C()mrom‘hkj in Cive] Er\jmur-nj Pl\.bccwwao %»{’u First (‘Tw

ry- 571-533 | Pmeviten 5%% Y 8»\8»4«-

Formal Specification of AEC Product Models

Harpreet S. Chadha,’ s.m., Asce, John W. Baugh Jr.,?
AM,, ASCE, and Jeannette M. Wing?

Abstract: This paper illustrates the use of equational specifications in
developing product data models. This approach enables a precise and ab-
stract description of products, where both syntactic and semantic checks
are used for validation. Because they are formal objects, these specifica-
tions can be validated with respect to formal requirements and combined
using ordinary mathematics. In addition, the availability of mature tools
from the software engineering community further supports this approach
to specifying and validating product models.

1 Introduction

Product models are intended to represent information about a product in a precise
and consistent form. The product may be a civil engineering structure, a personal
computer, a plate element for finite element analysis, etc., and is usually modeled
by integrating various submodels. The information generated during the design,
manufacture, use, maintenance, and disposal of a product may be required by
several design teams and computer systems in different organizations.

There is a need for languages and tools that allow the representation of prod-
uct information in a computer-readable form that facilitates exchange and in-
tegration of the information models developed. Several groups are attempting
to enhance integration by using languages such as Express, IDEF, and NIAM
to represent product information. STEP (ISO 1992) and PDES, for example,

1Graduate Research Assistant, Department of Civil Engineering, North Carolina State Uni-
versity, Raleigh, NC 27695-7908. Internet E-mail: hschadha@eos.ncsu.edu

2 Assistant Professor, Department of Civil Engineering, North Carolina State University,
Raleigh, NC 27695-7908. Internet E-mail: jwb@eos.ncsu.edu

3 Associate Professor, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213. Internet E-mail: wing@cs.cmu.edu

Chadha, Baugh, and Wing

|49

use Express for developing several generic and application-specific resource con-
structs, which are then combined in application protocols to describe the scope
and information requirements for specific application contexts. While these lan-
guages allow product information to be stated in a precise form, and tools are
available to ensure proper syntax, semantic checks of models developed in these
languages have received little attention. In Express, for example, integrating var-
ious models in a manner that ensures compatibility and removes repetition, and
thus redundancy, is a manual process (Watson and Boyle 1993). Validating a
large product model without any support for semantic analysis is a very complex
task.

This paper suggests the use of equational specifications, which enhance the
validation process by supporting consistency proofs of individual product models,
as well as supporting compatibility of the product models that are integrated.
Below, we give a brief overview of equational specifications and related software
tools, including Larch (Guttag et al. 1993), a family of specification languages
based on equational logic. As an illustration, a small product model from the
architecture, engineering and construction (AEC) domain is specified. We then
discuss related work, followed by conclusions and directions for further research.

2 Equational Specifications

An equational specification is formalized by equational theories, which are de-
fined in a restricted form of multisorted predicate logic with equality (Ehrig and
Mahr 1985). By “formalized,” we mean that such specifications have precise and
unambiguous semantics (Wing 1990). There are many formal specification tech-
niques (Woodcock and Loomes 1989), each being more or less appropriate for
specific applications or parts of a program. For example, finite state automata
have been widely used for specifying (and verifying) network protocols (Stallings
1993), as have process algebras for specifying concurrent and real-time compu-
tations (Elseaidy et al. 1994). Formal notations enable one to state clearly
and unambiguously the behavior of computation and to develop shorter, simpler
proofs using deductive proof techniques. This work focuses on equational spec-
ifications, which are convenient for describing abstract data types. For brevity,
only a concise and informal overview of the area is presented, but that should be
enough to support the subsequent examples and discussion.

An equational specification defines a mathematical object by using equations
to relate the operators defined for that object (operators simply map from a cross
product of values to a single value). These equations are connected implicitly by
logical conjunction, and each of the equations must be true over the domain of
their variables. For example, a logical negation operator is implicitly defined by
the equation not(not(A)) = A, where A is a logical variable. Because equations
may also be interpreted as left-to-right rewrite rules (under mild constraints), we
have an operational mechanism for executing, and hence testing, our specifica-
tions.

