A New Definition of the Subtype Relation

Barbara Liskov® Jeannette M. Wing
April 1993
CMU-CS-93-149

SMIT Lab. for Computer Science, 545 Technology Square, Cambridge, MA 02139

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This paper will appear in the Proceedings of the European Conference on Object-Oriented
Programming, July 1993. Most of its contents are also contained are in CMU-CS-92-220.

Abstract

The use of hierarchy is an important component of object-oriented design. Hierarchy allows the
use of type families, in which higher level supertypes capture the behavior that all of their subtypes
have in common. For this methodology to be effective, it is necessary to have a clear understanding
of how subtypes and supertypes are related. This paper presents a new definition of the subtype
relation that ensures that any property proved about supertype objects also holds for subtype
objects. It also discusses the ramifications of the definition on the design of type families.

This research was supported for Liskov in part by the Advanced Research Projects Agency of the Department
of Defense, monitored by the Office of Naval Research under contract N00014-91-J-4136 and in part by the National
Science Foundation under Grant CCR-8822158; for Wing, by the Avionics Lab, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465, ARPA Order No. 7597.

Keywords: subtype, object-oriented design, abstraction function, extensible types, mutable
types, specifications, semantics.

1 Introduction

What does it mean for one type to be a subtype of another? We argue that this is a semantic
question having to do with the relationship between the specifications of the two types. In this
paper we give a precise definition of the subtype relation in terms of the behavior of types as
described by their specifications. Our definition extends earlier work by providing for subtypes
that have more methods than their supertypes, and by allowing for sharing of mutable objects
among multiple users. We also discuss the ramifications of the definition with respect to various
kinds of subtype relationships and give examples of type families that satisfy the definition.

To motivate our notion of subtyping, consider how subtypes are used in object-oriented program-
ming languages. In strongly typed languages such as Simula 67, C++, Modula-3, and Trellis/Owl,
subtypes are used to broaden the assignment statement. An assignment

xxT:=E

is considered to be legal provided the type of expression E is a subtype of the declared type T of
variable x. Once the assignment has occurred, x will be used according to its “apparent” type T,
with the expectation that if the program performs correctly when the actual type of x’s object is
T, it will also work correctly if the actual type of the object denoted by x is a subtype of T.

Clearly subtypes must provide the expected methods with compatible signatures. This consid-
eration has led to the formulation by Cardelli of the contra/covariance rules [5]. However, these
contra/covariance rules are not strong enough to ensure that the program containing the above
assignment will work correctly for any subtype of T, since all they do is ensure that no type errors
will occur. It is well known that type checking, while very useful, captures only a small part of
what it means for a program to be correct; the same is true for the contra/covariance rules.

For example, consider stacks and queues. These types might both have a put method to add
an element and a get method to remove one. According to the contravariance rule, either could be
a legal subtype of the other. However, a program written in the expectation that x is a stack is
unlikely to work correctly if x actually denotes a queue, and vice versa.

What is needed is a stronger requirement that constrains the behavior of subtypes: the subtype’s
objects must behave “the same” as the supertype’s as far as anyone using the supertype’s objects
can tell. This paper is concerned with obtaining a precise definition of this “subtype requirement.”
Our definition is applicable to a particularly general environment, one that allows multiple, possibly
concurrent, users to share mutable objects; the environment is discussed further in Section 2.
Although the states of objects in such an environment may reflect changes due to the activities of
several users, we still want individual users to be able to make deductions about the current states
of objects based on what they observed in the past. These deductions should be valid if they follow
from the specification of an object’s presumed type even though the object is actually a member
of a subtype of that type and even though other users may be manipulating it using methods that
do not exist for objects of the supertype.

In other words, we want the subtype to preserve safety properties (“nothing bad happens”)
that hold for the supertype. There are two kinds of safety properties: invariant properties, which
are properties true of all states, and history properties, which are properties true of all sequences
of states. For example, for a stack, an invariant property we might want to prove is that its size
is always greater or equal to zero; a history property is that its bound never changes. We might
also want to prove liveness properties (“something good eventually happens”), e.g., an element
pushed onto a stack will eventually be popped, but our focus here will be just on safety properties.
Our definition of subtype will guarantee that all the invariant and history properties that hold for
objects of the supertype also hold for objects of the subtype.

i

Our approach lets programmers reason directly in terms of the specifications rather than the
underlying mathematical models of types, be they algebras, categories, or higher-order lambda
expressions. Our definition is motivated by pragmatic concerns: we wanted to make our ideas ac-
cessible to everyday programmers. We provide a simple checklist that can be used by programmers
in a straightforward way to validate a proposed design of a type hierarchy. In this paper, we use
informal specifications; see [20] for formal ones.

This paper makes two important technical contributions:

1. It provides a very general yet easy to use definition of the subtype relation. Our definition
extends earlier work, including the most closely related work done by America [3], by allowing
subtypes to have more methods than their supertypes.

9. It discusses the ramifications of the subtype relation and shows how interesting type families
can be defined. For example, arrays are not a subtype of sequences (because the user of a
sequence expects it not to change over time) and 32-bit integers are not a subtype of 64-bit
integers (because a user of 64-bit integers would expect certain method calls to succeed that
will fail when applied to 32-bit integers). We show in Section 4 how useful type hierarchies
that have the desired characteristics can be defined.

The paper is organized as follows. We describe our model of computation in Section 2. In
Section 3 we present and discuss our formal definition of subtyping, motivating it informally with
an example relating stacks to bags. Section 4 discusses the ramifications of our definition on
designing type hierarchies. We describe related work in Section 5, and then close with a summary
of contributions.

2 Model of Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint typed sets. Each
object has a unique identity. A type defines a set of legal values for an object and a set of meth-
ods that provide the only means to manipulate that object. An object’s actual representation is
encapsulated by its set of methods.

Objects can be created and manipulated in the course of program execution. A state defines
a value for each existing object. It is a pair of two mappings, an environment and a store. An
environment maps program variables to objects; a store maps objects to values.

