Proceedings from the Second
Workshop on Large-Grained
Parallelism

October 11-14, 1887
Hidden Valley, Pennsyivania

Jeannette Wing, Maurice Herlihy, Mario Barbacci (eds.)
CMU-CS-88-112






Av—

s —

—~——=———_ Carnegie Mellon University

——
———e
p—— 4

= Software Engineering Institute

These are the proceedings of the Second Workshop on Large-Grained Parallelism held October 11-14,
1987, in Hidden Valley, Pennsylvania. The workshop was organized by the Software Engineering Institute
and the Department of Computer Science, Carnegie Melion University, with the cooperation of the |IEEE
Computer Society.

The purpose of the workshop was 10 bring together people whose interests lie in the areas of operating
systems, programming languages, and formal models for parallel and distributed computing. The
emphasis of the workshop was on large-grained parallelism or parallelism between concurrent programs
running on networks of possibly heterogeneous computers rather than parallelism within a single process
or thread of control. Aspects of large-grained parallelism that were common to most participants’ interests
were fault-tolerance, heterogeneity, and real-time applications.

Ninety abstracts were submitted for review by the program committee and the authors of thirtyeight of
these abstracts were sent acceptance letters and invilations to attend the workshop. To provide more
time for discussion and audience participation, only sixteen authors were asked to give twenty-five minute
talks based on their abstracts. The rest of the abstracts were summarized by discussion leaders. The
workshop was divided into five sessions of talks and two parallel sessions of discussion. The five general
areas covered by the talks were: scheduling, distributed languages, real-time languages and models,
operating system support, and applications. There were parallel discussions on scheduling and
distributed languages, and on real-time and operating system support.

There was a reasonable balance among the participants with regard to efficiency concerns on the one
hand, e.g., by the software and hardware systems and application builders, and correctness concerns on
the other, e.g., by the real-time modelers and language designers. We identified a number of key
chatlenges:

« Distributed systems, languages, environments
. Make transactions efficient. Integrate them into the operating system.

- Implement applications that demonstrate how to use transactions at both the
programming language and operating system levels.

- identify applications other than databases to motivate the need for multi-site
transaction-based systems.

« Real-time systems, models, scheduling

. Devise and test analytical models for distributed scheduling of tasks that range in
degrees of computational complexity.

. Show the correspondence between physical time and logical time using a formal
modeling approach.

- Identify a set of programming and specification language primitives that capture and
abstract from real-time events of interest.

In the year that elapsed since the first workshop on large-grained parallelism that took place in
Providence, Rhode Island, a number of the issues related to large-grained parallelism became more
focused, as evidenced by the topics and the quality of the abstracts submitted. Considering the wide
range of interests and background of the participants, the success of this workshop is a good omen for
future meetings.

Jeannette M. Wing Maurice P. Herlihy Mario R. Barbacci
Program Chair General Chair Arrangements Chair
Department of Department of Software Engineering

Computer Science Computer Science Institute
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USING A NETWORK OF COMPUTER WORKSTATIONS AS A
LOOSELY-COUPLED MULTIPROCESSOR

RAKESH AGRAWAL

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(201) 582-2250
rakesh%alle gra att.com@csnet-relay

ABSTRACT

A major trend in computing in recent times has been the creation of large networks of computer
workstations. It has been speculated that the number of computing cycles installed in computer
workstations is an order of magnitude greater than the number installed in mainframes. However, most
of these cycles are idle most of the time. There are many applications amenable to large grain parallel
processing that can profitably use these idle computing cycles by treating these networks as loosely-
coupled multiprocessors. There seem to be two essential requirements for this approach to become
feasible:

. We must provide simple to use system facilites to access computing cycles from an idle
workstation.

. We must develop tools for partitioning the problem into pieces that may be executed in parallel.

In NEST, we have extended System V Unix with a remote execution facility that allows creation of
transparent remote processes [1,3]. Developing applications that run in parallel on multiple machines is
particularly simpie using thus remote execution facility. If there is a program involving multiple
processes written in C that runs on 2 uniprocessor, it can be made to run on multiple machines by
simply changing the exec system call to rexec.

We also have developed a model for optimally partiioning a class of problems in the workstatons
environment [2]. Our model recognizes that workstations are usually connected with a rather slow
communication medium, and explicitly takes into account the communication costs in addition to the
computation costs. The optimal partition can be determined for a given number of processors and, if
required, the optimal number of processors to use can also be derived. We also bave performed
experiments that verify and demonstrate the effectiveness of our model using matrix multiplication as an
example.

REFERENCES

. R. Agrawal and A. K. E2zat, Processor Sharing in NEST: A Network of Computer Workstations,
Proc. IEEE Ist Int'l Conf. Computer Workstations. San Jose, California, Nov. 1985, 198-208.
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R. Agrawal and H. V. Jagadish, Parallel Computation on Loosely-Coupled Workstations,
Technical Memorandum, AT&T Bell Laboratories, Murray Hill, New Jersey, 1986.

3. R. Agrawal and A. K. Ezzat, Locauon Independent Remote Execution in NEST, [EEE Trans.
Software Eng. 13, 8 (Aug. 1987), 905-912.



Parallelism in the Rapport Multimedia Conferencing System

S. R. Ahuja
J. R. Ensor
D. N. Horn

AT&T Bell Laboratories
Holmdel, New Jersey 07733

Rapport is a multimedia conferencing system which executes on a collection of network-
connected workstations. This system provides communication protocols and user interfaces
that effect a natural conferencing environment in which users ccnduct remote, interactive
conferences by talking with each other and producing and editing common displays on their
workstations. Rapport coordinates the transmission and use of shared information in several
media, including voice, graphics, images, and text. Thus Rapport is a distributed system with a
collection of simultaneously active agents accessing shared data and producing new data which
must be broadcast in real time. Underlying mechanisms for global name service, data storage,
and window management are used by Rapport to produce its conferencing aids.

Our current implementation of Rapport executes on a collection of Sun workstations which
are connected by an Ethernet. A specialized processor we have built to handle voice (and
eventually video) transmissions is attached to each Sun through its VME bus. The NFS file
service provides common names and storage for programs and data used in conferences. The X
window system is used to provide a common means of producing displays on the various
workstations. Rapport provides each conferee with protocols for controlling a conference. Our
system also allows user-level application programs to be associated with a conference. These
programs manipulate shared data and produce common displays on the screens of the conferees’
workstations.

Coordinating the input and output of application programs is a principal responsibility of
Rapport. We are presently comparing the behavior of two approaches to the execution of
application programs. In the first approach, a single workstation executes an application
program and broadcasts its output commands to the other conferees’ workstations. The major
advantage of this approach is that it allows the various conferees to see results of programs
without executing them. The corresponding disadvantage is that broadcasting all the window
level commands and arguments for display generation usually generates significant network
traffic. In the second approach, each workstation executes all application programs of a
conference under some constraints of synchronization and input control. This technique tends
to generate less network traffic since only the application program input commands are
transmitted among the conference workstations. The major drawback of this technique is that
each conferee must execute the same software in a consistent environment. Some programs are
written to utilize local state and are not suitable for this technique. For example, a bitblit
program might receive as an argument a pointer into its local machine’s memory. Giving this
command and its argument to each conferee would not preserve the consistency of the
conference.

Though the basic tradeoffs between the two approaches are readily identified, the
importance of these tradeoffs are not obvious. The first Rapport implementation requires that
each workstation execute each application program locally. We are now building a version in
which each application program is executed by only one workstation. The two versions of
Rapport give us the opportunity to examine some parallel execution issues. We can determine
the amount of network traffic generated by each approach, and hence determine whether the
differences in network load are significant in various situations. We can also investigate
whether synchronization among the application programs at program command input is notably
different from synchronization both at command input and program output. The single site



execution of each application program allows different conferees to work on different displays
simultaneously. We are going to investigate the usefulness of this parallelism between the
synchronization points imposed by the conference management.

After performing these initial experiments with Rapport, we plan to create a modified
system in which conferences can take place over wide area networks. This extension poses
major difficulties. In the local area network environment we are using standard tools, NFS and
X, to reduce the apparent heterogeneity of the workstations. Further, conferencing inherently
involves the sharing and multicasting of information, which require a naming mechanism and
efficiency of transmission. NFS gives us a global name service and a convenient storage for
common programs and data. X allows us to conveniently coordinate the displays on the
conferees’ workstations. In the wide area environment these tools are not available, so we will
be required to provide their services for ourselves. The implications for the real time
characteristics of the system are even more dramatic. The delays in producing displays on
remote workstations must be kept under control in spite of the larger transmission delays.
Furthermore, we must limit the skews among the transmission of the different media.






PROCESS SCHEDULING IN LOOSELY-COUPLED
COMPUTER NETWORKS

Rafael Alonso
Luis Cova
Kriton Kyrimis

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

A computational environment in widespread use is that of a loosely-coupled local
area network (typically an Ethernet) of high performance workstations (such as SUN7Y
workstations). It has been observed that such networks have the potential for becoming
inexpensive parallel engines, especially for users whose applications show a coarse paral-
lelism (i.e., large grained parallelism). Furthermore, it seems that such systems are usu-
ally underutilized, i.c., many of the machines on the network are not in use at any one
time. Our current research aims at helping users with applications displaying large
grained parallelism to schedule their tasks and make efficient use of these idle processors.

Our work has proceeded along a number of lines. The first involves the exploration
of load sharing policies. As a user starts up several parallel tasks, it is desirable for those
jobs to be scheduled automatically, and in such a manner that each of them can obtain as
many processing cycles as possible. A load sharing mechanism can ensure that idle
workstations across the network can be used by a parallel application in a user-
transparent manner. We have built such a mechanism [ALONS86] and have used it to
experiment with a variety of load balancing strategies. This work has concerned itself
with load balancing (i.e., making sure that the available work is evenly spread throughout
the network). This may not be appropriate for an environment where users own their
individual machines; in that situation some users might be willing to share cycles, but not
at the expense of slowing down their private computations. We are now studying tech-
niques for scheduling in such networks [ALON87a].

We have recently started on a related topic, that of the placement of parallel tasks in
networks of multiprocessing workstations (i.e., workstations such as the DEC Firefly or
the Xerox Parc Dragon). In such environments, the scheduling decision is a two-level
one, especially if there are different costs to communicate on the same machine than
across the network. For some applications that require a large amount of inter-task com-
munication it might be best to cluster all the computational threads on the same machine,
even if excess processing cycles are available elsewhere, while in other instances the

+ SUN is a trade mark of SUN Microsystems, INC.



computational component is the main processing bottleneck.

Our work in this area consists of a joint project with researchers at Bell Communi-
cations Research. For this project, DUNE [PUCC1987], a multiple processor system, is
being used. Dune supports transparent process migration, both within a multiprocessor
and across the network. We are currently exploring a variety of scheduling algorithms
that take advantage of the process migration capability of the system to allocate several
parallel threads automatically on behalf of a user.

Lastly, we have also studied the issues involved in process migration. For many
applications, it will be true that, during some phases of the computation, there will be a
large number of parallel tasks, which will then dwindle in number to very few. In this
situation, it is desirable to spread initially all the tasks across the available machines and,
when there are only a few left, migrate those tasks away from each other (if they happen
to be on the same processor) or towards the more powerful machines. We have designed
and implemented a process migration mechanism for a network of SUN workstations
[ALON87b]. We are presently building tools that utilize the process migration func-
tionality of our system. For example, we are building a mechanism that will periodically
scan the machines on the network and ensure that processes that have used many CpPU
cycles in a short time do not run in the same processor if at all possible.

References
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Durra: Language Support for
Large-Grained Parallelism

Mario R. Barbacci,
Charles B. Weinstock, and
Jeannette M. Wing

Software Engineering Institute and
Department of Computer Science
Carnegie Mellon University,
Pittsburgh, PA 15213

We are interested in a class of real-time, embedded applications in which a number of
concurrent, large-grained tasks cooperate to process data obtained from physical
sensors, to make decisions based on these data, and to send commands to control
motors and other physical devices. Since the speed of, and the resources required by
each task may vary, these applications can best exploit a computing environment
consisting of multiple special- and general-purpose, loosely connected processors. We
call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly
separate processors and communicate with each other by sending messages. Since
the patterns of communication can vary over time, and, since the speed of the individual
processors can vary over a wide range, additional hardware resources in the form of
switching networks and data buffers are also required in the heterogeneous machine.
The application developer is responsible for prescribing a way to manage all of these
resources. We call this prescription a task-level application description. It describes the
tasks to be executed and the intermediate queues required to store the data as it moves
from producer to consumer processes. A task-level description language is a notation
for writing these application descriptions.

To support this large-grained parallelism, we have designed and implementated Durra
[1], a task-level description language. We are using the term “description language”
rather than “programming language” to emphasize that a task-level application
description is not translated into object code in some kind of executable “machine
language” but rather into commands for a run-time scheduler. We assume therefore
that each of the processors in a heterogeneous machine has languages, compilers,
libraries of (reusable) programs, and other software development tools that cater to the

Arpanet addresses: barbacci@sei.cmu.edu, weinstock@sei.cmu.edu, wing@k.cs.cmu.edu



special properties of a processor's architecture. Durra's support environment is
responsible for coordinating the use and interaction of the separate software
environments of the individual processors.

There are three distinct phases in the software development process for a
heterogeneous machine: (1) the creation of a library of tasks, (2) the creation of an
application description, and finally (3) the execution of the application. During the first
phase, the developer breaks the application into specific tasks (e.g., sensor processing,
feature recognition, map database management, and route planning) and writes code
implementing the tasks. For each implementation of a task, the developer writes a
Durra task description and enters it into the library. Developing programs for some of
the more exotic processors involves selecting algorithms appropriate to a processor's
architecture, and then painstakingly testing and tuning the code to take advantage of
any special features of the processor. For example, an application might use a matrix
multiplication task written in assembly for a systolic array processor while
simultaneously accessing a database of three-dimensional images maintained by a
program written in C running on a workstation. Developing these programs is a slow
and difficult process and Durra facilitates their reuse in muitiple applications.

During the second phase, the user writes a Durra application description.
Syntactically, an application description is identical to a compound or structured task
description and can be stored in the library and used later as a component task in a
larger application description. When the application description is compiled, the
compiler generates a set of resource allocation and scheduling commands. During the
last phase, the scheduler executes a set of commands which are produced by the
compiler. These commands instruct the scheduler to download the task
implementations, (i.e., code corresponding to the component tasks) to the processors
and issue the appropriate commands to execute the code.

In our presentation, we will illustrate the main features of Durra through examples, the
existing implementation of tool support for Durra, followed by preliminary conclusions
and directions for future work. Further details on the language can be found in the
Durra reference manual [1] and an overview paper {2].

[1] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language”,
Technical Report CMU/SEI-86-TR-3, Software Engineering Institute, and Technical
Report CMU-CS-86-176, Department of Computer Science, Carnegie Mellon University,
December 1986.

[2] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language”, in
Proceedings of the 16th International Conference on Parallel Processing, Pheasant Run
Resort, St. Charles, lilinois, August 1987.



“ Agora:

Heterogeneous and Multilanguage
Parallel Programming

Roberto Bisiani and Alessandro Forin

Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Extended Abstract

The solution of many real-life problems encountered in
science and industry requires the integration of parallel
programs written in different languages and running on
heterogeneous machines. We call the development of
such systems heterogeneous parallel programming. For ex-
ample, sensor data acquisition and signal processing
might have to be integrated with planning, or electrical
circuit simulation might have to be integrated with ex-
pert system technology. The goal of the Agora project is
to facilitate heterogeneous parallel programming.
Agora’s support is both in terms of operating system level
mechanisms that can be used to implement
heterogeneous parallelism and in terms of programming
environment functionalities that facilitate the manage-
ment of parallel programs. This paper describes the
former, see [3] for a description of the latter.

We call the operating system level mechanisms Agora
Shared Memory, since they are based on a shared
memory model of parallelism. In order to simplify the
explanation of the Agora Shared Memory we will use
an example abstracted from a speech recognition system
that has been successfully programmed in Agora (1].

The structure of the fragment of speech recognition
system that is used as example is sketched in Figure 1.
This subsystem receives phonetic hypotheses and
generates sentence hypotheses. Two components, Word
Matcher and Sentence Parser, are best implemented in C
and the other two in Lisp. The aggregate computation
power required by the four comgonents to achieve real
time execution is about 2 * 10° instructions for each
second of speech (2], with half of the computing power

This research is sponsored by the Defense Advanced Research Projects
Agency, DoD, through ARPA Order 5167, and monitored by the Space
and Naval Warfare Systems Command under contract NO00039-85-
C-0163. Views and conclusions contained in this document are those of
the authors and should not be interpreted as representing offidal
polidies, either expressed or implied, of the Defense Advanced Research
Projects Agency or of the United States Government.

being used in the Word Matcher. Each of the com-
ponents can be decomposed into parallel computations
in many different ways and both large and small
granularity decompositions are necessary.

