Family Values: A Semantic Notion of Subtyping

Barbara Liskov* Jeannette M. Wing
17 December 1992
CMU-CS-92-220

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

*Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square
. Cambridge, MA 02139

Abstract

The use of hierarchy is an important component of object-oriented design. Hierarchy allows the
use of type families, in which higher level supertypes capture the behavior that all of their
subtypes have in common. For this methodology to be effective, it is necessary to have a clear
understanding of how subtypes and supertypes are related. This paper takes the Fosition that
the relationship should ensure that any prc;perty proved about supertype objects also holds for
its subtype objects. It Eresents two ways of defining the subtype relation, each of which meets
this criterion, and each of which is easy for programmers to use. The paper also discusses the
ramifications of this notion on the design of type families and on the contents of type
specifications and presents a notation for specifying types formally.

B. Liskov was supported in fE>art by the Advanced Research Projects Afen of the Department of
Defense, monitored by the Office of Klaval Research under Contract N00014-91-J-4136 and in part by the
National Science Foundation under Grant CCR-8822158; J. Wing was supported in part by the Avionics
Laboratory, Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air
Force, Wright-Patterson AFB, OH 45433-6 43 under Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be
iLIJ‘tSe reted as representing the official policies, either expressed or implied, of DARPA, ONR, NSF or the
.S. Government.

Keywords: subtype, object-oriented design, abstraction function, extensible types, mutable types, formal
specifications, semantics, Larch

1. Introduction

What does it mean for one type to be a subtype of another? We argue that this is a semantic question
having to do with the relationship between the behaviors of the two types. In this paper we give two ways
to define the subtype relation; each definition relates specifications that describe the behavior of types.
Our approach extends earlier work by providing for subtypes that have more methods than their
supertypes, and by allowing sharing of mutable objects among multiple users. We discuss the
ramifications of our approach with respect to various kinds of subtype relationships and give examples of
type families that satisfy our definitions. We also present a formal language for specifying types; formal

specifications allow us to give rigorous proofs of subtype relations.

To motivate our notion of subtyping, consider how subtypes are used in object-oriented programming
languages. In strongly typed languages such as Simula 67, Modula-3, and Trellis/Owil, subtypes are used
to broaden the assignment statement. An assignment

x:T:=E
is considered to be legal provided the type of expression E is a subtype of the declared type T qf variable
x. Once the assignment has occurred, x will be used according to its “apparent” type T, with the
expectation that if the program performs correctly when the actual type of x’s object is T, it will also work
correctly if the actual type of the object denoted by x is a subtype of T. (In object oriented languages,
classes are used to enable assignments like these and also as a code sharing mechanism. This paper

discusses only the former topic.)

Clearly subtypes must provide the expected methods with compatible signatures. This consideration
has led to the formulation by Cardelli of the contra/covariance rules[5]. However, these
contra/covariance rules are not strong enough to ensure that the program containing the above
assignment will work correctly for any subtype of T, since all they do is ensure that no type errors will
occur. It is well known that type checkjng, while very useful, captures only a small part of what it means

for a program to be correct; the same is true for the contra/covariance rules.

For example, consider stacks and queues. These types might both have a put method to add an
element and a get method to remove one. According to the contravariance rule, either couid be a legal
subtype of the other. However, a program written in the expectation that x is a stack is unlikely to work

correctly if x actually denotes a queue, and vice versa.

What is needed is a stronger requirement that constrains the behavior of subtypes: the subtype’s
objects must behave “the same” as the supertype’s as far as anyone using the supertype’s objects can
tell. This paper is concerned with obtaining a precise definition of the subtype relation that meets this
requirement. Our two definitions are applicable to a particularly general environment, one that allows
multiple, possibly concurrent, users to share mutable objects; the environment is discussed further in
Section 2. Although the states of objects in such an environment may reflect changes due to the
activities of several users, we still want individual users to be able to make deductions about the current
states of objects based on what they observed in the past. These deductions should be valid if they
follow from the specification of an object’s presumed type even though the object is actually a member of
a subtype of that type and even though other users may be manipulating it using methods that do not

exist for objects of the supertype.

There are two kinds of properties of supertype objects that ought to hold for subtype objects as well:
invariant properties, which are properties true of all states, and history properties, which are properties
true of ali sequences of states. For example, for a stack, an invariant property we. might want to prove is
that its size is always greater or equal to zero; a history property we might want to prove is that its bound
never changes. Both invariant and history properties are examples of safety properties (“nothing bad
happens”). We might also want to prove liveness properties (“something good eventually happens”),
e.g., an element pushed onto a stack will eventually be popped, but our focus here will be just on safety

propenies.

We present two definitions of the subtype relation, one using “extension maps” and the other using
“constraints.” Either definition guarantees that all the invariant and history properties that hold for objects
of the supertype also hold for objects of the subtype. In addition, either definition lets programmers
reason directly in terms of specifications rather than the underlying mathematical models of types, be they
algebras, categories, or higher-order lambda expressions. Our work is motivated by pragmatic concerns:
we want to make our ideas accessible to everyday programmers. We provide a simple checklist that can

be used by programmers in a straightforward way to validate a proposed design of a type hierarchy.

In addition to the definitions of the subtype relation, we also present a notation for giving formal
specifications of types and subtypes. Our notation is based on the Larch specification language. It

enables us to give rigorous proofs of subtype relations; example proofs are given in the appendices.

This paper makes three important technical contributions:

1. It provides two very general yet easy to use definitions of the subtype relation. Our
definitions extend earlier work, including the most closely related work done by America [3],
by allowing subtypes with mutable objects to have more methods than their supertypes.

2.1t discusses the ramifications of the subtype relation and shows how interesting type
families can be defined. For example, arrays are not a subtype of sequences (because the
user of a sequence expects it not to change over time) and 32-bit integers are not a subtype
of 64-bit integers (because a user of 64-bit integers would expect certain methods to
succeed that will fail when applied to 32-bit integers). We show in Section 4 how usetul
type hierarchies that have the desired characteristics can be detined.

3. It presents a formal specification language and shows how rigorous proofs can be given.
This latter work is important because it shows that the informal proofs that we expect from
programmers (and present in the body of the paper) have a sound mathematical basis.

The paper is organized as follows. We describe odr model of computation in Section 2. In Section 3
we present and discusé our first definition of subtyping, motivating it informally with an example relating
stacks to bags. Section 4 discusses the ramifications of our definition on designing type hierarchies. In
Section 5 we describe an alternative definition of the subtype relation that is motivated by exploring more
carefully what goes into a type specification. Section 6 presents a technique for formally specifying types
following the Larch approach. We describe related work in Section 7, and then close with a summary of
contributions and open research problems. Details of the Larch specification language are described in

Appendix |; the formal proofs are given in Appendix II.

2. Model of Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint typed sets. Each object
has a unique identity. A type defines a set of legal values for an object and a set of methods that provide
the only means to manipulate that object. An object's actual representation is encapsulated by its set of

methods.

Objects can be created and manipulated in the course of program execution. A state defines a value
for each existing object. It is a pair of two mappings, an environment and a store. An environment maps

program variables to objects; a store maps objects to values.

State = Env x Store
Env = Var — Obj
Store = Obj — Val

Given an object, x, and a state p with an environment, e, and store, s, we use the notation x to denote
the value of x in state p; i.e., x, = p.s(p.e(x)). When we refer to the domain of a state, dom(p), we mean

more precisely the domain of the store in that state.

We model a type as a triple, <O, V, M>, where O c Objis a set of objects, V < Val is a set of legal
values, and M is a set of methods. Each method for an object is a constructor, an observer, or a mutator.
Constructors of an object of type 1 return new objects of type t; observers retum results of other types;
mutators modify the values of objects of type t. A type is mutable if any of its methods is a mutator. We
allow “mixed methods” where a constructor or an observer can also be a mutator. We also allow
methods to signal exceptions; we assume termination exceptions, i.e., each method call either terminates
normally or in one of a number of named exception conditions. To be consistent with object-oriented
language notation, we write x.m(a) to denote the call of method m on object x with the sequence of

arguments a.

Objects come into existence and get their initial values through creators. Unlike other kinds of
methods, creators do not belong to particular objects, but rather are independent operations. They are
the “class methods”; the other methods are the “instance methods.” (We are ignoring other kinds of

class methods in this paper.)

A computation, i.e., program execution, is a sequence of alternating states and statements starting in
some initial state, p,:
Po S1 Py - Pt Sp Py
Each statement, S, of a computation sequence is a partial function on states. A history is the
subsequence of states of a computation. A state can change over time in only three ways?: the
environment can change through assignment; the store can change through the invocation of a mutator;

the domain can change through the invocation of a creator or constructor. We assume the execution of

each statement is atomic. Objects are never destroyed:
Vv 1 <i<n.dom(p,) < dom(p,).

Computations take place within a universe of shared, possibly persistent objects. Sharing can occur
not only within a single program through aliasing, but aiso through muitiple users accessing the same
object through their separate programs. We assume the use of the usual mechanisms, e.g., locking, for
synchronizing concurrent access to objects; we require that the environment uses these mechanisms to
ensure the atomicity of the execution of each method invocation. We are also interested in persistence

because we imagine scenarios in which a user might create and manipulate a set of objects today and

2This model is based on CLU semantics.

store them away in a persistent repository for future use, either by that user or some other user. In terms
of database jargon, we are interested in concurrent transactions, where we are ignoring aborts and the
need for recovery. The focus of this paper is on subtyping, not concurrency or recoverability; specitic

solutions to those problems should apply in our context as well.

3. The Meaning of Subtype

3.1. The Basic Idea

To motivate the basic idea behind our notion of subtyping, let's look at a simple-minded, slightly
contrived example. Consider a bounded bag type that provides put and get methods that insert and
delete elements into a bag. Put has a pre-condition that checks to see that adding an element will not
grow the bag beyond its bound. Get has a pre-condition that checks to see that the bag is non-empty.

Informal specifications [18] for put and get for a bag object, b, are as follows:

put = proc (i: int)
requires The size of b is less than its bound.
modities b
ensures Inserts i into b.

get = proc () returns (int)
requires b is not empty.
modifies b
ensures Removes and returns some element from b.

Here the requires clause states the pre-condition. The modifies and ensures clauses together define
the post-condition; the modifies clause lists objects that might be modified by the call and thus indicates

that objects not listed are not modified.