State = Env x Store
Env = Var — Obj
Store = Obj — Val

Given an object, x, and a state p with an environment, e, and store, s, we use the notation z, to
denote the value of x in state p; i.e., z, = p.s(p.e(x)). When we refer to the domain of a state,
dom(p), we mean more precisely the domain of the store in that state.

We model a type as a triple, < O,V,M >, where O C Obj is a set of objects, V C Valis a
set of legal values, and M is a set of methods. Each method for an object is a constructor, an
observer, or a mutator. Constructors of an object of type T return new objects of type 7; observers
return results of other types; mutators modify the values of objects of type 7. A type is mutable
if any of its methods is a mutator; otherwise it is immutable. We allow “mixed methods” where
a constructor or an observer can also be a mutator. We also allow methods to signal exceptions;
we assume termination exceptions, i.e., each method call either terminates normally or in one of a

2

number of named exception conditions. To be consistent with object-oriented language notation,
we write x.m(a) to denote the call of method m on object x with set of arguments a.

Objects come into existence and get their initial values through creators. Unlike other kinds
of methods, creators do not belong to particular objects, but rather are independent operations.
They are the “class methods”; the other methods are the “instance methods.” (We are ignoring
other kinds of class methods in this paper.) :

A computation, i.e., program execution, is an alternating sequence of states and statements
starting in some initial state, po:

po S1 P1 . Pn-1 Sn Pn

Each statement, S;, of a computation sequence is a partial function on states. A history is the
subsequence of states of a computation. A state can change over time in only three ways!: the
environment can change through assignment; the store can change through the invocation of a
mutator; the domain can change through the invocation of a creator or constructor. We assume
the execution of each statement is atomic. Objects are never destroyed:

V1<i<n.dom(pi-1) C dom(p;).

Computations take place within a universe of shared, possibly persistent objects. Sharing can
occur not only within a single program through aliasing, but also through multiple users accessing
the same object through their separate programs. We assume the use of the usual mechanisms,
e.g., locking, for synchronizing concurrent access to objects; we require that the environment uses
these mechanisms to ensure the atomicity of the execution of each method invocation. We are
interested in persistence because we imagine scenarios in which a user might create and manipulate
a set of objects today and store them away in a persistent repository for future use, either by that
user or some other user. In terms of database jargon, we are interested in concurrent transactions,
where we are ignoring aborts and the need for recovery. The focus of this paper is on subtyping,
not concurrency or recoverability; specific solutions to those problems should apply in our context
as well.

3 The Meaning of Subtype
3.1 The Basic Idea

To motivate the basic idea behind our notion of subtyping, let’s look at a simple-minded, slightly
contrived example. Consider a bounded bag type that provides put and get methods that insert
and delete elements into a bag. Put has a pre-condition that checks to see that adding an element
will not grow the bag beyond its bound. Get has a pre-condition that checks to see that the bag is
non-empty. Informal specifications [19] for put and get for a bag object, b, are as follows:

put = proc (i: int)
requires The size of b is less than its bound.

modifies b
ensures Inserts i into b.

1This model is based on CLU semantics.

get = proc () returns (int)
requires b is not empty.
modifies b
ensures Removes and returns some integer from b.

Here the requires clause states the pre-condition. The modifies and ensures clauses together
define the post-condition; the modifies clause lists objects that might be modified by the call and
thus indicates that objects not listed are not modified.

Consider also a bounded stack type that has, in addition to push and pop methods, a swap_top
method that takes an integer, i, and modifies the stack by replacing its top with i. Stack’s push
and pop methods have pre-conditions similar to bag’s put and get and swap_top has a pre-condition
requiring that the stack is non-empty. Informal specifications for methods of a stack, s, are as
follows:

push = proc (i: int)
requires The height of s is less than its bound.
modifies s
ensures Pushes i onto the top of s.

pop = proc () returns (int)
requires s is not empty.
modifies s
ensures Removes the top element of s and returns it.

swap.top = proc (i: int)
requires s is not empty.
modifies s
ensures Replaces s’s top element with i.

Intuitively, stack is a subtype of bag because both are collections that retain an element added
by put/push until it is removed by get/pop. The get method for bags does not specify precisely
what element is removed; the pop method for stack is more constrained, but what it does is one of
the permitted behaviors for bag’s get method. Let’s ignore swap_top for the moment.

Suppose we want to show stack is a subtype of bag. We need to relate the values of stacks to
those of bags. This can be done by means of an abstraction function, like that used for proving the
correctness of implementations [13]. A given stack value maps to a bag value where we abstract
from the insertion order on the elements. '

We also need to relate stack’s methods to bag’s. Clearly there is a correspondence between the
stack’s put method and bag’s push and similarly for the get and pop methods (even though the
names of the corresponding methods do not match). The pre- and post-conditions of corresponding
methods will need to relate in some precise (to be defined) way. In showing this relationship we
need to appeal to the abstraction function so that we can reason about stack values in terms of
their corresponding bag values.

Finally, what about swap_top? There is no corresponding bag method so there is nothing to
map it to. However, intuitively swap_top does not give us any additional computational power;
it does not cause a modification to stacks that could not have been done in its absence. In fact,
swap_top is a method on stacks whose behavior can be explained completely in terms of existing
methods. In particular,

s.swap_top(i) = s.pop(); s.push(i)

If we have a bag object and know it, we would never call swap_top since it is defined only for
stacks. If we have a stack object, we could call swap_top; but then for stack to still be a subtype of
bag, we need a way to explain its behavior so that a user of the object as a bag does not observe
non-bag-like behavior. We use an eztension map for this explanation. We call it an extension map
because we need to define it only for new methods introduced by the subtype.

The extension map for swap_top describes what looks like a straight-line program. A more
complicated program would be required if stack also had a method to clear a stack object of all
elements:

clear = proc ()
modifies s
ensures Empties s.

This method would be mapped to a program that repeatedly used the pop method to remove
elements from the stack until its size is zero (assuming there is a way to determine the size of a bag
and stack, e.g., a more realistic specification of get would signal an exception if passed an empty
bag).