Word
o Phones Verifier
Word Words Sentence
Mutchow Parsert

N
I“‘
Word ‘{ Word @—— . >
Descr. Display |

~~~~~~~~~ Control transfer
—> Dacta transfer

Figure 1: Example of a Parallel, Heterogeneous
System: Speech Recognition.

A satisfactory implementation requires a multiproces-
sor that can execute programs with both C and Lisp
components. The Word Matcher requires a tightly
coupled architecture while the Word Display can be run
on a single processor that is loosely coupled with the
rest of the system. The Word Matcher communicates
with the other components using a data-flow style of
communication; the Sentence Parser and Word Verifier
communicate as server and client.

There are a number of tools that could provide support
for the implementation of the example, but none of
them has all the necessary characteristics. The tools used
by the Al community (possibly with the exception of
ABE [7)) are centered on a single computational model



(e.g. production system languages), are based on a
single language (e.g. Loops [5]), or have no support for
parallel processing (e.g. SRL [8]).

One common way to tackle multilanguage applica-
tions with these tools is to implement a Lisp module
that calls all the modules that are programmed in dif-
ferent languages. This solution has a number of draw-
backs that make it unsuitable to our purposes:

ethe structure of each module depends
heavily on the other modules, e.g. the sen-
tence parser would have to be explicitly
programmed to activate the word display;

o the access of complex data structures from
different languages must be handied by the
user code.

« there is no easy way to parallelize the system
to increase performance.

The tools used by the operating system community to
link  heterogeneous  parallel  programs  (e.g.
Matchmaker [9], Sun RPC[11]) have a different
shortcoming: some of them support multilanguage
parallel processing on heterogeneous architectures (e.g.
Mach/Matchmaker), but they are geared only towards
applications that can be efficiently cast into a client-
server relationship between modules.

As in the sequential solution, the structure of each
module depends heavily on the others since each
module must be programmed to be able to explicitly
deal with the requests of the other modules. Debugging
is difficult since there are no tools to conveniently ex-
amine the data flowing between modules or to deal
with more than one process at a time. Moreover, in
current implementations on general purpose systems,
communication is rather expensive since there is a mes-
sage passing overhead even on shared memory ar-
chitectures (currently about 2ms for a general purpose 1
MIPS machine).

Agora’s Approach

Agora takes a different approach: first, concurrent
modules share data structures independently of the
computer architecture they are executed on and of the
language they use; second, concurrent modules ex-
change control information by using a pattern-directed
technique. Our hypothesis is that these two characteris-
tics facilitate heterogeneous parallel programming. The
only way to verify it is by implementing real systems
and evaluating the effort required and the quality of the
result.

Figure 2 shows how the example can be implemented
with Agora.
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Figure 2: Agora’s Implementation of the Example.

Shared Data

The ovals indicate shared data structures. These struc-
tures are allocated in Agora’s shared memory and their
structure is known by Agora’s system code. Agora
provides standard functions to create, destroy, read and
write data structures as procedural extensions of each of
the supported languages. Depending on the language,
these functions can be more or less merged with the
language syntax and semantics. For example, object-
oriented languages like C++ {10] and Portable Common
Loops [6] give the opportunity of blending Agora’s
functions more than their non-object-oriented counter-
parts (see [4] for an example). Users can also define
custom access functions that are translated by Agora into
each language and are available to all the modules that
need them.

The description of data structures and access functions
is processed by Agora and stored in its database where
it is visible by all the tools in the environment, e.g. a
debugger can interpret it to access data in the same way
a user module does. Agora also generates a description
of the data structures and a translation of the access
functions for each language. The programming en-
vironment automatically includes the translated
descriptions and access functions at compilation and
link time.

Control

The boxes in Figure 2 represent concurrent computa-
tions. Each computation (agent) has a queue where
Agora stores requests for activation of the agent. The
agent is free to dequeue an activation whenever it wants
and branch to different parts of its code depending on
the kind of activation dequeued. In the example of
Figure 2, the arrival of a new element in the Words data
structure generates an activation for both the Word Dis-
play and the Sentence Parser agents. Activation pat-
terns can be set by agents at anv time, or by the user via
the user interface. In the lattcr case, none of the agents
involved need to be aware of it. This is a major feature



of Agora’s handling of control information, since it
maintains as much independence as possible between
the modules of a system.

Multiple styles of computation, including control-
driven, can be programmed using the basic Agora
mechanism. For example, a context can be used to pass
parameters back and forth between agents. In the ex-
ample of Figure 1, the Sentence Parser uses this remote
procedure call mechanism to communicate with the
Word Verifier.

Current Status

The Agora Shared Memory has been operational since
September 1986 and is used daily in the development of
a large speech recognition system (about 100,000 lines of
code and developed by 15 researchers). Agora currently
runs on DEC Vax, IBM RT PC, Sun, Encore Multimax
and all possible combinations of these machines. The
languages currently supported are C, C++ and Com-
monLisp.

Conclusions
Here are some of the hypotheses that we are exploring
in Agora:
o the same model can be used for both small and
large grained parallelism;

o shared memory is a viable communication
& ..-action  2ven between modules imple-
mented in different languages;

o a structured shared memory can be implemented
with reasonable efficiency on non-shared
memory architectures  and across
heterogeneous machines;

e pattern directed invocation is a convenient con-
trol mechanism for a shared memory model.

e multiple styles of computation, including
control-driven, can be programmed using
the basic Agora mechanisms.
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Simulation and performance evaluation
of heterogeneous parallel robotic systems

Francois Bitz and Jon A. Webb
16 September 1987

Robotic systems are growing increasingly complex, in response 10 a desire for
« Increasing computer power.

« Increased fiexibility of human interaction.

« Increased variety of sensors and motor control devices.

In response to this, the designer of such a system has had to construct heterogeneous networks of
computers, which may incorporate simple real-time processors for ‘motor and sensor control, powerful
computers for image and signal processing, and general-purpose workstations for user interaction. The
machines may be connected by a variety of communications media, including dedicated buses for closely
coupled computers, and local area networks for computers that are less tightly coupled. Not only can the
performance of each node vary, but also such important features as their operating systems, ie}
throughtput and interfacing can be very diverse.

Achieving good real-time performance in such a system is difficult. The complexity of the system and the
desire to make it usefu!l for research makes it difficult to impose hard real-time constraints on the
performance of individual modules, in order to apply traditional real-time systems methods to optimizing
performance.

Instead, the designer of such a system may first construct it, then try to determine the constraints on

performance. In doing so, he immediately discovers that:

« Bottlenecks in system performance, such as I/0 bottlenecks, may not be discovered until the
system is actually constructed. Moreover, these systems represent some of the most
complex and critical applications of computers.

« Discovering the source of bottlenecks is difficult, since the interaction of different modules
within the system cannot be observed without changing performance. Non invasive tracing
techniques are usually not possible to implement.

« Answering questions such as the effects of improved hardware of different placement of
‘modules on parallel computers is difficult, since the interaction of ditferent modules can lead
to significant second order effects in system performance.

It is therefore essential to use appropriate tools as early as possible in the design phase of such a
system. Such tools shouid allow the designer to evaluate performance as well as give him the flexibility of
changing the placement and characteristics of each component. For example a task might be able 10 run
on any of the nodes by itself, but where it is eventually placed will atfect the performance of the overall
system.
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The most appropriate tool is a simulator that can address these design issues. The object of performance
evaluation and simulation is to determine the parameters which maximize the effectiveness of the system
resources through improved throughput, resources utilization and response time.

We have implemented such a simulator in a high level language, namely C++, an extension of C with
concurrent task facilities. The simulator allows multiple machines to be simulated concurmently. Each
machine can run muttiple tasks concurrently as well have its own operating system and scheduling
scheme, such as FIFO, prioritized, or round-robin. The simulator can simulate such complex real time
constructs as interrupts, semaphores and rendezvous. Tasks and machine communications can be
implemented through queues (a basic object in C++) which simulate the communication media of the real
system (e.g ethernet, mailboxes, or shared memory). Efforts are also under way to facilitate the user
interface to the simulator through the use of a code generator. This becomes more crucial as the number
of nodes increases since generating code is a very repetitive and error prone operation.

The simulator has been used to simulate the real-time control system of the Martin Marietta Autonomous
Land Vehicle system in a component that used a Sun 3/160, the Carnegie Mellon Warp machine, and
three standalone MC68020 processors to detect obstacles in laser scanner data. Simulation results
suggested performance improvements by moving modules from the Sun to the standalone processors,
therefore achieving greater parallelism.

We intend to model a demonstration of CMU’s Autonomous Land Vehicle (Naviab) from which we have
been able to gather real measurements (including task times, Vo throughput, and communication traffic).
The simulator will be run in order to compare how well the model corresponds to the real system. The
simutator will then be used to predict the performance of a Navlab demonstration which includes a
sophisticated road following algorithm and obstacle avoidance. This demonstration will use some of the
modules of the first demonstration with major hardware and software upgrades. The simulator will also
predict how such a vision system will perform on other computer architectures. In this first version of the
simulator module placement will be first done by the user. However one of the goals of the simulator and
performance evaluator is to maximize performance given a set of constraints such as number of
machines and communication medium. Therefore it is desirable to describe the different modules in a
higher level tanguage. We intend to penefit from some of the work done in the Software Engineering
institute’s Durra project in the way tasks and modules are described. Another potential utilization of our
simulator can be found in Camegie Mellon's HET project in which a large number of heterogenous
machines are connected together through fiber optic links and 16 by 16 optical crossbars.

We intend to use the simulator to address questions of

« Module placement, where modules can be placed on different computer nodes. Of great
importance are the effects of transtating a routine running in a general purpose computerto a
specialized machine such as the Warp array.

« Communications network changes, especially including performance improvements resulting
from the use of a reliable, dedicated real-lime network in place oi the unreliable Ethernet.

« Computer changes, especially including the division of parallei computers into multiple

-12-



parallel machines of smaller size. Preliminary results indicate that such a bifurcation could
lead to an improvement in performance of up to two.

« Assessment of how much prior information is needed about each of the real components of
the system in order to get reasonable good match between simulated and real performance.
In general it is possible to reduce the complexity of routines so that it is not necessary to
write the routines as they would appear in the real code. Sometimes it is even acceptable to
reduce a single routine to a delay() or run() statement which will give acceptable estimation

of the performance of the overall system.

« Simulation speed and computer requirements for simulation of a large number of machines.
Of particular interest is the possibility to distribute the simulation over and array of processors

(distibuted simulation).
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Run-Time Monitoring of Tasking Behavior Using a
Specification Language

Douglas L. Bryan
Computer Systems Laboratory
Stanford University

1 The Specification Language

TSL (Task Sequencing Language) is a language for
specifying sequences of tasking events occurring in
the execution of distributed Ada® programs. Such
specifications are intended primarily for testing and
debugging of Ada tasking programs, although they
can also be applied in designing programs. TSL spec-
ifications are included in an Ada program as formal
comments. They express constraints to be satisfied
by the sequences of actual tasking events. '

The general form of a specification is as follows:

when activator-compound-event
then body-compound-event
before terminator-compound-event ;

Informally, a specification has the meaning:

Whenever the events specified by activator-
compound-eventoccur, then the events spec-
ified by body-compound-cvent must occur
before the events specified by terminator-
compound-event.

A compound event is an expression constructed from
basic events. A basic event can be thought of as an
atomic action performed by a task. For example, “A
calls B at E” is a basic event. The operations avail-
able for forming compound events include sequenc-
ing, conjunction, disjunction, and iteration.

The following is an example specification taken {rom
a simulation of an automated gas station:

<< Pump_Protocol >>
when 7P accepts Operator at Activate
then ?P accepts 7C at Start Pumping =>

1Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office).

7P accepts 7C at Finish_Pumping =>
7P-calls Operator at Change
before Operator calls 7P at Activate;

This specification places constraints on the actions of
pump tasks.

2 Implementation Issues

The following are the goals of the TSL run-time mon-
itor implementation:

1. automatically monitor for common kinds of
problems such as deadness errors
2. allow the observation of events at a programming
or specification language level, rather than at an
architecture level
3. detect and report the violation of specifications
4. report problems as soon as possible after their
actual occurrence
. provide useful diagnostic information
. minimize the effects on the underlying computa-
tion being observed

D

3 An Implementation

There are two major tools which comprise the Stan-
ford prototype implementation of the TSL: the com-
piler and the run-time monitor. The compiler trans-
forms TSL source code into Ada code which con-
structs data structures and interfaces the underlying
computation to the TSL run-time monitor. (See fig-
ure 1.) During execution, the monitor is called. Using
these methods, the TSL system is portable and can
be used in conjunction with other Ada toals.
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A token graph representation of TSL specifications is
computed during compilation, and constructed dur-
ing execution. These token graphs form the inter-
nal representation of the constraints placed on the
computation. One token graph is built for each
compound event. The graphs include a labeled arc
for each basic event. At run-time, the monitor
malches the observed behavior of the distributed sys-
tem against these graphs, and determines when speci-
fications are violated. Matching is performed by mov-
ing tokens from node to node, across arcs. Whenever
a token reaches the finish node of the body-compound-
eventor the terminator-compound-event, the monitor
determines if the specification has been violated.

Ada + TSL

[ TSL Compiler |

TSL Run-Time Ada
Monitor
[ Ada Compiler J
Compiled Ada
[ ' Linker ]

|

Self-Checking Tasking Program

Figure 1: TSL Front-End.

The monitor also includes a user interface which al-
Jows one to interactively query the state of a run-time
data base and the token graphs themselves. At any
time during the computation, the user may examine
the state of the graphs. The tokens on the graphs
provide the user with a complete history of the com-
putation, as it relates to the specifications. Similarly,
when a specification has been violated, the state of
the graphs provide the user with the chironology of
events causing the violation. In this way. the TSL
run-time monitor provides the capabilities of both a
monitor and an interactive, specification level debug-

ger.
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4 Current Status

The prototype implementation of the TSL compiler
and run-time monitor has been completed. This im-
plementation has shown the feasibility and utility
of specification level debugging of multi-tasking pro-
grams.

The interactive user interface of the monitor pre-
serves the name space of the underlying computa-
tion. Events are reported, and the user requests in-
formation, using the names given in the Ada and TSL
program. The violation of TSL specifications are re-
ported during the execution of the final event causing
the violation. That is, violations are reported as soon
as they occur. At that time the user can interact with
the monitor to determine the complete sequence of
events leading up to the violation.

In the current implementation of the monitor, the
specification checking code forms a critical region
which is executed by the tasks of the underlying com-
putation; the implementation relies on the fact that
events are reported in a synchronous manner. Dur-
ing any user interaction, the tasks of the underlying
computation are suspended. Thus, the monitor forms
a bottle-neck, often causing tasks in the underlying
computation to block.

5 The Event Reporting Prob-
lem

The fourth and sixth goals above are the main factors
used to determine the architecture of the run-time
monitor. It is desirable to report specification viola-
tions when they occur, and preserve program state
while the user determines the cause of the violation.
The simplest way to preserve state is to suspend the
underlying computation. However, any such suspen-
sion has a drastic effect with respect to the minimal
interference goal.

The problem is, are events to be reported to the mon-
itor in an synchronous or an asynchronous manner?
If asynchronous communication is selected, how does
this effect the correctness of the specification checking
code?

In a distributed system, certain events will always
happen in a predetermined order. For example, some
task must call another task before the second task



can accept the call. We refer to these event pairs as
connected events. (Most events in a distributed com-
putation are not connected. For example, if two tasks
each call a third task, the order in which the calls
occur is usually insignificant.) The means in which
events are reported to the specification checking code
must preserve the connectedness of events. The cur-
rent implementation preserves connectedness simply
by blocking tasks while an event is being processed.

6 Solutions Under Develop-

ment

A number of monitor implementations are currently
being studied or developed which provided alterna-
tive solutions to the report/interference trade-off.
One alternative is to dedicate one or more proces-
sors to the monitor and make event reporting asyn-
chronous. By doing so, we can reduce the processing
overhead associated with the processors executing the
underlying program as well as minimizing the block-
ing of tasks when events are reported.

Another alternative involves the distribution of the

monitor itself. By executing the monitor on each
available processor, the monitor on a given processor
need only be concerned with a subset of tasks com-
prising the total computation. This approach reduces
the processing requirements of a given execution of
the monitor.

A new approach to monitoring TSL specifications is
also being studied. In this approach, each specifi-
cation is transformed into an Ada task. Each task
would then be concerned with the monitoring of a
single specification. In this way, the run-time moni-
tor itself can be reduced to a common user interface
called by these tasks. This approach relies on the
Ada run-time system to perform load balancing and
scheduling of monitor tasks.

Preserving connectedness is also being studies at the
language, rather then implementation, level. It may
be desirable to extend TSL and allow the user to spec-
ify connected event pairs. Then, under asynchronous
event reporting, the monitor can shuffle the event
stream Lo preserve connectedness. Such an approach
would both extend the capabilities of the language
and minimize the assumptions made by the monitor

implementation.
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Eager Evaluation in a
Program Development Environment

Rick Bubenik
Willy Zwaenepoel

Department of Computer Science
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Houston, Texas

We define eager evaluation as the execution of computations prior to the time they are required,
with their results being stored in a temporary location. When at some later point those compu-
tations become necessary, we check if the eagerly computed results are still valid and if so, return
them immediately without additional computation. Eager evaluation has the potential of providing
very fast response time at relatively low cost in an environment where:

1. There are frequently idle computational resources so that speculative computations can be
carried out without interference with other tasks.

2. There is a high likelihood of being able to predict the computations that will be necessary.

We believe these requirements are often met in a workstation environment where the program
development procedures are described by some declarative description such as a makefile. Typically,
in a workstation environment, most of the time the majority of machines are relatively idle. Con-
sider what happens when a user is modifying several program files that compose some application.
Typically, the user will edit the files, save the new versions, then rebuild the executable by issuing
the make command. The rebuilding process usually involves generating object modules from each
of the program source files, then linking these into a final executable file. When eager evaluation
is applied to this environment, the evaluator anticipates the need to recompile each of the source
files as new versions are saved and also anticipates the need to regenerate the final executable from
the new objects. Then, when the user types make, the results can be returned as soon as possible.

More generally, we assume that the overall computation consists of a number of subcompu-
tations whose relative order of execution is specified by an ezecution dependency graph. The
individual subcomputations are carried out by one or more processes with no shared memory be-
tween subcomputations. These processes can perform arbitrary side effects by sending messages to
server processes. The order in which side effects occur determines a side effect dependency graph.
There is no communication between subcomputations other than indirectly, through side effects.

In order for the eager evaluation to be correct, we require that

1. No side effects become visible before the computation is mandated (requested by the user).

This research was supported in part by the National Science Foundation under grant DCR-8511436 and by an 1BM
Faculty Development Award.
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2. After the computation is mandated, the side effects become visible as if the computation
was executed normally at the time that the computation was mandated. In other words,
the side effects should become visible in a serial order that is consistent with the side eflect
dependency graph, with the input set of the computation as of the time the computation was
mandated.

We propose encapsulations as a mechanism for supporting eager evaluation. All processes
carrying out part of a particular eager evaluation belong to the same encapsulation. Side effects
remain invisible until the encapsulation is mandated. Subencapsulations can be used for grouping
related activities. For example, the command(s) used to bring each targetin a makefile up to date
can be placed in a separate subencapsulation. When a subencapsulation is mandated, the effects
concealed within it become visible to the external world. This facility is useful when only a portion
of the eager computation is requested by the user.

An encapsulation coordinator monitors whether the various make dependencies remain satisfied,
starts computations in encapsulated processes when dependencies are no longer satisfied, and logs
the server-encapsulated process interactionsin the order they occur.! If during eager evaluation the
coordinator notices that one of its computations was performed in error, it undoes the corresponding
log records, and (potentially) restarts the computation.

When an eager computation is mandated, the coordinator executes in two phases: a consistency
check phase and a writing phase. In the consistency check phase, all read interactions are checked
to determine whether the information on which eager evaluation was based is still valid. If a check
fails (because the item read has since been modified), some parts of the computation need to be
redone. If all checks succeed, the write phase begins. During the write phase, the side effects are
made visible in the order in which they were logged. Since these effects were logged in the order
they occurred, and since incorrect computations have been undone, the order in which side effects
appear is correct in the sense we described above.

Unlike client processes, for which encapsulations are totally transparent and require no mod-
ifications, server processes have to be modified to participate in encapsulations. Essentially, they
must log relevant interactions with the coordinator, and record output in a temporary location. As
an example, consider how the file server can be modified. The file server handles encapsulations
by checking all incoming requests. A request from a nonencapsulated process is handled normally,
requiring no additional overhead, Requests from encapsulated processes are either handled nor-
mally or forwarded to an associated encapsulation manager, depending upon the nature of the
request. The encapsulation manager then takes the responsibility of concealing side effects. When
new files and directories are created. the desired name is mapped into a temporary name. All
subsequent accesses to these files are redirected to the temporary versions. When a file is opened.
the encapsulation manager sends a request to the file server to open the appropriate version. The
file server returns a fileid, which the encapsulation manager then passes back to the requesting
computation. All future read and write requests specifying this fileid do not have to be forwarded
to the encapsulation manager, but rather can be handled directly by the file server. Consequently,
encapsulations do not impose (significant) overhead on what we conjecture to be the vast majority
of file server operations—reads and writes. Other operations requiring special attention include
deletions, renames, and certain query operations.

We believe that encapsulations are a more appropriate abstraction to support eager evaluation
than atomic transactions. Although atomic transactions provide another mechanism for hiding
side effects and ordering them appropriately, we believe that if an atomic transaction were used

Mn fact, it only needs to record a limited subset of the interactions.



to encapsulate an eager evaluation, with the transaction committing (and hence making its side
effects visible) when the computation is mandated, several problems would ensue:

1. If only a portion of a large eager computation is requested by the user, it would be impossible
to commit only a subset of a transaction in order to return just the requested results. Alter-
natively, if separate transactions are used for each portion, results computed in one portion
would not be accessible in another (i.e. an output file, such as an object file, would not be
accessible as an input file to some later stage of the computation).

