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Abstract

Underspecification is a good way to deal with partial functions in specifica-
tion and reasoning. However, when underspecification is used, implementa-
tions may unintentionally be forced to depend on parts of the specification
that were supposed to be underspecified. We show how to write pre- and
postcondition specifications that avoid such problems, by having the pre-
condition “protect” the postcondition from the effects of underspecification.
This approach is most practical if the specification of mathematical vocab-
ulary is separated from the specification of implementation behavior, as in
Larch, because it gives the specifier a chance to think about protection sep-
arately from the specification of mathematical behavior. We formalize the
notion of protective procedure specifications, and show how to prove that
a specification is protective. We also extend the Larch Shared Language
to allow specification of what is intentionally left underspecified, which also
allows enhanced “debugging” of such specifications.



1 TUndefinedness and Underspecification

Any method for specifying and verifying computer programs has to deal
with partial functions. Our explanation of this problem reviews a recent
article by C. Jones [13]. Since the use of underspecification as a solution to
this problem has been advocated by others [9], our point, in this review, is
the need for ways to:

e document what is intended to be “completely-defined” (or, conversely,
underspecified), and

e prevent underspecification from having unintended consequences.

1.1 Background

A partial funclion is a function that does not give a value for some ele-
ments of its declared domain. For example, the operator that returns the
head of a list can be modeled as a partial function on lists; if that is done,
then head(empty) fails to denote an element. (That is, head(empty) is
“undefined.”)

One way to deal with partiality in reasoning is to use a specialized logic,
for example, one with three logical values and two kinds of equality [1].
However, because all such logics either do not satisfy standard logical laws
or are not compositional, such logics are subtle, and thus more difficult to
use and teach [9]. More importantly, if one uses informal reasoning and
informal specifications, as is common in real software projects, then there is
no hope of using such a specialized logic.

We agree with Gries and Schneider [9] that the best approach to dealing
with partiality is to use underspecification. That is, one avoids specifying
a value for undefined terms, but assumes that all functions are total. As
a concrete example of this approach, consider the Larch Shared Language
(LSL) [10, Chapter 4], [11]. In LSL’s logic, all functions are presumed to be
total. That is, head(empty) denotes some element of the appropriate type,
even if the user has not specified what element that term denotes. Where
an LSL specification is silent, terms take on some (unspecified) value.

In common with other logics that use underspecification to avoid the
undefined, the logic of LSL is classical, and thus has several pleasing formal
properties. More importantly, classical logic matches informal reasoning.

1.2 Jones’s Examples

Recently, Jones presented some “counter examples” to logics like LSL’s,
which use underspecification to deal with partiality [13]. We use these ex-
amples to explain LSL, underspecification, and the problem we are solving.

We translate Jones’s first example into the LSL trait shown in Figure 1.
This trait defines a sort, OneElem, a constant it, and a function £. Because
of the generated by clause, the sort OneElem has only one element, the
constant it. (The current version of LSL allows such sorts, contrary to
[13].) In LSL £(-1) = it, because £ has to take on some value when



JonesExamplel: trait
includes Integer
introduces

it: — OneElem
f: Int — OneElem

asserts
OneElem generated by it
Y i: Int
£f(i) == if i=0 then it else f(i-1)
implies

converts f: Int — OneElem

Figure 1: Jones’s “counter example”.

applied to -1, and the only possible value is it. Although Jones notes that
this is “not an inconsistency” he says that “it is certainly likely to surprise
someone who views” the definition of £ as specifying “a partial function”
(p. 66). However, the amount of surprise would be in direct proportion to
the strength of the person’s belief that they are defining partial functions
in LSL, a view that is simply mistaken. Thus, rather than being a “counter
example,” we see this as an “educational example.”

Although this example illustrates the technical point that all LSL func-
tions are total, we do not expect that every user of LSL understands it.
Instead, we believe that a practical specification formalism should allow the
specifier to state what is intended to be “completely-defined” (or, conversely,
underspecified) in such cases.

Jones’s other major example brings out a more important warning about
the underspecification approach. This example is a recursive definition of the
factorial function, and is translated into LSL in Figure 2. Jones’s warning
about this example is that, in a logic such as LSL’s, a model of fact must
satisfy irrelevant equations such as the following, which is also highlighted
in the redundant implies section of the trait.

fact(—1) == —fact(-2) (1)

This follows because fact(-1) denotes some (unspecified) value. Assuming
that such equations are accidents of the logic and not intended by the spec-
ifier, it would be very serious if such irrelevant properties would have to be
implemented in a program.