Here then is our basic idea: Given two types, o and 7, we want to say that o is a subtype of 7
if there exist correspondences between their respective sets of values and methods. Relating values
is straightforward; we use an abstraction function. Relating methods is the more interesting part
of our notion of subtyping. There are two main ideas. Informally, we require that:

e o must have a corresponding method for each method. ¢’s corresponding method must have
“compatible” behavior to 7’s in a sense similar to its signature being “compatible” according
to the usual contra/covariance rules. This boils down to showing that the pre-condition of
7’s method implies that of o’s and the post-condition of o’s implies that of 7’s. (We will see
later that our actual definition of subtyping is slightly weaker.)

e If ¢ adds methods that have no correspondence to those in 7, we need a way to explain these
new methods. So, for each new method added by o to 7, we need to show “a way” that the
behavior of the new method could be effected by just those methods already defined for 7.
This “way” in general might be a program.

3.2 Formal Definition

Our definition relies on the existence of specifications of types. The definition is deliberately
independent of any particular specification language, but we do require that the specification of a
type 7 = < O,T, N > contain the following information:

o A description of the set of legal values, T.
e A description of each method, m € N, including:

— its signature, i.e., the number and types of the arguments, the type of the result, and a
list of exceptions.

— its behavior, expressed in terms of a pre-condition, m.pre, and a post-condition, m.post.
We assume these pre- and post-conditions are written as state predicates. We write
m.pred for the predicate m.pre => m.post.

5

The pre- and post-conditions allow us to talk about a method’s side effects on mutable objects.
In particular, they relate the final value of an object in a post state to its initial value in a pre state.
In the presence of mutable types, it is crucial to distinguish between an object and its value as well
as to distinguish between its initial and final values. We will use “pre” and “post” as the generic
initial and final states in a method’s specification. So, for example, Z,,. stands for the value of the
object x in the state upon method invocation.

To show that a subtype o is related to supertype 7, we need to provide a correspondence
mapping, which is a triple, < A, R, E >, of an abstraction function, a renaming function, and an
ertension mapping. The abstraction function relates the legal values of subtype objects to legal
values of supertype objects, the renaming function relates subtype methods to supertype methods,
and the extension mapping explains the effects of extra methods of the subtype that are not present
in the supertype. We write o < 7 to denote that o is a subtype of 7. Figure 1 presents our definition
of the subtype relation.

Figure 2 illustrates the last clause of our definition, the diamond rule, which is key to handling
extra mutators of the subtype. This diagram, read from top to bottom, is not quite like a standard
commutative diagram because we are applying subtype methods to the same subtype object in
both cases (m and E(x.m(a))) and then showing the two values obtained map via the abstraction
function to the same supertype value.

3.3 Discussion

There are two kinds of properties that must hold for subtypes: (1) all calls to methods of the
supertype have the same meaning when the actual call invokes a method of the subtype; (2) all
invariants and history properties that hold for objects of the supertype must also hold for those of
the subtype. .

The renaming map defines the correspondence between methods of the subtype and supertype.
It allows renaming of the methods (e.g., the put method of bag can be renamed to push) because
this ability is useful when there are multiple supertypes. For example, two types might use the
same name for two different methods; without renaming it would be impossible to define a type

that is a subtype of both of them.
The requirement about calls of individual methods of the supertype is satisfied by the signature

and methods rules. The first two signature rules are the usual contra/covariance rules for “syntac-
tic” subtyping as defined by Cardelli [5]; ours are adapted from America [3]. The exception rule
says that m, may not signal more than m, since a caller of a method on a supertype object should
not expect to handle an unknown exception. The pre-condition rule ensures the subtype’s method
can be called in any state required by the supertype as well as other states. The predicate rule
when expanded is equivalent to:

(my.pre = mg.post) = ((m,.pre = m.,.post)[A(xp,e)/zp,c,A(a:po,t)/xpo,t])

which is implied by the stronger conjunction of the following separate pre- and post-condition rules
that America uses:

Pre-condition rule. m,.pre[A(Zpre)/Zpre] = mo.pre
Post-condition rule. m,.post = m,.post[A(xpre)/mpre,A(a:po,t)/zpo,t]

These two rules are the intuitive counterparts to the contravariant and covariant rules for signatures.
The post-condition rule alone says that the subtype method’s post-condition can be stronger than
the supertype method’s post-condition; hence, any property that can be proved based on the

6

Definition of the subtype relation, <:
¢ =< Oy, S, M > is a subtype of 7 = < O,, T, N > if there exists a correspondence
mapping, < A, R, E >, where:

1. The abstraction function, A : § — T, is total, need not be onto, but can be many-to-one.

2. The renaming map, R : M — N, can be partial and must be onto and one-to-one. If m, of
T is the corresponding renamed method m, of o, the following rules must hold:

o Signature rule.

— Contravariance of arguments. m, and m, have the same number of arguments. If
the list of argument types of m, is a; and that of m, is §;, then Vi.a; < §;.
— Covariance of result. Either both m, and m, have a result or neither has. If there
is a result, let m,’s result type be ¥ and m,’s be §. Then § < 7..
— Ezception rule. The exceptions signaled by m, are contained in the set of exceptions
signaled by m,.
e Methods rule. For all z : o:
— Pre-condition rule. m,.pre[A(Zpre)/Tpre] = Mo.pre.
— Predicate rule. m,.pred = m,.pred[A(Tpre)/Tpres A(Tpost)/ Tpost]
where P[a/b] stands for predicate P with every occurrence of b replaced by a. Since x
is an object of type o, its value (Zpre OF Zpost) is @ member of S and therefore cannot be
used directly in the pre- and post-conditions for 7’s methods (which relate values in T).

A is used to translate these values so that the pre- and post-conditions for r’s methods
make sense.

3. The extension map, E : O, x M x Objx — Prog, must be defined for each method, m, not
in dom(R). We write E(x.m(a)) for E(x, m, a) where x is the object on which m is invoked
and a is the (possibly empty) sequence of arguments to m. E’s range is the set of programs,
including the empty program denoted as .2

e Ertension rule. For each new method, m, of z : o, the following conditions must hold
for m, the program to which E(x.m(a)) maps:
~ The input to 7 is the sequence of objects [z]||a.
-— The set of methods invoked in 7 is contained in the union of the set of methods of
all types other than o and the set of methods dom(R).
— Diamond rule. We need to relate the abstracted values of x at the end of either
calling just m or executing . Let p; be the state in which both m is invoked and

7 starts. Assume m.pre holds in p; and the call to m terminates in state p;. Then
we require that = terminates in state v and

A(zp,) = A(zy)-
Note that if # = €,9 = p;.