2. If some of the subcomputations require terminal input, subsequent to terminal output, it
would be necessary to make some of the side effects visible before commit time, in contrast
with the requirement that side effects be made visible atomically. We anticipate that the eager
evaluator will block the computation in the case of terminal input (until mandate time), then
make all previously computed side effects visible and continue executing normally.

3. More generally, there seems to be a fundamental contradiction, between the atomic commit
of transactions. and our desire to make side effects visible in an order that is consistent with
the side effect dependency graph. In particular, we feel that it should be possible for the user
to abort the computation after observing some partial output. This would not be possible if
the transaction had committed by virtue of the computation being mandated.

4. We beljeve that the cost of atomic commitment, especially in the case of a distributed two-
phase commit, far exceeds what is needed for encapsulations. Much of the savings comes
from reduced 1/O and protocol overhead since individual side effects can be made visible in

isolation.

None of this precludes taking advantage of transactions to support non-idempotent operations or
to improve reliability.

Previous work on eager evaluation has largely concentrated on applicative environments. Our
work is different in that we explicitly deal with side effects, and in that the grain of computation
considered for eager evaluation is much larger. We believe that with a large grain of computation,
the potential for eager evaluation increases significantly, since the overhead involved in dealing with
the evaluations and masking side effects becomes relatively less important. Eager evaluation has
also been incorporated in some other programming environments. However, the type of environment
considered has typically been of the tightly coupled variety, where the environment has tight controls
over the commands executed and the files accessed. These environments appear to have an easier job
supporting eager evaluation due to the tighter controls. However, they do not appear to generalize
easily to support eager evaluation of arbitrary computations.

In summary, we have described our concept of eager evaluation and its application in a pro-
gramming environment. We have proposed encapsulations as a mechanism for supporting eager
evaluation and outlined why we believe it would be superior to atomic transactions for this purpose.
We are currently implementing eager evaluation for make running under the V-System to get some
experimental evidence about the cost and the potential of eager evaluation in this environment.
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An Object-Oriented Approach to
Remote Procedure Call Stub Generation
for Heterogeneous Environments

Eric C. Cooper
Michael B. Jones

Computer Science Department
Carnegie Mellon University

Extended Abstract

Construction of stub generators is currently a time-consuming, error-prone task: the state of the art is analogous
to that of compiler construction before the advent of parser gencrators and retargetable code generators. We are
engaged in research to advance the technology of stub generation, by approaching the problem with two new ideas.
Although both have been explored in other areas of computer science and software engineering, we belicve their
application to the design and construction of stub generators is novel.

The first concept is parameterization. A particular stub generator can be classified according to various attributes,

including
o the data definition language (DDL) it accepts,
« the external representation it uses,

the internal form it uses,

« the target language it produces, and
« the marshaling conventions it expects.

We believe that these attributes should be viewed as parameters 10 the stub generation process, just as BNF grammars.
intermediate languages, and machine descriptions have come 1o be viewed as parameters to the compilation process.
Following the analogy further, we are led to the idea of a stub generator generator, like a compiler compiler: a
higher-order tool that one uses to produce stub generators with particular choices for the above paramelters.

The second concept is object-oriented design. The parameters we propose are complex structures; it is not
immediately clear how to represent them. Table-driven schemes have been used in previous work for some of these
parameters, bul the approach appears limited and difficult to extend to the other atuributes.

We plan to use the ideas of type inheritance and polymorphism present in object-oriented languages such as
Simula, Smallalk, and C++. The inheritance suuctures that can be expressed in object-oricnted languages provide
another way of representing the knowledge needed by a program, in addition to conventional modularization

techniques such as abstract data types, modules, or packages. We propose 10 usc lype inheritance in stub gencrator
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construction to encode choices of FI-)DL, external representation, target language, internal form, and marshaling
conventions.

The advantage of this approach is that it allows the design decisions for a particular parameter choice 0 be
implemented at a high level in the type inheritance hierarchy, while factoring out the details implied by the choices of
the other parameters. For example, one can implement code that defines some aspect of the marshaling conventions
(the argument passing scheme, say) in terms of generic target language operations. The particular marshaling
routines can then be generated by inheriting both these marshaling conventions and a particular choice of target
language. If a different target language is mixed in, the code for the marshaling conventions need not change, and
vice versa. This separation appears difficult to achieve in stub generators programmed in conventional languages.
We believe it will yield an order of magnitude simplification in the construction of stub generators for heterogeneous

environments, in which multiple DDLs, target languages, target machines, and external representations are the norm.

Abstract Object Abstract Type Abstract Record Type
C Object C Type C struct Type
Ada Object Ada Type Ada record Type
Lisp Object Lisp Type Lisp defstruct Type

Figure 1: Class refinements for data type representation

Abstract Object Code Template Counted Loop Template
C Object C Code Template C for Loop
Ada Object Ada Code Template Ada for Loop
Lisp Object Lisp Code Template Lisp do Loop

Figure 2: Class refinements for code representation



Research Plan

The first phase of our research project is to construct a prototype of a type transformation system, using an
object-oriented approach. This will be a general-purpose tool for transforming typed data from one representation
into another, with applications to remote procedure call marshaling and foreign function call interfaces. Type
representations will be described in a language-independent fashion; code for type transformations will then be
generated using language-specific code generators.

The second phase is to build a prototype multi-language code representation and generation system for use
with the above type transformation system. This will provide a method of representing code templaies in 2
language-independent fashion. Constructs such as assignments, type transformations, blocks, loops, conditionals,
and procedure calls will be representable. Code generation will again be done by language-specific code generators.
This will initially be used to represent and generate code for RPC interfaces of various kinds.

Our intent is to use an object-oriented approach for building both protot)-rpes. Refinements of the class hierarchy
will be used to represent refinements of specificadons. For instance, a language-specific representation for a data
type is a refinement of the language-independent declaration for that type; an Ada for loop is a refinement of an
abstract counted loop. Figures 1 and 2 illustrate possible class refinements for type and code representation. We
intend 1o implement the prototypes in C++, for several reasons: C++ is portable, commonly available, and produces
efficient code. More importandly, it allows a fine grain of control over the der~'ared o'.izcts and operators, including
overloading of built-in operators.

A number of open problems must be solved during the course of this research in order 1o build reusable stub
generators. We must find a way 10 describe type representations and remote procedure call formats independendy
of specific DDLs such as Matchmaker, Sun RPC, or Courier. We must also investigate how to specify type
wransformations in a way that is flexible enough for an environment of heterogeneous application programs,

programming languages, and machine types.

Background

The authors have designed and implemented a number of stub generators and remote procedure call systems,
including Courier, Matchmaker, and Flume (the DEC SRC stub generator). In the area of programming language

design and implementation, we have worked on paralielism (C threads, Ada tasks) and exception handling in C++.
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Coupling a Network Computing Resource
to a VLSI Placement Problem

Carl Diegert
Sandia National Laboratories, Albuquerque NM 87185

We describe a problem and its successful assault by a single user exploiting many
computers, focusing on the strengths and weaknesses of (to borrow Apollo’s term) the
network computing environment in which we worked. Our solution was the best entered
in a recent IJEEE/ACM place-off competition, beating contestants using timeshared
computers (many users sharing single computer) and contestants using workstations
(computer allocated to single user). The aggregate compute power of the network
allowed us more experimentation and search that workstation contestants. Mainframe
contestants, however, had more compute power available to them than the compute
power we applied from our network. The strength of our network computing is identified
as its convenience in carrying out our ideas, experiments, and analyses. Efficiency in
coupling the network compute cycles to the problem is ranked as relatively unimportant.

The competition problem was to give physical locations on a two-dimensional in-
tegrated circuit chip for about 3000 predesigned pieces (standard cells) of a givven
microprocessor design. The contest administrator then (ran the computer code that)
interconnected these pieces, completing the physical design of the microprocessor chip.
Our winning placement solution produced a microprocessor design with both the small-
est chip area and the least amount of interconnect wire.

With a bit more abstraction than we actually used, the problem is to search through
3000! ways to assign the predesigned cells to grid locations on the chip, looking for
an assignment (numbering) that will produce a small chip. This enormous discrete
optimization problem is nasty in that attempts at greedy search quickly get stuck in
local minima. The problem is challenging because the real objective of chip size is
far too difficult to compute frequently during the search: statistical abstractions must
be used for guidance. Stochastic search techniques addressed both the nasty and the
challenging aspects of the problem. .

The power of the network computing environment was in its convenience in setting

up, executing, and analyzing experiments over variations in search technique, objective
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function, etc. Designed experiments were necessary because the search techniques were
stochastic: a desirable change in a parameter, say, is not apparent from comparing a

single new run with an old run. Instead, trying a new idea comprised a sequence:
s design an experiment;
e set up a computer run for each experimental sample point;
e execute the independent runs, usually in parallel;
e analyze results.

The Apollo network single-level store and the network’s remote process facilities
were adequate for our pioneering effort. Madhat, the code that searched for placement
solutions, includes an flexible input parser. Madhat can digest problem setup com-
mands that other tools generate from a sample space of parameters. Execution of the
parallel runs was tedious and wasteful, but workable. With each Madhat run leaving
results in the same subdirectory, we quickly and easily wrote codes for analysis of each
experiment.

We accepted great inefficiency in coupling network computer cycles to our problems,
as the network resource was entirely justified by the capabilities and productivity it
offered its daytime interactive users. We didn’t have, and didn’t stop to develop a
clever location broker. Instead, we resorted to using only network nodes that could
complete a run overnight (or, on Fridays, over a weekend), and scheduled only a single
run for a particular node on a particular evening (or weekend). The quantity and mix
of nodes to be available on a given evening did influence the design of the experiment
conducted that evening. We did this mostly by asking around, and with face-to-face
negotiations and verbal agreements with other (human) users of the network resource.
Adaptation of the allocation occurred by our collective human experience, and at most
resulted in changes from one evening to the next.

Synchronization of parallel Madhat runs occurred at most.a few times each day.

Synchronization in this broad sense ranged from

a. judge which of several runs stopped with a numbering likely to lead to a good

chip, and use this numbering as the starting numbering for more parallel runs,
to

b. note a high-level problem in subsequent completion of physical designs from a

batch of solutions (a problem with feed-through cell management), introduce a
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new nonlinear term in Madhat’s objective function, set up an experiment with

variations on the new term, and execute the experimental runs.

Synchronizing once a day was effective, but more frequent synchronization might
produce a better solution, or might get to an equally good solution quicker. If the
computing network offered better support, we might try a type a synchronization a
couple of times an hour. The human thought needed at most synchronization points
would still be limited by the single user’s ability to understand what the computers
had done, to develop a new idea, and to express execution of a new experiment to the
computers. For the most part, these human interactions set the pace of our progress.
We would have welcomed an intelligent location broker, and other network computing
niceties, but we doubt that they would have gotten us to our solution much sooner, or
that they would have gotten us to a better solution.

To couple yet more power to the same problem perhaps we need to move to a
fourth environment, an environment with one problem, many computers, and many
users. The computing network would still allocate its computing resource to execute
experiments, now given by its several users. The network would now facilitate the users
building on each other’s methods and results. Steps forward, then, accidental or clever,
might be more frequent. Borrowing from a Minsky title, this new height in integration
could be called societal computing.

(Abstract unclassified, presentation unclassified.)
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Transaction Processing in Heterogeneous Distributed Databases.

Ahmed K. Elmagamid :
Computer Engineering Program )
121 Electrical Engineering East Building
The Pennsylvania State University
University Park, PA 16802
ahmed@ psuccl.bitnet
(814) 863-1047

A heterogeneous distributed database is a system of interconnected DBMSs that
use different strategies for data and transaction management. Though issues such as
universal query languages, and global view and schema integration havc been
investigated, transaction management issues introduced by the integration of
scparate database management systems into one global database have not bcen widely
addressed in the literature.

Probably most disturbing to me is the general misunderstanding in the database
community as to what a heterogeneous database really is. Many people seem 10 refer
1o distributed databases as heterogeneous databases.

Of interest to me are questions relating to transaction support in the
heterogeneous database environment. Two basic approaches are possible in order to

integrate differing DBMS's. The first approach integrates transaction management
policies into one global transaction manager that handles subtransactions accessing
the heterogeneous database. The second is based on hierarchical composition of

transaction management policies. In the latter approach, software is added on top of
existing systems whenever needed (Gligor and Luckenbaugh, Interconnecting
Heterogeneous Database Management Systems, IEEE__Computer January 1984).

The heterogeneous database research group at Penn State consists of three
students along with myself. We are looking at concurrency control (Y. Leu),
recovery (D. Mannai), and deadlock issues (I. Mahgoub). In this workshop 1 would
like to discuss the following set of related questions:

. Which of the problems are due 1o DBMS integration and not due 10
heterogeneity?

. How is the consistency of heterogencous databases defined?
. How does serializability apply to heterogeneous databases?

. How strict must the definition of database autonomy be? How does it complicate
transaction management issues?

. How important are atomic updates in this environment? How often arc they
expected?

. Are we likely to have generalized solutions to the problem of concurrency
control and recovery?

- Specific algorithms we have developed for concurrency control and recovery
in HDDBs.

In the discussion we would like to consider all possible systems depicted in the
figurc bclow. Especially in the shaded areas.
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Hierarchical Process Composition

Stuart A. Friedberg
Computer Science Department
University of Rochester
stuart@cs.rochester.edu

1. The HPC System

The primary goal of the Hierarchical Process Composition (HPC) project is to provide tools
for building, monitoring and maintaining long-lived, complex, distributed applications
[LeF85a, LeF85b). HPC is an experimental system for structuring applications, rather than a
manager of applications or an application itself. It has roughly the same relationship to its
clients and host operating systems that the X window system has to its. Where X provides an
sbstraction of nested windows, HPC provides an abstraction of nested processes.

The ultimate target environment is long-haul distributed systems: Systems with substantial,
variable communication delay and connectivity, and with independent site failures of significant
frequency. This environment is further characterized by physical and administrative autonomy,
and hetereogeneous hardware and software. The Xerox or DARPA internets and mobile packet
radio networks are good examples.

HPC uses only two basic host facilities: conventional (heavyweight) processes and network
interprocess communication. Large grain, loosely coupled processes are natural building blocks
for distributed computations. The interactions between processes are subject to the same
restrictions as interactions between hosts. They run autonomously, concurrently and
asynchronously, communicate only through explicit shared interfaces, and know only their own
state.

HPC builds applications from these large-grain processes and network protocols. First,
cooperating processes are joined by creating communication channels between them. This
composition leads to something like a dataflow graph. Each process can have several distinct
ports, each presenting different functions or network interfaces. Second, groups of related
processes are encapsulated as abstract HPC "objects” and treated exactly like single processes.
This leads to a hierarchy or tree of active entities, where the leaves are real processes and the
internal nodes represent larger and more complex activities with some degree of internal
parallelism.

Our use of abstraction and composition is not novel. There are many design and analysis
tools which describe a system at several levels of abstraction, where a black box at one level is a
group of components with specific interrelationships at the next lower level (SARA, for one).
This basic structuring also appears in several proposals for programming languages (DPL-82,
PRONET), and in at least one implemented distributed operating system (CONIC). What is new
or interesting about HPC?

e  HPC process structure (the abstraction hierarchy and composition graphs) is completely
dynamic. The HPC system is not a language for describing static structures, but a set of
tools for building, maintaining, modifying, and tearing apart applications during execution.
[Fri86]

e Everything in HPC is designed for an asynchronous, failure-prone environment. Rather
than attempting to provide transparent synchronization and reliability at the HPC level,
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explicit reports of failures and other unexpected events are provided to applications. Each
application’s manager can decide on the appropriate recovery or control policy and use
HPC primitives to implement it.

e  HPC runs on heterogeneous host systems. Each host’s resources may be different, and no
host is obligated to provide any specific network protocol or executable process image.
Type information is used to prevent improper combination of host resources.

e Access control is based on application structure. The same hierarchy which defines
abstraction is used to define protection domains. The agents and contents of a domain are
immediately obvious, unlike access control list or capability list systems, and positive
control of every domain is intrinsic to the HPC system.

2. Observations and Problem Areas

We are satisfied the HPC design meets its major goals. However, in the course of
implementing and experimenting with the system, we found some problems related to HPC
implementation on the one hand and application management and programming on the other.

To implement dynamic process structure while preserving abstraction, the HPC server
needs to set up and tear down network connections without the cooperation of the processes
being connected. We call this general capability third-party connect. Emulation of third-party
connect for network protocol suites that do not support it is expensive, yet it is critical to
reconfigurable, modular software. Designers of future protocols must separate the session and
transport layers more carefully. [Fri87]

Since large-grain processes are loosely coupled, they should not have to synchronize often.
However, they must resynchronize occasionally to apply end-to-end control, (re)authentication,
flush transactions, indicate urgent data, and so forth. Dedicating communication channels to
infrequent synchronization is wasteful, but the altemative is synchronizing out-of-band in the
channels used for data, and many networking protocols do not support OOB communication. I
would like to hear approaches for dealing with the general problem of OOB or synchronization
marks.

Argus, Eden, and others, started with the viewpoint that interactions between distributed
entities should be synchronous. We began with, and still hold, the opposite view: distributed
interactions are inminsically asynchronous. However, writing a program with multiple
asynchronous interations is notoriously difficult, and we now provide a lightweight task library
to support the illusion of synchronous interactions. As a result, many processes using HPC are
structurally similar to Argus guardians, although the HPC system knows nothing of this internal
structure, and atomic transactions are not provided (or desired). Our conclusion is that the grain
of parallelism appropriate for programming (given existing methods and paradigms) is smaller

than the grain appropriate for efficient use of distributed resources.

Even using lightweight tasks to simplify the programming, writing robust managers for
survivable applications remains extremely difficult. The problem is coping with arbitrary
asynchronous events (like process failure) when the primitive actions available in response are
themselves asynchronous. At the moment, there is too little experience with actual managers t0
consider special languages or tools. Exploration of sample applications and their run-time
management may be the most important use of the prototype HPC implementation.

—29-



3. Status

The HPC project began in mid-1984 as a "1 and a fraction” person project. Much of the
last three years has been taken up with design issues, especially the interactions between
distribution and control, to ensure a small set of features would support a wide variety of
application management policies.

Currently we have a "wizard mode" prototype implementation running on Sun and Vax
Unix hosts. All communication between parts of the system uses standard IP protocols, and
applications can actually be spread across the DARPA internet, but the HPC server itself is not
distributed. Over half the code, and by far the least attractive part, 1s dedicated to networking
support and the client and host interfaces. (It has been a matter of discussion whether building
on top of Unix or on top of bare hardware would have been more productive.)

There are several directions HPC-based research could take. Having this toolkit begs the
question of how 1t can best be used, and experimenton with various control policies for
distributed applications is the most interesting research program. Second, it was always our
intention to distribute the HPC service itself, but time and effort prohibited 2 full development of
the distributed protocols required. This remains a challenging area, but one we don’t feel
obligated to tackle in the near future. Third, there were a number of design issues which we
solved expediently but not properly. At some point a redesign that satisfies both our current
frustrations and coming experiences with client control policies would be appropriate. And
finally, there is always the desire to do "the last 10 percent” and distribute a high quality system
for others to use.

(Fri86] S. A. Friedberg, ‘‘Control of Dynamic Process Stucture - Policies and
Mechanism’’, HPC Project Report 6, University of Rochester, October 1986.

(Fri87] S. A. Friedberg, “‘IPC for Modular Software Requires a Third Party Connect’’,
Tech. Rep. 220, University of Rochester, June 1987.

[LeF85a] T. J. LeBlanc and S. A. Friedberg, “HPC: A Model of Structure and Change in
Distributed Systems™’, [EEE Transactions on Computers C-34, 12 (December
1985), 1114-1129.

(LeF85b] T. J. LeBlanc and S. A. Friedberg, ‘‘Hierarchical Process Composition in
Distributed Operating Systems’’, Proceedings Sth International Conference on
Distributed Computing Systems, Denver, Colorado, 13-17 May 1985, 26-34.
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Extended Abstract

The purpose of our research efforts as described in this paper is to inves-
tigate software methodologies for multiprocessor systems programming by
using a data-driven approach to solve the problem of runtime scheduling.
Indeed, the data-flow model of computation offers the potential for virtually
unlimited parallelism detection at little or no programmer’s expense. It has
been applied to a distributed architecture based on a commercially available
microprocessor (the Inmos Transputer). Some initial performance results
of our system have been described in [Gaudiot et al 86 and [Gaudiot and
Lee 87]. These results will be used for a comparison of the communication

t This research was supported in part by the U.S. Department of Energy under grant
DE-FG03-87ER25043. The views presented herein are solely the author’s and are not
necessarily endorsed by the U.S. Department of Energy.
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cost, degree of parallelism, and execution time of a matrix multiplication
example, with and without loop unrolling among the different stages of
partitioning.

A complete programming environment which translates a complex data-
flow program graph into occam as well as a set of instructions for our sim-
ulator has been developed. A graph generator creates a program structure
graph (PSG) and a data-flow graph (DFG). In accordance with the PSG
and DFG, the code generator generates both the occam program and a set
of simulation instructions. We will describe in detail the mapping from the
SISAL ( Streams and Iteration in a Single Assignment Language ) high-level
constructs into the low-level mechanisms of the Transputer. Synchroniza-
tion between different processes, array handling problems, relay processes
and some important program structures, such as vector operations, WHILE
REPEAT / REPEAT UNTIL loops, and SELECT operations will all be
discussed.

In order to increase the utilization of the Processing Elements in the
system, maximize the parallelism and minimize the communication costs,
several optimization techniques will be considered. The partitioning issues
(granularity of the graph) will be presented and several solutions based
upon both data-flow analysis (communication costs) and program syntax
(program structure) are proposed and have been implemented in our pro-
gramming environment. Based on the program structure and on heuristics,
a high level partitioning algorithm which lumps together several actors to
form the macro-actor and generates a partitioned data-flow graph can be
implemented. The partitioning algorithm proceeds recursively: it traverses
the PSG until the tree is exhausted. A large grained parallelism is obtained