Gries and Schneider [9], in reply to this last example, say that “the fault
lies in the recursive definition rather than in handling the undefined by un-
derspecification” (p. 373). Their specification of this example is translated
into LSL in Figure 3.

However, Gries and Schneider’s specification does not completely dis-
pense with the problems that Jones’s factorial example raises. The remain-
ing problem is that users might accidentally do what Jones’s factorial ex-



factTrait: trait
includes Integer
introduces
fact: Int — Int
asserts
¥V i: Int
fact(i) == if i=0 then 1 else i * fact(i-1);
implies
equations
fact(3) == 6;
fact(-1) == - fact(-2);

Figure 2: Jones’s factorial example.

factTrait2: trait
includes Integer
introduces
fact: Int — Int
asserts
V i: Int
fact(0) == 1;
(i >0) = fact(i) = i * fact(i-1);
implies
equations
fact(3) == 6;

Figure 3: Gries and Schneider’s improvement to Jones’s factorial example.




ample warns against: require implementations to satisfy unintended con-
straints. The point is that users of such a specification formalism are prone
to make such mistakes, unless the formalism has some way of preventing or
catching such mistakes.

Gries and Schneider’s version of the specification avoids the problems
Jones warns against, but they offer only education as a remedy. While we
applaud their efforts, we believe that more practical solutions should not
require so much sophistication, especially if they are to be used informally.
Thus we advocate:

e the separation of an implementation’s specification into two tiers, and

e redundant ways of specifying what is intended to be completely-defined
(or underspecified).

The separation of a specification into two tiers can be used even in infor-
mal contexts [16] to guard against the problems Jones warns about. The
redundant ways of specifying intent can be used to debug and check formal
specifications to further guard against this problem.

In formal specifications, redundant ways of specifying intent are needed,
because a logical formula may encode information about the intended do-
main of definition of an operator in various clever ways. Such clever en-
codings may make it difficult to extract the information that Gries and
Schneider’s definition so clearly displays. For example, each of the following
formulas is equivalent to the last axiom in the asserts section of Figure 3
[8, Section 3.6].

= (i>0) V fact(i) = i * fact(i-1);
((1 >0) A fact(i) = i * fact(i-1)) = (i > 0);

= (fact(i) = i * fact(i-1)) = = (i > 0);

1.3 Outline of the Paper

In Section 2 below we show how one can use preconditions in layered speci-
fications, as in Larch, to protect against the consequences of underspecified
mathematical vocabulary. In Section 3 we define protection and show how
to prove that a behavioral interface specification is protective. In Section 4
we extend LSL to allow one to specify what is intended to be completely-
defined by a trait, and then use that information to give a second proof
technique for proving that a behavioral interface specification is protective.
In Section 5 we offer some discussion, and we conclude with a summary in
Section 6.

2 Protection from the Underspecified

The use of pre- and postconditions in a specification helps avoid imposing
unintended constraints on implementations. Since one only cares about the
meaning of the postcondition when the precondition is true, the precondi-
tion can “protect” the mathematical operators used in the postcondition



int factorial(int x) {
requires informally "x is nonnegative and not too big";
ensures informally "result is the factorial of x";

}

Figure 4: An informal version of the factorial example.

from areas of underspecification. Thus when specifying the mathematical
operators, one need not be as careful as Gries and Schneider.

To make these ideas concrete, we consider the Larch family of behavioral
interface specification languages (BISLs) [12, 24, 23]. In the Larch family,
one specifies implementations in two tiers by describing;:

e mathematical vocabulary in LSL, and

e syntactic interfaces (names, types, number of arguments, etc.), and
behavior (pre- and postconditions) in a BISL.

Each BISL is tailored to specifying interface details for some specific pro-
gramming language. (The interface aspects are of no concern in this paper.)

The idea of protection in a BISL was first formulated by Wing [24, Sec-
tion 5.1.4]. Although we generalize that notion here, what we seek is the
same as Wing’s original goal: knowing when a behavioral interface spec-
ification has protected “its users from the incompleteness of the trait by
ensuring that the meaning of the procedure specification is independent of”
any incompleteness in the trait (p. 123).