Figure 1: Definition of the Subtype Relation

E(x.m(a))

y:T

Figure 2: The Diamond Diagram

supertype method’s post-condition also follows from the subtype’s method’s post-condition. OQur
pre-and-predicate rule differs from America’s pre-and-post rule only when the subtype’s method’s
pre-condition is satisfied and the supertype’s method’s pre-condition is not. In this case we do
not require that the post-condition of the subtype’s method imply that of the supertype’s method;
this makes sense because specifications do not constrain what happens when a pre-condition is
not satisfied. Our weaker formulation gives more freedom to the subtype’s designer. (A similar
formulation is used by Leavens [17].)

The requirement about invariants holding for values of objects of the supertype is satisfied by
requiring that the abstraction function be defined on all legal values of the subtype and that each
is mapped to some legal value of the supertype.

Preservation of history properties is ensured by a combination of the methods and extension
rules; they together guarantee that any call of a subtype method can be explained in terms of calls
of methods that are already defined for the supertype. Subtypes have two kinds of methods, those
that also belong to the supertype (via renaming) and those that are “extra.” The methods rule lets
us reason about all the non-extra methods using the supertype specification. The extension rule
explains the meaning of the extra methods in terms of the non-extra ones, thus relating them to the
supertype specification as well. Note that interesting explanations are needed only for mutators;
non-mutators always have the “empty” explanation, e.

The extension rule constrains only what an explanation program does to its method’s object,
and not to other objects. This limitation is imposed because the explanation program does not
really run. Its purpose is to explain how an object could be in a particular state. Its other
arguments are hypothetical; they are not objects that actually exist in the object universe.

The diamond rule is stronger than necessary because it requires equality between abstract
values. We need only the weaker notion of observable equivalence (e.g., see Kapur’s definition [14]),
since values that are distinct may not be observably different if the supertype’s set of methods (in
particular, observers) is too weak to let us perceive the difference. In practice, such types are rare
and therefore we did not bother to provide the weaker definition.

3.4 Applying the Definition of Subtyping as a Checklist

Let’s revisit the stack and bag example using our definition as a checklist. Here
0 = < Ostack, S, {push, pop, swap_top} >, and 7 = < Opag, B, {put,get} >. Suppose we repre-
sent a bounded bag’s value as a pair, < elems,bound >, of a multiset of integers and a fixed
bound, requiring that the size of the multiset, elems, is always less than or equal to the bound.
E.g., < {7,19,7},5 > is a legal value for bags but < {7,19,7},2 > is not. Similarly, let’s represent
a bounded stack’s value as a pair, < items,limit >, of a sequence of integers and a fixed bound,
requiring that the length of items is always less than or equal to its limit. We use standard notation
to denote functions on multisets and sequences.
The first thing to do is define the abstraction function, A : § — B, such that for all st: S:

A(st) = < mk_elems(st.items), st.limit >

where the helping function, mk_elems, maps sequences to multisets. It is defined such that for all
integer sequences, sq, and integers, i:

mk_elems([]) = { }
mk_elems(sq || [i]) = mk_elems(sq) U {3}

([] stands for the empty sequence and { } stands for the empty multiset; || is concatenation and U
is a multiset union operation that does not discard duplicates.)
Second, we define the renaming map, R:

R(push) = put
R(pop) = get

Checking the signature rule is easy and could be done by the compiler.

Next, we show the correspondences between push and put, and between pop and get. Let’s
look at the pre-condition and predicate rules for just one method, push. The pre-condition rule for
put/push requires that we show:

The size of b is less than its bound. Put’s pre-condition.
=
The height of s is less than its bound. Push’s pre-condition.

or more formally3,

size(A(8pre)-elems) < A(Spre).bound
=
length(spre.items) < spre.limit

Intuitively, the pre-condition rule holds because the length of stack is the same as the size of the
corresponding bag and the limit of the stack is the same as the bound for the bag. Here is an
informal proof with slightly more detail:

3Note that we are reasoning in terms of the values of the object, s, and that b and s refer to the same object.

9

1. A maps the items sequence to the elems multiset by putting all elements of the sequence
into the multiset. Therefore the length of the sequence sp..items is equal to the size of the
multiset A(8py.).elems.

2. Also, A maps the limit of the stack to the bound of the bag so that s,e.limit = A(spr.).bound.
3. From put’s pre-condition we know length(s,,..items) < $pre.limit.

4. push’s pre-condition holds by substituting equals for equals.

Notice the role of the abstraction function in this proof. It allows us to relate stack and bag
values, and therefore we can relate predicates about bag values to those about stack values and vice
versa. Also, note how we depend on A being a function (in step (4) where we use the substitutivity
property of equality). » '

The predicate rule requires that we show push’s predicate implies put’s:-

length (Spre.items) < Spre.limit =
Spost = < Spre.ttems || [2], Spre-limit > A modifies s
=
size(A(Spre).elems) < A(spre).bound =
A(Spost) = < A(Spre)-elems U {i}, A(Spre)-bound > A modifies s

To show this, we note first that since the two pre-conditions ‘are equivalent, we can ignore them
and deal with the post-conditions directly. (Thus we are proving America’s stronger post-condition
rule in this case.) Next, we deal with the modifies and ensures parts separately. The modifies
part holds because the same object is mentioned in both specifications. (Recall that the modifies
clause indicates that all objects other than those listed cannot be modified.) The ensures part
follows directly from the definition of the abstraction function.