by the execution of all macro-actors concurrently upon data-flow principles
of execution.

To achieve better performance, the following approaches have been stud-
ied in our research:

e Communication cost thresholding: lumping together of those parti-
tions between which communication costs greater than a specified
value to reduce the number of partitions and the total communica-

tion cost of the systemn.

o Unrolling of loops: for array operations, unrolling the loop body to
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obtain a corresponding speedup.

e Static and dynamic allocation: making further partitioning and con-
sidering the type of interconnection networks, such as mesh and Hy-
percube connections, to achieve an efficient task assignment at com-
pile time and runtime respectively.

For testing and analyzing of our graph allocation and optimization
schemes, a set of benchmark programs, matrix operations, Livermore Loops,
etc., have also been performed on a deterministic simulator to evaluate the
performance of the translator on our proposed architecture (TX16).

References
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A central problem in distributed systems is the scheduling of processes onto proces-
sors. This problem is motivated by issues such as load balancing, parallel algorithm
requirements, algorithm-architecture matching, and utilization of resources. Without a
satisfactory solution to the distributed scheduling problem; the creation of efficient large
grained parallel algorithms will not be possible.

Most work in distributed scheduling (in Local Area Network (LAN) environments)
treats processes in the system as if they were independent entities. In many systems this is
a reasonable assumption. However, if a system (either LAN based or message-passing
multiprocessor based) wants to provide an environment for the development of parallel
algorithms, then this is not a reasonable assumption. In a parallel application, processes
will have certain relationships with other processes in the algorithm. These relationships
can be described in terms of concurrency relations and communication relations. The con-
currency relation indicates how much of the processes’ work can be done concurrently.
For processes that are not directly related it may be possible that all their processing can
be done concurrently. For processes that share information the frequency of communica-
tion will be an important feature in determining the amount of work that can be done con-
currently. For example, we could have two processes in the algorithm that do not com-
municate with each other and whose only purpose is to compute some result and send it to
a third process. In this case the work of both processes can be done concurrentdy. At the
other extreme we could have two processes that work in lock step with process A comput-
ing a result and sending it to process B and waiting for process B to do its work and
returning a result back process A. In this case there is no concurrency between the
processes. The communication relationship indicates the amount of information that 1s
exchanged between processes.

In scheduling the processes of a parallel algorithm, the system will be able to make
more intelligent decisions if 1t has information about the concurrency and communication
relations and other features (e.g.. expected lifetime or process creation patterns) of the
processes in the algorithm. 1f the number of processes and the relationships between the
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processes of the algorithm are known before execution, then this information can be pro-
vided to the system before the application runs. On the other hand, the number of
processes and their relationships may be data dependent and thus not known until run
time. In this case the system reeds ways to gather information about the behavior of the
program. This may be done by having the application program communicate with the
operating system about important changes in behavior or by having the operating system
learn about the behavior of the program.

When an application process creates a new process at run-time it may be able to
inform the operating system about certain characteristics of the new process. These charac-
teristics could include information about the relationship between the new process and
existing processes and information about the new process’ potential to create other
processes. In order to do this appropriate protocols for the operating system/application
processes communication will have to be developed. Some primary issues in this area
include the discovering of what information is very helpful to the operating system and
creation of algorithms that can use this information with a tolerable amount of overhead.

Having the system learn about the behavior of parallel programs is attractive because
the programs are rarely developed to be run only once. Given this fact we can consider
the possibility that the system can gather information from previous runs of a program.
This information can be used in the management of future runs of the program. It has
been recognized that some parallel programs go through a certain number of phases. These
various phases may be characterized by different patterns of process creation and destruc-
tion and by changes in the concurrency and communication relationships. Ideally, the
management programs would be able to identify that a program was about to exhibit a
certain type of behavior and take actions (e.g., migration of processes) that would allow
the program to run more efficiently. This is obviously an ambitious goal and a number of
questions must be answered. First, what information should be kept from the previous
runs? Second, how can the information be analyzed? Third, is the cost of collecting infor-
mation during the running of the application and the cost of running the management pro-
grams justified by the increased performance of the applications?

We are currently investigating the appropriate operating system/application program
interface and the problem of having the system learn about program behavior in LAN and
message-based multiprocessor environments. We also examining ways in which bidding
[Farb73, St1Si84), drafiing [NiXG83], or the gradient model [LiKe87] algorithms can be
modified 10 make use of greater information about program structure and process relation-

ships.
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An additional issue to consider is a justification for dynamic creation of processes by
the parallel algorithm. It has been an implicit assumption of this work that the flexibility
provided by data dependent run-time process creation is useful. For example, a process
that finds it has a large amount of computation to perform may want to create another pro-
cess to do part of the work on another processor in parallel. Ideally this is an attractive
concept. An important open question is at what frequency can dynamic process creation be
handled efficiently. We hope that ‘our research in the above problems will give us some
insight into this question.

REFERENCES

[Farb73] Farber, D. J., et. al., ““The Distributed Computing System,”” Proc. Compcon
Spring 73, pp. 31-34, 1973.

[LiKe87]) Lin, F.C.H. and Keller, R.M., “‘The Gradient Model Load Balancing Method,”
JEEE Trans. on Software Eng., pp. 32-38, Jan. 1987.

[NiXG85]Ni, L. M., Xu, C. and Gendreau, T. B,, “A Distributed Drafting Algorithm for
Load Balancing,” IEEE Trans. on Software Eng., pp. 1153-1161, Oct. 1985.

[S1Si84] Stankovic, J. A. and Sidhu, I. S., “An Adaptive Bidding Algorithm  for
Processes, Clusters, and Distributed Groups,”’ Proc. of the 4th Int'l Conference
on Distributed Computing Systems, pp. 49-59, May 1984.

~36-






Expressing Large Grained Parallelism Using Operator Nets

J.I. Glasgow, G.H. MacEwen and D.B. Skillicorn
Queen’s University, Kingston

Introduction

The graphical language, operator nets [Ashcroft85], provides a method for
describing interprocess communication and parallelism in 2 distributed computing
environment. An operator net consists of a set of nodes and a set of directed arcs
corresponding to infinite sequences of data values from some underlying algebra.
A program in the language consists of a set of equations that relate the output arc
of a node to a function applied to the input arcs of the node. These equations can
themselves be considered a language: the functional language Lucid [Wadge85).

A behavioral semantics for operator nets has been defined [Glasgow 1987a] in
which properties of a distributed system are expressed in the operator net model
in terms of the histories of an operator net and events that occur in such a net.

Operator nets can be used to express either fine or large grained parallelism.
In the behavioral model for operator nets, a node and its associated equations are
considered a process that consumes input sequences and produces an output
sequence. These process nodes can either correspond to operators (fine grained)
or to Lucid functions of any complexity (large grained). Each arc of a net is inter-
preted as a communication channel that carries messages from one process to
another. For example, consider the Lucid function that inputs a sequence and
returns the even values in the sequence: even(x) = x whenever (x mod 2) equal 0;
This function can be represented as a single process and used to calculate all of
the positive even integers as illustrated in the following operator net.

O

In this operator net we have three processes which could potentially be computing
in parallel. For more fine grained parallelism we refine the function node into a
subnet containing only operators, i.e.
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s the resulting net would have five rather than three processes.




Current research in using operator nets to specify parallelism in distributed
systems is centered around three projects: 1) Specifying and verifying security pro-
perties of computer systems; 2) Specifying real-time systems using Lucid and
operator nets; and 3) Developing a formal theory of operator nets for reasoning

about distributed systems. In the remainder of this abstract, we summarize each
of these projects.

SNet Multilevel Secure System

SNet is a multilevel secure system being designed as part of a project investi-
gating methods for specifying and verifying security properties of computer systems
[Glasgow 1985,1987b, MacEwen 1987]. In particular, we are interested in methods
that allow a natural decomposition of a security model into component models and
then into functional components that can be verified and implemented indepen-
dently from other models and components. Security properties of SNet have been
specified and verified using operator nets. This approach has been particularly suc-
cessful since it has allowed us to specify abstract constraints, using a behavioral
semantics for Operator nets, and concrete executable constraints using a Lucid
specification.

The SNet design comprises host machines, secure terminal servers, and secure
downgraders connected via an untrusted network. The current prototype contains
three hosts, one downgrader, and one terminal server based on NS32000 processors
cornected via an Ethernet. The Lucid specification contains approximately fifty
nodes of varying functionality. The implementation is a network of Concurrent
Euclid processes that mirrors the structure of the operator net specifications.

Real Time Specification Using Operator Nets

This project involves the development of a methodology for specifying real
time systems using Lucid and operator nets [Skillicorn 1986]. Given any Lucid
functional specification of a system, the approach constructs two operator nets that
describe the early and late time constraints of the system. These operator nets are
sets of equations that capture all of the real time properties of the system and can
be solved for any of the variables, given values for the others. For example, it 1s
possible to answer questions of the form: what execution speed is needed to
achieve a given set of input and output timings? Because the real time specifica-
tion is written in Lucid, all of the formal techniques we have developed can be
applied to the real time part, as well as the functional part. Thus it is possible to
prove properties of the real time specification. Because the specification Is execut-
able, it is relatively easy to locate performance bottlenecks and places where the
real time constraints are missed. We are working towards using our formal theory
10 allow statements about architectural constraints to be made and results concern-
ing the relationship of architecture and performance to be proven.
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Formal Theory of Operator Nets

One of the major problems with formal verification is that the languages used
to reason about programs differ greatly from those in which systems are built. The
underlying foundation of Lucid as a programming language was 1o provide a pro-
gramming and proof technique that shared a single coherent structure. This was
accomplished by defining the semantics of Lucid completely denotationally with
mathematical properties such as referential transparency. Unfortunately, the pro-
gram transformation rules provided by Lucid are sufficient for only a very limited
kind of formal reasoning. We are currently developing a a proof system based on a
behavioral semantics for operator nets. This theory will allow us to formally verify
that Lucid specifications correspond to abstract specifications written in a logic
language for operator nets.

The formal theory for operator nets is based on a behavioral semantics that
intuitively models computations in a distributed system. This model has been
extended to also allow for reasoning about knowledge, where knowledge is defined

.

as a function of a process’s initial knowledge, input history and reasoning capabil-
ity.
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Mentat: A Prototype Macro Data Flow System t

Andrew S. Grimshaw, Jane W. S. Liu, and Mark D. Thomas
Dept. of Computer Science, Univ. of Nllinois, Urbana, Illinois 61801

Mentat [1] is an object-oriented macro data flow system designed to facilitate parallelism in
distributed systems. The macro data flow model of computation [2,3] is similar to the
traditional, large grain data flow model [4-7] with two differences: 1) some macro actors are
persistent and maintain their internal state between firings, and 2) program graphs are dynamic.
Mentat objects implement macro actors. Each object implements an actor for each member
function of the object class. Mentat program graphs are constructed at run time. Graph nodes
are actors, each of which may be elaborated into an arbitrary subgraph at run time by the node.
Graph structure information is carried with the tokens. Thus, control of graph execution is
completely decentralized. Parallelism is gained when different portions of the graph execute on

different processors.

The Mentat programming language is an extended C++ [8]. C++ was chosen for several
reasons. It is simple, efficient, object—oriented, and has no parallel constructs already built in.
The objective of the extensions is to facilitate the writing of data driven objects and the
construction of program graphs. These extensions are implemented by a preprocessor that
translates the extended language programs into C++ programs augmented with calls to Mentat
library routines. The library routines interface with the Mentat virtual macro data flow machine.
Once compiled, the programs can then be executed on the virtual machine. The preprocessor
provides for the definition of actors and independent objects, the automatic detection of macro
data flow, the generation of code to construct program graphs, and optional programmer control

over scheduling decisions.
The Mentat programming language consists of the following four principle extensions:
(1) the keywords AMentat, persistent and regular in class specifiers

)
(2) select/accept statements

(3) the predefined member function main() in class definitions
1)

(

These extensions make the power of data driven computation easily accessible to programmers.

implicit generation of subgraphs

The kevword Mentaf in the class specifier indicates that the class is to be 2 Mentat class.
Furthermore. the Mentat class mav be declared either persistent or regular. The syntax for
Mentat class definition is

[pcrsistcnt’ircgular][Mentatl class—specifier
Instances of persistent classes maintain state between firings, whereas instances of regular classes
do not. Each instance of a Mentat object has a separate thread of control. The member
functions of the Mentat classes implement actors. Mentat objects arc similar to monitors 9. no

two actors for a particular instance of a Mentat object may execute simultancously.

In standard C++, there is only one thread of control. As a conscquence member funciions
will alwavs be executed when called. Mentat objects must be able to specify which operations are
candidates for firing. Select /accept statements are added for this purpose. Guards can depend on

the contents of lTocal variables and the arguments of the member functions. By including the

This work was partinlly supported by NASA Contract NAG -1 613,
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arguments of the member functions in guards we provide the programmer with additional
scheduling flexibility.

The programmer may also define a main() procedure for persistent Mentat classes, e.g.,
account:zmain() {...};. The main() procedure is started by the underlying machine once the object
has been instantiated. The main() procedure is the active portion of the persistent object. It
represents the thread of control in the object, and when it terminates the object is destroyed.
Under most circumstances the main() procedure will be used as an outer control loop determining
which operations to accept. If no main() procedure is present the preprocessor will generate one
with an accept statement for each member function.

One of the purposes of the preprocessor is to detect data flow between actors and to
generate code to construct data flow subgraphs. Data flows between two actors when either the
result of one actor is used as an input to another, or when one actor invokes another actor. The
preprocessor detects data flow by imposing an implicit single assignment rule on all variables
used on the right hand side of expressions involving Mentat objects. We “call these variables
result variables. We call the Mentat operation that produces the result the source operation.
Each time a result variable is used on the right hand side’ a new instance of the variable is
created. Then, when the result variable is used on the left hand side of an expression an arc is
created between the source operation and the expression on the right hand side. Graph
construction proceeds at run time until either a result variable is forced or a return_to_future is
encountered. A result variable is forced when it is used on the right hand side of a strict function.
A return_to_future indicates that the invoked operation is complete.

We have implemented a prototype virtual macro data flow machine to execute macro data
flow programs on a ten processor Encore Multimax. We plan to use this prototype to evaluate
the functionality and performance of the macro data flow model, and as a test bed for the
preprocessor. The preprocessor is currently in the design stage. A prototype version of the
preprocessor will be complete by December, 1987. The feedback obtained from implementing the
prototype version and from the evaluation will be used to reshape and refine our design for
another version of the prototype Mentat system (preprocessor and virtual machine) to be
implemented on a network of workstations, and on a multiprocessor system.
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Avalon: Language Support for Reliable Distributed Systems

Maurice P. Herlihy and Jeannette M. Wing
YDepartment of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is
to organize computations as sequential processes called transactions. Transactions are atomic, that is,
serializable and recoverable. Serializability means that transactions appear to execute in a serial order,
and recoverability means that a transaction either succeeds completely or has no effect. A transaction
that completes all its changes successfuily commits; otherwise it aborts, and any changes it has made are
undone.

Avalon is a set of linguistic constructs designed to give programmers explicit control over transaction-
based processing of atomic objects for fault-tolerant applications. These constructs are being
implemented as as extensions to C++ [5]. The constructs include new encapsuiation and abstraction
mechanisms, as well as support for concurrency and recovery. The decision to extend an existing
language rather than to invent a new language was based on pragmatic considerations. We felt we could
focus more effectively on the new and interesting issues of reliability and concurrency if we did not have
to redesign or reimplement basic language teatures, and we felt that building on top of a widely-used and
widely-available language would facilitate the use of Avalon outside our own research group.

A program in Avalon consists of a set of servers, which resemble Argus guardians [4]. A server
encapsulates a set of objects and exports a set of operations and a set of constructors. A server
resides at a single physical node, but each node may be home to multiple servers. An application
program explicitly creates a server at a specified node by calling one of its constructors. Rather than
sharing data directly, servers communicate by calling one another's operations. An operation call is a
remote procedure call with call-by-value transmission of arguments and results. When a server receives
an operation call, it creates a short-lived “light-weight” process to execute the operation. A server can
also provide a special background operation called by the system after it is created.

The objects managed by a server may be stable or volatile. Stable objects survive crashes, while
volatile objects do not. Internally, the storage managed by an Avalon server is organized as a three-level
hierarchy consisting of volatile, non-volatle, and stable storage. Objects are updated in fast volatile
storage. which does not survive crashes. Slower non-volatile storage, such as a disk, is used as a
backing store for pages in volatile memory. Non-volatile memory survives soft crashes, but not hard
crashes. Finally, stable storage, such as replicated disks [3]. is used to keep a log of updates to stable
objects. Stable storage survives all expected crashes.

1This research was sponsored by the Detense Advanced Research Projects Agency (DOD). ARPA Order No. 4976, monitored by
the Air Force Avionics Laboratory Under Contract F33615-84-K-1520. Additional support for J. Wing was provided in part by the
Nationa! Science Foundation under grant DMC-8519254
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Syntactically, a server resembles a C++ class definition, where the objects correspond to class
members, the operations correspond to member operations, and the constructors correspond to
constructors. At the statement level, Avalon provides primitives to begin and end transactions, either in
sequence or in parallel. Each transaction is identified with a process.

Avalon also supports nested transactions. A transaction commits only if all its children commit or abort;
a transaction that aborts aborts all its children, even those that have committed. A transaction's effects
become permanent only when it commits at the top level. Thus, a subtransaction’s effects need not be
written to stable storage until its top-level transaction commits. Nested transactions can be used to make
applications more robust. For example, if a subtransaction aborts, the parent transaction need not abort,
but can execute an alternative subtransaction. Nested transactions also increase the level of concurrency
within a single transaction since subtransactions may execute concurrently.

In Avalon programs, each data object performs its own synchronization and recovery. A transaction is
guaranteed to be atomic if all the objects it manipulates are atomnic objects. Avalon provides a set of
built-in atomic data types that resemble typical built-in types (e.g.. arrays and records), but these data
types guarantee atomicity as well. Avalon also provides primitives to assist programmers in implementing
their own atomic types. Serializability and recoverability are implemented for the built-in atomic types by
Camelot facilities such as locking protocols, new value/old value logging. and commitment protocols.

A novel aspect of Avalon is that concurrency control is governed by a property called hybrid atomicity.
Informally, hybrid atomicity requires that transactions be serializable in the order they commit. Hybric
atomicity is a local property; if each individual atomic object is hybrid atomic, then the system as a whole
will be atomic. Hybrid atomicity encompasses a variety of concurrency control protocols. For example,
hybrid atomicity is automatically ensured by two-phase locking protocols {1], but programmers can
achieve higher levels of concurrency and availability by taking the transaction ordering explicitly into
account {2]. To assist programmers in implementing their own hybrid atomic data types, Avalon provides
a built-in transaction identifier type tid. The tid type provides a restricted set of operations that facilitates
run-time testing of serialization orders and the state of transaction commitment. A second novel aspect of
Avalon is that programmers may define type-specific commit and abort operations for user-defined atomic
data types. The system automatically applies commit or abon when transactions terminate. User-defined
commit and abort operations are particularly useful for defining application-dependent synchronization
and recovery protocols that enhance concurrency and efficiency by exploiting specialized properties of
the data type.

(We)
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Emerald: A Language to Support Distributed Programming

Norman C. Hutchinson
Department of Computer Science
University of Arizona

Emerald is an object-based language and system designed for the construction of distribuind
applications. The principle feature of Emerald is a uniform object model appropriate for prograui-
ming both private local objects and shared remote objects. Emerald objects are fully mobile. and
can move from node to node within the network, even during an invocation. Despite this highly
mobile nature of objects, invocation of an operation on an object is location independent: the
programmer need not know the location of an object when invoking it. Emerald also supports &n
abstract type system that concentrates on the specification, not the implementation of objects.

Emerald’s goal is to simplify distributed programming through language support. while aiso
providing acceptable performance and flexibility, both locally and in the distributed environmernt.
Like Eden [3), Emerald’s model of computation is the object. Objects are an excellent way 10
structure a distributed system because they encapsulate the concepts of process, procedure. daia.
and location. In contrast to a several existing distributed programming languages and systems
that support separate computational models for local and distributed entities, Emerald supports a
single object model. Emerald objects include private entities such as integers and Booleans. as well
as shared, distributed entities such as compilers, directories. and entire file systems. All objects are
programmed using the same model. and have identical invocation semantics.

While we believe that programmers deserve the consistency of semantics offered by a sinale
object model, we do not accept the common criticism of object-based systems: namely. that they
are 100 slow. To a limited extent. the Emerald compiler is capable of analyzing the needs of each
object and generating an appropriate implementation. For example, an array object whose use
is entirelv local to another object may be implemented using shared memory and direct pointe:s.
while another array that is shared globally requires a more general (and expensive) implementatica
that allows remote access. These multiple implementations are generated by the compiler from
the same source code depending on the needs of a particular object. This approach simplifies tie
programiners task since he sees a uniform model. while providing an implementation whose cost s
appropriate for the functionality required of each object.

One novel aspect of Emerald’s uniform ob ject model is its support for fine-grained mohility,
Mobility in the Emerald system differs from existing process migration schemes in two iportant
respects. First, Emerald s object-based and the unit of distribution and mobility is the object.
While sonie Emerald objects contain processes, othiers contain onlyv data: arravs, records, and siele
integers are all objects. Thus, the unit of mability can be much smaller than in process migration
svstems. Object mobility in Emerald therefore subsumes both process migration and data trinsien

Second. Fmarald has lanouage suppor for mobility, Not onlyv does the Frmerald Tangnace expliviiiy



recognize the notions of location and mobility, but the design of conventional parts of the language
(e.g., parameter passing) is affected by mobility.

In traditional process migration systems, process are normally migrated by other entities (e.g.,
load managers) without their knowledge. In fact, it is often a major design goal of such systemns
to make it impossible for a process to notice that it has been migrated. In contrast, location is an
attribute of cach Emerald object and language primitives exist to move objects to new locations and