An example of how this idea can be used informally is given in Figure 4,
which specifies an integer-valued factorial procedure, which is to be imple-
mented in C++4. The informal pre- and postconditions follow requires
and ensures, respectively. (The keyword informally in Larch/C++ [15]
signals the start of an informal predicate.) In this specification the pre-
condition requires that the argument x has a well-defined factorial. Since
the precondition “protects” the postcondition in this manner, the (implicit)
underspecification of “the factorial of x” when x is negative does not mat-
ter. (The requirement that x is “not too big” allows an implementation of
factorial to guarantee termination.)

A formal version of the factorial example, also specified in Larch/C++,
appears in Figure 5. The uses clause says that this specification is written
using mathematical vocabulary drawn from (some built-in traits and) the
trait factTrait of Figure 2. Since the suspect trait is used, does a cor-
rect implementation of Figure 5, have to satisfy irrelevant consequences of
factTrait’s theory, such as Equation (1)7 It does not, because the precon-
dition “protects” the use of the trait’s fact operator in the postcondition.
That is, the precondition specifies that the argument must be positive. If
the argument is not positive, then, as usual, the specification says nothing
about the result. So if the precondition is not met, the implementation is



uses factTrait(int for Int);

int factorial(int x) {
requires 0 < x A x < 8;
ensures result = fact(x);

}

Figure 5: A formal version of the factorial example.

imports Table, Elem, Key, NoAssociation;

Elem fetch(Table t, Key k) throw(NoAssociation) {
ensures (defined(t, k) = result = apply(t, k))
A (—defined(t, k) = thrown(NoAssociation) = theException);

Figure 6: Protective specification of a C++4+ member function that fetches
an element from a table.

under no obligation to meet the postcondition, and hence need not worry
about the consequences of Equation (1). More importantly, if the precondi-
tion is met, then the implementation need not worry about the consequences
of Equation (1), because the argument will be nonnegative.

In programs, one often wants to raise (throw) an exception when some
boundary condition is violated. One way to write such a specification is
shown in Figure 6. In this figure, the abstract values of Table objects are
taken from the sort Min the trait FiniteMap [10, p. 185]. (A part of this trait
is shown in Figure 7.) Note that the operator apply is underspecified and
that definedis simply another operator from the trait FiniteMap. The term
“thrown(NoAssociation) = theException” in the postcondition means
that an exception is raised, and that the exception’s type is NoAssociation,
and that the exception result’s abstract value is theException.

In Figure 6, there are, in essence, two preconditions, defined(t, k) and
its negation, and the first of these is protecting the application of apply.
This postcondition is well-defined, even though apply is underspecified, be-
cause apply takes on some (arbitrary) value for the empty table and because
LSL uses classical logic.

As an aside, users of a specification language might still worry that the
postcondition of Figure 6 is “undefined” if part of it is. This worry can
be alleviated in Larch/C++ by a syntactic sugar that allows one to split
the specification up into multiple cases, each with its own precondition.
This sugar would allow the specification in Figure 6 to be written as in
Figure 8. Such multiple pre- and postconditions are similar to guarded



FiniteMap(M,D,R): trait
introduces
{}: = n
update: M, D, R — M
apply: M, D —- R
defined: M, D — Bool
asserts
M generated by {}, update
M partitioned by apply, defined
¥V m: M, d,d1,d2: D, r: R
apply(update(m,d2,r), d1) == if d1=d2 then r else apply(m,d1);
—defined({}, d4);
defined(update(m,d2,r), d1) == d1=d2 V defined(m,d1)
implies
converts apply, defined exempting V d: D apply({}, d)

Figure 7: Part of the FiniteMap trait, quoted from [10, p. 185].

imports Table, Elem, Key;

Elem fetch(Table t, Key k) throw(NoAssociation) {
requires defined(t, k);
ensures result = apply(t, k);

requires —defined(t, k);
ensures thrown(NoAssociation) = theException;

Figure 8: A sugared version of the previous specification of fetch. An
implementation has to satisfy both pre- and postcondition pairs.

commands [4], and have been used in the specification languages Larch/CLU
[24, Section 4.1.4], and Fresco [20, 22, 21]. Besides bringing the issue of
protection to the specifier’s attention, this notational convenience makes it
easier to automatically check that a specification is protective. Without such
notation, the specification of Figure 6 could be expressed in various logically
equivalent ways that would make it hard to see what is being protected.
We believe that, during interface specification, a specifier would normally
think about such issues as whether the mathematical operators are well-
defined on their arguments when writing the precondition of such procedure
specifications. This belief is based on our experience in writing behavioral
interface specifications, and in teaching students to write such specifications.
The use of two tiers with preconditions for specifying implementations thus
meshes well with the underspecification approach, because the values of
mathematical operators outside their domains are not needed to understand



or implement such a specification.