Finally, we use the extension mapping to define swap_top’s effect. As stated earlier, it has the
same effect as that described by the program, 7, in which a call to pop is followed by one to push:

E(s.swap_top(i)) = s.pop(); s.push(i)

Showing the extension rule is just like showing that an implementation of a procedure satisfies the
procedure’s specification, except that we do not require equal values at the end, but just values that
map via A to the same abstract value. (In fact, such a proof is identical to a proof showing that an
implementation of an operation of an abstract data type satisfies its specification [13].) In doing
the reasoning we rely on the specifications of the methods used in the program. Here is an informal
argument for swap_top. We note first that since s.swap_top(i) terminates normally, so does the call
on s.pop() (their pre-conditions are the same). Pop removes the top element, reducing the size of
the stack so that push’s pre-condition holds, and then push puts i on the top of the stack. The
result is that the top element has been replaced by i. Thus, s,, = sy, where p; is the termination
state if we run swap_top and ¥ is the termination state if we run x. Therefore A(sp,) = A(sy),
since A is a function.

In the arguments given above, we have taken pains to describe the steps of the proof. In fact,
most parts of these proofs are obvious and can be done by inspection. The only interesting issues
are (1) the definition of the abstraction function, and (2) the definition of the extension map for
the new methods that are mutators. The arguments about the methods and extension rules are
usually trivial.

10

4 Type Hierarchies

The constraint we impose on subtypes is very strong and raises a concern that it might rule out
many useful subtype relations. To address this concern we applied our method to a number of
examples. We found that our technique captures what people want from a hierarchy mechanism
(the so-called “is-a” relation in the literature), but we also discovered some surprises.

The examples led us to classify subtype relationships into two broad categories. In the first
category, the subtype extends the supertype by providing additional methods and/or additional
“state.” In the second, the subtype is more constrained than the supertype. We discuss these
relationships below.

4.1 Extension Subtypes

A subtype extends its supertype if its objects have extra methods in addition to those of the
supertype. Abstraction functions for extension subtypes are onto, i.e., the range of the abstraction
function is the set of all legal values of the supertype. The subtype might simply have more methods;
in this case the abstraction function is one-to-one. Or its objects might have more “state,” i.e.,
they might record information that is not present in objects of the supertype; in this case the
abstraction function is many-to-one.

As an example of the one-to-one case, consider a type intset (for set of integers). Intset objects
have methods to insert and delete elements, to select elements, and to provide the size of the set.
A subtype, intset2, might have more methods, e.g., union, is_empty. Here there is no extra state,
just extra methods. Explanations must be provided for the extra methods using the extension map
E, but for all but mutators, these are trivial. Thus, if union is a pure constructor, it has the empty
explanation, €; otherwise it requires a non-trivial explananation, e.g., in terms of insert.

Sometimes it is not possible to find an extension map and therefore there is no subtype re-
lationship between the two types. For example, intset is not a subtype of fat_set, where fat_set
objects have only insert, select, and size methods; fat_sets only grow while intsets grow and shrink.
Intuitively intset cannot be a subtype of fat_set because it does not preserve various history prop-
erties of fat_set. For example, we can prove that once an element is inserted in a fat_set, it remains
forever. More formally, for any computation, c:

Vs : fat_set,p, : State . [p < P As € dom(p)]= [Vz:int .z €3, =T € Sy)

where p < v means p precedes ¥ in c. This theorem does not hold for intset. The attempt to
construct a subtype relation fails because no extension map can be given to explain the effect of
intset’s delete method. .

As a simple example of a many-to-one case, consider immutable pairs and triples (Figure 3).
Pairs have methods that fetch the first and second elements; triples have these methods plus an
additional one to fetch the third element. Triple is a subtype of pair and so is semi-mutable triple
with methods to fetch the first, second, and third elements and to replace the third element. Here,
E(x.replace(e)) = € because the modification is not visible to users of the supertype. This example
shows that it is possiblé to have a mutable subtype of an immutable supertype, provided the
mutations are invisible to users of the supertype.

Mutations of a subtype that would be visible through the methods of an immutable supertype
are ruled out. For example, an immutable sequence, which allows its elements to be fetched but
not stored, is not a supertype of mutable array, which provides a store method in addition to the
sequence methods. For sequences we can prove elements do not change; this is not true for arrays.

11

immutable pair

N

immutable triple semi-mutable triple

Figure 3: Pairs and Triples

The attempt to construct the subtype relation will fail because there is no way to explain the store
method via an extension map.

Many examples of subtypes that are extensions are found in the literature. One common
example concerns persons, employees, and students (Figure 4). A person object has methods that
report its properties such as its name, age, and possibly its relationship to other persons (e.g.,
its parents or children). Student and employee are subtypes of person; in each case they have
additional properties, e.g., a student id number, an employee employer and salary. In addition,
type student_employee is a subtype of both student and employee (and also person, since the
subtype relation is transitive). In this example, the subtype objects have more state than those of
the supertype as well as more methods.

Another example ‘from the database literature concerns different kinds of ships [12]. The su-
pertype is ordinary ships with methods to determine such things as who is the captain and where
the ship is registered. Subtypes contain more specialized ships such as tankers and freighters.
There can be quite an elaborate hierarchy (e.g., tankers are a special kind of freighter). Windows
are another well-known example [11]; subtypes include bordered windows, colored windows, and
scrollable windows.

Common examples of subtype relationships are allowed by our definition provided the equal
method (and other similar methods) are defined properly in the subtype. Suppose supertype T
provides an equal method and consider a particular call x.equal(y). The difficulty arises when x
and y actually belong to o, a subtype of 7. If objects of the subtype have additional state, x and y
may differ when considered as subtype objects but ought to be considered equal when considered
as supertype objects.

For example, consider immutable triples z =< 0,0,0 > and y =< 0,0,1 >. Suppose the
specification of the equal method for pairs says:

equal = proc (q: pair) returns (bool)
ensures Returns true if p.first = q.first and p.second = q.second;
false, otherwise.

(We are using p to refer to the method’s object.) However, for triples we would expect the following
specification:

person
student employee

student_employee
Figure 4: Person, Student, and Employee

12

equal = proc (q: triple) returns (bool)
ensures Returns true if p.first = q.first, p.second = g.second, and
p.third = q.third; false, otherwise.

If a program using triples had just observed that x and y differ in their third element, we would
expect x.equal(y) to return “false.” However, if the program were using them as pairs, and had just
observed that their first and second elements were equal, it would be wrong for the equal method
to return false.