2 Chadha, Baugh, and Wing

We separate an equational theory from the interface specification, which spec-
ifies actual software components in terms of their preconditions and postcondi-
tions, by using a two-tiered approach to specification (Guttag et al. 1993). Thus,
equational theories remain uncluttered from error values, implementation lan-
guage features, etc., since they are used only to define the assertion language of
the interface specification. The separation of concerns provided by the two-tiered
approach allows equational theories to be reused far more easily than other kinds
of computational objects.

The Larch system is a family of formal specification languages and tools that
supports the two-tiered approach to specifying software and hardware modules.
One tier of specification, written in the Larch Shared Language (LSL), describes
abstractions that are independent of any implementation language. Language-
specific details such as exception handling are written in a Larch interface lan-
guage. Below, we use Larch to construct and validate equational specifications

for a subset of the General AEC Reference Model (GARM).

3 Specification of GARM

GARM (Gielingh 1988) has been proposed as a high-level abstract data model to
link various modeling concepts within and outside the AEC industry. The model
is based on a generic entity called a product data unit (PDU), which can be a
system, a subsystem, a part, etc. GARM supports the design strategy of de-
composing complex problems into smaller problems by means of functional units
(FUs) and technical specifications (TSs). An FU is a collector of the requirements
of a PDU, which may be a design problem or a product to be obtained. The so-
lution of the problem or the product is represented by a TS. There may be any
number (including zero) TSs for each FU, and likewise, each TS can be modeled
as a structured set of one or more FUs. Figure 1 presents an example of various
FUs and TSs connected in a tree-like fashion. A very simplified model of a roof is
shown, where the desired functions can be met with a sloping or a flat roof. The
sloping roof in turn has three functional components in this simplified model: the
structural strength is provided by a system of trusses, the exterior consists of steel
cladding, and the support system consists of steel or wood columns. Although
hierarchical, GARM does support user-defined relationships among nodes in the
hierarchy.

To specify GARM in Larch, we first specify the notion of a tree in LSL, and
then use that to model the several GARM concepts discussed above.

The tree trait A trait is the basic unit of specification in LSL. Often, a trait,
as in the specification of the Tree abstraction of Figure 2, defines an abstract type
by introducing some operators on the type and specifying their properties. The
tree trait includes properties of sets—the axioms for set theory are separately
defined in a Set trait. The generated by clause asserts that the operators node

3 Chadha, Baugh, and Wing

Roof Properties

™~

| Sloping Roof I Flat Roof
/ | \

I Exterior ” Structural J [Roof Suppoﬂ

\

?:]\ fSteel Claddingl [Wood Trusses]

C s 4 [4
/ 1 \ |Steel Columnsl IWood ColumnsJ

[L[ru 3 Fu 4l

ZES AN

(s34 (=

Figure 1: Example of a product represented by a hierarchy of FUs and TSs.

and addchild are sufficient to construct a tree. Similarly, the partitioned by
clause asserts that all distinct instances of the Tree sort can be distinguished
using the operators content and children. We also introduce an operator for the
nearest ancestor common to two nodes in a tree, viz., least common ancestor
(LCA), which is subsequently used in specifying GARM. The implies clause
allows us to make claims that we expect to hold. For example, we expect that:

If the LCA of two pairs of nodes in a tree are the same, and the
pairs share a common node, then the LCA of the pair formed by the
remaining nodes (that may not be shared) must also be in the tree.

Such claims act as semantic checks for our specifications, providing a means
to ensure that the specifications written have the desired properties. To prove
these properties, the LSL specifications are converted into an input suitable for
the Larch Prover (LP). LP is a proof assistant for a subset of multisorted first-
order logic, which is also the logic on which the Larch languages are based. The
availability of tools to convert LSL specifications into input for LP, and tools
to ensure correct syntax, further help in the development of clear and precise
product models.