In the rest of this paper we explore the notion of protection, with the
aim of improving intuition about protection and providing more guidance
to specifiers. To this end we concentrate on formal specifications below.

3 Completely-defined and Protective Specifica-
tions

In this section we formally define the notion of protection in a BISL using
the more primitive notion of a completely-defined term.

We say that an LSL term is completely-defined if it can be proved to have
the same value in all models of its trait. To state this condition formally,
we use a variation of an idea found in the Larch Prover for proving that an
operator is “converted” [10, pp. 142-4].

Let T be a trait. Let T’ be a version of the trait 7 with every operator
fin T replaced by f’, except that the following operators are left alone:

e all operators in the built-in trait Boolean,

e all operators in all instances of the built-in traits Conditional (which
specifies if then else), and Equality (which specifies the operators =
and #), and

e all operators mentioned in a generated by clause.

For example, the trait factTrait’ has fact replaced by fact’, but true
and the boolean operators are not primed, and neither are 0, pred, and
succ, because they are mentioned in the generated by clause of the trait
Integer [10, p. 161]. (Operators mentioned in a generated by clause are
meant to be a canonical way to describe values of a given sort; two ways to
describe such values cannot both be canonical.)

Similarly, if P is a term in the language of 7', then let P’ be a copy of
P with every operator f that appears in P replaced by f’, with the same
exceptions as above. For example, if P is “result = fact(x)”, then P’ would
be “result = fact’(x)”, because fact is not exempted from priming, “="
is exempt from priming, and result and x are not operators.

In what follows, we write T' = P to mean that P is provable from trait

T.

Definition 3.1 (completely-defined) An LSL term P(Z), with free vari-
ables & of sorts U, is completely-defined for trait 7' if and only if T UT' +
Vi:U.P(@) = P(%).

Trivial examples of completely-defined terms include variables, because
in each trait ', T = Vz : U .z = z. A more interesting example is that, for
factTrait, the term fact(27) is completely-defined, but both fact(-1)
and fact(x), where x:Int, are not.

Just because a term is not completely-defined does not mean it is “bad”.
For example, the term choose({1} U {2}) is not completely-defined for the
trait ChoiceSet (of [10, p. 176]).



The following definition of when a procedure specification is protective
says, in essence, that the precondition must be completely-defined for the
used trait, and that whenever the precondition holds, then the postcondition
must be completely-defined for the used trait.

Definition 3.2 (protective) A procedure specification, S, that uses trait
T is protective if for each pair of precondition Q(&) and postcondition R(Z),

o TUT'FVYZ:U.Q(F) = Q'(%), and
o TUT'FVZ:U.Q(F) = (R(Z) = R'(7)).

The definition of a protective procedure specification suggests a direct
proof technique. For example, to prove that the specification of factorial
in Figure 5 is protective, one must show that factTrait U factTrait’
proves both of the following;:

e Vx:int. (0<xAx<8)=(0<"xAx<'8), and
e Vx:int.(0 < xAx < 8) = (result = fact(x)) = (result = fact’(x)).

Although such proofs are straightforward, they are quite tedious.

4 Proving Protection in a BISL

In this section we describe an easier way to prove protection in a BISL.
This proof technique uses extra information that specifiers would add to
LSL traits. This extra information would also allow a user of LSL to more
precisely specify and check what is intended to be completely-defined.

4.1 Specifying What is Not Underspecified

LSL already has some provision for specifying what is not underspecified —
the specification of when an operator is “converted”. This is done by using
a converts clause, as was done in Figure 1. A converts clause says that
the axioms of the trait uniquely define the operators named in the clause,
“relative to the other operators in the trait” [10, p. 142]. (See the appendix
for a more complete explanation of conversion.)