The way to resolve this dilemma is to have two equal methods in triple:

pair_equal = proc (p: pair) returns (bool)
ensures Returns true if p.first = q.first and p.second = q.second;
false, otherwise.

triple_jequal = proc (p: triple) returns (bool)
ensures Returns true if p.first = q.first, p.second = q.second,
and p.third = q.third; false, otherwise.

One of them (pair-equal) simulates the equal method for pair; the other
(triple.equal) is a method just on triples.

The problem is not limited to equality methods. It also affects methods that “expose” the
abstract state of objects, e.g., an unparse method that returns a string representation of the abstract
state of its object. x.unparse() ought to return a representation of a pair if called in a context in
which x is considered to be a pair, but it ought to return a representation of a triple in a context
in which x is known to be a triple (or some subtype of triple).

The need for several equality methods seems natural for realistic examples. For example, asking
whether el and e2 are the same person is different from asking if they are the same employee. In
the case of a person holding two jobs, the answer might be true for the question about person but
false for the question about employee.

4.2 Constrained Subtypes

The second type of subtype relation occurs when the subtype is more constrained than the supertype
either in what its methods do or in the values of objects or both. In this case, the supertype
specification will always be nondeterministic; its purpose is to allow variations in behavior among
its subtypes. Subtypes constrain the supertype by reducing or eliminating the nondeterminism.
The abstraction function is usually into rather than onto. The subtype may extend those supertype
objects that it simulates by providing additional methods and/or state.

A very simple example concerns elephants. Elephants come in many colors (realistically grey
and white, but we will also allow blue ones). However all albino elephants are white and all royal
elephants are blue. Figure 5 shows the elephant hierarchy. The set of legal values for regular
elephants includes all elephants whose color is grey or blue or white. The set of legal values for
royal elephants is a subset of those for regular elephants and hence the abstraction function is into.
The situation for albino elephants is similar.

Though the value sets are different, the specifications for the get_color method for the supertype
and its subtypes might actually be the same:

get_color = proc () returns (color)
ensures Returns the color of e.

13

elephant

/\ albino

Figure 5: Elephant Hierarchy

royal

where e is the elephant object. If e is a regular elephant then the caller of get_color should expect
one of three colors to be returned; if e is a royal elephant, the caller should expect only blue.
Alternatively, the nondeterminism in the specification of get_color for regular elephants might be
made explicit:

get_color = proc () returns (color)
ensures Returns grey or blue or white.

Then we would need to change the specification for the method for royal elephants to:

get_color = proc () returns (color)
ensures Returns blue.

Notice that it would be wrong for the post-condition of get_color for regular elephants to say just
“Returns grey” because then the predicate rule would not hold when showing that royal elephant
is a subtype of elephant.

Not only must the specifications of corresponding methods relate appropriately, but any invari-
ant property that holds for supertype objects must hold for subtype objects. Suppose we removed
the nondeterminism in the specification for regular elephants, defining the value set for regular
elephants to be just those elephants whose color is grey. Then the theorem stating all elephants
are grey:

Ve : elephant Vp : State . [e € dom(p) = e,.color = grey]

would hold of all regular elephants but not for any of its subtype objects. Instead, our weaker
theorem does hold for regular elephants and its subtypes:

Ve : elephant ¥p : State . [e € dom(p) =
e,.color = grey V e,.color = blue V e,.color = white]

This simple example has led others to define a subtyping relation that requires non-monotonic
reasoning [18], but we believe it is better to use a nondeterministic specification and straightforward
reasoning methods. However, the example shows that a specifier of a type family has to anticipate
subtypes and capture the variation among them in a nondeterministic specification of the supertype.

Another similar example concerns geometric figures. At the top of the hierarchy is the polygon
type; it allows an arbitrary number of sides and angles of arbitrary sizes. Subtypes place various
restrictions on these quantities. A portion of the hierarchy is shown in Figure 6.

The bag type informally discussed in Section 3.1 is nondeterministic in two ways. As discussed
earlier, the specification of get is nondeterministic because it does not constrain which element of
the bag is removed. This nondeterminism allows stack to be a subtype of bag: The specification
of pop constrains the nondeterminism. We could also define a queue that is a subtype of bag; its
dequeue method would also constrain the nondeterminism of get but in a different way than pop
does.

14

polygon

7

triangle quadrilateral
scalene rhombus
isosceles square

Figure 6: Polygon Hierarchy

In addition, since the actual value of the bound for bags was not constrained, it can be any
natural number, thus allowing subtypes to have different bounds. This nondeterminism shows up
in the specification of put, where we do not say what specific bound value causes the call to fail.
Therefore, a user of put must be prepared for a failure unless it is possible to deduce from past
evidence, using the history property that the bound of a bag does not change, that the call will
succeed. A subtype of bag might constrain the bound to a fixed value, or to a smaller range.
Several subtypes of bag are shown in Figure 7; largebags are essentially unbounded bags since their
bound (fixed at creation) is co, and mediumbags have various bounds, so that this type might have
its own subtypes, e.g., bag_150, containing all bags with bound equal to 150.

The bag hierarchy may seem counterintuitive, since we might expect that bags with smaller
bounds should be subtypes of bags with larger bounds. For example, we might expect bag_150
to be a subtype of largebag. However, the specifications for the two types are incompatible. For
largebags we can prove that the bound of every bag is oo, which is clearly not true for bag-150.
Furthermore, this difference is observable via the methods: It is legal to call the put method on a
largebag whose size is greater than or equal to 150, but the call is not legal for a bag_150. Therefore
the pre-condition rule is not satisfied.

Although the bag type can have subtypes with different constraints on the bounds, it is not
a valid supertype of a dynamic_bag type where the bounds of the bags can change dynamically.
Dynamic_bags would have an additional method, change_bound, for object b:

bag
largebag mediumbag smallbag
(bound(b) = =) (100 <= bound(b) <= 1000) (bound(b) = 20)
bag 150
(bound(b) = 150)

Figure 7: A Type Family for Bags

15

i'arying_bag
(bound may change or stay the same)

/\

dynamic_bag. bag
(bound may change) (bound stays the same)

PN

[... Asin Fig. 7 ...]