determine the current location of any object. Making location part of the language semantics allows
Emerald to be used for constructing applications such as load balancers and replicated servers that
wish to manipulate location to increase their performance or fault tolerance.

We have recently instrumented the Emerald mail system to investigate the benefit of light-
weight mobility for a particular application. The results of this are reported in [6). Briefly, we
compared the performance of moving mail messages addressed to users on other machines to that
of accessing them remotely. For a typical (synthetic) workload, mobility allows the number of
remote invocations to be cut in half, and the total number of network packets sent to be reduced
by 33%.

The Emerald language supports the concept of abstract type. The abstract type of an object
defines its interface: the number of operations that it exports, their names, and the number and
abstract types of the parameters to each operation. For example, the abstract type Directory
specifies that directories implement the operations Add, Lookup, and Delete. Further, Add requires
a string and an object (of arbitrary type), Lookup takes a string and returns an object (again of
arbitrary type), and delete requires just a string. We say that an object conforms to an abstract
tvpe if it implements at least the operations of the abstract type. and if the abstract types of the
parameters conform in the proper way.

Since abstract types capture only the specifications of objects (and not their implementations).
they permit new implementations of an object to be added to an executing system. This is impor-
tant for long-lived distributed applications such as mail systems, file systems. and window systems
since it allows new kinds of objects to be fitted dynamically into a system without bringing the
svstem down and restarting it. To use a new object in place of another. the abstract tvpe of the
new object must conform to the required abstract type. Note that each object can implement many
different abstract tvpes, and an abstract type can be implemented by many different objects.

Emerald has been implemented under 4.2BSD Unix on Vax and Sun computers, and is currently
running on small networks at the University of Arizona, the University of Copenhagen, Denmark.
and the University of Washington. A small number of applications have been implemented: a mail
svstem, a shared calendar system, a file system. and a replicated name server. In addition. several
load-sharing style applications have been implemented to experiment with light-weight mobility.

\We are continuing work with Emerald along two major fronts. The first concerns replica-
tion. Emerald performs automatic replication of immutable objects (those that mayv not chanes
their state over time). We have more recently been working on extensions to Emerald to suppont
replicated mutable data. We wish to take advantage of the semantics of operations (in particular
commutativity) to reduce the communication required to keep multiple replicas synchronized when
thev are updated. We are particularly interested in finding a clean language framework for dealing
with replicated objects.

Secondly, we are interested in a stand-alone implementation of Emerald. Our current imple-
mentation on top of Unix does not allow us to evaluate the intrinsic costs of particular languagn

foatiires bocanse of the Large overhead associated with sending a network messace under Unixe T
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z-kernel being developed by Larry Peterson and myself at Arizona will provide a framework for
constructing kernels that have specialized communication requirements. Customizing an Emerald
kernel using the z-kernel as a base will allow us to better understand the fundamental costs of the
abstractions that Emerald provides.

An overview of the Emerald language is given in [1]. The rationale for the design, and a
description of the compiler algorithms used to deduce appropriate implementations are in [4]. The
type svstem is described in [2]. An overview of the object migration facility is in [6], and the detaiis
of the implementation of the run-time system including garbage collection are in (5].
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Debra S. Lane

University of Calfornia at Irvine
Department of Information and Computer Science
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A great difficulty in building distributed systems lies in being able to predict
what the system behavior will be. A distributed or communicating system is
defined here to be one in which the hardware consists of a set of processors
each with their own memory, connected by some communication medium (there
is no shared memory), and the software is assumed to be of the CSP (Hoare’s
Communicating Sequential Processes) type. The problem is that while it is easy
to understand how each process behaves in and of itself, it is nearly impossible to
predict all the ways in which the processes will interact and influence each other’s
execution. It is necessary to understand their interaction in order to determine
how the system behaves (so that one might convince oneself or others that the
system performs as intended).

In the past few years some theories have been proposed to model features
of communicating systems. Milner’s Calculus of Communicating Systems (CCS),
Winskel’s Synchronization Trees (ST), Hennessy’s Acceptance Trees (AT), and
Hoare and Brooke’s theory of communicating processes are examples of formal
models of such systems. All of these models concentrate on modelling observable
properties of a system.

This paper presents a new representation of communicating systems called
Event Dependency Trees (EDT) that models the time dependent nature of such
systems. None of the representations mentioned above explicitly represent time
but time is precisely the factor that introduces so much variability and complexity
into such software and systems. Many models in computer science assume that
events occur instantaneously, but here it is assumed that every event occurs
with a certain time delay represented explicitly by an event name and a variable
for the time delay. Communication events are important because that is how
processes interact. Events preceding the communication events, even if they are
only executions of sequential pieces of code, are also very important, however,
because they determine the exact manner in which the communication events will
occur.

Besides modelling time explicitly, EDT differs from CCS, ST, and AT 1n its
representation of systemn Lehavior. Both CCS and ST represent system behavior
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as interleavings of events. The combine tree operation in those models producest
the set of interleavings. AT represents the system as a state—transition graph.
The tree combine operation in AT takes two state-transition graphs and produces
a larger one. In EDT, the system behavior is represented as a partial ordering
of events. The combine tree operation in EDT produces the partial ordering of
events in a way that indicates how particular sets of events contend with each
other to produce the various execution paths.

EDT show the right amount of information about system behavior, not too
much as in an interleaving representation, and not too little as in a state—transition
model. It is possible to identify each execution path by its unique event ordering.
In interleaving many event orderings produce the same execution path because
many times it is irrelevant that some event occurred before or after another since
they don’t influence each other’s execution. EDT shows exactly those events that
influence each other’s execution and also those that are not related.

EDT also provides answers to the questions “Why is one execution path
chosen over another?” or “How is a particular execution path chosen?” The answer
is that some set of events occurs before a different, contending set of events. CCS,
ST, and AT all show the possible execution paths but indicate only that they arise
because of nondeterminism. What is the source of such nondeterminism? There
are two ways in which nondeterminism arises in such systems: (1) through the use
of guarded commands, and (2) through the use of the communication constructs.
EDT models the nondeterminism that arises through the use of communication

constructs in CSP-type languages.

In EDT processes are represented as trees where the nodes of a tree represent
systemn states and the arcs represent the execution of system events. An event is
one of three types: (1) execution: represents the execution of a sequential piece
of code (with no communication constructs), (2) communication: represents the
execution of a message passing construct, or (3) the null event. Communication
events are further subdivided into send, receive, and synchronized communication
events. In addition, each event has an associated time delay, represented by some
variable such as t.

The following notation is used:

1) e[t] denotes a sending communication event that takes time t.

2) e[t] denotes a receiving communication event that takes time ¢.

—
=

3) e[t] denotes a synchronized communication event that takes time ¢.
4) e[t] denotes an execution event that takes time t.

5) 7o denotes the null tree, which is also the null event.

These are the only events that can occur in EDTs. Using this model, all portions
of the computation that take time are accounted for.
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Labelling trees is subject to some restrictions, which are not described here.-
However, note that each event has a name ¢, a time £, and a type that is in the
set {e:z:ec,send,recv,sync,null}._ The name of the null event, which is also the
null tree, is € or the empty string, and the time of the null tree is 0. The functions
name, type, and time when applied to an event, return the respective information
about that event.

Three operations are defined on trees: a prefix operation that allows a tree
to be prefixed by an event producing a new tree (prefixing an event to the null tree
results in a tree with a single arc Jabelled by the new event); a combine operation
that takes two trees and produces a new tree; and a remove operation that takes
two trees and removes one tree from the other. The combine operation is a very
important one in that 1t preserves the relevant information that indicates how
execution paths arise as a function of event orderings. A set of event dependency
trees along with the combine operation is shown to form an algebraic group. In
this model, two trees are defined to be equivalent if they are isomorphic to each

other.

Once the formal model is defined the question becomes how does one use
it. EDT is useful for performing some types of analysis. It is assumed that a
programmer codes a piece of software. The software is then transformed into
an EDT representation. At this point other algorithms are invoked to analyze
the “software” for various properties or information. One type of information,
which the model was designed explictly to produce, is the set of execution paths,
identified by their unique event ordering. Once one has this information it becomes
possible to ask questions of the form, “Will this execution path ever occur?”, or
in other words “Does event x always occur before event y, and if so what in the
system causes it?”

Another type of analysis familiar to all is the detection of deadlock or proving
the absence of deadlock. The algorithm detects two types of deadlock, deadlock
due to wrongful use of the synchronization primitives, and deadlock due to timing
aspects of the system.

EDT is a formal model of distributed or communicating systems that
predicts how CSP-type processes will interact. Although it appears that EDT is
2 model of software, assumptions about how the system impacts the execution
of the software is a crucial aspect of the model, the primary assumption being
that events take time that could differ from execution to execution. From an
EDT model of software one can identify each execution path by its unique event
ordering. This provides some insight as to how one might reason about whether
certain events and ultimately execution paths can occur. The model supplies
potentially important information for the design and construction of distributed,

parallel software systems.
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Introduction

At Apollo, we have experience in three areas that are relevant to the creation of systems support for large
grained parallel computations on 2 network of workstations and servers. First, we have collected from
users a set of parameters that they consider useful in the selection of machines to be used to perform
parallel computations. Second, we have identified some policy axes that mechanisms for machine selec-
tion need to support. Putting these two together, we created an architecture that allows the coexistence of
many different policies, and for the user extension of the set of selection criteria. Finally, we have imple-
mented several parallel applications that make use of load balancing.

Policies and Parameters

By polling potential users of large grain parallelism, we discovered that they had applications that would
want to discriminate between potentially useful nodes on the following bases. CPU speed and load were
the primary criteria mentioned, but the ability to distinguish between * foreground” and “background”
load were also desired. Disk speed and load were secondary criteria: in fact, available disk space seemed
1o be more important; this may be because disk performance is not as variable in our environment as CPU
performance. Main memory size was a criterion, but actual memory load measures were not requested at
all, perhaps because of the prevalence of virtual memory in our environment, or perhaps because of the
unavailability of good measures. Finally, the software configuration on a node would sometimes be a
factor.

The users of nodes, in addition to wanting to limit remote process creation on their nodes to times of low
load. however defined by the interaction of some of the above measures, also wanted to be able to force
remotely created processes into the background, and to take interactive use of the node into account.

Policy axes: policies variations that the mechanisms need to support: individual autonomy; group owner-
ship of nodes and the desire 10 limit their use to the owning group. Inter-user protection (or the lack
thereol) would place constraints on simuilaneous use of a node by different principals. Even if no-one
were locally using a node, protection of files from remote processes would be an 1ssue, especially on some
sinlge user operating systems. Another axis is individual responsiveness versus group throughput.

Architecture

The basic mechanism that supports large grain parallel computations is just the ability to create processes
on other nodes in the network. Policy is enforced by having each node retain the power to determine who
and under what conditions remote processes may be created on that node. At the next layer up, a registry
of nodes and the selection criteria they meet 1s Kept as 3 “hint” mechanism for quickly locating suitable
nodes.

Control over remote process creation

On each node, a control file is present in a known place, which contains the parameters defining allowable
usage of the node. Terminology:



OWNER: the node owner; a person who can change the access permissions/availablity criteria for
the node. Represented by write rights to the control file.

USER: a person who is allowed to use the node, assuming the rest of the criteria are met.
Represented by having read rights to the control file.

KBUSER: the person at the keyboard (unless the "server” option is used).

HOLDER: the first person to start an unsafe program is the holder. Usually, it is the KBUSER, if
there is one.

FRIEND: a person who is trusted by the holder of the node to run unsafe programs while the holder
of the node is using it. The current implementation defines a friend to be a person in same project as
the holder, or same person as holder, but with a different project or organization ID.

INVVOKER: a program that invokes other programs (i.e., a DSEE builder).

SAFE: trusted; a program you are willing to let others run while you are using the node is said o0
be safe.

SAFE DIR:a directory holding programs that are assumed to be safe unless explicitly identified to the
contrary.

FORCE: the owner (or holder) of a node can ignore load considerations by using FORCE to create
a process onto a node. This is primarily for debugging purposes.

SLOT: a division of computational power of a node int> units; at most one remote process can be
created for each available slot on node.

Normally, you can create a process on a node if:
1) you have permission.
2) vou are compatible with the other users of the node.
3) the node has a low enough load.
1) the keyboard user has not reserved the node for him/her self or friends.

Permission: You have to be the owner or a user.

Compatibility: You have to be the holder or a friend of the holder, or be running a safe
program. If “only_safe_friends” is set, then even friends need to be running safe
programs (see below).

Load:
2. There must be a slot available; the number of remotely created processes must not exceed
“max_slots” .
b. The CPU use must be less than "cpu_max" (less than “cpu_max_kb" if there is a
KBUSER).

¢. The keyboard user must not have typed anything for more than “min_idle” minutes.

Reservation:
If the KBUSER has “reserved” the node, then no-one can create a process, regardless of how
low the load is.
b 1f the KBUSER has “reserved friends” then only he/she and his/her {riends can create
processes, regardless of how low the load 1s.
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Load Balancing

Each node “volunteers” its computational power when its local policy module decides that it would accept
the creation of some remote processes. A node volunteers is by registering its availability with what we call
the compute slot allocator (CSA). When a node volunteers, it also informs the CSA of selection criteria
that might be of interest to potential users of the node. The CSA maintains an attribute/value database for
these criteria, and allows potential users to query the database as part of the selection process. Current
load is one of the pre-defined attributes. However, nodes and users can create new attributes at will,
allowing new selection criteria at any time. The CSA's database is regarded only as a source of hints about

the state of nodes.
Implementation

\We have implemented a process creation server, called the server process manager (SPM), that has
essentially the policy manager described above, and does simple CPU load calculations. The Apollo
software engineering system (DSEE) can use this facility to do parallel makes. The CSA is currently not
implemented, so each DSEE user provides a list of candidate nodes, each of which DSEE polls to deter-
mine load: the least loaded are selected. Many of the policy ideas came {rom users who dislked having
DSEE use their node for makes while they were trying 10 get work done.
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A programming system (DPS) designed to facilitate the implementation and
execution of distributed programs is being developed. The purposes of DPS are
to facilitate the development of large distributed programs consisting of programs
written in different languages (currently C, LISP and Prolog) and to allow the
programmer to exploit large-gran parallelism by distributing programs to different
processors[2]. The system hides heterogeneity in the underlying programming lan-
guages, architectures and operating systems from the programmer. The underlying
distributed system consists of a loosely coupled heterogeneous mix of computers
including VAX 11/783, MicroVAX Il's, Symbolics and HP 3000 connected by an
Ethernet.

The salient features of DPS are that processes in a distributed program may be
written in the appropriate language for the task, and that the configuration of these
processes into a distributed program is separated from programming of individual
processes. A DSP program consists of a set of communicating processes written
in C. LISP. or Prolog. The configuration of the program is specified using a dis-
tributed configuration language(3]. The configuration language provides a simple
and efficient wayv to synthesize a sct of component programs to form a distributed
program; that is, 1t supports programming-in-the-large for distributed programs.
A configuration written in this language identifies component sequential programs
and specifies process interconnection. To simplify the loading and execution of a
distributed program, it also identifies resources needed for execution and specifies
process assignment constraints. The compiler uses this information in determin-
ing process allocation, freeing the programmer from details about the underlying
svstem. The run-time support of the programming system ensures that processes
acquire resources before start exccuting and handles distributed termination.

The system currently supports message based communication between programs
written in C, LISP, and Prolog on Ultrix!, proprams written in LISP on Syvmbolics,

LUItrix is a trademark of Digital Equipment Corporation.



and programs written in C on HP 3000[1]. To support typed messages, we have
implemented a typed data communication package, which is a sct of functions that
provide the ability to transfer complex data structures between processes, with type
and structure retained, even between dissimilar systems. For Prolog programs, we
have also implemented remote predicate invocation [4). We plan to implement
remote procedure call for programs written in C and LISP.
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The synchronous language SIGNALL.
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SIGNAL is a Real-Time Programining Language designed at IRISA to describe and implement
algorithms onto multiprocessors systems. Firstly defined to realize Real Time Signal Processing
applications, SIGNAL adresses a larger field of needs for programming tools and especially in the
areas where automata are used.

Based upon formal properties, SIGNAL is used as the major support for correctness verification,
sequential simulation and repartition of algorithms.To implement an application, the following
method is applied:

1/ specification of the algorithm in the synchronous language SIGNAL,; at this stage, we
have a specification where the synchronisations and the parallelism capabilities have been
analysed.

2/ this first step provides as a byproduct a FORTRAN program, which can be used for
standard simulation purposes.

3/ tools are available to help the programmer in designing a multiprocessor implementation,
while controlling the required modifications of the original program.

The language.

SIGNAL is a data-flow like declarative language. 't is defined upon a small set of primitive
operators acting on two kind of expressions:

1. Signal expressions (ie expressions with dated sequences of values as operands) define
primitives cyclic processes (named Generators) in a definitionnal equation style; generators
produce output Signal from input ones in a synchroncus composition ( ie calculus are assumed to
have a zero-duration). For this purpose, the programmer is provided with two classes of operators:

1) Natural extensions of standard functions (+, x, ...) to sequences of values for which

signals are constrained to be synchronous;

i) A small and complete set of temporal instructions to generate the control part
(synchronisation and logic) of the program:
. delay operators, acting as fifo-registers;
.when operators, to delete data according to the value of a boolean control signal;
.default operators, to merge two signal with an implicit priority, (specified to avoid
non functionnal behaviour).

2. Processes expressions define new processes from smaller ones in a block-diagram
building style (a la Milner); two processes communicate by zero duration exchange of values.
They are defined by using the following operators:

-Renaming of signals (input- and output-) which give new external names to named signals:
-Connection of signals which define an input signal as being the output signal identically
named in the process; connections allow broadcasting of values; each input has no more
than one output connected.
-Compostion of processes putting together two sets of signal definition equations; input
signals with the same name in the operands are stated to be identical; operands may not
have two output signals with the same name.
This set of instructions provides suitable mechanisms for event based under- and oversampling of
signals.

The group works in cooperation with the project Signal Processing Architectures (Michel
Sorine, leader) at INRIA-Rocquencourt. This work is supported by CNET (French National
Agency for Telecommunications).
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These expressions may be structured by the means of Process Declarations compound of:
-an Interface which gives its name and describe the set of its external signals;
-a Body which contains a processes expression
-a set of Local deciarations of signal and subprocesses.

The compiler.

In addition to standard verifications and calculus (types, context,...), compiling SIGNAL
programs involve a static calculus of logical time properties and the production of the timed
precedence graph.

1 Logical time properties.
Signals handling in a SIGNAL program state logical time constraints defining a system of
algebraic equations over the finite field Z/3Z, its clock calculus:
i)to each signal S is associated a variable which value denotes at every moment of a virtual
clock:
-the absence of a value in S when O,
-the TRUE value for boolean S when 1,
-the FALSE value for boolean S when -1,
-the presence of a value in non-boolean S when 1;
ii)to each of the generators, a model of equation is assoclated;
iii)rules of equations composition are simply deduced from the semantic of processes
expressions.

The correctness of the program in regard to parallel computation (starvation, nondeterminism) are
studied on its associated equations sytem by using effective algorithms relevant to computational
algebraic geometry.

2 Precedence Graph.

A SIGNAL program define a set of output signals from input ones using data-flow variables.
The precedence graphe, associated with a program, is defined by a one-to-one functon from the
set of calculus to a set of nodes; an edge exists between two nodes N1 and N2 if and only if the
result of the calculus associated to N1 is used in the calculus associated to N2; moreover, this edge
is labelled with the clock denoting the moments when the dependance is effective. The absence of
circular definidon of signals is verified using the graph, before a sequential FORTRAN Program is
generated for simulation.

The Multiprocessor implementation.

The pair {clock calculus, conditional dependence graph} is the convenient level of compilation for
studying processor allocation.

At first, we define the notion of a functicnnal subgraph as being a subgraph in which each input
node (node preceded by an outer one) precedes each output node ( node preceding an outer one);
such a functionnal subgraph may be translated in any sequence of its nodes according to a greater
order than its reflexive closure; every local optimisation depending upon the structure of the
processor may be used. Functionnal subgraphs may be calculated by local algorithms.

We intend to define a set of tools to help the programmer in implementing signal programs on a
multiprocessor by using hierarchical organisation of the graph. Functions are the atoms of
allocation; the set of the atoms is partitionned in synchronous subset ; the set of these subsets is
recursively partitionned with recpect to the inclusion of clocks. The first level of the hierarchy
represents the architecture. This work is in progress at this time, whith two target architectures: the
first is based upon Transputers and Signal Processors, the second is an IPSC.

The group works in cooperation with the project Signal Processing Architectures (Michel
Sorine, leader) at INRIA-Rocquencourt. This work 1s supported by CNET (French National
Agency for Telecommunications).
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Extended Abstract

1 Introduction

In a distributed system, data are often replicated for protection against site failures and network partitions.
Through the use of replication, increased availability of data and reliability of access can be obtained. When
data are replicated at several sites an access policy must be chosen to insure a consistent view of the data so
that it appears as though there were only a single replica of the data. The view presented to the user must
remain consistent even in the presence of site failures and network partitions.

The simplest consensus algorithm is static majority consensus voting [2]. Static majority consensus vot-
ing provides consistency control and mutual exclusion, but does not provide the highest possible availability
of data since it requires that a majority of the sites to be reachable for an access request to be granted.

An attempt to remedy the short-comings of static majority consensus voting, known as dynamic voting.
was introduced by Daviev and Burkhard (1]. Their algorithm improved the performance by allowing quorums
to be adjusted automatically during system operation. The method that we propose, called Optimistic
Dynamic Voting, operates on possibly out-of-date information, hoping for the best. It can be shown that
the scheme provides mutual exclusion and that data consistency is preserved. There are many benefits to