Unfortunately, proving that an LSL operator is converted does not mean
it is completely-defined; it may still be underspecified. For example, consider
the trait in Figure 9. In this trait, the operator somewhatBigger is defined to
be equal to muchBigger; however, muchBigger is quite underspecified, since
no assertions constrain it. Yet, the converts clause in the implies section
is still provable, because somewhatBigger is completely-defined, relative to
muchBigger. That is, once muchBigger is determined, somewhatBigger
becomes completely-defined.

Because of this distinction between conversion and complete definition
we propose adding another implication clause to LSL. This clause, which
we call the exact clause, has a form similar to that of the LSL exempting
clause (although it would not be a subclause of a converts clause). The



biggerTrait: trait
includes Integer

introduces
muchBigger, somewhatBigger: Int — Int
asserts
V i: Int
somewhatBigger(i) == muchBigger(i);
implies

converts somewhatBigger: Int — Int

Figure 9: An LSL trait in which somewhatBigger is convertible, but
somewhatBigger (i) is not completely-defined.

factTrait: trait
includes Integer
introduces
fact: Int — Int
asserts
V i: Int
fact(i) == if i=0 then 1 else i * fact(i-1);
implies
equations
fact(3) == 6;
exact V k: Int such that k¥ > 0
fact (k)

Figure 10: Factorial example demonstrating the exact clause.

idea is that it would allow one to specify terms that should be completely-
defined. For example the exact clause in Figure 10 says that terms of the
form fact(k) are intended to be completely-defined, if k > 0.

The extra information in the exact clause can be used to help debug an
LSL specification, by trying to prove the following property.

Definition 4.1 (exact for 7') Let T be a trail that contains an exact
clause of the form exact Vd : A such that Q(ad) P(d), where Q(d) is a
predicate and P(d@) is a term in the language of T. This clause is exact for

T if and only if:
TUT FVa:A.(Q@)AQ'a) = P(@) = P(a). (2)

For example, in Figure 10, the exact clause is exact for factTrait if
the following condition is provable from factTrait U factTrait’.

Vk:Int.(k > 0Ak > 0) = fact(k) = fact'(k).

The proof would proceed by induction on k.

10



Exact(‘z’) = true, if 2 is a variable
Exact(‘P(E)’) = Np,cp Exact (CE?) A Q(E),

if the trait’s implies section contains a clause:

exact Vi : A such that Q(@) P(a)
Exact(‘—FE’) = Exact(‘E’)
Exact(‘Fy o Fy’) = Exact(‘Fy’) N Exact(‘Ey’),

if o is =, #, or a boolean operator: A, V, or =
Exact(‘VZ:T .E’) =VZ:T . Exact(‘E’)
Exact(‘I7:7 .E’) =VZ:T . Exact(‘E’)
Exact(‘if F; then F, else F)5°) = Exact(‘FE;’)

A Exact(‘FEy’) A Exact(‘E3?)

Exact(‘F’) = false, otherwise

Figure 11: Definition of Exact.

4.2 Exact Predicates

For use in proving protection, we define predicates of the form Exact(‘E’),
based on the form (text) of each expression £. (These resemble the domain
predicates, Dom(‘E?), described by some authors [7, 3, 2]. However, they
have a different purpose, since an operator, such as choose on nonempty
sets, may be underspecified for a reason other than being partial.) The
definition of Exact(‘-’) is based on the exact clauses given in the trait’s
implications (and those of included traits). This definition is lifted to ar-
bitrary terms by requiring terms substituted for the variables in an exact
clause to be themselves exact, and using the structure of terms formed from
LSL’s built-in trait operators (boolean operators, equality, and condition-
als). See Figure 11 for the definition.!
For example, for the trait of Figure 10, the following holds.

Exact(‘fact(i)’) = (i > 0)

As another example, as no exact clause is given in Figure 1, Exact(‘£(1)°)
is false, even though the term is completely-defined.

4.3 Using Exact Predicates to Prove Protection

Provided the information given in the exact clauses are exact for a trait 7T,
then Exact predicates can be used as a sufficient condition for determining
when a term is completely-defined for T'.

Lemma 4.2 LetT be a trait in which each exact clause is exact for T'. Let
R(Z) be a term with free variables & : U. If T F VZ :U .Exact(‘R(Z)’),
then R(Z) is completely-defined for T'.

!The free variables of these terms are not important, so they are suppressed.

11



Proof: (by induction on the structure of terms). Let R(Z) be such that
T+VZ:U .Exact(‘R()’).