Consider also a bounded stack type that has, in addition to push and pop methods, a swap_top
method that takes an element, i, and modifies the stack by replacing its top with i. Stack’s push and pop
methods have pre-conditions similar to bag’s put and get and swap_top has a pre-condition requiring that

the stack is non-empty. Informal specifications for methods of a stack, s, are as follows:

push = proc (i: int)
requires The height of s is less than its bound.
modifies s
ensures Pushes i onto the top of s.

pop = proc () returns (int)
requires s is not empty.
modifies s
ensures Removes the top element of s and returns it.

swap_top = proc (i: int)
requires s is not empty.
modifies s
ensures Replaces s's top element with i.

Intuitively, stack is a subtype of bag because both are collections that retain an element added by
put/push until it is removed by get/pop. The get method for bags does not specify precisely what element
is removed; the pop method for stack is more constrained, but what it does is one of the permitted

behaviors for bag’'s get method. Let's ignore swap_top for the moment.

Suppose we want to show stack is a subtype of bag. We need to relate the values of stacks to those of
bags. This can be done by means of an abstraction function, like that used for proving the correctness of
implementations [10]. A given stack value maps to a bag value where we abstract from the insertion

order on the elements.

We also need to relate stack’s methods to bag’s. Clearly there is a correspondence between the
stack’s put method and bag's push and similarly for the get and pop methods (even though the names of |
the corresponding methods do not match). The pre- and post-conditions of corresponding methods will
need to relate in some precise (to be defined) way. In showing this relationship we need to appeal to the

abstraction function so that we can reason about stack values in terms of their corresponding bag values.

Finally, what about swap_top? There is no corresponding bag method so there is nothing to map it to.
However, intuitively swap_top does not give us any additional computational power; it does not cause a
modification to stacks that could not have been done in its absence. In fact, swap_top is a method on
stacks whose behavior can be explained completely in terms of existing methods. In particular,

s.swap_top(i) = s.pop(); s.push(i)
If we have a bag object and know it, we would never call swap_top since it is defined only for stacks. If
we have a stack object, we could call swap_top; but then for stack to still be a subtype of bag, we need a
way to explain its behavior so that a user of the object as a bag does not observe non-bag-iike behavior.
We use an extension map for this explanation. We call it an extension map because we need to define it

only for new methods introduced by the subtype.

The extension map for swap_top describes what looks like a straight-line program. A more

complicated program would be required if stack also had a method to clear a stack object of all elements:

clear = proc ()
modifies s
ensures Empties s.

This method would be mapped to a program that repeatedly used the pop method to remove elements
from the stack until it is empty (assuming there is a way to determine whether a bag or stack is empty,

e.g., a more realistic specification of get would signal an exception if passed an empty bag).

Here then is our basic idea: Given two types, ¢ and 1, we want to say that ¢ is a subtype of 7 if there
exist correspondences between their respective sets of values and methods. Relating values is
straightforward; we use an abstraction function. Relating methods is the more interesting part of our

notion of subtyping. There are two main ideas. Informally, we require that:

e 5 must have a corresponding method for each T method. o’s corresponding method must
have “compatible” behavior to 1’s in a sense similar to its signature as being “compatibie”
according to the usual contra/covariance rules. This boils down to showing that the pre-
condition of T's method implies that of o’s and the post-condition of ¢’s implies that of 7's.
(We will see later that our actual definition of subtyping is slightly weaker.)

o If ¢ adds methods that have no correspondence to those in 1, we need a way to explain
these new methods. So, for each new method added by o to 1, we need to show “a way”
that the behavior of the new method could be effected by just those methods already defined
for . This “way” in general might be a program.

3.2. Formal Definition
Our definition relies on the existence of specifications of types. The definition is independent of any
particular specification language, but we do require that the specification of a type t = <O, T, N> contain

the following information:
e A description of the set of /egal values, T.

e A description of each method, m € N, including:

« its signature, i.e., the number and types of the arguments, the type of the result, and a
list of exceptions.

- its behavior, expressed in terms of a pre-condition, m.pre, and a post-condition,
m.post. We assume these pre- and post-conditions are written as state predicates.
We write m.pred for the predicate m.pre = m.post.

The pre- and post-conditions allow us to talk about a method's side effects on mutable objects. In
particular, they relate the final value of an object in a post state to its initial value in a pre state. In the
presence of mutable types, it is crucial to distinguish between an object and its value as well as to
distinguish between its initial and final values. We will use “pre” and “post” as the generic initial and final
states in a method’s specification. So, for example, Xore stands for the value of the object x in the state

upon method invocation.

To show that a subtype o is related to supertype 1, we need to provide a correspondence mapping,
which is a triple, <A, R, E>, of an abstraction function, a renaming function, and an extension mapping.
The abstraction function relates the legal values of subtype objects to legal values of supertype objects,
the renaming function relates subtype methods to supertype methods, and the extension mapping
explains the effects of extra methods of the subtype that are not present in the supertype. We write 6 <7

to denote that ¢ is a subtype of 1.

Figure 3.2 gives the definition of the subtype relation, <. The last clause of the definition requires what
is shown in the diamond diagram in Figure 3-2, read from top to bottom. This diagram is not quite like a
standard commutative diagram because we are applying subtype methods to the same subtype object in
both cases (m and E(x.m(a))) and then showing the two values obtained map via the abstraction function

to the same supertype value.

3.3. Discussion
There are two kinds of properties that must hold for subtypes: (1) all calls to methods of the supertype
have the same meaning when the actual call invokes a method of the subtype; (2) all invariants and

history properties that hold for objects of the supertype must also hold for those of the subtype.

The renaming map defines the correspondence between methods of the subtype and supertype. It
allows renaming of the methods (e.g., the put method of bag can be renamed to push) because this
ability is useful when there are multiple supertypes. For example, two types might use the same name for
two different methods; without renaming it would be impossibie to define a type that is a subtype of both

of them.

The requirement about calls of individual methods of the supertype is satisfied by the signature and
methods rules. The first two signature rules are the usual contra/covariance rules for “syntactic”
subtyping as defined by Cardelli [5]; ours are adapted from America [3]. The exception rule intuitively
says that m; may not signal more than m_ since a caller of a method on a supertype object should not
expect to handle an unknown exception. The pre-condition rule ensures the subtype’s method can be
called in any state required by the supertype as well as other states. The predicate rule when expanded

is equivalent to:
(mg.pre = m.post) = ((m_.pre = mt.post)[A(xpre)/xpre, A(xpost)/xpost])

which is implied by the stronger conjunction of the following separate pre- and post-condition rules that

Definition of the subtype relation, <: o = <Oc, S, M> is a subtype of Tt = <O,, T, N> if there exists a

correspondence mapping, <A, R, E>, where:

1. The abstraction function, A: S — T, is total, need not be onto, but can be many-to-one.

2. The renaming map, R: M — N, can be partial and must be onto and one-to-one. lfm_ oftis
the corresponding renamed method m of o, the following rules must hold:
e Signature rule. _
« Contravariance of arguments. m_ and m; have the same number of
arguments. If the list of argument types of m_ is o; and that of m is B;, then
Vi. ai < BI
« Covariance of result. Either both m_ and m_ have a result or neither has. If
there is a result, let m_’s result type be y and m’s be 5. Thend<y.

« Exception rule. The exceptions signaled by m are contained in the set of
exceptions signaled by m..

» Methods rule. For ali x: o:
« Pre-condition rule. m_.pre[A(X,.e)/Xore] = M pre.

« Predicate rule. mg.pred => m_.pred[A(X,e)/Xpres AlXpost!Xpost]
where P[a/b] stands for predicate P with every occurrence of b replaced by a. Since
X is an object of type o, its value (xpre or xpost) is a member of S and therefore cannot
be used directly in the pre- and post-conditions for t's methods (which relate values in
T). Ais used to translate these values so that the pre- and post-conditions for t's
methods make sense.

3. The extension map, E: O, x M x Obj* — Prog, must be defined for each method, m, not in
dom(R). We write E(x.m(a)) for E(x, m, a) where x is the object on which m is invoked and
a is the (possibly empty) sequence of arguments to m. E’s range is the set of programs,
including the empty program denoted as g3 :

e Extension rule. For each new method, m, of x: o, the following conditions must hold
for &, the program to which E(x.m(a)) maps:

« The input to = is the sequence of objects [x] || a.

« The set of methods invoked in & is contained in the union of the set of methods
of all types other than ¢ and the set of methods dom(R).

« Diamond rule. We need to relate the abstracted values of x at the end of either
calling just m or executing =. Let p; be the state in which both m is invoked

and = starts. Assume m.pre holds in p, and the call to m terminates in state p,.
Then we require that n terminates in state y and

A(sz) = A(xy)-
Note thatif t =€, y = py.

Figure 3-1: Definition of the Subtype Relation

3We intentionally leave unspecified the language in which one writes a program, but imagine that it has the usual control
structures, assignment, procedure call, etc.

10

Figure 3-2: The Diamond Diagram

America uses:

Pre-condition rule. m_.prefA(x,,)/x] = m,.pre

pre/ " pre
Post-condition rule. m_.post = mt.post[A(xpm)/xpre, A(xpost)/xpost]
These two rules are the intuitive counterparts to the contravariant and covariant rules for signatures. The
post-condition rule alone says that the subtype method's post-condition can be stronger than the
supertype method’s post-condition; hence, any property that can be proved based on the supertype
method’s post-condition also follows from the subtype’'s method's post-condition. Qur pre-and-predicate
rule differs from America’s pre-and-post rule only when the subtype’s method's pre-condition is satisfied
and the supertype’s method's pre-condition is not. In this case we do not require that the post-condition
of the subtype's method imply that of the supertype’s method; this makes sense because specifications
do not constrain what happens when a pre-condition is not satisfied. Our weaker formulation gives more

freedom to the subtype’s designer. (A similar formulation is used by Leavens [15].)

The requirement about invariants holding for values ot objects of the supertype is satisfied by requiring
that the abstraction function be defined on all legal values of the subtype and that each is mapped to

some legal value of the supertype.

Preservation of history properties is ensured by a combination of the methods and extension rules; they
together guarantee that any call of a subtype method can be explained in terms of calls of methods that
are already defined for the supertype. Subtypes have two kinds of methods, those that also belong to the

supertype (via renaming) and those that are “extra.” The methods rule lets us reason about all the

1

non-extra methods using the supertype specification. The extension rule explains the meaning of the
extra methods in terms of the non-extra ones, thus relating them to the supertype specification as well.
Note that interesting explanations are needed only for mutators; non-mutators always have the “empty”

explanation, €.