The product trait The FUs and TSs in GARM are specified in a Product
trait as shown in Figure 3. Each node in the Product (tree) is a PDU, which
is either an FU or a TS, and hence the use of union. A connection specifies

4 Chadha, Baugh, and Wing

Tree(E,T, SetofT) : trait
includes Set(T, SetofT)
introduces

node : E— T
addChild : T, T - T
content : T — E
children : T — SetofT

inTree : E,T — Bool % True if E is anodein T

LCA:T,E,E—-T % Least Common Ancestor

childContatning : T, E —» T % Child of T containing node E
asserts

T generated by node, addChild
T partitioned by content, children
Ve,e1,e3: E t1,t2: T

content(node(e)) == ¢
content(addChild(ty,t3)) == content(t;)
children(node(e)) == {}

children(addChild(ty,t2)) == insert(ts, children(t1))
inTree(e, node(ey)) == (e =e1)
inTree(e, addChild(t1,t3)) ==
content(tz) = e V inTree(e, t1) V inTree(e, t3)
LCA(addChild(t1,t3),e1,€3) ==
if inTree(ey,t2) A inTree(ez, tz)
then [CA(t3,e:,€2)
else if inTree(e1,t1) A inTree(ea, t1)
then LCA(t1 €1, eg)
else addChild(ty,t3)
childContaining(addChild(t,,t3),e) ==
if inTree(e,t;) then t;
else childContaining(ty,¢€)
implies
Vey,ez,e3 : E,t: T
LCA(t,e;,e3) = LCA(t,e5,€3) =>
inTree(content(LCA(t,e3,e3)), LCA(t, €2, es))

Figure 2: A Tree Trait

the relations existing between pairs of functional units in a given product. An
abstraction invariant defines the correct form of a product: the parent of a TS,
if any, must be an FU, and vice versa; the related FUs must be in the tree; and
the LCA of any two FUs must always be a TS. As before, the implies clause
allows us to check whether the specifications incorporate the desired meaning.
We check the following:

e A product model having an FU as the parent of another FU does not
conform to the GARM model.

e The (sub)tree in Figure 1 with root TS; has the correct form, i.e., it satisfies
the abstraction invariant.

While this example specification of a product model is not complete, it illus-
trates the usefulness of the modular approach used in writing and checking Larch
specifications. The properties of Sets, which are independently validated, are
used in developing the Tree abstraction, which is then checked for correct syntax

5 Chadha, Baugh, and Wing

Product : trait
includes Tree(PDU,T, SetofT), Relation(FunctionalUnit, R)
PDU union of fu : FunctionalUnit, ts : TechnicalSolution
P tuple of first : T, second : R
introduces
connector : T, FunctionalUnit, FunctionalUnit — FunctionalUnit
connection : T,R —+ R
alternating : T — Bool
absIny : P — Bool
asserts
Vp: PDU, f1, fa : FunctionalUnit, t,t1,t3 : Ty 71,72 : R
connector(t, f1,f2) ==
content(childContaining(LCA(t, fu(fr), Fu(f2)) fu(f1)))-fu
connection(t, [f1, f2]) == [connector(¢, f1, f2), connector(t, f2, f1
connection(t,ry Urz) == connection(t,r1) U connection(t,r2)
alternating(node(p))
alternating(addChild(t1,t3)) ==
tag(content(t1)) # tag(content(tz))A
alternating(t1) A alternating(tz)
abaIno([t,[f1, £2]])) == alternating(t) A inTree(fu(f1), t)A
inTree(fu(f2), t) A tag(content(LCA(t, fu(h W(f2)))) =ts
absInu([t,r; Urs)) == abslne([t,r1]) A absInv([t,r2])
implies
Y11, fa, fas fa : FunctionalUnit, ¢y, 82, 83,84, 85,86 ¢ TechnicalSolution
not(fu(f1) = fu(f2)) =
not(absInv([add Child(node(fu(f1)), node(fu(£2))) (£, £2]1))
absInv([add Child(add Child(addChild(node(ts(t1)),
addChild(node(fu(f2)), node(ts(ts)))),
addChild(addChild(node(fu(1)), node(ts(ts))),
node(ts(ts)))), addChild(node (fu(f3)), node(ts(ts)))),
({2, F) U [fa, £aDD)

Figure 3: A Product Trait

and semantics. Similarly, the properties of Tree and Relation are validated and
used in the Product trait. This methodology, of writing and checking individual
models for tree and relation separately, and then checking for properties of the
integrated product model, is very helpful in developing complex integrated prod-
ucts: the specifications of individual submodels are included in specifications of
the integrated product model, which is then checked for syntax and semantics.
Also, the high-level equational specifications present a more concise description
of a product model compared to that given in Express (Gielingh 1988).

4 Related Work

Related work in product modeling includes the STEP and PISA (Gielingh 1993)
projects that intend to address the problems of developing an infrastructure for
product data technology. Checks for semantics in the models developed in these
projects are, however, discussed only informally. The approach suggested in this
study supports the expression of product models in a clear and precise forms that
can be validated with mature tools from the software engineering community.