For the basis, suppose R(Z) is a variable ;. Then Vi : U.az; = a; is
trivially provable, and so z; is completely-defined by definition.

For the inductive step, suppose that the result holds for all subterms of
R(Z). If R(Z) is an invocation of some operator of 1" that is not a boolean
operator, equality, inequality, or if then else, then by definition, it must

—

be that R(Z) has the form P(E(Z)) and that trait 7" has a clause of the
form exact Va : A such that (@) P(@). Furthermore, by definition of
Exact (¢ - ), it must be the case that

T A\ Exact(‘Ei(Z)’) AQE(T)). (3)
E(2)eE(2)
Since T’ is a primed copy of T, it must also be the case that
'+ N\ Exact(‘E{Z)’) AQ'(E'(T)). (4)
EN&)eE!(F)
Because the & are free in the above two formulas, by universal generalization
TUT' FYE:U.Q(E(Z) AQ' (E'(X)). (5)
By the inductive hypothesis, since each F;(Z) is exact, for each 7,
TUT' FYE:U. Ey(Z) = EY&). (6)
Since the exact clauses are assumed to be exact for T, by definition we have
TUT' FVa:A.(Q(@) AQ(a) = P(a) = P(a). (7)
Instantiating @ to E(Z), and using Formula (6), it follows that
TUT'FYE: U (QIE@) AQ'(E(@)) = P(E@) = P(E'(&)  (8)

But by (5), the hypothesis of this implication is provable, so T U T’ F
VZ: U . P(E(Z)) = P'(E'(Z)) follows.

The other cases follow directly from the inductive hypothesis and the
definition of Exact(¢-?). 11

However, the converse to the above lemma does not hold. One reason is
that the specifier of the used trait may not note when some terms are exact.
But even if the information given is complete, the definition of Exact does
not take into account other knowledge from the theory of the trait. For
example, consider the trait bufferTrait, which is specified in Figure 12.
It specifies the constant bufSize, but bufSize is underspecified (hence no
exact clause is given). The term

bufSize < 4096

is completely-defined for bufferTrait. However,

Exact(‘bufSize < 4096’) = false,

12



bufferTrait: trait
includes Integer
introduces
bufSize: — Int
asserts
equations
0 < bufSize A bufSize < 1024;

Figure 12: A trait with an underspecified constant.

because Exact(‘bufSize’) is false.

Definition 4.3 (exact procedure specification) A procedure specifica-
tion, S, that uses trait T is exact if for each pair of precondition Q(Z) and
)

postcondition R(Z)
o THVZ:U .Exact(‘Q(&)’), and
o THVYZ:U.Q(F) = Exact (‘R(d)’).

Our suggested technique for proving that a procedure specification is
protective, therefore, is to prove that it is exact.

Corollary 4.4 Let T be a trait in which each exact clause is exact for T.
Let S be a procedure specification that uses trait T. If S is exact, then S is
protective.

Proof: Let Q(Z) be the precondition of S, and let R(Z) be its postcondi-
tion. Suppose S is exact. Then by definition, T+ VZ : U . Exact(‘Q(Z)?).
So by Lemma 4.2, Q(Z) is completely-defined for 7. Also by definition,
T+ VYZ:U .Q(F) = Exact(‘R(Z)’). Suppose for each &, Q(Z) holds.
Then, for each &, Exact(R(Z)’) holds, and so by Lemma 4.2, R(Z) is
completely-defined for 7. i

As an example of the use of the above corollary, we show how to prove
that the specification of factorial in Figure 5 is completely-defined with
respect to the trait in Figure 10. To do this we prove that the specification
is exact with respect to the trait in Figure 10. First, the precondition is
exact, because Exact(‘x > 07’) is true. (Exact(‘0’) is true, because
0 is a generator. We assume the trait Integer has been extended with
implications that say that > is exact.) Then for the postcondition, one can
calculate as follows, for all x : int.

x > 0 = Exact(‘result = fact(x)?’)
= {by definition of Exact}
x > 0 = (Exact(‘result’) A Exact(‘fact(x)’)
= {by definition of Exact for fact, treating result as a variable}
x > 0 = (true A true A true A x > 0)
= {by predicate calculus}
true

13



void chaos1(int& x) {
modifies x;
ensures true;

}

Figure 13: The Larch/C++ specification of a procedure that is protective,
even exact, but not deterministic.

uses bufferTrait;

int foo(int x) {
requires bufSize < x;
ensures result = 3;

}

Figure 14: A specification that is deterministic but not protective.