The extension rule constrains only what an explanation program does to its method's object, and not to
other objects. This limitation is imposed because the explanation program does not really run. lts
purpose is to explain how an object could be in a particular state. Its other arguments are hypothetical;

they are not objects that actually exist in the object universe.

The diamond rule is stronger than necessary because it requires equality between abstract values. We
need only the weaker notion of observable equivalence (e.g., see Kapur's definition [12]), since values
that are distinct may not be observably different if the supertype’s set of methods (in particular, observers)
is too weak to let us perceive the difference. In practice, such types are rare and therefore we did not

bother to provide the weaker definition.

3.4. Applying the Definition of Subtyping as a Checklist

Lets revisit the stack and bag example using our definition as a checklist. Here
0 = <Ogacie S» {Push, pop, swap_top}>, and t = <Obag, B, {put, get}>. Suppose we represent a bounded
bag’s value as a pair, <elems, bound>, of a multiset of integers and a fixed bound, requiring that the size
of the multiset, elems, is aiways less than or equal to the bound. E.g., <{7, 19, 7}, 5> is a legal value for
bags but <{7, 19, 7}, 2> is not. Similarly, let's represént a bounded stack’s value as a pair, <items, limit>,
of a sequence of integers and a fixed bound, requiring that the length of its items component is always

less than or equal to its limit. We use standard notation to denote functions on multisets and sequences.

The first thing to do is define the abstraction function, A: S — B, such that for all st: S:
A(st) = <mk_elems(st.items), st.limit>

where the helping function, mk_elems: Sequence of Int — Multiset of Int, maps sequences to multisets.

it is defined such that for all sq: Sequence of Int, i: Int:

mk_elems([]1)={}
mk_elems(sq || [i]) = mk_elems(sq) U {i}

([] stands for the empty sequence and { } stands for the empty multiset; || is concatenation and U is a

multiset operation that does not discard duplicates.)

12

Second, we define the renaming map, R:
R(push) = put
R(pop) = get

Checking the signature rule is easy and could be done by the compiler.

Next, we show the correspondences between push and put, and between pop and get. Let’s look at
the pre-condition and predicate rules for just one method, push. The pre-condition rule for put/push

requires that we show:

The size of b is less than its bound. Put's pre-condition.
=
The height of s is less than its bound. Push's pre-condition.

or more formally?,

size(A(spre).elems) < A(sp,e).bound
=

length(spo-items) < spq.limit

pre

Intuitively, the pre-condition rule holds because the length of stack is the same as the size of the
corresponding bag and the limit of the stack is the same as the bound for the bag. Here is an informal

proof with slightly more detail:

1. A maps the stack’s sequence component to the bag’'s multiset by putting all elements of the
sequence into the muitiset. Therefore the length of the sequence spre.items is equal to the

size of the multiset A(s,¢).elems.
2. Aiso, A maps the limit of the stack to the bound of the bag so that s, limit = A(s,, ,).bound.
3. From put's pre-condition we know Iength(spre.items) < sp,e.limit.
4. push's pre-condition holds by substituting equals for equals.

Notice the role of the abstraction function in this proof. It allows us to relate stack and bag values, and
therefore we can relate predicates about bag values to those about stack values and vice versa. Also,

note how we depend on A being a function (in step (4) where we use the substitutivity property of

equality).

The predicate rule requires that we show push’s predicate implies pufs:

= <spre.items i1 [i), Spre.limit> ~ modifies s

length(spre.items) < spre.limit = Spost
=

size(A(s,)-elems) < A(s, .).bound = A(spost) = <A(s,,,).elems U {i}, A(s,.,).bound> A modifies s

pre

To show this, we note first that since the two pre-conditions are equivalent, we can ignore them and deal

pre pre pre

with the post-conditions directly. (Thus we are proving America’s stronger post-condition rule in this

“Note that we are reasoning in terms of the values of the object, s, and that b and s refer to the same object.

13

case.) Next, we deal with the modifies and ensures parts separately. The modities part holds because
the same object is mentioned in both specifications. The ensures part foliows directly from the definition

of the abstraction function.

Finally, we use the extension mapping to define swap_top's effect. As stated earlier, it has the same

effect as that described by the program, =, in which a call to pop is followed by one to push:
E(s.swap_top(i})) = s.pop(); s-push(i)

Showing the extension rule is just like showing that an implementation of a procedure satisfies the
procedure’s specification, except that we do not require equal values at the end, but just values that map
via A to the same abstract value. (In fact, such a proof is identical to a proof showing that an
implementation of an operation of an abstract data type satisfies its specification [10].) In doing the
reasoning we rely on the specifications of the methods used in the program. Here is an informal
argument for swap_top. We note first that since s.swap_top(i) terminates normally, so does the call on
s.pop() (their pre-conditions are the same). Pop removes the top element, reducing the size of the stack
so that push’s pre-condition holds, and then push puts i on the top of the stack. The result is that the top
element has been replaced by i. Thus, sp2 =Sy, where p, is the termination state if we run swap_top and

v is the termination state if we run n. Theretore A(spz) = A(sw), since A is a function.

In the arguments given above, we have taken pains to describe the steps of the proof. In fact, most
parts of these proofs are obvious and can be done by inspection. The only interesting issues are (1) the
definition of the abstraction function, and (2) the definition of the extension map for the new methods that

are mutators. The arguments about the methods and extension rules are usually trivial.

4. Type Hierarchies

The constraint we impose on subtypes is very strong and raises a concern that it might ruie out many
useful subtype relations. To address this concern we applied our method to a number of examples. We
found that our technique captures what people want from a hierarchy mechanism (the so-called “is-a”

relation in the literature), but we also discovered some surprises.

The examples led us to classify subtype relationships into two broad categories. In the first category,
the subtype extends the supertype by providing additional methods and/or additional “state.” In the

second, the subtype is more constrained than the supertype. We discuss these relationships below.

14

4.1. Extension Subtypes

A subtype extends its supertype if its objects have extra methods in addition to those of the supértype.
Abstraction functions for extension subtypes are onto, i.e., the range of the abstraction function is the set
of all legal values of the supertype. The subtype might simply have more methods; in this case the
abstraction function is one-to-one. Or its objects might have more “state,” i.e., they might record
information that is not present in objects of the supertype; in this case the abstraction function is many-to-

one.

As an example of the one-to-one case, consider a type intset (for set of integers). Intset objects have
methods to insert and delete elements, to select elements, and to provide the size of the set. A subtype,
intset2, might have more methods, e.g., union, is_empty. Here there is no extra state, just extra methods.
Explanations must be provided for the extra methods using the extension map E, but for all but mutators,
these are trivial. Thus, if union is a pure constructor, it has the empty explanation, ¢; otherwise it requires

a non-trivial explanation, e.g., in terms of insert.

Sometimes it is not possible to find an extension map and therefore there is no subtype relationship
between the two types. For example, intset is not a subtype of fat_set, where fat_set objects have only
insert, select, and size methods; fat_sets only grow while intsets grow and shrink. Intuitively intset cannot
be a subtype of fat_set because it does not preserve various history properties of fat_set. For example,
we can prove that once an element is inserted in a fat_set, it remains forever. More formally, for any

computation, c:

V s:fat_set,p, y:State . [p<yase dom(p) | = [V x:int.xe s, =xes,]

P
where p < w means p precedes y in ¢. This theorem does not hold for intset. The attempt to construct a
subtype relation fails because no extension map can be given to explain the effect of intset’'s delete

method.

As a simple example of a many-to-one case, consider immutable pairs and triples. Pairs have methods
that fetch the first and second elements; tripies have these methods plus an additional one to fetch the
third element. Triple is a subtype of pair and so is semi-mutable triple with methods to fetch the first,
second, and third elements and to replace the third element. Here, E(x.replace(e)) = € because the
modification is not visible to users of the supertype. This example shows that it is possible to have a
mutable subtype of an immutable supertype, provided the mutations are invisible to users of the

supertype.

15

immutablc pair

N

immutable triplc scmi-mutablc triple
Figure 4-1: Pairs and Triples

Mutations of a subtype that would be visible through the methods of an immutable supertype are ruled
out. For example, an immutable sequence, which allows its elements to be fetched but not stored, is not
a supertype of mutable arrays, which provide a store method in addition to the sequence methods. For
sequences we can prove elements do not change; this is not true for arrays. The attempt to construct the

subtype relation will fail because there is no way to explain the store method via an extension map.

Many examples of subtypes that are extensions are found in the literature. One common example
concerns persons, employees, and students. A person object has methods that report its properties such
as its name, age, and possibly its relationship to other persons (e.g., its parents or children). Student and
employee are subtypes of person; in each case they have additional properties, e.g., a student id number,
an employee employer and salary. In addition, type student_employee is a subtype of both student and
employee (and also person, since the subtype relation is transitive). In this example? the subtype objects

have more state than those of the supertype as well as more methods.

person

student cmployec

student_cmployce

Figure 4-2: Person, Student, and Employee

Another example from the database literature concemns different kinds of ships [24]. The supertype is
ordinary ships with methods to determine such things as who is the captain and where the ship is
registered. Subtypes contain more specialized ships such as tankers and freighters. There can be quite
an elaborate hierarchy (e.g., tankers are a special kind of freighter). Windows are another well-known

example [9]; subtypes include bordered windows, colored windows, and scrollable windows.

16

Common examples of subtype relationships are allowed by our definition provided the equal method
(and other similar methods) are defined properly in the subtype. Suppose supertype T provides an equal
method and consider a particular call x.equal(y). The difficulty arises when x and y actually belongto ¢, a
subtype of 1. If objects of the subtype have additional state, x and y may differ when considered as

subtype objects but ought to be considered equal when considered as supertype objects.

For example, consider immutable triples x = <0, 0, 0> and y = <0, 0, 1>. Suppose the specification of

the equal method for pairs says:

equal = proc (q: pair) returns (bool)
ensures Returns true if p.first = q.first and p.second = q.second; false, otherwise.

(We are using p to refer to the method’s object.) However, for triples we would expect the following
specification:
equal = proc (q: triple) returns (bool)
ensures Returns true if p.first = q.first, p.second = q.second, and p.third = q.third;
false, otherwise.
It a program using triples had just observed that x and y differ in their third element, we would expect
x.equal(y) to return “faise.” However, if the program were using them as pairs, and had just observed

that their first and second elements were equal, it would be wrong for the equal method to return false.

The way to resolve this dilemma is to have two equal methods in triple:

pair_equal = proc (p: pair) returns (bool)
ensures Returns true if p.first = q.first and p.second = q.second; false, otherwise.

triple_equal = proc (p: triple) returns (bool)
ensures Returns true if p.first = g.first, p.second = q.second, and p.third = q.third;
false, otherwise.
One of them (pair_equal) simulates the equal method for pair; the other (triple_equal) is a method just on

triples.

