonrecoverable data in differ-
entsections of memory. If we allow a nonre-
coverable object to contain an in-line recov-
crable object. we must allocate space for the
aggregate object in one of these sections of
memory. We cannot put it in the nonrecover-
able section, since the recoverable object
would become nonrecoverable. We also
cannot put the object in the recoverable sec-
tion for a more subtle reason. If we allocated
memory there and a node crash occurred. the

nonrecoverable part of the object would
become meaningless after recovery: the stor-
age allocator would think it had been allo-
cated. although no variables reference it.
This type of garbage would build up over
time. Therefore, as a rule we forbid nonre-
coverable objects to contain recoverable
objects in-line: they can only point to recov-
crable objects.

Restrictions for serializability. Similar
restrictions apply to serializability. If a con-
tainer type is intended to ensure serializabil-
ity of the transactions accessing it, it should
be instantiated either with an in-line type or
with a pointer to another type that ensures
serializability. Care must be taken that nested
atomic objects do not lead to deadlock.

An extended example

All three base classes can combine to
implement an atomic directory type. A direc-
tory stores pairs of values. where one value
(the key) is used to retrieve the other (the
item). The insert operation

bool directory::insert(key k. item i)
inserts anew binding in the directory. return-
ing FALSE if the key is already present and
TRUE otherwise. The remove operation

bool directory::remove(key k)

removes the item bound to the given key,
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// Lock modes

enum mode {
INSERT_T_LOCK,
INSERT_F_LOCK,
REMOVE_T_LOCK,
REMOVE_F_LOCK,
ALTER_T_LOCK,
ALTER_F_LOCK,
LOOKUP_LOCK

b

// Successful insert.

// Unsuccessful insert.
// Successful remove.

// Unsuccessful remove.
// Successful alter.

// Unsuccessful alter.

// Lookup.

/I All synchronization is done through the lock manager.

struct lock_info {mode m; key k;};

class lock_mgr: public recoverable {
// Private representation not shown ...
public:
lock_mgr( );

bool conflict(key k, mode m, trans_id& t); // Any conflicts?
void acquire(key k, mode m, trans_id& t); // Grant lock.

bool is_locked(key k);
lock_info* release(trans_id& t);

b

// Is key locked?
// Release and return lock.

// Cells are atomic in order to get automatic commit and abort processing.

struct cell: public atomic {
item value;
cell(item i) { pinning( ) value =1i; }
item operator=(item rhs);
operator item( );

)

// Assign an item to the cell.
// Coercion from cell to item.

// Discard binding when unlocked and present = 0.

struct binding: public recoverable{
int present;
cell* target;
binding(item i) {

// inserts - removes.
// Current item.

pinning( ) { present = 1; target = new cell(i); }

}
~binding( ) { delete target; }

b

// Maps keys to bindings.
class map: public recoverable {
// Private representation not shown ...
public:
map( );
void insert(key k, binding* b);
void remove(key k);
binding* lookup(key k);

Figure 18. Auxiliary definitions for directory example.

returning TRUE if the key is in the directory,
and FALSE otherwise. The alter operation,

bool directory::alter(key k, item i)
alters the item bound to the given key, return-
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ing FALSE if the key is absent. Finally, the
lookup operation,

item directory::lookup(key k)

returns the item bound to the given key. For

brevity, we assume the key is bound.

The directory example further illustrates
how we can use the Avalon/C++ synchroni-
zation primitives for type-specific synchro-
nization. Here, all synchronization is done
on a per-key basis, so transactions that oper-
ate on disjoint sets of keys never interfere.
Internally, concurrent operations synchro-
nize by strict two-phase locks. The lock
conflicttable appears in Table 1. Aninterest-
ing aspect of this scheme is that lock con-
flicts take into account not only the names
and arguments to operations, but also the
operations’ results. For example, because an
unsuccessful insert (denoted by insert/F) does
not modify the key’s binding, it need not
conflict with a concurrent lookup operation
on the same key. On the other hand, a suc-
cessfulinsert (insert/T) does modify thekey’s
binding, hence it must conflict with lookup.

The example also illustrates the utility of
user-defined commit and abort processing.
Transaction recovery is straightforward for
objects inheriting from atomic. Whena trans-
action is aborted, the object’s earlier value is
restored by a bit-wise copy; if it commits, the
recovery datais discarded. Camelot does this
bit-wise recovery directly, and we use it in
the example for operations, such as alter, that
overwrite existing bindings. Bit-wise recov-
ery, however, is inadequate for more com-
plex operations such as insert and remove
that create or destroy bindings. Instead,
commit and abort processing for these op-
erations relies on the commit and abort op-
erations inherited from subatomic and over-
loaded by the directory implementation.