However, if a procedure specification is protective, it is not necessarily
exact. For example, a specification that uses the term bufSize < 4096 as
its precondition could be protective without being exact. Thus exactness is
a sufficient, but not necessary, condition for protection.

As another example, consider the specifications of the fetch procedure
in Figures 6 and 8. Suppose the following exact clause were added to the
trait FiniteMap in Figure 7.

exact V m:M, 4:D such that defined(m, 4)
apply(m, d)

Then the specification of Figure 6 is protective, but not exact for this aug-
mented FiniteMap trait. However, the specification of Figure 8 is exact.

5 Discussion

One might wonder whether a procedure specification is protective if and
only if it is deterministic. However, the two notions are orthogonal. For
example, the specification given in Figure 13 is protective (even exact) but
very nondeterministic. It specifies a C+4 procedure that can change the
value of the object x (passed by reference) to any integer. Figure 14 is an
example of a specification that is not protective, because the precondition
is not completely-defined, but the procedure specified must be deterministic
when its precondition is met.

One might think that, if one could avoid incompleteness at the trait
level, then one would not need the underspecification approach at all. The
problem is how to complete an LSL specification in a general way (i.e., one
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for which some sensible logic exists). One might imagine using an initial (or
final) semantics for LSL traits, since such a semantics is a general way to
complete equational specifications. However, such initial (or final) algebras
do not exist, in general, for specifications in LSL [25, Section 5.4], because
LSL traits can contain generated by clauses, which act as hierarchy con-
ditions. (For example, an initial algebra for factTrait in Figure 2, would
contain nonstandard integers, such as fact(-1), which are prohibited by
the generated by clause in the LSL Integer trait.) Although for LSL,
and other specification languages with powerful hierarchy constructs, such
a completion of the specification is impossible in general, some specification
languages do have general ways to complete specifications (e.g., VDM-SL
[14] and COLD [5]). Such completions usually take advantage of the fact that
besides proper values, each type in a programming language can be thought
of as having at least one improper value (L), which is used to model compu-
tations of that type that go into infinite loops or cause errors. However, to
avoid overspecification (i.e., not allowing a specified procedure to terminate
normally with a proper value) such languages tend to have either a complex
semantics for procedure specifications or a specialized logic.

One might think that in a specification language such as VDM-SL [14]
or COLD [5], in which the specification logic does not use the underspecifi-
cation approach, the concept of protection is not useful. But even in such a
language, one could use the precondition to protect the postcondition from
non-classical or non-compositional features of the logic, or from the more
subtle notions in the logic. Since such specifications would be less dependent
on the logical details, we believe that they would be clearer.

In PVS [18], the logic uses total functions, but each function has a do-
main that is precisely defined using a predicate. Our use of exact clauses
is similar, but allows one to say what terms are intended to be completely-
defined, not just what the domain of an operator is. In PVS an attempt to
apply a mathematical operator outside its domain would be a type error.
If PVS were used as the mathematical basis for a BISL, then one would be
forced to write protective specifications in order to prevent type errors in
post-conditions.

For Z [19], it seems that the draft standard has adopted the underspecifi-
cation approach [26]. To apply our ideas to Z, then, one would define BISLs
that use Z instead of LSL as the mathematical tier, and then the notion of
protection would be used in the BISLs.

Protection is also a useful concept when coupled with executable spec-
ifications. In a language like Eiffel [17], having a precondition be flagged
as false helps debugging more than having an error occur in the body of a
procedure or an executable postcondition.

6 Summary

In this paper we have shown that the Larch approach to behavioral inter-
face specification has significant advantages in avoiding potential problems
caused by underspecification. Using separate tiers for the specification of
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Level ‘ Facts

Trait | exact = completely-defined Lemma 4.2
completely-defined # convertible Figure 9

BISL | exact = protective Corollary 4.4
protective # deterministic Figures 13 and 14

Table 1: Summary of concepts discussed in this paper.

mathematical operators and procedure implementations allows procedure
specifications to protect implementations from dependence on underspecified
mathematical operators. Thus the Larch approach mitigates the problems
Jones warned about [13].