The problem is not limited to equality methods. It also affects methods that “expose” the abstract state
of objects, e.g., an unparse method that returns a string representation of the abstract state of its object.
x.unparse() ought to return a representation of a pair if called in a context in which x is considered to be a
pair, but it ought to return a representation of a triple in a context in which x is known to be a triple (or

some subtype of triple).

The need for several equality methods seems natural for realistic examples. For example, asking

whether e1 and e2 are the same person is different from asking if they are the same employee. In the

17

case of a person holding two jobs, the answer might be true for the question about person but false for

the question about employee.

4.2. Constrained Subtypes

The second type of subtype relation occurs when the subtype is more constrained than the supertype
either in what its methods do or in the values of objects or both. In this case, the supertype specification
will always be nondeterministic; its purpose is to allow variations in behavior among its subtypes.
Subtypes constrain the supertype by reducing or eliminating the nondeterminism. The abstraction
function is usually into rather than onto. The subtype may extend those supertype objects that it

simulates by providing additional methods and/or state.

A very simple example concerns elephants. Elephants come in many colors (realistically grey and
white, but we will also allow blue ones). However all albino elephants are white and all royal elephants
are blue. Figure 4-3 shows the elephant hierarchy. The set of legal values for regular elephants includes
all elephants whose color is grey or blue or white. The set of legal values for royal elephants is a subset
of those for regular elephants and hence the abstraction function is into. The situation for albino

elephants is similar.

clephant
royal albino

Figure 4-3: Elephant Hierarchy

Though the value sets are diftferent, the specifications for the get_color method for the supertype and

its subtypes might actually be the same:

get_color = proc () returns (color)
ensures Returns the color of e.

where e is the elephant object. It e is a regular elephant then the caller of get_color should expect one of
three colors to be returned; if e is a royal elephant, the caller should expect only blue. Alternatively, the

nondeterminism in the specification of get_color for reguiar elephants might be made explicit:

get_color = proc () returns (color)
ensures Returns grey or biue or white.

Then we wouid need to change the specification for the method for royal elephants to:

18

get_color = proc () returns (color)
ensures Returns blue.

Notice that it would be wrong for the post-condition of get_color for reguiar elephants to say just “Returns
grey” because then the predicate rule would not hold when showing that royal elephant is a subtype of

elephant.

Not only must the specifications of corresponding methods relate appropriately, but any invariant
property that holds for supertype objects should hold for subtype objects. Suppose we removed the
nondeterminism in the specification for regular elephants, defining the value set for regular elephants to

be just those elephants whose color is grey. Then the theorem stating all elephants are grey:
V e: elephant V¥ p: State. [e € dom(p) = ep.color =grey] ’

would hold of all regular elephants but not for any of its subtype objects. Instead, our weaker theorem

does hold for regular elephants and its subtypes:
V e: elephant V p: State. [e e dom(p) = ep.color =grey v ep.color = blue v ep.color = white]

This simple example has led others to define a subtyping relation that requires non-monotonic
reasoning [17], but we believe it is better to use a nondeterministic specification and straightforward
reasoning methods. However, the example shows that a specifier of a type family has to anticipate

subtypes and capture the variation among them in a nondeterministic specification of the supertype.

Another similar example concerns geometric figures. At the top of the hierarchy is the polygon type; it
allows an arbitrary number of sides and angles of arbitrary sizes. Subtypes place various restrictions on

these quantities. A portion of the hierarchy is shown in Figure 4-4.

polygon

/\

trianglc quadrilateral

scalcne thombus

isosccles squarc

Figure 4-4: Polygon Hierarchy

19

The bag type informally discussed in Section 3.1 is nondeterministic in two ways. As discussed earlier,
the specification of get is nondeterministic because it does not constrain which element of the bag is
removed. This nondeterminism allows stack to be a subtype of bag: The specification of pop constrains
the nondeterminism. We could aiso define a queue that is a subtype of bag; its dequeue method would

also constrain the nondeterminism of getbut in a different way than pop does.

In addition, since the actual value of the bound for bags was not constrained, it can be any natural
number, thus allowing subtypes to have different bounds. This nondeterminism shows up in the
specification of put, where we do not say what specific bound value causes the call to fail. Therefore, a
user of put must be prepared for a failure unless it is possible to deduce from past evidence, using the
history property that the bound of a bag does not change, that the call will succeed. A subtype of bag
might constrain the bound to a fixed value (as in the smallbag type), or to a smaller range. Several
subtypes of bag are shown in Figure 4-5; largebags are essentially unbounded bags since their bound
(fixed at creation) is -, and mediumbags have various bounds, so that this type might have its own

subtypes, e.g., bag_150, containing all bags with bound equal to 150.

largebag mcdiumbag smallbag

(bound (b) =) (100 <= bound(b) <= 1000) (bound(b) = 20)

|

bag_150
(hound(b) = 150)

Figure 4-5: A Type Family for Bags

The bag hierarchy may seem counterintuitive, since we might expect that bags with smaller bounds
should be subtypes of bags with larger bounds. For example, we might expect bag_150 to be a subtype
of largebag. However, the specifications for the two types are incompatible. For largebags we can prove
that the bound of every bag is =, which is clearly not true for bag_150. Furthermore, this difference is
observable via the methods: It is legal to call the put method on a largebag whose size is greater than or

equal to 150, but the call is not legal for a bag_150. Therefore the pre-condition rule is not satistied.

20

Although the bag type can have subtypes with different constraints on the bounds, it is not a valid
supertype of a dynamic_bag type where the bounds of the bags can change dynamically. Dynamic_bags

would have an additional method, change_bound, for object b:

change_bound = proc (n: int)
requires n is greater than or equal to the size of b.
modifies b
ensures Sets the bound of bto n.

Change_bound is a mutator for which no explanation via an extension map is possible. Note that we can

prove that the bound of a bag object does not vary; clearly this is not true for a dynamic_bag object.

If we wanted a type family that included both dynamic_bag and bag, we would need to define a
supertype in which the bound is allowed, but not required, to vary. Figure 4-6 shows the new type

hierarchy where the change_bound method for varying_bag looks like:

change_bound = proc (n: int)
requires n is greater than or equal to the size of b.
modifies b
ensures Either sets b’s bound to n or keeps it the same.

Not only is this specification nondeterministic about the bounds of bag objects, but the specification of the
change_bound method is nondeterministic: The method may change the bound to the new value, or it
may not. This nondeterminism is resolved in its subtypes; bag (and its subtypes) provide a
change_bound method that leaves the bound as it was, while dynamic_bag changes it to the new bound.
Note that for bag to be a subtype of varying_bag, it must have a change_bound method (in addition to its

other methods).

varying_bag

(bound may change or stay the same)

/\

dynamic_bag bag
(bound may change) (bound stays the sume)

PN

[... Asin Figurc 4-5 ... |

Figure 4-6: Another Type Family for Bags

in the case of the bag family illustrated in Figure 4-5, all types in the hierarchy might actually be

implemented. However, sometimes the supertypes are not intended to be implemented. These virtual

21

types serve as placeholders for specific subtypes that are intended to be implemented; they let us define

the properties all the subtypes have in common. Varying_bag is an example of such a type.

Virtual types are also needed when we construct a hierarchy for integers. Smaller integers cannot be a
subtype of larger integers because of observable differences in behavior; for example, an overflow
exception that would occur when adding two 32-bit integers would not occur if they were 64-bit integers.
However, we clearly would like integers of different sizes to be related. This is accomplished by
designing a nondeterministic, virtual supertype that includes them. Such a hierarchy is shown in Figure
4-7, where integer is a virtual type. Here integer types with different sizes are subtypes of integer. In
addition, small integer types are subtypes of regular_int, another virtual type. Such a hierarchy might

have a structure like this, or it might be flatter by having all integer types be direct subtypes of integer.

intcger

PN

64-bit-int regular_int

N

32-bit-int 16-bit-int

Figure 4-7: Integer Family

©

5. An Alternative Definition of the Subtype Relation
The definition of the subtype relation given in Section 3.2 relies on the existence of type specifications.
In this section we discuss the content of specifications in more detail. This discussion leads us to another

way of defining the subtype relation.

5.1. Contents of Specifications

A conventional specification for an abstract data type, t, contains the following information:
« A value space that includes all the values contained by objects of type t.

« A description of the behavior of each operation, including creators (recall that these are
operations that do not take objects of type T as arguments but return them as results).

Our specifications differ from conventional ones in two ways: (1) We define exactly the set of legal
values; this might be the entire value space, but often it is a subset of the value space. (2) We describe

the behavior of the objects’ methods but we do not describe the behavior of the creators.

We do not include creators in specifications to avoid overconstraining subtypes. Subtype objects need

22

to behave like' supertype objects, but they need not come into existence in the same way. For example,
when an elephant is created we would need to specify its color; however, when a royal elephant is
created, no color need be indicated since all royal elephants are blue. Another example concerns pairs
and tuples: the creator for a pair might take as arguments the values of the two components, while the

creator for the triple would take as arguments the values of the triple's three components.

In addition, not including creators in specifications allows different implementations of a type to have
different creators. For example one bag implementation might set the bound of a newly created bag to

100, while another might have the caller of the creator provide the bound.

However, by not including creators we lose a powerful reasoning tool: data type induction. Data type
induction is used to prove invariants. The base case of the rule requires that each creator of the type
establish the invariant; the inductive case requires that each non-creator preserve the invariant. Without

the creators, we have no base case, and therefore we cannot prove invariants!

To compensate for the lack of data type induction, we state the invariant expilicitly in the type
specification. For example, bag values are pairs, <elems, bound>, where elems is a muitiset of integers.
However, only pairs where the size of the elems multiset does not exceed the bound are legal bag values.

This latter condition is the invariant. .

This approach has three significant consequences. First, we need to prove that a type specification is
invariant-preserving: Each method must preserve the type’s invariant. (Also, creators must establish the
invariant, as discussed in Section 6.2.} This property means that methods deal only with legal values of
an object’s type. To prove it, we assume each method is called on an object of type t with a legal value

(one that satisfies the invariant, |) and show that any vaiue of an object it produces or modifies is legal:
» For each method m of 1, assume I (x,,) and show 1 (x,..,).

For example, we would need to show put and get each preserves the invariant for the bag type stated
above. Informally the invariant holds because pufs pre-condition checks that there is enough room in the
bag for another element and get decreases the size of the bag. (Appendix Il.1 contains a proof of the

invariant using notation developed in Section 6).