our scheme, including efficiency and ease of implementation.

2 Optimistic Consensus Algorithms

The family of algorithms that are known collectively as dynamic voting (1,3,4) represent an ideal by which we
can measure more realistic consistency control algorithms. The dynamic voting schemes previously described
rely on instantaneous information about the state of the system. Such information is unachievable even is
the best of circunmstances, and our experiments have shown that attempting to approximate the connection
vector lead to unacceptable loads being imposed on the sites.

Our analyses indicate that maintaining state information at each access produces availability of data
comparable to dynamic voting with a connection vector. Using information that is out-of-date does not
affect the consistency of the data, but does sacrifice some availability of data. Since the method that we
propose propagates connectivity information when an access is successfully made, the amount of availability
of data that is lost is related to the rate at which the data is accessed.

The basis of our schemne is the algorithm for detecting whether the access request is originating within
the majority partition. Since there is at most one majority partition, mutual exclusion is guaranteed and
consistency is preserved. There are three sets of information that must be maintained: the partition sets, P,.
which represent the set of sites which participated in the last successful transaction, a transaction number.
t, and a version number, v, attached to each site.

Algorithm 2.1. Algorithm for deciding whether the current partition is the majority partition.

Find the set of communicating sites. call it L.

Request from each site 7 € I its partition set P;, transaction number ¢; and version number ;.

Let Q C R be the set of all sites with version numbers that match that of the site with the highest
transaction number,

[FC RN

4. Let P be the partition set of any site in Q.
5. If the cardinality of Q is greater than one half the cardinality of Pr,, or is exactly one half and contains
the maximum element of Py, then the current partition is the majority partition.
The advantage of the algori” s that we propose is that they are nearly as efficient as static majornty
consenans i terms of the number of messaees sent. and that their implementation is simple. There are no
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assumptions made about the state of the network other that which can be found by examining the partition
sets and version numbers. We have an advantage over the scheme proposed by Jajodia (3,4] in that we
can, by simply changing step five of the above algorithm, incorporate lexicographical ordering or topological
information into the decision process. Our early analyses indicate that topological sensitivity can greatly
improve the performance of Optimistic Dynamic Voting.

3 Stochastic Analysis

In this section we present an analysis of the availability of data provided by our scheme. The previous work
on estimating the availability of replicated data managed by dynamic voting schemes had assumed idealized
consistency control algorithms that possessed instantaneous information about the system state.

The availability of data provided by optimistic dynamic voting is related to the availability of data
provided by lexicographic dynamic voting by the rate at which access requests occur. As the access rate
increases, the information available to our scheme regarding the system state becomes closer to the true state
of the system and the availability of data increases. So long as the access rate is greater than the failure
rate the performance of our sclieme is very good; regardless of the access rate it is always superior to static

majority consensus voting.

Theorem 3.1. The availability of data afforded by Optimistic Dynamic Voting, Ao(n), approaches the
availability of data aflorded by Lexicographic Dynamic Voting, Ar(n), as the access rate approaches infinity

Our algorithm performs asymptotically as well as the original lexicographic algorithm. This can be
shown by direct manipulation for small numbers of sites, as it is below for three replicas. Here p represents
the ratio of the failure rate to the recovery rate, and ¢ is the ratio of the access rate to the recovery rate.

. 20 0P+ 6p°+ 3607 + 1107 +40p+6p+ S+ 1
lim Ap(3) = lim
o—o0 o—a (p+ 1) (2p+0+1)
P30+ dp+ ]
(p+ 1)
= AL(3)

And it can be shown for any number of replicas based on a general form of the state diagram.

Our method is simple and efficient. It provides consistency control, and more generally, mutual exclusion.
The availability of data and the reliability of access afforded by our method is superior to static majority
consensus voting for only a small increase in network traffic. We feel that because of this. and because of
the simplicity of the implementation. that our policy will replace static majority consensus voting as the
method of choice for replicated data consistency and mutual exclusion.
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The FileNel System

Marlin S. McKendry
FileNel Corporalion
Cosla Mesa, California

The TileNel®system is a LighUy-coupled distribuled processing sysloemn uscd for
managing documenl images. The syslem  exploils Lhe very high storage
capacilies of oplical disks lo slore images: a single 127 disk can hold 2.6
gigabyles of dala, or 10,000 compressed images, cach occupying 70 kilobyles.
Oplical disks arc managed in an OSARYOptlical Slorage and Relricval Unil, aka
'‘jukebox') library which can beld up Lo 200 disks. The maximum Lolal capacity
of an OSAR is Lhus 500 gigabyles, or § million images.

Each OSAR is conlrolled by an OSAR server. The server is a 68000-series
processor, withh memory, magnelic disk. and local arca nelwork, Secrvers also
manage dalabases thal map user-specified indexing dala Lo image localions on
optical disk. Access lo the system is Lhrough workstalions with bil-mapped
displays. Workslalions are usually diskless. All servers and workslalions run a
varianl of Unix!, allhough because the syslemn is closcd, this is nol visible Lo
users. The syslem's distribulion is also invisible Lo vsaers. To a user, Lhe enlire
system appcears Lo funclion as a single unil. The WorkFFloSsyslem can Le used Lo
program Lhe flow of documents belween users of the syslemn.,

The FileNel productl has been shipping since 1985, Therce arc now approximatcely

f pping Y
100 systems  inslalled  worldwide.  Major applicalions  include morlgage
srocessing, credil. card operations, customer supporl, and management of
I g ! g
Lechnical drawings.

The Orstl PileNel system was designed for small numbers of uscrs, with few
systems expected Lo support over 32 workslalions.  This rapidly  proved
insufJicicnt, and much Jarger svstems are now becorming common. 1L is clear
thal very Jarge systoms are desirable Lo many cuslomers. Thus, the next
challenge is cxponding  the =ystem Lo support sceveral hundred  usors,
Supporling these uscrs while mmaintaining the unily of Lhe system is difficull, We
cxpecel Lo combine mechanisins for highly cfficient caching, dynamic load
distribulion, and fault Lolerance. Where ncecessary, we will exploil applicetion
scmuantics Lo conlrot the cosls ¢f Lhese mnchanisins,

Syslem Struclure

The system mmanages distribulion and associaled parallelism in Lwo distinel sels
of mcchanisms. A distribuled file system supporls most operations Lypicaliy
associuled  with fite  syslems Alongside  Lhe  file  system,  an RPC-besed

0. TFileNet, OSAR, aud Work¥ilo are regisiered trademarks of FileNet Corporation. Specificetions
subject to chunge without notice

1. Unixis a tradennrk of AT&Y
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mechanism provides applications with a means for managing distribution.

The file systern is similar to Locus [Locus 81], except that at present it does not
support replication. It implements localion transparency, and presents users
with a single view of the file system (i.e., the mount structure is global). Servers
are the crilical resource in the system, because much work is logically
centralized at servers. Thus, the file system attempts to move all processing
possible to workstations. In this spirit, direclory traversals are performed at
workstations. A sophisticated caching mechanism for file conlrol blocks
(inodes) and file contenls permits most file management to be performed
wilthoul contacting the server storing a file.

The FileNet application makes demands of the file system that differ
substantially from Llhose of a typical program development environment. We
have exploited these requirements already, and inlend to do more so in the
future. For example, we intend to provide a form of replication that avoids the
overhead of generalized schemes. In this approach, we will support replicated
read-only files (all code files), and replication of storage services for temporary
files. Because most permanent data is stored in data bases that bypass the file
system, supporting only these limited subsets of the general replication problem
will address most needs. We will still have to support mutable replicated data
for access paths, configuration structures, etc., but we will not incur the
overhead of generalized approaches. In the cases we must support, we are able
to exploit application semantics to reduce costs. Usually, reconfiguration to
accomodate failures can proceed concurrently wilth application processing.

The second major porlion of the FileNet system thal supports distribution is the
RPC-based mechanism presented Lo applications. This mechanism is used to
access most applicalion services. JU uses a global name server to bind
applications to their services. An open protoco! (currently XNS) is then used to
communiczate wilh services.

Dalabases are accessed through this rechanism. Al present, no distributed
dalabases are supported, and there arc no distribuled consislency mechanisms
(other than Lhose supporting the filesystem). This has been acceptable under
current leads and processing requirements.

Applicetion requirements arc truly distributed.  In typical FileNel systems,
individual machines support bit-mapped user inlerfaces, storage of files cn
naegnelic disks, storage of images on optical disks, control of special devices
such as scanncrs and prinlers, and databases mapping indexing data to optical
disk storage localions. Thus, a lypical user query involves several machines: the
user's {diskless) workslation may have to conlacl ils operating system server
[or paged-out data, an index server Lo process 2 document query, and an oplical
storage scerver Lo retrieve a docurnent image. Uepending on the struclure of the
file system and the devices required to process the query, addilional machines
may be involved. Because most users access the same dalabases and optlical
disks, server loading 1s critical to the system’s performance.

Summary

The FileNel system is an example of a distribuled systemn thal operates as a
single unmt. In many cases, accepled indusiry practlices are inadequale to
supporling the system’s application demands.  In olher cases, a lack of
generalily in applicalion semantics can be exploited in ways not possible by
desizners of more open systems, fn future, we expect Lo conlinue Uhis approach,
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using industry standard techniques where possible, and developing our own
techniques as dictated by the requirements of Lhe systern’s applications.
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Requirements for the Performance Evaluation of Parallel Systems

Michael K. Molloy
CMU

Determining or predicting the performance of distributed and parallel systems has been difficult in the
past. This will not change in the near future unless several prerequisites are met. Often, the designers of
distributed and parallel systems are too busy solving problems in a design to worry about the
performance of the final system. In the cases where performance has been addressed, prediction has
been impossible because of the lack of knowledge about the actual use of the systems. (i.e. Will there
actually be ‘hotspots’ in parallel systems built around multi-stage switching networks?) In order to
properly address questions about the performance of a current or future system, a clear understanding of
the workloads and their patterns is needed.

Before any realistic performance prediction can be accomplished, a more extensive base of experimental
knowledge must be established. However, before an experimental base can be established, new
measurement techniques and appropriate metrics must be defined. Many different systems have been
measured by researchers, but the measurements tend to be self-serving and incomparable with each
other. Guidance on what to measure, how to measure it, and how to report it is clearly necessary. As an
example, consider the hardware monitors in the RP3 project at IBM. The hardware monitor is built into
the system from the initial design, an admirable trait. However, the monitor simply keeps a histogram
(separate counts) of the control lines internal to the architecture. This allows the analyst to find out how
often certain actions occur in the system, but nothing is known about the sequence of actions (most
importantly the sequence leading up to a crtical event). A circular buffer holding the last few control
patterns would have gone a long way to extending the monitor's usefulness.

Unfortunately, the problem is not as simple as adding some features to existing systems. It is a chicken
and egg problem. How can we specify what should be measured and how, if we don't know what is going
to happen? On the other hand, how can we find out what is going to happen, if we don't measure
anything? The answer is a two phased approach. First, a methodology to measure a large universe of
information in a condensed form is developed. Second, more specific probes, both software and
hardware, are designed to zero in on possible problems or unusual phenomena uncovered (necessarily
incompletely) in the first phase. The study of advanced systems at HP, SUN microsystems, and IBM has
started with the acquiring of massive traces using large (640MB) highspeed (200MBps) memory arrays to
meet the storage requirements.

As an example of the infancy of the measurement methodology, consider the recent problems with the
ARPANET. After changing the ARPANET naming schemes to include domains and nameservers, the
ARPANET quickly became overloaded. It is still overloaded and will cause problems for some time. No
measurements were made for several months. No determination of the exact cause of the load increase
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was made for several more months. The corrective action necessary has still not been determined. Yet
the ARPANET was been an established system for many years and has a dedicated network
management facility. The problem is found in the fact that the management facility had tools to locate
normal communication problems and test IMP processors, but no mechanism to study the ARPANET as
a distributed processing environment.

There is some hope. An example of an improved monitor design is the HP4972 LAN analyzer for
ethernets. By limiting the scope of the environment, the design for the 4972 resulted in a flexible and
powerful monitor. The design begins with the input filter concept for restricting sampling. It expands this
with the concept of the circular buffer and storing triggers. it is therefore possible to sample some subset
of the packets, buffer and store the two packets before some trigger (like an error, particular address, or
collision). Such monitoring sessions are set up using a high level programming language for the
acquisition and generation of data. This makes the monitor flexible enough to be used in evolving

environments.
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Proving Real-Time Communicating Sequential Processes Correct

K.T.Narayana
Department of Computer Science
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The Pennsylvania State University
University Park, Pa16802, USA
(814)863-0147 narayana@psuvaxl.uucp

The seminal paper by Hoare[8] on a notation for Communicating Sequential Processes (CSP) introduced
input and output commands as fundamental language concepts. Since then, programming based on mes-
sage passing has been extensively studied(1,6, 10, 18). The regime has established itself as distributed
programming and has been distinguished from concurrent programming in that each process does not
share variables with others and cooperation is achicved using message passing. There have bcen
significant advances made towards a formal theory for understanding the design, construction and

verification of distributed programs {2-5,7,12,15,20).

When the basic notation of CSP is augmented with the wair commands, it offers capabilides for pro-
gramming real-ime distributed applications.  There has been a proliferation of languages (both con-
current and distributed) which seek to facilitate the programming of real-time distributed systems. In
spite of the availability of high-level languages and the programmed real-time applications, real-ime
programming continues to suffer from the absence of an adequate mathematically founded methodology
for specification, design, construction, and verification. Recently, attempts have been made to alleviate

this problem(9, 11,17] in a denotational context by providing rcal-ime models.

The first significant methodological advice for the construction of real-lime systems comes from Wirth.
In his paper on real-time programming(19], Wirth offers the following advice- "In order to keep real-
time programs intcllectually manageable, we recommend that they first be designed as imc-independent
multiprograms and that only after analytic validation they be modified in isolated places, where the reli-
ance on exccution Gme constraints arc simple to comprehend and document.” The remark though made
in the context of real-ime concurrent programming scems exturemely relevant even for real-ume distri-

buted programming.

Our concern in respect of formal correctness of a rcal-ume program, in the light of the above, would be
10 address the separation of concerns as far as possible and 10 coalesce the reasoning 1o a unificd whole
when it becomes imperative to do so. Here again the notion of what constitutes a specification of rcal-
time program secms to be important. The simplest way of looking at a specification of a real-ume dis-
tributed program is to regard that cach dividual process establishes a given uming behaviour and the

distributed program establishes a funcuonal behaviour. For u cortain class of rcal-time programs, the
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functional behaviour of the program in the real-time model tends to be the same as that in the interleav-
ing model. Thus, while timing behaviour can be stated consistent with the real-ime model, it is cnough
{0 state the functional behaviour with respect to the interlcaving model for this class of programs. When
we extend the class of programs to those for which the functional behaviour in the real-ime model is
different from that in the interleaving model, then we need a stonger specification for the functional
behaviour. Further, the specification of the timing behaviour should be given consistent with the func-
tional behaviour in the real-time model. We can address a third category of specification in which we
can speak about the collective timing and functional behaviour of every process in each computation of
the program. This form of specification is the strongest of all. Thus, the specification regimes reflect

the grades of difficulty in proving the correctness of the real-imc program.

By their very nature, real-time models tend to be complex. A proof regime offcred only in the context
of rcal-time models makes the task of proving rcal-time distributed programs daunting. On the other
hand, interleaving models have the advantage that they arc weak. Further, correctness theory for distri-
buted programs based on interleaving modcls is well understood. Thus, a proof mcthodology which
secks 1o draw upon a proof of the functional behaviour of the program in the interleaving model shall

have definite advantages in casing the wsk of proving rcal-time distnibuted programs.

Thus, we approach the problem of the design of a proof system for real-time distributed programs with

the following steps.

a) Firstly, we develop a proof sysiem @ for reasoning about the time behaviour of individual
processes. In the proof outlines of the time behaviour of processes, we make assumptions about the
statc at various points, and further we make assumptions about the waiting behaviour of i/o com-
mands. Assertions in the proof system € are structured more on the lincs of the time predicates of
Niclson[14]. A meta-variable ¢, identified with process P, capturcs the notion of the advancing

ume of process P;.

b) Secondly, we prove the logical correctness of the program using the Cooperation Test basced
proof systems of Apt, Francez and D¢ Rocver[2] and the towl correctness prool system of Apt3].
We may as well have choscn any other prool system, for example of Levin and Grics{12]. The

central ideas remain the same, but their asticulation may be dilferent.

¢) Finally, we couple the two proof systems together with capabilitics

using €

11) for obtaining the exact waiting behaviour of cach of the processes at their 1o commands,
and

i) for restricting the states of the program (o those oblumnable in the real-ume models only.
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Step (c) ensures consistency with respect to real-time models. Essentially, step (c) consists of formulat-
ing a system of equations (lincar) which involve existential elements quantifying the waiting behaviours
of processes at each of its i/o commands. We call these cquations Characteristic Equations of the sys-
tem. Then we define simultaneous solutions to these characteristic equations which are acceptable. The
acceptability criterion assures consistency with respect 10 the Maximum Parallelism model[16] of com-

munication and prohibition of unnecessary waiting of processes.

In summary, we develop a proof system for real-ime CSP{13]. We adhere 10 the central clements of
AFR proof system[2,3) by requiring that asscruons do not share variables. Further, assertions in the
proof system consist of two parts; onc treating timing aspects and the other dealing with the functional
behaviour. As in AFR system, we make assumptions about the timing behaviour of i/o commands. We
make provision for performing waiting analysis of the real-time program as part of the proof process.
The waiting analysis provides for the determination of the waiting behaviours of processes at the /0
commands. This particular aspect eases the programmer from obtaining an assertional structure for the
exact waiting behaviour of i/o commands by a prion analysis. Further, the waiting analysis part of our
proof system could be automated. A suong invariant [ introduced into the proof system serves, more
or less, the same purpose in the real-time model as the global invariant / does in the AFR system under
the interleaving model. We show by cxamples the usc of the proof system for several ciasz2s of real-

time programs. The proof system we develop is a total correctness proof system.
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Resecarch in Parallelism at
The University of Washington

David Notkin
Department of Computer Science, FR-35
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The Departinent of Computer Science at the University of Washington has become increasingly
involved in paradlel computing research. Through a new NSF Coordinated Experimental Rescarch
Prograin grant, Effective Use of Parallel Computing, we have just acquired a Sequent Symmetry 81
multiprocessor. and we expect 10 DEC SRC Firefly multiprocessor workstations to arrive immiunently.
In the following scctions we bricly describe two current related rescarch cfforts, concerning (1)
the integration of heterogencous computer systeins and (2) systcms that support various styles of
distributed and parallel programming.

Hetcrogeneous Remote Procedure Call The Heterogencous Computer Systemns Project {6] is
exploring ways to reduce the costs of integrating diverse systen types into a ¢omputing cnvironment.
The gener:d approuach has been to build both high-level and low-level services that are flexible
enough to accommodate multiple existing standards or models of computation. We have made
progress in soveral areas including a remote procedure call facility [3], a naming facility [15], a
remote computation service [51, a mail service {17], and a distributed file service.

The HCS RPC (HIRPC) facility supperts the emulation of existing RPC systems by allowing
difierent transport protocols, control protocols, data representations, and binding protocols to be
mixed and matehed. The stubs of TIRPC clients and servers are written in terins of abstractions
of these protocols and representations; the abstractions are bound to a specific set of choices {for
instance, TCP/ID transport and Xerox Courier data representation) when clients are bound to
servers, This allows a single HRPC client to comnunicate with multiple servers written in vasious
existing RPC systems, and vice versa.

One problem with RPC systems is the svnchironous nature of the RPC paradigin, which has
the potential to serialize processing in servers.  To permnit more parallelisni. we have developed
an abstract interface to lioht-weight process pisckiages that allows us to employ various existing
inplensentations in a manner similar to that by which we emulate different RPC systems.

The bisic HRTC facility has been running for over a year. The HRIPC svstem itself runs on UNIX
systems. incuding VAXes. SUNs, and the Tektrouix 4404 fiunily. Run-time support includea SUN
RPC (with both TCP/IP wnd UDP) on VAXes and SUNs and Courier RPC on Xerox Dandclions.
We plau to accomimodate the Fireflys and their RIC system when they artive.

Our ongoing projects include: developing HRI'C support for both Lisp and Smialltalk-80; explor-
ing the construction of HIRPC intermedinries called bridge servers that perforn thie necessary pro-
toeol sund data transhations to allow existing clients and servers to speak jndirectly when they cannot
spesk dircctly: and investigating the utility of HRI?C's support for heterogeneous diata representas
Gons in i local context, supporting calls between languages that usc different data representations

[14].
Distributed and Parallel Programming Systems For a decade onr departient hias been ac-

tively enired i rescarctom object-oriented systens and Tansuiuges. The desiv and iplementation

of the Ldon sy=tem, which was the first diztributed objeet-hased syxtem {1 and provided Jocation
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transparcncy and object 1obility, led to the Emerald system (8,9], which provided a new program-
ming language specifically designed for distributed programming. The novel features of Emecrald
include (1) its usc of a single object model for programming both small, passive, local objects (such
as arrays) and large, active, distributed objects (sucli as mail systems), aud (2) its support for fully
mobile objects [12]. Emerald is highly efficient and Emerald invocations exccute in approximately
procedure call time on a MicroVAX. More recently, a Distributed Smalltalk systein has been pro-
totyped to examine issues in extending the Smalltalk environment to multiple networked machines

2).

oriented languages for parallel programming. We have recently designed and prototyped an en-

QOur experience with object-oriented systems has led to an examination -of the use of object-

vironment called Preato [4] that currently runs on our 10-processor Sequent. Presto extends the
C+=+ Ianruace to run in a multiprocessor envirnament. In Dresto. oMcc{s r\nc:\;\s!!lntu the notion of
abatract data types, i.c., protected data that is operated on only by a set of procedures in the object.
To promote parallclism, Presto adds the notion of the thread object, which is the the fundamental
unit of execution. A Presto object can crcate multiple threads cither to excecute within itzclf or to
invoke other objects in parallel with its exccution. Presto also provides synchronization objects so
that simultancously executing threads can coordinate their activities. Threads arc implemented in
a highly-efficient way that permits their usc in medium- to fine-grained computations. For example,
early measurements show that applications that usc hundreds of threads can perform competitively
on our 10-processor machine.

Conclusion and Acknowledgments This abstract describes the work of many faculty and stu-
dents in the department. Qur particular expertise, in the context of the overall UW cffort, is the
Hescrogeiicous Remote Procedure Call systemn, programnming systems for distributed and parallel
environments, and programming environments for parallel computers.

This work is supported in part by the National Science Foundation under Grants DCIR-8352008,
DCR-8120945, and CCR-8611390, by an IBM Faculty Developrient Award, by the Xerox Corpo-
ration University Grants Program, and by the Digital Equipinent Corporation Extcrnal Rescarch

.
Program.
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Increasing interconnection of computer systems produces heterogeneous distributed sys-
tems. To cope with heterogeneity in hardware, we port the same software (e.g. the Unix
operating system) to different machines. However, integrating similar but different soft-
ware packages presents another challenge. In this abstract, we propose the supertransaction
approach to accommodate heterogeneity in distributed transaction processing systems. For