Our technical results are summarized in Table 1. The main concept is
when a BISL procedure specification is protective, in the sense that it does
not force implementations to satisfy unintended consequences of an LSL
trait. We have given two proof techniques for proving protection, one of
which is equivalent to the definition (based on the notion of completely-
defined terms), and a sufficient (but not necessary) test based on the notion
of exact terms that is easier to apply. The concept of an exact term is
based on an extension to LSL that allows one to specify which terms are not
intended to be underspecified. This extension to LSL provides better docu-
mentation and allows enhanced debugging (in the sense of [6] [10, Chapter
7]) of LSL specifications.

Although, for concreteness, these ideas have been presented in the con-
text of Larch, they could be adapted to other formal specification languages
that use underspecification.
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A Appendix: Conversion and an Extension to
LSL

This appendix explains the notion of conversion in LSL, and also presents an
extension to LSL that makes the specification of conversion more expressive.

A.1 Conversion

In a LSL trait, one can state redundant properties (theorems) that one be-
lieves do (or should) hold. These redundant properties are stated in the
implies section of the specification. Proofs of such properties can be at-
tempted, and are a way of debugging the trait [6] [10, Chapter 7].

For our purposes, the most interesting kind of redundant property one
can state in the implies section is that an operator is well-defined with
respect to other operators. This is done by using a converts clause, as
was done in Figure 1. A converts clause says that the axioms of the trait
uniquely define the operators named in the clause, “relative to the other
operators in the trait” [10, p. 142]. To prove this, one must show it for
all possible arguments. The Larch Prover (LP) uses the following proof
technique [10, pp. 142-4]. Let T(f) be a trait, which names operators f
in converts clauses in its implies section. Let T(f’) be a version of the
trait T(f) in which each of the operators f; named in a converts clause is
replaced by f!. Then one proves, for each such f; : A= B,

Th(T(f)UT(P)) FVa: A. f(@) = fl(a). (9)

The proof would show that there cannot be two different interpretations of
the operator f;.

For example, to prove the converts clause for £ in Figure 1, one axiom-
atizes an operator £’ in the same way as £, and then proves the following.

V i: Int £(i) == £’(1)

(This is proved by using the rule given by the generated by clause in
Figure 1.)

Often one wants to prove that an operator is converted, except for some
arguments. For example, one would want to prove that the head operator
on lists is converted, except that head (empty), which is purposely left un-
derspecified. To do this one uses a converts clause of the following form in

LSL.

converts
head: List[T] — T
exempting head(empty)

The exempting clause allows the specifier to state what terms are inten-
tionally underspecified. In terms of the proof that head is converted, except
where it is not intentionally underspecified, the exempting clause allows one
to use the following equation

head(empty) == head’ (empty)

in the proof that, for all lists 1, head(1) == head’(1).
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factTrait: trait
includes Integer
introduces
fact: Int — Int
asserts
V i: Int
fact(i) == if i=0 then 1 else i * fact(i-1);
implies
¥V i: Int
fact(3) == 6;
converts
fact: Int — Int
exempting V k: Int such that k < 0
fact (k)

Figure 15: A trait demonstrating the extended exempting clause.

A.2 An extension to LSL

The exempting clause in the current LSL [10, Chapter 4] [11] does not have
enough expressive power to state, in general, what is left underspecified.
One can only exempt a class of terms that are described by constants or
universally quantified variables. For example, one cannot specify that fact
in Figure 2 is intentionally underspecified by adding an exempting clause,
because the current LSL only allows one to specify that constants, or all
integers, are exempted. That is, there is no way to say that only the negative
integers are exempted.

We propose extending LSL by allowing domain predicates for the vari-
able declarations in an exempting clause. For example, we would allow
the exempting clause of the trait given in Figure 15. This form of the
exempting clause allows one to specify the intended exemptions with an
arbitrary (boolean-valued) LSL term.?

The extension to the LP proof technique for proving the converts clause
in Figure 15 is simple. The exempting clause gives one the following for-
mula

VY k: Int
(k < 0) = fact(k) == fact’(k)

which one can use in the proof that, for all integers i, fact(i) == fact’(1).
Given that fact’ is axiomatized with a copy of the axioms for fact, this
allows one to prove that fact is converted where it is not intentionally un-
derspecified.

This extension to LSL increases its expressive power by its ability to
state redundant and checkable information.

2There is logical problem if the predicate following such that uses an operator being
specified as converted. The simplest thing to do is not to allow the use of such operators
in the domain predicate (following such that).
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