Second, we need to prove that abstraction functions respect the invariant. In the definition given in
Section 3.2, S and T stand for sets of legal values. It is more convenient, however, to have them stand

for value spaces. The abstraction function, A, is then defined over a value space, and we place additional

23

checks on it to make sure it maps legal values to legal values. Thus we replace the first clause of our

definition with:
1. The abstraction function, A: S — T, must satisty the following rule:
» Invariant rule. '

V' s: 8. I4(8) = I(A(s))
where Ic is the invariant for o and |_is the invariant for t.

This rule implies that A must be defined for all values of S that satisfy | ;; A can be partial since it need not
be defined for values of S that do not satisfy |;. Note that the requirement that the abstraction function
preserves invariants, together with the methods and extensions rules, ensures that invariant properties of

supertype objects hold for subtype objects.

The third consequence is that the absence of data type induction limits the kinds of invariant properties
we can prove about objects. All invariant properties must follow from the conjunction of the type’s
invariant and invariants that hold for the entire value space. (For example, the size of all bag objects is
greater than or equal to 0 because the size of the bag is equal to the size of the multiset component, and
the multiset’s size is greater than or equal to 0 because this is true for all multisets.) Since the explicit
invariant limits what invariant properties can be proved, the specifier needs to be careful when defining it.
The invariant must be strong enough to cut out values not of interest, but weak enough to allow
definitions of interesting subtypes. For example, recall in the case of elephants that it would be an error

to state that the color of an elephant is grey since this would rule out royal elephants as a subtype.

In summary, the invariant plays a crucial role in our specifications. It captures what normally would be
proved through data type induction, allowing us to reason about properties of legal values of a type

without having specifications of creators.

5.2. Alternative Definition
As stated in the introduction, we are interested in history properties as well as in invariants. History

properties are predicates over sequences of states; they are especially of interest for mutable types.

We can formulate history properties as predicates over state pairs: for any computation, ¢
VX1, p, y:State . [p <y Axe dom(p)] = ¢(xp, xw)

where p < y means that state p precedes state y in c. For example, in Section 4.1 we cast the property
that elements in fat_sets never disappear in the above form. Notice that we implicitly quantify over all

computations, ¢, and we do not require that y is the immediate successor of p.

24

Unlike type invariants, we need not make history properties explicit in a type specification. Instead they
can be derived from a type’s specification by showing that the property holds after the invocation of each

of the type’s methods. We actually_need to do this only for each mutator:
* History Rule: For each mutator m of t, show m.pred = ¢[X,¢/X;, Xpost®yl

where ¢ is a history property on objects of type t.

However, it seems asymmetric to treat invariants and history properties differently. This leads us to
consider what would happen if we include an explicit history property, which we will cail a constraint, in a

type specification. For example, we couid add the following to the type specification of bag:
constraint bp.bound = b,.bound

to declare that a bag's bound never changes. The constraint must be proved to hold across all methods
(by using the history rule); when this is true we say the specification satisfies the constraint. The
constraint replaces the history rule as far users are concerned: users can make deductions based on the
constraint but they cannot reason using the history rule directly. (The use of the term “constraint” is

borrowed from the Ina Jo specification language [11], which also includes constraints in specifications.)

Explicit constraints allow us to simplify the definition of subtyping. Instead of the extension map, we
just need to show that the subtype’s constraint implies the supertype's (under the appropriate
interpretation of subtype values using the abstraction function). The reason for the extension map is to
ensure that any history property proved (through the history rule) for the supertype also holds for the
subtype. The preservation of history properties is guaranteed for the non-extra methods (because of the
methods rule). However, because the properties are not stated explicitly, we cannot prove them for the
extra methods. Instead we need to ensure the extra methods satisfy any possible property, and this is
surely guaranteed if the extra methods can be explained in terms of the non-extra methods. Showing that
the subtype constraint is stronger than the supertype’s takes care of all the methods, not just the extra

ones.

The new definition of the subtype relation, which summarizes our explicit handling ot invariants and
constraints, is given in Figure 5-1. The first and third clauses replace those of our first definition in Figure
3.2. In this definition S and T stand for value spaces, | is the invariant for o, and I, is the invariant for t.

We assume each type specification preserves invariants and satisfies constraints.

As an example of how to use the new definition, consider a fat_bag type whose get method does not

remove the returned element and a fat_stack type whose pop method does not remove the top element.

25

Definition of the subtype relation, <: 6 = <O, S, M> is a subtype of t = <O, T, N> if there exists an

abstraction function, A: S — T, and a renaming map, R: M — N, such that:

1. The abstraction function respects invariants:
» Invariant Rule. V s: S. | 4(s) = I (A(s))

2. Subtype methods preserve the supertype methods’ behavior. If m_ of t is the
corresponding renamed method m; of o, the following rules must hold:

¢ Signature rule.

« Contravariance of arguments. m_ and m, have the same number of
arguments. If the list of argument types of m_is a; and that of m is f;, then

Vi (Xi< BI

* Covariance of result. Either both m_and m; have a result or neither has. If
there is a result, let m_'s result type be yand m’'s be 8. Then 6 <.

« Exception rule. The exceptions signaled by m are contained in the set of
exceptions signaled by m,.

* Methods rule. For all x: o:
* Pre-condition rule. m_pre[A(X,.e)/Xore] = My.pre.
* Predicate rule. m pred = mr.pred[A(xpre)/xpre, A(xpost)/xpost]

3. Subtype constraints ensure supertype constraints.
e Constraint Rule. For all x: o . C(x) = CI[A(xpre)/xp, A(xpos,)/xw]
Figure 5-1: An Alternative Definition of the Subtype Relation

Fat_bags never get smaller:
constraint size(bp) < size(bw)

and neither do fat_stacks:
constraint Iength(sp) < length(b,)

Intuitively, fat_stack preserves fat_set’s constraint since the length of the sequence component of a stack
is the same as the size of the multiset component of its bag counterpart. Notice that we do not have to

say anything specific for swap_top.

Explicit constraints have pros and cons. On the plus side, they allow us to state the common
properties of type families directly. For example, the varying_bag type discussed in Section 4.2 had both
bag and dynamic_bag as subtypes. We allowed for these subtypes by defining an explicitly non-
deterministic varying_bag method, change_bound. Both bag and dynamic_bag had this method; for bag
it did not change the bound, while for dynamic_bag it did. With explicit constraints, we need not introduce
this method (and therefore bag need not have it). Instead, varying_bag has just the put and get methods

and the trivial constraint, “true.” Even though neither of these methods modifies the bound, a user of

26

varying_bag is not entitled to assume that the bound never changes, because this fact is not stated in the

constraint for varying_bag.

Another advantage is that explicit constraints allow us to rule out unintended properties that happen to
be true because of an error in a method specification. Having both the constraint and the method
specifications is a form of useful redundancy: If the two are not consistent, this indicates an error in the
specification. The error can then be removed (either by changing the constraint or some method

specification). Therefore, including constraints in specifications makes for a more robust methodology.

On the minus side is the loss of the history rule. Aithough in our experience the desired constraint is
usually obvious, nevertheless the specifier must be careful to define a Strong enough constraint. For
example, using the history rule we could deduce 'that once an element is added to a fat_bag it will always
be there. However, with just the explicit constraint given above, users could not depend on this property
(since they are not allowed to use the history rule). Of course, they ought not to depend on this property

if we intend to allow fat_stack to be a subtype of fat_bag!

Another problem with explicit constraints is that people may expect to reason using the history rule.
Therefore the consequences of a constraint must be made clear. For example, rather than stating a
constraint of “true” for varying_bag, it would be better to say explicitly that both the bound and the

elements may change with time:

constraint | bp.bound = bw.bound v bp.bound # bw.bound 1A
[VxiInt.xe bp.elems =(xe bw.elems VXE bw.elems)]

In summary, having an explicit constraint is appealing because it allows us to state properties of type
families declaratively, the subtype relation is simple, and the constraint acts as a check on the
correctness of a specification. The drawback is that if some property is left out of the constraint, there is

no way that users can make use of it.

6. Formal Specifications

So far we have used informal specifications and our reasoning has therefore also been informal. To
make our arguments more rigorous we need formal specifications. In this section we present a language
to write formal specifications; we adopt the Larch specification language [13] for this purpose. This

language enables us to prove subtype relationships within a formal proof system. For example, we

27

formalize in Appendix 11.3 the informal reasoning used in applying the checklist (Section 3.4) to show that

stack is a subtype of bag.

In the sections below, we show how to specify types, creators, and subtypes. Our specifications
contain explicit constraints, so that we are using the alternative definition of the subtype relation given in
Figure 5-1. However, it is not difficult to switch to using the first definition of the subtype relation; we

discuss this further in Section 6.3.

6.1. Type Specifications

Larch has two kinds of specifications. The first defines sorts, which are used to define the value
spaces of types. Sorts are defined in a kind of specification called a trait, in general a trait will define one
or more sorts. Several traits, which we use in our examples, are defined in the Appendices. For
example, trait BBag defines a sort called B, whose values are similar to the pairs that we used for the
value space of bags in our informal specification. More precisely, values in a sort are denoted by terms;
we can use these terms to denote values of objects. Examples of terms in sort B are [{ }, 10] (the empty
multiset with a bound of 10) and insert(3, [{ }, 10]) (the multiset resulting from inserting 3 into the empty
multiset with bound 10). This latter term is equivalent to the simpler term [{3}, 10 J; the BBag trait defines
axioms that allow such equivalences to be proved. (In Larch, [] is used for tuples, and < > is used for

sequences. We will be using Larch notation for the remainder of the paper.)

The second kind of specification is called an interface; it is used to specify types and procedures.
Figure 6-1 shows the interface that specifies the bag type. The uses clause identifies the value space for
bag as the sort B defined in the BBag trait. The remainder of the specification defines the invariant and
constraint for the type, and the type’s methods. The invariant and constraint are given in abbreviated

form. The invariant is short for
V p: State . b e dom(p) = size(bp) < bp.bound

and the constraint for
V p, y: State . [p < y A b e dom(p)] = [bp.bound = bw.bound]

where p and y are states in some computation.