Figure 8: Another Type Family for Bags

change_bound = proc (n: int)
requires n is greater than or equal to the size of b.
modifies b
ensures Sets the bound of b to n.

Change_bound is a mutator for which no explanation via an extension map is possible. Note that we
can prove that the bound of a bag object does not vary; clearly this is not true for a dynamic_bag
object.

If we wanted a type family that included both dynamic_bag and bag, we would need to define
a supertype in which the bound is allowed, but not required, to vary. Figure 8 shows the new type
hierarchy where the change_bound method for varying.bag looks like: '

change_bound = proc (n: int)
requires n is greater than or equal to the size of b.
modifies b
ensures Either sets b’s bound to n or keeps it the same.

Not only is this specification nondeterministic about the bounds of bag objects, but the specification
of the change_bound method is nondeterministic: The method may change the bound to the new
value, or it may not. This nondeterminism is resolved in its subtypes; bag (and its subtypes)
provide a change_bound method that leaves the bound as it was, while dynamic_bag changes it to
the new bound. Note that for bag to be a subtype of varying_bag, it must have a change_bound
method (in addition to its other methods).

In the case of the bag family illustrated in Figure 7, all types in the hierarchy might actually
be implemented. However, sometimes the supertypes are not intended to be implemented. These
virtual types serve as placeholders for specific subtypes that are intended to be implemented; they
let us define the properties all the subtypes have in common. Varying_bag is an example of such a
type.

Virtual types are also needed when we construct a hierarchy for integers. Smaller integers
cannot be a subtype of larger integers because of observable differences in behavior; for example,
an overflow exception that would occur when adding two 32-bit integers would not occur if they
were 64-bit integers. However, we clearly would like integers of different sizes to be related. This
is accomplished by designing a nondeterministic, virtual supertype that includes them. Such a
hierarchy is shown in Figure 9, where integer is a virtual type. Here integer types with different
sizes are subtypes of integer. In addition, small integer types are subtypes of regular_int, another

16

integer

P

64-bit-int regular_int

PN

32-bit-int 16-bit-int

Figure 9: Integer Family

virtual type. Such a hierarchy might have a structure like this, or it might be flatter by having all
integer types be direct subtypes of integer.

5 Related Work -

Research on defining subtype relations can be divided into two categories: work on the “syntactic”
notion of subtyping and work on the “semantic” notion. We clearly differ from the syntactic notion,
formally captured by Cardelli’s contra/covariance rules [5] and used in languages like Trellis/Owl
[24], Eiffel [21], POOL [2], and to a limited extent Modula-3 [23]. Our rules place constraints not
just on the signatures of an object’s methods, but also on their semantic behavior as described in
type specifications. Cardelli’s rules are a strict subset of ours (ignoring higher-order functions).

Our semantic notion differs from the others for two main reasons: We deal with mutable abstract
types and we allow subtypes to have additional methods. We discuss this related work in more
detail below. We also mention how our work is related to models for concurrent processes.

Our work is most closely related to that of America [3] who uses the stronger pre- and post-
condition rules as discussed in Section 3. (Meyer also uses these rules for Eiffel [21], although here
the pre- and post-conditions are given “operationally,” by providing a program to check them,
rather than assertionally.) It is also related to work by Cusack [7] who defines subtyping in terms
of strengthening state invariants. However, neither author considers the problems introduced by
extra mutators. Thus, by not considering history properties at all, they allow certain subtype
relations that we forbid (e.g., set could be a subtype of fat_set in these approaches).

Our work is also similar to America’s in its approach: We expect programmers to reason
directly in terms of specifications; we call this approach “proof-theoretic.” Most other approaches
are “model-theoretic”; programmers are expected to reason in terms of mathematical structures
like algebras or categories. We believe a proof-theoretic approach is better because it is much more
accessible to programmers.

The emphasis on semantics of abstract types is a prominent feature of the work by Leavens.
We go further by addressing mutable abstract types. In his Ph.D. thesis [15] Leavens defines a
model-theoretic semantic notion of subtyping. He defines types in terms of algebras and subtyping
in terms of a simulation relation between them. Further work by Leavens and Weihl showing how
to verify programs with subtypes uses Hoare-style reasoning as we do [16]. Again, their work is
restricted to immutable types. Their simulation relations map supertype values down to subtype
values; hence, they do reasoning in the subtype value space. In contrast we use our abstraction
function to map values up to the supertype value space. We can rely on the substitutivity property
of equality; they cannot. Indeed, in our proofs we depend on A being a function.

Bruce and Wegner give a model-theoretic semantic definition of subtyping (in terms of algebras)
but also do not deal with mutable types [4]. Like Leavens they model types in terms of algebras;
like us they define coercion functions with the substitution property. They cannot handle mutable

17

types and are not concerned with reasoning about programs directly.

In his 1992 Master’s thesis [9], Dhara extends Leavens’ thesis work to deal with mutable types.
Again, his approach is model-theoretic and based on simulation relations; moreover, because of a
restriction on aliasing in his model, his definition disallows certain subtype relations from holding
that we could allow. Dhara has no counterpart to our extension rule for extra, mutators, and- no
techniques for proving subtype relations.

To our knowledge, Utting is the only other researcher to take a proof theoretic approach to
subtyping [25]. His formalism is cast in the refinement calculus language [22], an extension of
Dijkstra’s guarded command language [10]. Utting makes a big simplifying assumption: he does
not allow data refinement between supertype and subtype value spaces. Our use of abstraction
functions directly addresses this issue, which intuitively is the heart of any subtyping relation.

Finally, our extension rule is related to the more general work done on relating the behaviors
of two different concurrent processes. Cusack has investigated the meaning of subtyping for CSP
processes [6] and (with Rudkin and Smith) LOTOS processes [8], but takes a model-theoretic
approach. Abadi and Lamport’s refinement mappings [1] are akin to our extension mappings, but
have not yet been applied in the context of subtyping.