Class definition. As shown in Figure 18,
the enumeration type mode defines lock
modes for each operation. The insert, re-
move, and alter operations have different
lock modes depending on whether they re-
turn successfully. For example, an insert that
returns TRUE must acquire a lock of mode
INSERT_T_LOCK, while one that returns
FALSE must acquire INSERT_F_LOCK. A
lock manager is a recoverable object that
keeps track of locks. It provides operations
to acquire a lock, to release a lock, and to test
whether another transaction holds a conflict-
ing lock.

Each key in the directory is associated
with a binding, which is a recoverable struct
with two fields. The target field is a pointer
to an atomic struct (a cell) that holds the item
itself. The present field serves as a count of
the number of committed inserts minus the
number of committed removes. Thus, pres-
ent is 1 if the key is bound in the directory’s
committed state; otherwise, present is 0 and
the key appears unbound. Present is initially
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| because new bindings are created only
when insertions are performed. A binding
can be discarded when it is unlocked (which
is true if and only if there are no active
insertions or removals) and present is 0.

The association between keys and bind-
ings is maintained by a recoverable map
object, also shown in Figure 18. A map
provides operations to insert new bindings,
toremove existing bindings, to find the bind-
ing associated with a given key, and to test
whether a particular key is bound. Finally,
the directory itself inherits from subatomic
(see Figure 19). As its private members it has
a lock manager (locks), a map (data), and a
collection of auxiliary procedures used to
test synchronization conditions.

The simplest operation, lookup, generates
a new transaction identifier and enters its
critical section when the lock manager re-
ports that no other transaction holds a con-
flicting lock for that key (see Figure 20).
Inside the critical section, the transaction
locks the key in lookup mode, finds the key’s
binding, and returns the associated item.

The insert operation is more complex (see
Figure 21). Since the operation’s lock de-
pends on the insert’s success, it must first
check to see whether the key has a binding.
The auxiliary insert_check procedure per-
forms this test, checking the status of the
binding and the state of the lock manager,
and returning a value of an enumeration
type. A value of PRESENT indicates that the
key is bound and the caller can acquire an
INSERT_F_LOCK on that key. A value of
ABSENT indicates that the key is unbound
and the caller can acquire an
INSERT_T_LOCK on that key. A value of
BUSY indicates that lock conflicts prevent
the binding’s status from being determined.
The insert operation itself uses the result to
determine how to proceed in its critical re-
gion. The whenswitch statement is a gener-
alization of the when statement that replaces
the Boolean expression with an expression
of an enumeration type. If the key is absent,
the caller acquires the appropriate lock and
then creates (and initializes) a new binding
for the key. If the key is present, the caller
simply acquires a lock and returns. If the lock
returns “busy,” the caller suspends and re-
tries later.

The implementations of remove,
remove_check, alter, and alter_check are
similar.

The commit operation enters its critical
section, iterates through the locks held by the
committing transaction, and discards any
unlocked binding where present is zero (see
Figure 22). Handling aborts, in particular for
insert and remove operations, is a little more
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Table 1. Lock conflicts for directory.

remove/F,
insert/T, alter/F,
remove/T alter/T insert/F lookup
insert/T,
remove/T Conflict Conflict Conflict Conflict
alter/T Conflict Conflict Conflict
insert/F Conflict
remove/F,
alter/F,
lookup Conflict Conflict

enum status { PRESENT, ABSENT, BUSY };

class directory: public subatomic {

lock_mgr locks;

map data;

status insert_check(trans_id& t, key k);
status remove_check(trans_id& t, key k);
status alter_check trans_id& t, key k);

// Internal proc.
// Internal proc.
// Internal proc.

public:
directory( );
bool insert(key k, item i);
bool alter(key k, item i);
bool remove(key k);
item lookup(key k);
void commit(trans_id& t);
void abort(trans_id& t);

Figure 19. Atomic directory definition.

complex. For each successful remove lock,
the abort operation locates the associated
binding and increments the present field; for
each successful insert lock, it decrements
present. Finally, itdiscards superfluous bind-
ings. Note thata key’s item is stored in a cell
that inherits from atomic, so the effects of
aborted alter operations are automatically
undone when the cell is recovered (see Fig-
ure 23).

he use of inheritance to provide re—

I coverability and atomicity in Avalon/
C++ is not closely tied to the details

of the C++ inheritance mechanism. It could

item directory::lookup(key k) {
trans_id tid = trans_id( );
when (!locks.conflict(k,
LOOKUP_LOCK, tid)) {
locks.acquire(k, LOOKUP_LOCK,
tid);
binding* b = data.lookup(k);
return *(b—>target);
}
}