The form of the method specification is the same as that used earlier in our informal specifications; the
only (but important) difference is that now the predicates appearing in the clauses have a rigorous

meaning. The pre-condition is given in the requires clause; if this clause is missing, the pre-condition is

28

bz;g = type
uses BBag (bag for B)
V b: bag
invariant size(bp) < bp.bound
constraint bp.bound = b,,.bound
methods

put = proc (i: int)
requires size(b,) < b,,.bound

modifies b P
ensures b, = insert(i, b, ;)
get = proc () returns (int)
requires —.isempty(bp,e)
modifies b
ensures b, = delete(result, b,) A result e by,

card = proc () returns (int)

ensures result = size(b,,,)

equal = proc (a: bag) returns (bool)
ensures resuit=(a=>b)

end bag

Figure 6-1: A Type Specification for Bags
trivially “true.” The post-condition is the conjunction of the modifies and ensures clauses. In the

requires and ensures clauses x stands for an object, x,,, stands for its value in the initial state, and x

pre
stands for the object’s value in the final state.5 Distinguishing between initial and final values is
necessary only for mutable types, so we suppress the subscripts for parameters of immutable types (like
integers). We need to distinguish between an object, x, and its value, Xora OF Xposts because we
sometimes need to refer to the object itself, e.g., in the equal method, which determines whether two

(mutable) bags are identical. Resultis a way to name a method's result parameter.

A modifies x,, ..., x, clause is shorthand for the following predicate
V x € {dom(pre) - {Xy, ..., X,}} - Xore = Xpost

which says only objects listed may change in value. A modifies clause is a strong statement about all

objects not explicitly listed, i.e., their values may not change. If there is no modifies clause then nothing

SReferring to an object's final value is meaningless in pre-conditions, of course.

29

may change. Note that because the modifies clause is actually part of the post-condition, the predicate
rule in our definition of subtyping also implies that a subtype’s method cannot modify any objects that

could not have been modified by the corresponding supertype’s method.

Methods may terminate either normally or exceptionally. Specifiers can introduce values for exceptions
that the method may signal through a signals clause in the method's header. For example, an

alternative specification for the get method is

get = proc () returns (int) signals (empty)
modifies b
ensures if isempty(bpm) then signal empty

else b, = delete(result, b,) A resulte by,
(Note that this specification of get is total whereas the one given in Figure 6-1 is partial.) Each method
has a special implicit result parameter, terminates, whose value ranges over the exceptions listed plus the
special value, normal, to stand for normal termination. The special predicate signal E stands for the
assertion terminates = E: we assume normal termination (terminates = normal) unless otherwise explicitly

specified.

In general, for a given method specification

m = proc (args) returns (result) signals (e1, ... en)
requires ReqPred
modifies x,, ..., X,
ensures EnsPred

m.pre is RegPred, m.post is ModPred A EnsPred, where ModPred is the predicate defined earlier for the

meaning of a modifies clause, and m.pred, the method’s associated first-order predicate, is:
ReqPred = (ModPred A EnsPred)

We require that each type specification preserve the invariant and the satisfy the constraint, as defined

in Sections 5.1 and 5.2.

6.2. Specifying Creators

For the reasons discussed in Section 5.1, a type specification does not include creators. Instead these
are defined in separate interfaces. Figure 6-2 contains two interfaces defining creators for the type bag.
As an argument to the special predicate new, result stands for the object returned, not its value. The

assertion new(x) stands for the predicate:
x € dom(post) - dom(pre)

Recall that objects are never destroyed so that dom(pre) < dom(post). The special new predicate, with

30

the same meaning, would also appear in the post-conditions of constructors.

bounded_bag = creators for bag

create = proc (n: int) returns (bag)
requiresn=0
ensures new(result) A resultpc,st =[{},n]

end bounded_bag
simple_bag = creators for bag

create = proc () returns (bag)

ensures new(result) A result,;mt =[{ }, 100}

create_single = proc (i: int) returns (bag)
ensures hew(result) A resultpost = [insent(i, { }), 100}

end simple_bag

Figure 6-2: Creator Specifications for Bags

All creators for a type t must establish t's invariant, |
e For each creator for type 1, show It(resultpost).

This is similar to the requirement that each method of t preserve the invariant.

To create bags, we call creators, after which we can invoke other bag methods. For example, consider
x: bag := bounded_bag$create(100)
y: bag := simple_bag$create_single(5)
x.put(5)
Using the specifications of the type and the creators, we know that at the end of calling put, x and y have

the same value (they have the same elements and the same bound), but are different bag objects.

6.3. Subtype Specifications

Our notion of subtyping is defined by relating two type specifications. When specifying a subtype, it is
convenient to be able to assert that a subtype relationship holds. The properties that must hold for the
relationship to be legal can be checked at that time. The syntactic checks (signature rules) can be done

automatically by the specification compiler; the semantic checks would require a theorem prover.

To assert that a type is a subtype of some other type, we simply append a subtype clause to its
specification. We allow muttiple supertypes; there will be a separate subtype clause for each. An

example is given in Figure 6-3. Here the sort, S, for stack values is defined as a pair of a sequence and a

31

limit; it is defined formally in trait BStack in Appendix 11.3. The subtype clause gives the renaming and
abstraction maps. Note in the abstraction function the use of “S” as the name of a sort. Note also the
definition, as in Section 3.4, of the helping function mk_elems, which maps sort Seq (these are
unbounded LIFO sequences) to M (these are unbounded muitisets); these two sorts are defined in the

Bag trait (in Appendix 1) and LIFOSeq trait (in Appendix 11.3).

stack = type
uses Bstack (stack for S)
V s: stack
invariant length(sp) < sp.limit
constraint s limit = s limit
methods

push = proc (i: int)
requires Iength(spre) < spm.limit
modifies s
ensures s, = add(i, Sy.,)

pop = proc () returns (int)
requires Spre % <>
modifies s
ensures result = top(spre) A Spost = rem(spre)

swap_top = proc (i: int)
requires Spre * <>
modifies s
ensures s,

height = proc () returns (int)
ensures result = Iength(spre)

st = add(i, rem(s.))

equal = proc (t: stack) returns (bool)
ensures result = (s =t)

subtype of bag (push for put, pop for get, length for card)
V s: S. A(s) = [mk_elems(s.items), s.limit]
where mk_elems: Seq - M
V i: Int, sq: Seq
mk_elems(<>) ={}
mk_elems(add(i, sq)) = insert(i, mk_elems(sq))

end stack

Figure 6-3: Stack Type

32

Although in general a subtype’s trait is different from any of its supertypes, we often use the same trait
to define an entire family of types. For example, a smallbag type would probably be defined using BBag.
What distinguishes the smallbag type from its supertype is its more constraining invariant. Not only must

the size of a smallbag not exceed its bound but also its bound must be equal to 20:
invariant size(sp) < sp.bound A sp.bound =20

Finally, notice why we do not consider invariants as shorthand for explicit conjuncts in a method'’s pre-
and post-conditions. If they were written explicitly as part of the pre- and post-condition then the pre-
condition rule would require in general that the supertype’s invariant implies a subtype’s. Usually just the
opposite holds. For example, to show smallbag is a subtype of bag, for the pre-condition rule for the
equal method we would need to show that:

=1

Ibag smailbag

which is not true. In fact, the converse holds.

We have defined types and subtypes using explicit constraints. However, we can easily adapt our
notation to using extension maps instead. In this case, there would not be any constraint part of the
specification, and each subtype clause would define the extension map E in addition to defining A and
R. The only problem:is that to do rigorous proofs, we would need to have a formally defined language in
which to write the explanations. Defining such a language is not difficult, but we will not go into the details

in this paper. Appendix 11.3 contains proofs for both the constraint rule and the extension rule.

7. Related Work

Research on defining subtype relations can be divided into two categories: work on the “syntactic”
notion of subtyping and work on the “semantic” notion. We clearly differ from the syntactic notion,
formally captured by Cardelli's contra/covariance rules [5] and used in languages like Trellis/Owl [25],
Eiffel [8], POOL [2], and to a limited extent Modula-3 [22]. Our rules place constraints not just on the
signatures of an object’'s methods, but also on their semantic behavior as described in type specifications.

Cardelli’s rules are a strict subset of ours (ignoring higher-order functions).

Our semantic notion differs from the others for two main reasons: We deal with mutable abstract types
and we allow subtypes to have additional methods. We discuss this related work in more detail below.

We also mention how our work is related to models for concurrent processes.

Our work is most closely related to that of America [3] who uses the stronger pre- and post-condition

33

rules as discussed in Section 3. (Meyer also uses these rules for Eiffel [8], although here the pre- and
post-conditions are given “operationally,” by providing a program to check them, rather than
assertionally.) However, America discusses only the meaning of the subtype methods that simulate those

of the supertype, ignoring the problems introduced by the extra mutators.

Our work is also similar to America’s in its approach: We expect programmers to reason directly in
terms of specifications; we call this approach “proof-theoretic.” Most other approaches are “model-
theoretic”; programmers are expected to reason in terms of mathematical structures like algebras or
categories. We believe a proof-theoretic approach is better because it is much more accessible to
programmers. We also go one step further than America by giving a specific formalism with which to do

proofs from specifications.

The emphasis on semantics of abstract types is a prominent feature of the work by Leavens. We go
further by addressing mutable abstract types. In his Ph.D. thesis [14] Leavens defines a model-theoretic
semantic notion of subtyping. He defines types in terms of algebras and subtyping in terms of a
simulation relation between them. Further work by Leavens and Weihl showing how to verify programs
with subtypes uses Hoare-style reasoning as we do [16]. Again, their work is restricted to immutable
types. Their simulation relations map supertype values down to subtype values; hence, they do
reasoning in the subtype value space. In contrast we use our abstraction function to map values up to
the supertype value space. We can rely on the substitutivity property of equality; they cannot. Indeed, in

our proofs we depend on A being a function.

Bruce and Wegner also give a model-theoretic semantic definition of subtyping (in terms of algebras)
but also do not deal with mutable types [4]. Like Leavens they model types in terms of algebras; like us
they define coercion functions with the substitution property. They cannot handle mutable types and are

not concerned with reasoning about programs directly.

In his 1992 Master’s thesis [6], Dhara extends Leavens’ thesis work to deal with mutable types. Again,
his approach is model-theoretic and based on simulation relations; moreover, because of a restriction on
aliasing in his model, his definition disallows certain subtype relations from holiding that we could allow.
Dhara has no counterpart to our extension or constraint rule, and no techniques for proving subtype

relations.

34

To our knowledge, Utting is the only other researcher to take a proof-theoretic approach to
subtyping [26]. His formalism is cast in the refinement calculus language [23], an extension of Dijkstra’s
guarded command language [7]. Utting makes a big simplifying assumption: he does not allow data
refinement between supertype and subtype value spaces. Our use of abstraction functions directly

addresses this issue, which intuitively is the heart of any subtyping relation.