6 Chadha, Baugh, and Wing

The use of formal specification techniques has also been suggested for graphics
applications, where sophisticated mathematical models are built to describe com-
plex objects (Dufourd 1991), and for producing reliable and reusable engineering
software (Baugh 1992). These studies use equational axiomatization to provide
a mathematical framework for expressing and proving properties (integrity con-
straints, etc.) of the described objects, as well as consistency and completeness of
the specifications. A higher degree of formalism is also stressed in standardization
efforts similar to STEP for product modeling—these include the CAD Framework
Initiative for integrating various CAD packages (Mallis 1993), and definition of
an industry standard for enterprise modeling (Kotsiopoulos 1993). Work drawing
on the same divide and conquer strategy as GARM includes the use of module
interconnection languages for combining software units. A related study (Rice
and Seidman 1994) presents a formal model for module interconnection languages
in the Z specification language (Spivey 1988).

5 Conclusions

The methodology suggested is useful for presenting product models in a clear
and precise form, and for validating the properties of integrated models using
deductive proof techniques. The syntax and semantic checks, as mentioned, help
to ensure that the product models have the desired meaning. Further studies
are needed for testing larger product models and for developing proof strategies
to simplify the model validation process. While continuing to use equational
specifications for more complex product models, we are also attempting to use
these techniques in formalizing concepts and theories in other areas in engineering,
e.g., finite element analysis.

Acknowledgments

This work is supported in part by the National Science Foundation under grant
number MSS-9201697 entitled “Reusable Engineering Software Components,”
and by the Department of Civil Engineering at North Carolina State Univer-
sity.

References

Baugh, J. W., Jr. (1992). Is engineering software amenable to formal specifica-
tion? In Martin, U. and Wing, J. M., editors, First International Workshop
on Larch, 1-17. Springer-Verlag.

Dufourd, J.-F. (1991). Formal specification of topological subdivisions using
hypermaps. Computer-Aided Engineering, 23(2).

7 Chadha, Baugh, and Wing

Ehrig, H. and Mahr, B. (1985). Fundamentals of Algebraic Specification I: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin.

Elseaidy, W. M., Baugh, J. W., Jr., and Cleaveland, R. (1994). Verification
of an active control system using temporal process algebra. Submitted to
Engineering with Computers.

Gielingh, W. (1988). General AEC reference model. ISO TC184/SC4/WGl
document 3.2.2.1 [Also TNO report BI-88-150, October 1988].

Gielingh, W. (1993). Towards an infrastructure for product data technology. In
Kooij, C., MacConaill, P., and Bastos, J., editors, Realising CIM’s Industrial
Potential, 70-81. I0S Press.

Guttag, J., Horning, J., Garland, S., Jones, K., Modet, A., and Wing, J. (1993).
Larch: Languages and Tools for Formal Specification. Springer-Verlag.

ISO TC184/SC4/WG6 N29 (1992). Reference material for ISO 10303-31 — Con-

formance testing methodology and framework: general concepts, Version 10.

Kotsiopoulos, I. (1993). Theoretical aspects of CIM-OSA modeling. Realising
CIM’ Industrial Potential, 212-222.

Mallis, D. (1993). If it can’t be specified, it can’t be a spec. Technical Brief: A
Monthly Publication of CAD Framework Initiative, Inc.

Rice, M. and Seidman, S. (1994). A formal model for module interconnection
languages. IEEE Transactions on Software Engineering, 20(1), 88-101.

Spivey, J. (1988). Understanding Z, A Specification Language and its Formal
Semantics. Cambridge University Press.

Stallings, W. (1993). Networking Standards: A Guide to OSI, ISDN, LAN and
MAN standards. Addison-Wesley.

Watson, A. and Boyle, A. (1993). Product models and application protocols.
In Topping, B. and Khan, A., editors, Information Technology for Civil and
Structural Engineers, 121-129. Civil-Comp Press.

Wing, J. (1990). A specifier’s introduction to formal methods. Computer, 23(9),
8-24.

Woodcock, J. and Loomes, M. (1989). Software Engineering Mathematics. SEI
Series in Software Engineering. Addison-Wesley, Reading, MA.

8 Chadha, Baugh, and Wing