Figure 20. Lookup operation.
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/! Lock modes depend on whether a key is bound.
lock_status directory::insert_check(trans_id& tid, key k) {

binding* b = data.lookup(k);

if (b && b—>present == 1) && !locks.conflict(k, INSERT_F_LOCK, tid))

return PRESENT;

if ((!b It b—>present == 0) && !locks.conflict(k, INSERT_T_LOCK, tid))

return ABSENT;
return BUSY;
}

bool directory::insert(key k, item i) {
trans_id tid = trans_id( );
whenswitch (insert_check(tid, k)) {
case ABSENT:

locks.acquire(k, INSERT_T_LOCK, tid);

binding* b = new binding(i);
data.insert(k, b);
return TRUE;

case PRESENT:

locks.acquire(k, INSERT_F_LOCK, tid);

return FALSE;

Figure 21. Insert operation.

void directory::commit(trans_id& tid) {
lock_info* info;
when (TRUE)
while (info = locks.release(tid)) {
key k = info—>k;
binding* b = data.lookup(k);

// Always ok to commit.

if ((b—>present==0) && !locks.is_locked(k))

data.remove(k);

Figure 22. Commit operation.

be adapted to inheritance mechanisms in
languages such as Smalltalk,’ Flavors,* Com-
monLoops,” CommonObjects,'” and Owl."
Our extensions would undoubtedly take a
slightly different form in a language allow-
ing multiple inheritance.

Avalon/C++ is based on a transaction
model of computation. It should be possible
to exploit subatomic’s provision of user-
defined commit and abort operations to
support nontransaction-based approaches to
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crash recovery, which typically use optimis-
tic recovery schemes'*'* based on rollbacks
and replays.

Other projects investigating an object-
oriented, transaction-based approach to
managing persistent data include Exodus'*
and Arjuna.'® Avalon/C++ in many ways
resembles Argus,® a language designed to
provide support for fault-tolerant distributed
computing. Although Avalon/C++ and Ar-
gus provide much of the same functionality,

void directory::abort(trans_id& tid) {
lock_info* info;
when (TRUE)
while (info = locks.release(tid)) {
key k = info—>k;
binding* b = data.lookup(k);
switch (info—>m) {
case REMOVE_T_LOCK:
pinning(b) b—>present++;
break;
case INSERT_T_LOCK:
pinning(b) b—>present—;
)
if ((b—>present==0) && !'locks.
is_locked(k))
data.remove(k);

Figure 23. Abort operation.

such as support for transactions and atomic
data types, programs in the two languages
have a different flavor.

User-defined atomic objects in Avalon/
C++ are implemented by inheritance from
the special built-in classes, while such ob-
jects in Argus are typically implemented by
including atomic objects in the new object’s
representation. Avalon/C++ and Argus also
use different models of serializability. In
Argus, concurrency control is based on a
generalization of strict two-phase locking. In
Avalon/C++, the ability to query the transac-
tion serialization ordering at runtime (via the
trans_id type) permits more concurrency than
two-phase locking, while remaining com-
patible with two-phase locking. Finally,
Avalon/C++ and Argus use different recov-
ery techniques. Avalon relies on the Camelot
system for basic transaction management,
using the write-ahead log protocol for effi-
cient recovery from node failures. Argus
recovers directly from the log.

We are currently implementing Avalon/
C++ on IBM RTs, DEC MicroVAXs, and
Sun-3 workstations using version 1.1 of C++.
The implementation comprises a preproces-
sor that transforms Avalon code to C++
code. We use the Camelot system exten-
sively for low-level transaction support;
Camelot, in turn, relies on the Mach operat-
ing system'® for memory management, inter-
node communication, and lightweight proc-
esses. We are currently able to compile and
run all the code presented in this article.
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We believe that inheritance provides an
effective way to customize and extend the
kind of complex nonfunctional properties,
such as serializability, transaction consis-
tency, and persistence, needed to support
programs for reliable distributed applica-
tions. For each of these properties, there is a
core of functionality—such as the basic
mechanics of locking, pinning, and logging—
that is best provided by the underlying lan-
guage implementation. Nevertheless, sup-
port for user-defined data types sometimes
requires extending or modifying that func-
tionality, as illustrated by the example in
which a recoverable object needs to pin a
component object indirectly referenced
through a pointer. The combination of in-
heritance and overloading provides a simple
and flexible way to achieve incremental
modification of these complex properties
that lie outside the domain of conventional
programming languages. O
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