Finally, our extension rule is related to the more general work done on relating the behaviors of two
different concurrent processes. Such work includes Milner's CCS [21} and Lynch’s I/O automata [20].
Abadi and Lampont's refinement mappings [1] are akin to our extension mappings. To our knowiedge,
these models for reasoning about concurrent systems have not yet been applied in the context of

subtyping.

In summary, our work is similar in spirit to America and Utting because they take a proof-theoretic
approach to defining a semantic notion of subtyping. It complements the model-theoretic approach taken
by Leavens, Leavens and Weihl, Bruce and Wegner, and Dhara. Only America, Utting, and Dhara deal

with mutability, but none has formulated the essence of our extension or constraint rule.

8. Summary and Future Work

This paper defines a new notion of the subtype relation based on the semantic properties of the
subtype and supertype. An object’s type determines both a set of Iegal values and an interface with its
environment (through calls on its methods). Thus, we are interested in preserving properties about
supertype values and methods when designing a subtype. We require that a subtype preserve all the
invariant and history properties of its supertype. We are particularly interested in an object’s observable
behavior (state changes), thus motivating our focus on history properties and on mutable types and

mutators.

The paper presents two ways of defining the subtype relation, one using the extension rule to reason
about the extra methods, and the other using constraints. Either of these approaches guarantees that
subtypes preserve their supertype’s invariant and history properties. Ours is the first work to deal with
history properties, and to provide a way of determining the acceptability of the “extra” methods in the

presence of mutability.

The paper also presents a way to specify the semantic properties of types formally. A formal

35

specification method enables us to define type semantics, i.e., behavioral properties about their values
and methods; it also provides a framework within which to do formal reasoning about programs. It
provides a sound basis for our informal specifications, subtyping checklists, and proofs of invariant and

history properties.

One reason we chose Larch for our formalism is that it takes a “proof-theoretic” view towards defining
semantics of specifications. This view means that formal proofs can be done entirely in terms of
specifications. In fact, once the theorems corresponding to our subtyping rules are formally stated in
Larch, their proofs are almost completely mechanical — a matter of symbol manipulation — and could be

done with the assistance of the Larch Prover [19].

Although we gave two formal definitions of the subtype relation, we did not formally characterize the
criterion against which we can measure the soundness of our definitions. We only argued informally that
our definitions guarantee that a subtype’s objects behave the same, e.g., preserve properties, as their
supertype’s. A formal characterization of this criterion remains another open research problem. One
possibility is to do this within the Larch framework. In Larch, the mganing of a specification is the theory
derived from a set of axioms and rules. A possible correctness criterion is to require the theory of a

subtype to contain those of its supertypes.

In developing our definitions, we were motivated primarily by pragmatics. Our intention is to capture
the intuition programmers apply when designing type hierarchies in object-oriented languages. However,
intuition in the absence of precision can often go astray or lead to confusion. This is why it has been
unclear how to organize certain type hierarchies such as integers. Our definition sheds light on such
hierarchies and helps in uncovering new designs. It also supports the kind of reasoning that is needed to

ensure that programs that work correctly using the supertype continue to work correctly with the subtype.

We believe that programmers will find our approaches relatively easy to apply and expect them to be
used primarily in an informal way. The essence of a subtype relationship (in either of our approaches) is
expressed in the mappings. We ﬁope that the mappings will be defined as part of giving type and
subtype specifications, in much the same way that abstraction functions and representation invariants are
given as comments in a program that implements an abstract type. The proofs can be done at this point

also; they are usually trivial and can be done by inspection.

36

Acknowledgments

Special thanks to John Reynolds who provided perspective and insight that led us to explore
alternative definitions of subtyping and their effect on our specifications. We thank Gary Leavens for a
helpful discussion on subtyping and pointers to related work. In addition, Gary, John Guttag, Greg
Morrisett, Bill Weihl, Eliot Moss, Amy Moormann Zaremski, Mark Day, Sanjay Ghemawat, and Deborah

Hwang gave useful comments on earlier versions of this paper.

I. A Larch Shared Language Refresher
Formalizations of the informal proofs given in the paper rely on properties of the value spaces of types.
Since we use Larch traits to specify formally these value spaces, we begin here with a tutorial on traits. In

the next Appendix, we give details of proofs of invariants, constraints, and subtype relationships.

Figure |-1 presents an example of a trait. The Mset trait is useful for defining the value space for
unbounded muiltisets. It introduces sorts, e.g., M, that are used .to distinguish terms (and hence the
values they denote) much like types are used to distinguish objects. A trait also introduces function
symbols, e.g., {} and insert, that provide a trait's terrﬁ language. For example, the term {} denotes the
empty multiset value and the term insert(a, {}) denotes the muitiset with the single element a in it. Mset
includes the traits, Integer and Natural, which used for defining integers of sort Int and natural numbers

of sort N; they introduce functions like 0 and + with the obvious meanings.

We use equations, generated by, and partitioned by clauses to constrain the meaning of the trait
functions. The equations in the trait define an equality relation on terms. Two equal terms denote the
same value. The generated by clause introduces an inductive rule of inference that allows us to prove
properties about all terms of sort M. For example, from this inductive rule, we could prove the invariant
that the size of all muitisets is always non-negative. The partitioned by clause introduces more
equalities between terms; it says that two terms of sort M are the same if they cannot be distinguished by
using the count function. Thus, two multisets are the same if the counts of their elements are the same.
For example, we could prove that the two terms insert(insert(insert({}, a), b}, a) and insert(insert(insert({},
a), a), b) denote the same muitiset vaiue (order of insertion is irrelevant) but that they are both different

from insert(insert({}, a), b} (the number of times each element appears matters).

The equations, generated by, partitioned by, and the standard axioms and rules of inference for

37

MSet: trait
includes Integer(Int), Natural(N)

introduces
}: >M
insent: Int, M-> M
delete: Int, M -> M
count: Int, M-> N
__e __int, M ->Bool
size: M -> N
isempty: M -> Bool
_U_MM->M

asserts

M generated by {}, insert

M partitioned by count

v m, mi:M, i i1, i2:Int
count(i, {}}) == 0;
count(i1, insert(i2, m)) == count(i1, m) + (if i1 = i2 then 1 else 0);
count(i1, delete(i2, m)) == count(i1, m) © (if i1 = i2 then 1 else 0);
i1 e {} == false;
i1 € insent(i2, m)==it=i2vile m
size({}) == 0;
size(insert(i, m)) == size(m) + 1
isempty({}) == true
isempty(insert(i, m)) == false
count(i, m u m1) == count(i, m) + count(i, m1)

Figure I-1: Multiset Trait

first-order predicate logic with equality together define the first-order theory of a trait.

Figure I-2 presents another trait, the BBag trait, which is useful for defining the values of bounded
bags. This trait includes Mset. In Larch, when a trait S includes another trait T, it is as if all equations,

generated by, and partitioned by clauses of T are written in S explicitly.

Bounded bag values are tuples. The Larch tuple of construct is shorthand for introducing fixed-length
tuples. Bounded bags of sort B are represented as a pair of a multiset, elems, and a bound, bound. B is
generated by the Larch tuple constructor denoted by square brackets, i.e., [, _]: M, Int->B. Each
field name defines two distinct functions for getting (__.elems, __bound) and setting (set_elems,
set_bound) the value for that field. B is partitioned by the retrieval functions, __.elems and __.bound. In

the equations, we do not retrieve the parts of the tuple explicitly, but instead use the pattern matching

notation [m, nj.

The functions on bounded bag values are defined in terms of functions for the unbounded multiset

BBag: trait

includes Mset
B tuple of elems: M, bound: N

introduces
insert: Int, B->B
delete: Int, B -> B
count: Int, B -> Int
__€ __:Int, B->Bool
size:B->N
isempty: B -> Bool

asserts vm: M, i: Int, n: N
insert(i, [m, n]) == [insert(i, m), n}
delete(i, [m, n]) == [delete(i, m), n]
count(i, [m, n}) == count(i, m)
ie[mn]==iem
size([m, n]) == size(m)
isempty([{m, n]) == isempty(m)

Figure I-2: Bounded Bag Trait

values in the obvious manner. Notice there is no constraint on the relationship between the size of the

elems component of the tuple and its bound. Such constraints are given when defining type

specifications.

Il. Details of Proofs

Il.1. Showing the Type Invariant for Bag

To show that a type invariant holds, we must show that it is preserved by all methods of the type.

must also show that it is established by every creator of an object of that type.

The type invariant for bag is:
size(bp) < bp.bound

Lemma: V bval: B . size(insert(i, bval)) = 1 + size(bval) By induction on b.elems.

Proof of inductive step:
For each method, we need to show that assuming size(bp,e) < bpre.bound,

size(by,e,) < byoer-bOUNd.

pos post

Case 1: put

Show size(bpey) < bpogr-boUNd
size(insert(i, bpre))<(msert(| byra))- bound Substituting forb post from post-condition.

1 + size(b,) < [insert(i, b, ..elems), b, .bound].bound By Lemma

pre pre’ pre-

We

39

1 + size(b,) <b,..bound
True since size(b,,) < by,e.bound from put's pre-condition.

Case 2: get

Show size(b,,,) < bpost.bound
size(delete(result, bp,e)) < (delete(result, bp,e)).bound
size(delete(result, bpre)) < [delete(result, bp,e.elems), bpre.bound].bound
size(bpre) -1< bpre.bound Def'n of size, delete, and get’s pre-condition.

True since size(b,.) < b_ ..bound from assumption.

pre pre’

Cases 3 and 4: card and equal. Trivial since they both do not change b.

O

Proof of the basis step: Show size(resuit < result, ..bound

post) post

We will show this for the creator of the bounded_bag interface specification in Figure 6-2. The others

are similar.
size([{}, n]) <[{}, n).bound Substituting in for result o from create’s post-condition.
0<n) Def'n of size, bound
nz0 Create’s pre-condition and arithmetic.