6 Conclusions

In this paper we have defined a method for reasoning about whether one type is a subtype of
another based on the semantic properties of the two types. An object’s type determines both a
set of legal values and an interface with its environment (through calls on its methods). Thus,
we are interested in preserving properties about supertype values and methods when designing a
subtype. We are particularly interested in an object’s observable behavior (state changes), thus
motivating our focus on mutable types and mutators. Ours is the first approach to provide a way
of determining the acceptability of the “extra” mutators.

Our approach guarantees that the subtype preserves all the invariant and history properties of
the supertype. This very strong definition ensures that if one user reasons about a shared object
using properties that hold for its apparent type, that reasoning will be valid even if the object
actually belongs to a subtype and is manipulated by other users using the subtype methods. Our
definition of subtyping works even in a very general environment in which possibly concurrent users
share mutable objects.

The constraint we impose on subtypes is very strong and raises a concern that it might rule
out many useful subtype relations. To address this concern we applied our method to a number of
examples. We found that it is not difficult to define useful type hierarchies that fit our constraint,
and identified two kinds of type families, those in which the subtypes extend the supertype by
adding extra state and methods, and those in which the subtypes constrain the supertype by
removing or eliminating nondeterminism.

In developing our definition, we were motivated primarily by pragmatics. Our intention is
to capture the intuition programmers apply when designing type hierarchies in object-oriented
languages. However, intuition in the absence of precision can often go astray or lead to confusion.
This is why it has been unclear how to organize certain type hierarchies such as integers. Our
definition sheds light on such hierarchies and helps in uncovering new designs. It also supports the
kind of reasoning needed to ensure that programs that work correctly using the supertype continue
to work correctly with the subtype.

We believe that programmers will find our definition relatively easy to apply and expect it
to be used primarily in an informal way. The essence of a subtype relationship is expressed in

18

the mappings. We hope that the mappings will be defined as part of giving type and subtype
specifications, in much the same way that abstraction functions and representation invariants are
given as comments in a program that implements an abstract type. The proofs are usually trivial
and can be done by inspection. Such a property is necessary if we expect formal definitions to be
applied in daily use.

Acknowledgments

We thank Gary Leavens for a helpful discussion of subtyping and pointers to related work. In
addition, Gary, Mark Day, Sanjay Ghemawat, John Guttag, Deborah Hwang, Greg Morrisett,
Eliot Moss, John Reynolds, Bill Weihl, Amy Moormann Zaremski, and the referees gave useful
comments on earlier versions of this paper. '

References

[1] Abadi, M., Lamport, L.: The existence of refinement mappings. Digital Equipment Corp. Sys.
Research Ctr. Tech Rpt. 29, 1988. :

[2] America, P.: A parallel object-oriented language with inheritance and subtyping. ACM SIG-
PLAN 25 (1990) 161-168.

[3] America, P.: Designing an object-oriented programming language with behavioural subtyping.
Foundations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The
Netherlands, Springer-Verlag Lec. Notes in Com. Sci. 489 (1991) 60-90.

[4] Bruce, K. B., Wegner, P.: An algebraic model of subtypes in object-oriented languages (draft).
ACM SIGPLAN Notices 21 (1986). :

[5] Cardelli, L.: A semantics of multiple inheritance. Info. and Computation 76 (1988) 138-164.

[6] Elspeth Cusack: Refinement, conformance, and inheritance. Formal Aspects of Computing.
3(2), (1991), 129-141.

[7] Elspeth Cusack: Inheritance in object oriented Z. Proceedings of ECOOP 91, 1991.

[8] Elspeth Cusack, Steve Rudkin, and Chris Smith: An object oriented interpretation of LOTOS.
Formal Description Techniques, II, S.T. Vuong (ed.). Elsevier Science Publishers B.V. (North-
Holland) (1990), 211-226.

[9] Dhara, K. K.: Subtyping among mutable types in object-oriented programming languages.
Iowa State University Ames, Iowa, 1992.

[10] Dijkstra, E. W.: A Discipline of Programming. Prentice Hall, New York, 1976.

[11] Halbert, D. C., O’Brien, P. D.: Using types and inheritance in object-oriented programming.
IEEE Software (1987) 71-79.

{12] Hammer, M., McLeod, D.: A semantic database model. ACM Trans. Database Systems 6
(1981) 351-386.

19

[13] Hoare, C. A. R.: Proof of correctness of data representations. Acta Informatica 1 (1972)
271-281.

[14] Kapur, K.: Towards a theory of abstract data types. Tech. Rpt. 237, MIT Lab. for Computer
Science, Cambridge, MA, 1980.

[15] Leavens, G.: Verifying object-oriented prograsm that use subtypes. Tech. Rpt. 439, MIT Lab.
for Computer Science, Cambridge, MA, 1989.

[16] Leavens, G., Weihl, W. E.: Reasoning about object-oriented programs that use subtypes.
ECOOP/OOPSLA ’90 Proceedings, 1990.

[17) Leavens, G., Weihl, W.E.: Subtyping, modular specification, and modular verification for
applicative object-oriented programs. (forthcoming).

[18] Lipeck, U.: Semantics and usage of defaults in specifications. Foundations of Information
Systems Specification and Design, Hans-Dieter Ehrich and Joseph A Goguen and Amilcar
Sernadas Dagstuhl Seminar 9212, Rpt. 35, 1992.

[19] Liskov, B., Guttag, J.: Abstraction and Specification in Program Design. McGraw Hill and
MIT Press, 1985.

[20] Liskov, B., Wing, J. M.: Family Values: A Semantic Notion of Subtyping. MIT-LCS-TR-562,
Tech. Rpt., December 1992. Also published as CMU-CS-92-220 TR.

[21] Meyer, B.: Object-oriented Software Construction. Prentice Hall, New York, 1988.
[22] Morgan, C.: Programming from Specifications. Prentice Hall, New York, 1990.
[23] Nelson, G. (Ed.): Systems Programming with Modula-3. Prentice Hall, New York, 1991.

[24] Schaffert, C., Cooper, T., Wilpolt, C.: Trellis: object-based environment language reference
manual. Dig. Equip. Corp. Eastern Research Lab., Tech Rpt. 372, 1985.

[25] Utting, M.: An object-oriented refinement calculus with modular reasoning. University of New
South Wales, Australia, 1992.

20