brevity, we use the term database in the broad sense, to denote general transaction processing
systems.

We define supertransactions as atomic transactions spanning more than one database. A
supertransaction is atomic in the same sense of normal transactions; concurrent access should
be serialized, and database consistency recovered from crashes. We call the components of
the supertransaction component transactions, which run on element databases. In contrast.
a nested transaction has subtransactions running in the same database.

If all the element databases are implemented the same way, supertransactions are the
same as known as distributed transactions, for example, R™ and TABS. A more interesting
possibility is a supertransaction running on element databases of different origins. In other
words, a supertransaction should support atomic updates across heterogeneous databases.

We introduce the design of Superdatabase, a heterogeneous database system to update
different element databases consistently [1]. We assume that each element database provides
local transaction processing, including crash recovery and concurrency control. Our approach
is based on hierarchical composition (Figure 1). The element databases are the leaves, while
the superdatabases are the internal nodes, extending crash recovery and concurrency control

to integrate different elements.

Fach element datanase must satisfy two composibility conditions. The first is on crash re-

covery: the element database must understand some kind of agreement protocol, for example.



superdatabase

superdatabase

DBj;
DB, DB,

Figure 1: The Structure of Superdatabases

two-phase commit. The second condition is on concurrency control: the element database
must present an explicit serial ordering of its transactions to the superdatabase. Fortunately.
explicit serial ordering is easy to obtain from all major concurrency control methods (two-
phase locking, timestamps, and optimistic concurrency control). For example, timestamps
represent an explict serial ordering. A timestamp at the beginning of the shrink phase in
two-phase locking also captures an explicit serial ordering.

Given element databases satisfying the above two conditions, the superdatabase that com-
poses element databases can carry out two-phase commit (or any other agreement protocol
understood by the elements) for crash recovery. To compose concurrency control, the super-
database checks the explicit serial ordering of transactions from all elements, making sure
they are serialized in the same order for all supertransactions.

This brief summary of superdatabase architecture only outlines a simple implementation

of supertransactions. Detailed algorithms and refinements are described in another paper (1.
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parmake and dp:
Experience with a distributed, parallel implementation of make
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Large software systems are typically developed as a set of smaller modules that are easier 10 manage indivi-
dually. In order to provide automatic support for building a complete system and for keeping track of the
dependencies between modules, facilitics like the make program developed by S.1. Feldman at Bell Labora-
tories prove extremely useful. In an environment that permits concurrency (cither through the use of mul-
tiprocessors or by using several machines on a distributed network), modular decomposition also provides a
considerable opportunity for speedup, since the compilations of independent units can usually be performed
concurrently.

The hardware base for this work is the Firefly—a shared-memory multiprocessor workstation developed at
DEC’s Systems Research Center to serve as our principal computing resource. Typically, cach Firefiy
workstation contains five MicroVAX-II processors. There are currently 90 Fireflics on the local Ethernet,
including two Firefly file servers. The Firefly operating system includes a remote file mechanism that pro-
vides transparent access to any file on any machine. Each Firefly has a local disk containing a pardal Unix
directory tree. User directorics and portions of the public readonly directories (/bin, /lib, etc.) are stored on
the local disk. The rest of the public directories are accessed transparenuy through remote symbolic links 10
the file servers. The most frequently accessed public files and programs are copied locally on each Firefly,
kept up to date by nightly daemons. This arrangement approxiriales a cache-based distributed file system
(which we are building). :

To take better advantage of the available processing power, we have implemented parmake —an extension
of the traditional make facility from Unix that provides for concurrent execution of those operations which
have no mutual dependencies. Moreover, parmake can also take advantage of the facilities provided by our
distant process facility dp to export some of that processing to idle Fireflies in the local area network.

The feasible orderings of the independent tasks are determined by topologically sorting the dependency graph
provided by the Makefile. For the most part, the Makefile is the same as that used for the taditional make
utility and requires no changes. In our early experience with parmake, however, we discovered that the
local Makefile discipline often relics on the implicit left-to-right ordering, and we have added a backward-
compatible syntax to allow programmers 1o make such dependencies explicit.

Within the set of feasible orderings, parmake uses a set of heuristics 10 balance the load on the local proces-
sors, while dp conurols the scheduling of remote tasks based on machine-loading statisuics. The heuristics
are controlled by several parameters that reflect the relative cost of the independent operations. For cxample.
(he initial cost of invoking the dp mechanism (6 seconds) is large in comparison to the incremental cost of
starting a new distant process (1 second) once the dp mechanism is initalized. To account for this.
parmake does not invoke dp until the number of pending tasks reaches a rclatively large threshold: once
started. however, this threshold is reduced substantially © provide better load balancing.

The combination of parmake and dp provides capabilities similar to those of several other projects, includ-
ing Locus at UCLA, Apollo’s DSEE. the V system at Stanford, and Andy Tanenbaum’s distributcd make at
CW1l/Amsterdam. Our system is unique in two respects. First, it is compatible with the standard version of
make and does not need o analyze the actual operation steps to provide speedup.  Second, it is designed {for
use in a distributed nctwork of muliprocessors and must therefore consider the proper balance between loval
and distnbuted concurrency.
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Initial timings show that parmake reduces considerably the time required to recompile large systems. The
following table demonstrates the speedup for a large-scale recompilation consisting of 238 Modula-2+ files
drawn from various library packages at SRC. These files contain approximately 65,000 source lines,
independent of imports.

processes local distant
1 v 1.00 0.95
2 1.68
3 2.20
4 1.90
S 1.05 4.7
10 8.7
15 12.1
20 13.5
25 12.6
30 129
Table 1

Speedup for Modula-2+ Compilation

The “local’ column shows the speedup using 1 to 5 concurrent local processes relative to the single process
case. Even though the Firefly has 5 processors, the maximum speedup was 2.2. This is due to the large
memory demands of our Modula-2+ compiler, which typically uses 5 megabytes or more of virtwal memory
to compile a file. Fireflies currendy have 16 megabytes (of which several megabytes are required for the
operating system), so running more than three simultaneous compilations results in thrashing.

The “distant’’ column shows the speedups as more concurrent distant processes are used, with each distant
process on a scparate idle machine. The processes read the source files from the single controlling machine
and write the objects back to the local disk on the controlling machine. As the table demonsuaics, max-
imum speedup occurs with approximately 20 distant processes, which provides about 65% utilization. When
more processors are used, the processors on the controlling machine and the network bandwidth become lim-
iting factors and no further improvement is seen.

The speedup is, however, strongly dependent on the specific nawre of the computation being executed. The
table below presents similar timing information for the recompilation of the X11 library, which consists of
194 C files. The actual source files contain only 8,400 lines, but the included files raise the total line count
after preprocessing o 167,000

processes local distant

1 1.00 0.82

2 1.88

3 2.49

4 2.70

5 2.86 4.1
10 5.6
15 5.9
20 5.8
25 5.8
30 5.8

Table 2

Speedup for X11 Library (C-based)
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Since the C compiler is much smaller than the Modula-2+ compiler, virtual memory is no longer a
bottleneck, and the “‘local” column continues to show improvement throughout the 1 to 5 range. The C
compiler also performs much more /O relative to the amount of computation. The result of this is that the
local compilation quickly becomes limited by the disk speed. Distributing the five process case to five
machines results in a significant performance advantage, since each machine has an independent local copy
of the libraries on /usr/include, and there is similarly no contention for /tmp, since this is also local to each
machine. Even with this distribution, however, we do not see speedups above 5.9, since the time required to
read the source files from the controlling machine limits the available parallelism.

Our experiments have demonstrated that it is possible to achieve considerable improvement in performance
by adding local and distributed parallelism to the standard tools used to control recompilation. Moreover,
the performance advantage increases along with the ratio of computation to VO, as it does, for example, in
optimizing compilers. We also expect that this performance will improve when we complete our current
work on cache-based distributed file systems. A research report with more details on our experiments 1s
forthcoming and will be available from SRC.
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Extended Abstract

Coda: A Resilient Distributed File System

M. Satyanarayanan
James J. Kistler
Ellen 11. Siegel

Depariment of Compuier Science
Carnegie Mcllon University

Distributed file systems have grown in importance in recent years. As our rcliance on such systems increascs, the
problem of availability becomes more acute. Today, a single server crash or nctwork partition can scriously
inconvenicnce many uscrs. Coda is a distributed file system that addresses this problem in its full generality. Itis
designed to operate in an environment such as the Andrew system at CMU (3, 5, 2], where many hundreds or
thousands of workstations span a complex local arca network. Coda aspires to provide the highest degree of
availability possible in such an environment. An important goal is to provide this functonality without significant
loss of performance.

Like Andrew, Coda distinguishes between clients from servers and uses caching of entire files as its remote
access mechanism. In addition to improving scalability, whole-file transfer simplifics the handling of failures since
a file can never be internally inconsistent. Coda masks server failures and nctwork partitions to the fullest extent
possible. Failurcs during a file operation arc towlly transparcnt at the user level unless the operation requires daw
that is ncither cached locally nor present at any accessible server.

Aggregates of files, called Volumes (6], are replicated at multiple server sites. When a file is fetched, the actual
data is transferred from only one server. However, the other available servers are queried to verify that the copy of
the file being fetched is indeed the most recent. After modification, the file is stored at all the scrver replication sites
that are currently accessible. To achicve good performance, Coda exploits parallclism in nctwork protocols. We
have an implementation of a parallel RPC mechanism that is capable of using multicast, if available. This
mechanism can transmit files in parallcl to multiple sites.

Consistency, availability and performance tend 10 be mutually contradictory goals in a distributed system. Cod
will provide the highest availability at the best performance. A close examination of the way files are shared in an
actual file system indicates that an optimistic policy regarding consistency is likely to be successful. Two principles
guide the design of consistency mechanisms in Coda. First, the most recently updated copy of a filc that 1s
physically accessible must always be used. Second, although inconsistency is tolerable, it must be rare and always
detected by the system. We may experiment with heuristics bascd on file access patterns to resolve simple cases of
inconsistency. As in Locus {4], inconsistency is detected by the use of version vectors. However, Coda uscs atomic
ransactions at servers to ensure that the version vector and data of a file are mutually consistent at all umes.

At the present ume Coda is in the dewiled desizn phase. The implementation cf e parallel RPC maschanism Bas
been completed, but the bulk of the design and implementation work remains to be done. This includes arcas such
as rccovery from failures, detection and resolution of inconsistency, file transfer protocols, and support for
partitioned opcration. The evaluation of Coda along the dimensions of performance and resiliency will also require
considerable effort.  Although much work remains, wc expect that our use of the Andrew file sysiem as a base,

Camclot (7] for transaction support, and Mach {1] for operating system support will simplify implementation.
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Dr. Liuba Shrira has received her M.Sc. and Ph.D. from Computer Science Dept. Technion Haita,
lsrael. Her M.Sc. thesis was one of the first distributed implementations of CSP. Her Ph.D. thesis was on
methodological construction of distributed and reliable algorithms. Since 1986, Dr. Shrira has been a
postdoctoral research fellow at the Laboratory of Computer Science, MIT with Programming Methodology
and Theory of Distributed Computing research groups. Dr. Shrira is one of the participants in the Mercury
heterogenious distributed systems project at LCS. The main interests of Dr. Shrira are in the
methodological design and analysis of distributed systems.

Recent Work

Within the Mercury project, Dr. Shrira has worked on the communication mecanism of the system. The
Mercury heterogenious system aims at a general class ot applications written in a wide variety of
languages. The approach is to connect programs in a flexible and efficient way by a new communication
mechanism called stream. This new mechanism combines the advantages of remote procedure calls and
message passing. Remote procedure calls have come 10 be the preffred method of communication in a
distributed system because programs that use procedure are easier to understand and reason about than
those that explicitely send and receive messages. However, remote calls require the caller to wait for a
reply before continuing, and therefore can lead to lower performance than explicit message exchange.

Streams allow a sender o make a sequence of calls to a receiver, without waiting for the reply to the
previous call before making the next. The stream guarantees that the calls will be delivered to the
receiver in the order they were made and that the replies from the receiver will be delivered to the sender
in call order. Provided that the receiver executes the calls so that they appear to occur in call order, the
eftect of making a sequence of calls in the same as it the sender waited for the reply to each call betore
making the next.

However, new linguistic mechanisms are needed to use streams. For example, suppose
a = p(x)
b = qly)
are two calls on the same stream, and what is wanted is to begin the call of g immediately after the call of
p has been made. How can this be indicated? How can the results of the two calls be picked up without
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error or confusion? What happens if one of the calls signals an exception? Finally, suppose a
communication problem makes it impossible 10 complete one of the calls; how is this indicated?

A new kind of data type called a promise was invented to integrate streams into programming languages.
Promises support an efficient asyncronous remote procedure call for use by components of a distributed
program. They are also useful as a general way of allowing a caller to run in paralle! with a call and to
pick up the resuits of the call, including any exceptions it raises, in a convenient manner. Thus, promises
preserve the merits of organizing programs using procedures and procedure calls without sacrificing the
performance benefits of streams [LS].

Independent of the Mercury project, Dr. Shrira has worked on a new efficient fault taulerant data
replication schema. The schema improves availability of the system by exploiting the semantic
knowledge of the application to relax the up to date consistency constraint. An interesting class of
applications was identified and the schema was given a rigorous specification and correctness proof.
ILLS].

Dr. Shrira also worked on modular specifications of network protocols [FLS]. The work analyzed a
network synchronyzining algorithm by B. Awerbuch designed to be used as subcomponent in derivation
of other protocols. Modular specification and correctnes proof were given to the algorithm which enable
them to be reused in specifications and proofs of the derived protocols .
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Abstract

In the near future it will be common to see local area networks with uni—processors
and multi-processors. There is also a growing trend to program applications by
decomposing them into multiple parallel tasks of large granularity. If these multiple
tasks are assigned to different processors, then it becomes a distributed program.
However, in spite of the potential parallelism, distributing a program can easily result
in a decrease in performance. This decrease is due to such factors as extra delay in
communication between the various parallel tasks, operating system overheads such
as context switches, and delays imposed on the parallel tasks by the scheduling
algorithm. It is obvious that the total response time for a parallel application is only
as good as its slowest component. All these issues complicate the effective use of
local area networks for large grain parallelism.

In our project we have been studying the scheduling of large granularity parallel
programs on distributed systems where some of the nodes are multi-processors. We
have approached this complicated problem in three related ways: one analytical, one
based on implementation, and one based on simulation.

The analytical work considers a job to be composed of multiple, parallel tasks
generated by a fork-join construct. The parallel tasks do not communicate with

-81-



each other, except at the last phase of execution (the join). The analytical results
derive closed form solutions for response time of the fork—join job. These results show
that for uni-processors, scheduling fork-join jobs under processor sharing should be
done at the job level and not at the task level. We also derive analytical solutions
that show that the opposite is true for multiprocessors, i.e., scheduling fork-join jobs
under processor sharing should be done at the task level and not at the job level.
One implication of these results is that if a job with multiple tasks is moved {rom
a multi-processor to a uni-processor, then the job should no longer be treated as a
collection of parallel tasks. We were also able to derive analytical results for fork-join
jobs on a multiprocessor which compare processor sharing with first come first serve
(FCFS) scheduling. We find that FCFS exhibits better performance than processor
sharing over a wide range of systems. We also studied the situation where there are
two classes of jobs and where a specific number of processors is statically assigned
to each of these classes. The results demonstrate that in a multi-processor a static
assignment of processors by classes must be avoided. This latter result gives risc to
the next aspect of out project.

Current multiprocessing scheduling algorithms are quite limited, and usually treat
all tasks as independent. This could be a mistake in many circumstances. In the
implementation part of our work, we have developed a dynamic, multi—lass, multi-
processor scheduling algorithm which we intend to implement on our SEQUENT ma-
chine under MACH. The implementatior has been delayed until we obtain a version
of MACH for the SEQUENT. The algorichm supports the simultaneous execution of
short jobs, long jobs, jobs with many parallel and communicating tasks, and those
jobs which require a dedicated set of processors. The algorithm separates policy from
mechanism and is highly parameterized for ease of tuning in different environments.
It does require lightweight processes. In addition, the algoritbm makes use of the
insight gained from the analytical models. This algorithm doces not consider schedul-
ing across the network. It is necessary to integrate such a local, multi-processing,
scheduling algorithm into a distributed setting. Special problems arise when at-
tempting to integrate local multiprocessing scheduling with distributed scheduling,
especially when jobs are composed of parallel and communicating tasks. This gives
rise to the simulation phase of cur study.

The simulation study removes the restriction found in the analytical models that
parallel tasks don’t communicate with each other. In the simulation study we inves-
tigate various types of communicating parallel programs with both synchronous and
asynchronous IPC. We have developed focused addressing and bidding algorithms
that specifically address some of the major issues of such programs. A major charac-
teristic of this algorithm is that the scheduling modules at each site negoticte either
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to cluster highly communicating tasks, ..nd/or to distribute tasks across the network
when we predict that those tasks would benefit from executing on separate proces-
sors. Again, insights provided by the analytical results are used in formulating some
of the scheduling policies of this algorithm. To date, in this part of the work, we
have only considered communicating parallel tasks on a local area network of uni-
processors. Future work will attempt to integrate this scheduling algorithm with local
multi-processing scheduling algorithms. The simulation program is implemented.
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Extended Abstract

A parallel algorithm can be implemented as a set of processes executing concurrently on
many loosely-coupled processors. Marionette is a facility that simplifies the construction of such
parallel, distributed programs. It includes a library providing a high-level interface to the Unix
facilities for remote process creation, interprocess communication, and asynchronous I/O. This
interface resembles Sun Remote Procedure Call {1} both in syntax and in its use of the XDR pro-
tocol [2] for machine independent data representation, but is oriented more toward multiprocess

parallel programs than client/server interactions.

Marionette supports a master/slave model of distributed computation. It requires a distri-
buted program to be divided conceptually into a foreground, containing the program’s main
thread of control, and a background, in which functions may be executed concurrently with the
main program and with each other. The foreground and background are essentially duplicate
copies of the program's address space except that global variables in the background are read
only. The main thread invokes functions in the background using a non-blocking library call.
When one of these functions completes, the main thread accepts the result parameters into the
foreground with a second library primitive. It may either poll or block until background function
results become available. Using a configuration file, the library determines at run time the number
of processors available to the program. Attempts to invoke more functions in the background
than there are processors available return an error code.

The program may declare any global data structure to be shared between the foreground
and background. Like all global data, shared data structures may only be modified by the fore-
ground thread. If the foreground thread then notifies Marionette of the modifications with
another library call, subsequent background invocations will operate on the updated version of the
data structure.

In sum, the Marionette library provides:

. transparent initialization of remote processes.
. a means for the programmer to request that certain of his functions be executed in parallel.
. flow control in the event that the program requests more parallel operations than it has

machines available to execute them.

. a high degree of fault-tolerance. If some processors fail or become over-loaded, performance
degrades, but correct execution continues without user intervention. Similarly, if additional
processors become available, the program may take advantage of them.

) a2 mechanism for maintaining replicated data structures at all sites executing the program.

In addition to the library, Marionette includes two utility programs to smooth over some of the
mechanical concerns of distributed programming. A parallel compilation utility ensures that con-
sistent versions of the program binary files are available to the processors that will execute the
program. This utility must copy source code to file systems accessible to each processor and com-
pile these sources in instruction set of each processor. A second utility helps make debugging less
difficult by simulating execution of the multiprocess program in a single Unix process. This pro-
cess can then be monitored with the standard Unix debugging tools.

The master/slave semantics enforced by Marionette limit communication between the paral-
lel components of the program to data passed into and out of the background by the main thread.
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This organization simplifies the programmer's synchronization task, though the foreground thread
might become a performance bottleneck in communication-bound programs. The library primi-
tives are flexible enough to allow a programmer to implement a parallel algorithm without know-
ing the number, type, and relative speeds of the processors that will eventually execute the pro-
gram. Processor heterogeneity is handled by XDR and the parallel compilation utility. Through
the shared variable mechanism, a program can cache large data structures at remote processors.
The library assumes resporsibility for keeping the data structures up to date with regard to the
functions scheduled at the processor.

Marionette provides the most performance benefits to programs that can be decomposed
into many small, independent operations. When the number of operations is much larger than the
number of processors, faster or more lightly loaded processors will become available for scheduling
more frequently, hence take on a larger proportion of the work. Real applications that may be
structured in this maaner include “ray-trace” rendering in graphics [5] and Monte Carlo simula-
tion techniques used, for example, in Chemical Physics [4].

Currently, a prototype library, 2 parallel compilation utility, and some debugging tools run
on a network of Vaxes and Sun workstations. Work on a distributed implementation of the
UgRay ray-tracing renderer [3] using Marionette is nearly complete. Future eflorts will explore
the limits to parallelism imposed by our decision to synchronize communication through the fore-
ground thread.

1. B. Lyon. “Sun Remote Procedure Call Specification”, Technical Report, Sun Microsystems,
Inc., 1984.
2 B. Lyon, “Sun External Dats Representation Specification”, Technical Report, Sun

Microsystems, Inc., 1984.
D. Marsh, “UgRay: An Efficient Ray-Tracing Renderer for UniGrafix”’, Technical Report
UCB/Computer Science Dpt 87/360, University of California, Berkeley, May 1987.

4 A. Wallgvist, B. Berne and C. Pangali, “Exploiting Phbysical Parallelism Using
Supercomputers: Two Examples from Chemical Physics”, Computer 20, 5 (May 1987).

w

5. T. Whitted, "“An Improved lllumination Model for Shaded Display'’, Communications of the
ACM 28, 6 (June 1980), 343-349.
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The PHARROS Project
by

John Van Zandt
RCA Advanced Technology Laboratories

The PHATROS Project (parallel Heterogeneous
Architecture for Reliable Realtime Operating Systems) is
currently underway at RCA'S Advanced Technology

Laboratories. The goals of tha project are to develop an
operating system and associated distributed architecture to
support applications which are distributed across
next-generation networks of heterogeneous parallel
processors. The project is also concerned with methodology
and tools to assist the applications development within the
context of this system. The fscus of this project is on
applications which straddle the boundary between signal and
data processing.

To this end, we have constructed a demonstration system
consisting of a Connection Machine, a BBN Butterfly, a VAX
cluster, and a WARP, along with a set of workstations, all
networked together using an Ethernet. Next year we will be
replacing the Ethernet network with direct connections
between the processors and the Butterfly using multiple VME
buses, modeling a tightly-coupled network as will be seen in
next generation distributed systems with the Butterfly
switch and shared memory as the interconnection system. The
Butterfly processors will be used as processing resources
for both the distributed operating system and for the
application.

This year, a large signal processing and tracking
application is being implemented on top of this system.
The application is being decomposed into many interdependent
tasks which will take advantage of the heterogeneous
parallel processors in the network. The modeling of the
performance and estimations of the communication
requirementas along with other measures will gquide the
granularity to be supported by the architecture and
operating system. As part of this task we are developing a
set of tools to assist the programmer in distributing the
application. Also, performance monitoring tools will
visually guide the programmer to better understand ‘the
complex interactions of the application as it executes in
the parallel environment.
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My recent research in distributed systems has been focused in two main areas: distributed transaction
management, and heterogeneous distributed systems. These two areas are discussed in more detail
below

1 Distributed Transaction Management

In earlier work, 1 developed an approach to the design of loosely coupled transaction systems that
supports the modular design of highly concurrent applications. The approach, which builds on earlier
work on data abstraction, involves organizing programs around atomic data types. The design decisions
involved in designing a system can be divided into global and local decisions. Glotal decisions constrain
the entire system, while local decisions affect individual types. A global decision that must be made
involves the choice of a local atomicity property, which characterizes the behavior required of the differert
atomic types in a system to ensure that they cooperate to ensure global atomicity. Given this choice, new
types and transactions can be added to the system without modifying existing types of transactions, and
atomicity is still guaranteed. In other words, systems are extensible.

Extensibility is an important attribute ot a system. Performance, however, is equally imporiant. One ot
the pctential problems with transaction systems is that the leve! of concurrency can be relatively low; in
some applications this can be a serious problem. Atorric types can be used to alleviate this problem by
using the semantics of a type in designing the concurrency control and recovery algorithms for the type.
The speci‘ication of a type can be analyzed to determine the ccacurrency permitted for transactions using
objects of the type; this analysis can te used as feedback curing the design process to modity the
specification of a type it the permitted leval of concumency is not adequcte to meet the parformance
demands of the application. Furthermore, the implementation of a ty;e can be modified safc'y to permit
any level of concurrency up to the limits imposed by the type's specifications; thus, a type can be
implemented initially in a simple way that permits relatively little concurrency, and then re-implementad to
permit more concurrency if it turns out to be a concurrency bottleneck.

My current work has several goals:
« To design powerful, efficient, and easy to use mechanisms for implementing atomic data
types.

« To develop more general concurrency control and recovery algorithms.

« To understand the interactions between, e.g., concurrency control and recovery.
These goals are mutually supportive; for example, the attempt to design new mechanisms and algonithms
creates a need for a deeper understanding of the algorithms and their interactions. Some of the
algorithms | have developed illustrate interesting interactions between concurency control and reccvery; |
would like © ~ understand these interactions better, with the ultimate goal of generalizing the g'godihms
and caveloping better mechanisms for implementing them.
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| have also been involved in a major effort (in part with Nancy Lynch and Michael Merritt) to develop
formal models for describing and analyzing distributed transaction systems. We have already described
and analyzed a variety of concurrency control, replication, and orphan elimination algorithms. While the
model we have used to date allows us to analyze algorithms that cope with aborts of transactions, it does
not include a notion of a site crashing. We are currently working on modelling crashes and analyzing
algorithms that cope with crashes. In this work, as in the work described above, | am particularly
interested in modularity issues: what is the approriate decomposition of the system into pieces, and what
are reasonable correctness criteria for each of the pieces?

2 Heterogeneous Distributed Systems

A number of us at LCS have also been working on a project (formerly called the LCS Common System,
now called Mercury) aimed at solving some of the problems of heterogenecus distributed systems. We
have been particulary interested in heterogeneity at the level of the programming languages. Our work to
date has focused on two issues: the semantics of data types, and the communication model.

Data types present an obvious problem in a heterogeneous system: different languages have different
notions of data types, with different underlying representations, yet some method must still be found for
them to communicate. A basic prcmise of our approach at this point is that communication interfaces
between heterogeneous components must be described in language-independent terms. We have
designed a language-independent type system that is expressive and that permits a flexible connection
with each individual language. Earlier work typically placed serious restrictions on the set of types and
the use of type constructors, and provided relatively inflexible translations between local types and the
types used for communicalion. We are cumrently working on extending this work to permit, for example,
polymorphic interfaces.

In trying to develop a semantic model for the data types used in communication, we came to the
conclusion that these types are fundamentally different from the types used for local computation. Types
used for local computation are frequently viewed as consisting of a set of values and a set of operations.
(In a language like Ada, a module might define several types and some operations together, so the
operations might not be associated with a single type.) Types used for commurication, however, are bes!
viewed simply as sets of values. Defining the semantics of communication types by associating
operations with them can lead to sarious problems as systems evolve. This has implications for single-
language systems such as Argus (which currently does not distinguish between types used for
communication and types used for local computation), since the issue of evolution arises regardless of
the number of languages involved. We are currently redesigning the data communication mechanism in
Argus to provide better support for evolution by making a clear distinction between the two kinds of types.

Our initial discussions about communication models led to the conclusion that existing high-level
models, such as remote procedure call (RPC), are not adequate for a wide enough range of applications
(for example, driving a remote display, or transferring large amounts of data). As a result, we have
designed a new communication model that integrates RPC and byte-stream protocols into a single
semantic framework. The model allows a client to decide whether a call should be performed
immediately, in which case the system attempts to minimize the delay for the call, or whether it should be
streamed, in which case the system is free to buffer the call in an attempt to maximize throughput.

The semantics of the communication mechanism guarantee that calls sent on the same stream appear
to be executed in the order in which they are sent. Thus, a client can stream one call and then stream
additional calls without waiting for the resuits of the first call, but stilt be sure that the calls appear 1o
execute in the order in which they were made. Of course, this makes sense only it the arguments of the
later cai’s do not depend on the rasults of the first call.

The choice to stream a call is made entirely by a client: servers can k2 written more or less as they
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would be in the absence of streaming. In addition, a server needs to provide only a single intertace,
rather than one interface for clients who want to use RPC and another for clients who want to use
byte-stream protocols.

Our mechanism permits clients to pipeline remote calls, taking advantage of the concurrency between
the sender and receiver of a message, and of the butfering capabilities of the network and the
communication protocols. For some applications, pipelining can result in dramatic improvements in
performance. An interesting open question, however, involves the applicability of pipelining: for what
kinds of service interfaces can streaming be used profitably? For example, if typical uses of a service
require a client to receive the resuits of one call in order to compute the arguments for the next call,
pipelining could not be used to advantage. In the few cases we have examined, we have been able to
modity the service interfaces so that clients can pipeline calls. My hope is to develop a smail set of
general transformations of this sort, with the result that pipelining can bé used for a wide range of
applications.
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Extended Abstract

Since late 1981, the Clouds project at Georgia Tech [Allc83, Dasg87] has been occupied
with the design and construction of a reliable multicom puter, that is, a unified environment
over loosely-coupled distributed resources in which reliable aﬁplications may be constructed.
The research goals of this project include decentralized cooperative control, location
independence for data as well as processing, and failure tolerance of computations. Failure
tolerance implies the resilience of data despite node crashes, the availability of resources
despite partial failures of the system, as well as continued forward progress of jobs in the
system. The Clouds architecture offers several features in support of these goals, including
support for passive objects, capability-based object access, location-transparent object
invocation, nested and toplevel actions (transactions), and customizable as well as automatic
synchronization and recovery mechanisms.

In support of programming the levels of the Clouds system above the kernel level, we
have designed and implemented a systems programming language called Aeolus
(LeBI8S, Wilk85, Wilk86]. The purposes of the Aeolus language include: providing
abstractions of the Clouds features of objects, actions, and processes; providing access to the
recoverability and synchronization features of Clouds; and serving as a testbed for the study
of programming methodologies in action/object systems. The combination of Aeoclus and the
Clouds kernel provides support for resilient objects.

Acolus support for objects includes a hierarchy of object classifications which share a
common implementation and invocation syntax. The support in Aeolus for elements of this
hicrarchy ranges from completely automatic synchronization and recovery (the paradigm
presented by most other systems offering support for resilience), through programmable
synchronization and recovery based on object semaatics, to “lightweight’’ objects—Iliving in
the address space of their creators—in which recovery support bas been ‘“optimized out.”

A similar hierarchy of support for actions and action/object interactions is included in
Acolus. The constructs for programmer specification of resilience properties support the
separation in Clouds of failure atomicity—the “all-or-nothing’ behavior of atomic actions—
and view atomicity, in which actions are prevented from observing the uncommitted results of
other actions. Failure and view atomicity together form the traditional notion of
serializability; we believe their separation in Clouds provides a powerful means of increasing
the efficiency of actions as a reliability technique, especially in.development of resilient
structures for use in operating systems [McKe85]. This characteristic is exploited in the
linguistic features of Aeolus.

Recently, we have been using Aeolus to examine availability issues in Clouds [Wilk87].
We have developed a scheme for deriving replicated objects from single-site specifications
which we call Distributed Locking. This scheme addresses the issues of control of
concurrency and state consistency among the replicas in a system in which objects may have
arbitrary structure; in Clouds, objects may be logically nested in an arbitrary manner, in the
sense that an object may hold capabilities to other objects. Distributed Locking consists of a
methodology for deriving a replicated implementation from the single-site version, as well as a
mechanism to support this mcthodology. In accord with the Clouds philosophy in other
areas, it does not assume any particular policy for replication control (e.g., quorum
consensus).
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The methodology of Distributed Locking consists of two steps: the programmer writes a
single-site implementation of an object with appropriate Acolus/Clouds lock mode
compatibility specifications for synchronization; then, an availability specification (availspec)
is provided separately for the object, which supplies information about the object’s replication
properties. (Tbe availspec is described in more detail below.)

The mechanism provided by Distributed Locking also consists of two parts:

1. when an action obtains a lock on an object, the system also obtains locks on some subset
of its replicas, according to a user-specified policy;

2. when an action commits, the object state is copied to the subset of replicas locked in
step (1), according to another user-specified policy.

The policies for locking and state copying among replicas used in the DL mechanism may
be specified by the programmer in an availspec as handlers for the lock and copy events,
respectively. These may consist of one of several default policies (e.g., the quorum
consensus or available copies algorithms), or the programmer may specify custom handlers
using the same system-supplied primitives which we have developed for programming the
default handlers. When a quorum consensus-style algorithm is used for a lock event, the
programmer may also specify the relative availabilities of the modes of each lock type
declared by the object.

Other Clouds researchers have been concerned recently with the issue of forward progress
in Clouds. A scheme called Parallel Execution Threads (PET) has been developed which
essentially provides replication of actions as well as objects [Abam87, Aham87a)]. PET may
be regarded as a generalization of the so-called ‘‘hot spares” scheme. Our current research
includes specifying how PET may be controlled by the Clouds system; this functionality is to
be embedded in a subsystem which we call the Faulr Tolerant Job Scheduler.
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A COARSE-GRAINED DISTRIBUTED MULTIPROCESSING SYSTEM

Joan M. Wrabets
SRI International

Problem Statement

Users of distributed systems are devcloping an increasing number of applications
that are com putationally intensive, but they arc unable to obtain reasonable perfor-
mance for those applications on distributed systems. One way to improve performance
‘s to increase the amount of parallelism used in the system. However, the existing
programming languages and operating systems do not provide adequate support for
the development and execution of applications that require shared use of the available
processing resources. Current models of interaction in distributed systems arce not
appropriate to parallel computations, and must be replaced with models which provide
high-speed communication primitives and support for parallel operations.

At the same time, special-purpose stand-alone processing hardware is being incor-
porated into heterogencous networks of muliiprocessors, workstations. and paraliel-
processors.  The developers in these environments do not have the tools or the
underlving operating svstems (o support decom position of computationally intensive
applications into tasks that can functionally use the best capabilities of the heterogene-
ous processing elements. In these distributed network environments. programming
lancuages and methodologies are required that allow developers to design applications
that make the best use of the processing capabilities. both in terms of available paral-
lelism and processing hardware capabilities.

Objective

At SRI. we are developing a model for computing on these distributed networks
of heterogencous and autonomous processing elements. Our model is designed to
address two goals. The first is to provide a program ming environment and methodol-
oav that facilitates the development of parallel code to execute computationally inten-
<ive applications. This involves developing a model for parallel computation that is
appropriate for the underlyving distributed architecture.

The second soul is to provide an nnderlving execution svstem that interprets the
computing model and applies it efliciently to the distributed architecture. Current dis-
tributed svstems support interprocess communication but not efticient distributed
computation. While these systems may provide the capability of distributed or parallel
computation. no support is provided for auntomatic allocation and execution of
processes.  The execution system must make distributed computation both feasible
and efficient by providing these capabilities. One should expect the performance ol a
distributed parallel architecture 1o achieve multiprocessor performance.

Approach

In order to provide a programming environment that does not require users o
program in entirely new ways, vet allows the user to take advantage of parallelisim. we
have combined visual programming methods with the writing of sequential code 1o
produce coarse-grained tasks. Because communications and task management overs
head can be hieh on distributed system. itis not efficient to handle fine-grained tasks
and Uins conrse-grained parallelism provides o rensonable tradeofl between achievable
prrnllelism and task cxeention and contmunieation overhewd.
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In order to support the eflicient execution of coarse-grained parallel tasks on
heterogencous and autonomous processors, our computing model addresses both the
method of execution of tasks and the method of allotation of tasks. The mmethod of
execution of tasks on the graph can take one of two forms. [Execution can be data-
driven, where tasks arc executed on a first-come-first-served basis as input data
becomes available. Alternatively, execution can he demand-driven, where tasks arce
only exccuted if their output data is required for subsequent tasks. The choice of exe-
cution mechanism will affect the level of fault-tolerance, the capability for real-time
execution, and the role of external input and output handling. Further, the relative
execution costs incurred by cach of these execution mechanisms within the runtime
system of a distributed system of processors must be addressed.

The allocation of tasks to processors in the system is dynamic in order (o
efliciently utilize autonomous and heterogeneous processing capability. Incorporating
status collection to provide the information necessary for load balancing in allocation
and subsequent execution of tasks is a requirement for distributed system architec-
tures. While the effectiveness of load-balancing may be significantly reduced by the
communications costs incurred for status propagation, the cflective capacity on cach
host may differ greatly because nodes are antonomous and may be exccuting separaie
local functions. The load at each host must therefore be considered in task allocation.
Further. hecause processing resources are heterogeneous. the absolute processing
capability at cach site must also be taken into account.

The runtime svstem for graph execution must provide the capability to support 1)
information exchange between tasks on arbitrary processors, 2) task activation as
determined by the computing model. and 3) task allocation and execution onto arhi-
trary processors. Our initial focus is to develop a runtime system that uses the appli-
cative properties of the graph of an application to dvnamically allocate and execute
that graph on a distributed network of antonomous nodes. Applicative execution of
the tasks on the graph will allow the runtime system to efficiently utilize the available
processing resources. Lxecution proceeds by traversing the graph with tasks being
activated and svnchronized by input data. Communication between tasks is limited to
exchange of input and output data. and can be easily accommodated by message pass-
ing. This method of communication is deemed more natural for distributed systems
and their underlving interprocess communications primitives than other approaciies
commonly used in shared-memory multiprocessors. Furthier. elimination of data
access by oreference removes the need for shared address spaces hetween remoie
‘)1'()('(]55('.\’.

By virtue of our design. the runtime svsiem also takes advantaze of the frecdom
rom side-cfiects possible with applicative programming. and the localiy of data apli-
¢t in the graph in dyvnamically alloeating and cexecuting tasks. Inoa system with
moderate to high communication costs, exploitation of these properties is impeitive.
Finallv, the design of the execution system includes the capability for status collection
o support task allocation. and for voluntary allocation of processing capability by
autonomous nodes. We intend o take advantage of existing work for hoth of these
functions. [1]]2]

(1 Wrabetz, J, Sehireier, Lo, and Davis, M “An Overview of an Experimental Distei-
buted System™ submitted for publication 1o IERE Transacuons on Software Snginceer-
e, 19387

P20 Fzzat, AL Agrawal, R, UNaking Onesclf Known in a Distributed World”, Procecd-
s of tie 1935 International Conference on Paralle] Processing, Aug.. 1085 pes 139-

12
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tation can do without dynamic tests except in
situations where they are explicitly required.

Polymorphism allows the essentials of
algorithms to be formulated independently of a
particular application. The so obtained algorithms
are re-usable to handle objects of different proper-
ties without loss of the benefits of static typing.

Cardelli [85] and Barendregt [86] both present
languages based on the state of the art of static
typing and polymorphism. Though such languages
do with comparatively few and simple concepts,
they can be shown to cover the data abstractions of
Ada as well as the classes of object oriented
languages [Cardelli 85]. We can show that with
minor additions such languages may also allow the
description of distributed systems and com-
munication in a structured way, with the security
of static typing.

The role of language in systems development
and verification

In the evolution of programming and
specification languages we can distinguish three
stages with respect to lan-uage support in systems
development. Langua, . .- ‘ne first stage give no
support at all. Languages in the second stage—
which are accompanied by powerful run-time
systems—allow or enforce automatic inclusion of
“run time checks”, synchronization, garbage
collection, stack administration, etc. to help to
detect design errors or avoid error-prone pro-
gramming,. Languagcs in the third stage, however,
syntactically enforce consistency to make run time
checks unnecessary. One way to achieve this is
static typing. The necessary syntactic restrictions
and the enforced redundancy will be taken as a
benefit rather than an obstacle if the language not
merely rules out inconsistent systems but also
supports the development of consistent ones or
allows to write re-usable algorithms. Poly-
morphism here is a valuable tool.

With respect to algorithmic correctness, we
arc used to third stage languages. If contemporary
languages support timing at all, the corres-
ponding constructs are hardly beyond second
stage (cf. Wirth [1977]). Parnas observed in [1985]
that the support of reliability has not yet developed
beyond the first stage.

Our approach

Static typing and polymorphism as described
by [Cardelli 85) or [Barendregt 86] are based on a
mathematical theory of types general enough to
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cover not only data types (i. e. sets of values), but
also timing and reliability attributes.

A first generalization step lead to our present
language [Wupper 87]. It allows us to formally
state timing requirements and take them into the
development process to arrive at systems guaran-
teeing to fulfil these requirements without dyn-
amic time checks or synchronization. The algo-
rithms so derived are polymorphic and can be re-
used in contexts with different functionality and
different, but structurally similar, timing require-
ments.,
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Static Typing of Temporal and
Reliability Attributes in Distributed
Systems

Hanno Wupper, Jan Vytopil
Catholic University Nijmegen!

Distributed computer systems which control
physical processes must be prompt (in “real time”)
and reliable. For their methodical development one
needs a specification language that supports treat-
ment of formal promptness (timing) and reliability
requirements and that can (i) serve as a basis for
development and verification, (ii) provide a
formalism for theoretical investigation of proper-
ties of distributed reliable real-time systems, and
(iti) allow the exchange of re-usable algorithms. —
A first prototype of such a language shall be
presented. It is based on a generalization of the
concepts of static data-typing and polymorphism.
It allows to associate, in systems specifications,
attributes describing temporal properties with the
components and sub-components of the systems to
be specified in a similar way as data types are
associated with expressions and sub-expressions in
strongly typed languages. Such a specification will
be syntactically correct only if it is consistent with
respect to temporal properties and guarantees that
the specified system will fulfil the stated
requirements.

This prototype of a specification language can
be used for the development and verification of
such distributed real-time systems that have to
react at fixed moments or within a fixed period. It
has mainly to be developed to show that a
consistent language based on the principles of
static timing and reliability typing can indeed be
defined. Future versions will also contain
constructs for systems with variable temporal
behaviour and will, morecover, trcat recliability
attributes besides the temporal ones.

Clarification of terms

Timing requirements for real-time systems
must not only include qualitative statements about
the necessary temporal order of activities, but
morecover quantitative statements with respect to
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physical time (e.g. the duration of an activity in
seconds) [Koymans 83].

Reliability in computer science often is
defined as the probability that a certain component
functions correctly over a certain period of time.
This definition gives rise to four questions: (1)
Does it cover ‘Reliability” in the sense of natural
language (i. e. is it a sufficient basis to allow to
decide whether we can “rely” on a system)? (2) If
we accept the definition: How do we obtain the
reliabilities of the building blocks of systems (in
other words: what means “to function”)? (3) How
docs a system's reliability depend on its structure
and the reliabilities of its components. (4) How can
we formulate reliability requirements for the
overall system?

Queston (1) is extra-mathematical and shall
not be addressed. In any case this probabilistic
approach is widely accepted to approximate
Reliability closely enough to justify further re-
search. For hardware components, engincering
disciplines have contributed a lot to (2) [Birolini
85]. (3) is purely intra-mathematical and has been
studied well: If components of known reliabilities
and known average repair times are assembled in a
given way, the overall reliability can be computed
by statistical means. This has lead to approved
methods to include redundancy in systems in
order to increase reliability. The requirement that
redundant components be really independent is
usually not checked formally, however. Analysis of
accidents often reveals that their cause was not an
unforeseen failure of a basic component but an
illegal interference between components assumed
to be independent [Leveson 86]. Though reliability
is a probability, (4) cannot simply be dealt with by
stating one number for a whole system. It is more
realistic—and common practice—to separately re-
quire reliabilities differing in order of magnitude
for different sub-functions of a complex system.
Reliability requirements are in itsclf something
complex, closely linked to the system structure. A
language that allows to formally establish that link,
is still missing, however.

Static typing associates an attribute (“type”)
with certain or all sub-expressions of a text;
conventionally this is a “data type” saying some-
thing about the set of values the expression may
possibly assume. If such a text has been proved to
be syntactically correct, this ensures that during
execution all function applications will be well-
defined and that the corresponding implemen-