O

I1.2. Showing a Constraint Property

In this section we show that the bound of a bag b never changes, i.e., that it satisfies this constraint:
constraint bp.bound = bw.bound

For each bag mutator, we need to show:

bpre.bound = bpost.bound
Proof.
Case 1: m = put
By put’'s post-condition
b... =inser(i, b

post ~ pre)

Bgost-bound = (insert(i, by ¢)).bound
= [insert(i, b,,.elems), by, bound}.bound
= by, e.bound

Case 2: m = get
By get’s post-condition

Dyost = delete(result, by)

bpost.bound = (delete(result, bp,e)).bound
= [delete(result, b, ,.elems), b, ,.bound].bound
= byo.bound

pre

40

I1.3. Proving that Stack is a Subtype of Bag

Section 6 presented a precise way of writing down the specifications of types and subtypes, thereby
giving us a way to show more rigorously that a particular subtype relationship holds. The formal proof for
showing that stack is a subtype of bag shows more explicitly how the abstraction function lets us reason

in terms of the values of bags and stacks using the vocabularies from their corresponding traits.

The type specification for stacks (Figure 6-3) uses the traits given in Figures Il-1 and ll-2. LIFOSeq
defines a value space for unbounded LIFO sequences (it is like the traditional algebraic specification for

stacks). Stack values are tuples containing a sequence of integers, items, and a bound, limit.

LIFOSeq: trait
includes Integer, Natural (N)

introduces
<>. -> Seq
add: Int, Seq -> Seq
rem: Seq -> Seq
top: Seq -> Int
length: Seq -> N

asserts
Seq generated by <>, add
Seq partitioned by rem, top, length
Vi Int, s: Seq
top(add(i, s)) == i;
rem(add(i, s)) == s;
length({}) == 0;
length(add(i, s)) == length(s) + 1

Figure ll-1: Unbounded LIFO Sequence Trait

To prove that stack is a subtype of bag, we first assume that the type specifications are invariant-
preserving. In Appendix .1 we showed that the bag specification is invariant-preserving; the proof for the

stack specification is similar.

Then, for either the original or alternative definition, we define (1) an abstraction function and (2) a
renaming map and show that each obeys certain rules. (Below, we also show that the gbstraction
function as defined preserves invariants.) Finally, if using the original definition of subtyping, we define
(3a) an extension map and show that it obeys the diamond property; if using the alternative, we show that
(3b) the bag constraint is satisfied by stack’s methods (assuming each type specification satisfies its

constraint).

41

BStack: trait

includes LIFOSeq
S tuple of items: Seq, limit: N

Introduces
add: int,S -> S
rem:S->S
top: S -> Int
length: S -> N
asserts
Vi Int, s: Seq, n: N
add(i, [s, n]) == [add(i, s), n]
top([s, n]) == top(s)
rem([s, n]) == [rem(s), n}
length([s, n]) == length(s)

Figure 1-2: Stack Trait

1. The Abstraction Function

We use the following abstraction function:

A:S->B
mk_elems: Seq > M

For all s: S, sq: Seq, i: Int
A(s) = [mk_elems(s.elems), s.bound]

mk_elems(<>) = {}
mk_elems(add(i, sq)) = insert(i, mk_elems(sq))

Before we show that any of the rules hold, let's prove some lemmas:
Lemma 1:V s: Seq. size(mk_elems(s)) = length(s)
Proof by induction.
Base: s = <>

size(mk_elems<>) = length(<>)

size({}) = length(<>)

0=0
Ind.: Assume size(mk_elems(sq)) = length(sq). (IH)

Let s = add(i, sq)

size(mk_elems(add(i, sq))) = length(add(i, sq)
size(insert(i, mk_elems(sq))) = length(add(i, sq)) Def'n of mk_elems.

size(mk_elems(sq)) + 1 = length(sq) + 1 Def'n of size and length for BBag and BStack.

true By IH.

O

Lemma 2.V s: S. size(A(s)) = length(s)
Lets = [sq, n]
size(A([sq, n])) = length(s)
size([mk_elems(sq), n]) = length([sq, n])

size(mk_elems(sq)) = length(sq)
true

O

Lemma 3.V s: S. A(s).bound = s.limit
Lets = [sq, n]
A([sq, n]).bound = [sq, n].limit
[mk_elems(sq), n].bound = [sq, n].limit

Nn=n

O

Abstraction Rules

42

Def'n of A.
Def'n of size and length in BBag and BStack.
By Lemma 1.

Def'n of A. i
Def'n of .bound and .limit.

We need to show A preserves invariants. By definition, we know that A is defined only for stacks that

satisfy the stack type invariant:
Iength(sp) < sp.limit

We need to show that it defines bag values that satisfy the bag type invariant:

size(bp) < bp.bound
Proof.
Case 1:s =[<>, njand A(s) = b = [{}, n]
size([{}, n]) <[{}, n}.bound

size({}) €n
0<n

Case 2: s = [add(j, sq), n] and A(s) = b = [insert(i, mk_elems(sq)), n}

Since A is defined, we know that

length(add(i, sq)) < n By stack’s invariant

length(sq) + 1 <n
length(sq) < n -1

size([insert(i, mk_elems(sq)}, n]) < [insert(i, mk_elems(sq)), n].bound

size(insert(i, mk_elems(sq))) £ n

1 + size(mk_elems(sq)) <n

1 + length(sq) <n By Lemma 1
True, since length(sq) <n -1

O

2. The Renaming Function

The renaming function, R, is trivially defined as follows:

R: Mgtack = Mpag
R(push) = put

R(pop) = get
R(height) = card
R(equal) = equal

Methods Rule

Let's look at the pre-condition and predicate rules for just one method, push.
Push’s pre-condition:

size(A(s,.)) < A(s,..)-bound = length(s)<spr9.limit

pre pre pre

Proof:

length(s,e) < Spre-limit = length(s,,) < Sype-limit By Lemmas 2 and 3.
O

Before we show the predicate rule for push, let's prove another lemma:
Lemma 4. A(add(i, s)) = insent(i, A(s}))
Proof.

A(add(i, s}) = insert(i, A(s))

A([add(i, s.elems), s.bound]) = insert(i, A([s.elems, s.bound])) Def'n of add.
[mk_elems(add(i, s.elems})), s.bound] =
insert(i, [mk_elems(s.elems), s.bound]) Defn of A.
[insert(i, mk_elems(s.elems)), s.bound] =
[insert(i, mk_elems(s.elems}), s.bound] Def'n of mk_elems.
O

Push’s predicate rule:

length(s) < Spee-limit = s,y = add(i, s,.6) A~ Mmodifles s
=

size(A(sp,e)) <A(sp,e.bound = A(spost) = insert(i, A(spre)) ~ modifies s

Proof.

By Lemmas 2 and 3, it suffices to show that the subtype’s post-condition
implies the supentype’s:

Spost = add(i, spre) A modifies s

=
A(Spost) = insert(i, A(s,)) A modiies s

This reduces to showing:
Spost = add(i, Spre) = A(Spagy) = insert(i, A(sp))

Substituting add(i, s,) from LHS for s, in RHS of the implication:
A(add(i, spre)) = insert(i, A(spre))

which is true by Lemma 4.

O

3a. The Extension Map

The only method requiring a non-trivial explanation via the extension map is swap_top; its effect is the

same as a pop followed by a push:

E: Ogpack X Mgiack X Obj* — Prog
E(s.swap_top(i)) = s.pop(); s.push(i)

Diamond Rule
Proof. We need to show.

Y P4s Pos W1s Wt State
pq s.swap_top(i) p, A py S-pop() w; s.push(i) y,
= A(sz) = A<Sw2)
1. Consider p, s.swap_top(i) p,.
sp2 = add(i, rem(sp1)) By swap_top’s post-condition.

2. Consider p, s.pop() vy, s.push(i) y,.

Sy, = rem(sp‘) By pop’s post-condition.
sw2 = add(i, s'w1) By push’s post-condition.
5w2 = add(i, rem(sp‘)) By substitution.
3. sp2 = sw2 From 1 and 2 and by def'n of equality.

4. A(spz) = A(s Since A is a function.

v
Notice that we use stack’s definition of push and pop in the proof and that we rely on A’s being a
function.
3b. Preserves Constraints

Suppose we were to use the alternate definition where constraints are specified explicitly and we do

45

not have an extension map. in Appendix 1.2 we showed that the bag specification satisfies its constraint

that its bound never changes. The constraint and proof of satisfaction for the stack type would be similar:
constraint sp.limit = sw.limit

To show stack is a subtype of bag, we need to show that stack’s constraint implies bag’s, under the

abstraction function:

Spre-limit = limit = b, .bound = b,,.bound [A(Spre)/SpreAlSpost)Spost]

Spost- post’

This is trivial using Lemma 3.

A more interesting example is to show that fat_stack’s constraint:
constraint Iength(sp) < Iength(sw)

preserves fat_bag’s:
constraint size(bp) < size(bw)

This is trivial using Lemma 2.

46

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Tech. Rept. 29, Digital Equipment
Corp./Systems Research Center, Aug., 1988.

2. Pierre America. "A Parallel Object-Oriented Language with Inheritance and Subtyping”. SIGPLAN
Notices 25, 10 (Oct. 1990), 161-168.

3. Pierre America. LNCS. Volume 489: Designing an Object-Oriented Programming Language with
Behavioural Subtyping. In Foundations of Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990, J. W. de Bakker and W. P. de Roever and

G. Rozenberg, Ed., Springer-Verlag, NY, 1991, pp. 60-90.

4. K.B. Bruce and P. Wegner. An Algebraic Model of Subtypes in Object-Oriented Languages (Draft).
ACM SIGPLAN Notices, Oct., 1986. Object-Oriented Programming Workshop.

5. Luca Cardelli. "A semantics of multipie inheritance". Information and Computation 76 (1988),
138-164.

6. Krishna Kishore Dhara. Subtyping among mutable types in object-oriented programming languages.
Master Th., lowa State University, Ames, lowa,1992.

7. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
8. Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, 1988.

9. Daniel C. Halbert and Patrick D. O'Brien. "Using Types and Inheritance in Object-Oriented
Programming”. /EEE Software (Sept. 1987), 71-79.

10. C.A.R. Hoare. "Proof of correctness of data representations”. Acta Informatica , 1 (1972), 271-281.

11. John Scheid and Steven Holtsberg. Ina Jo Specification Language Reference Manual. Tech. Rept.
TM-6021/001/06, Paramax Systems Corporation, A Unisys Company, June, 1992.

12. Deepak Kapur. Towards a Theory of Abstract Data Types. Tech. Rept. 237, MIT LCS, June, 1980.
Ph.D. thesis.

13. John V. Guttag, James J. Horning and Jeannette M. Wing. "The Larch Family of Specification
Languages”. IEEE Software 2, 5 (sept 1985), 24-36.

14. Gary Leavens. Verifying Object-Oriented Prograsm That Use Subtypes. Tech. Rept. 439, MIT Lab.
for Computer Science, Feb., 1989. Ph.D. thesis.

15. Gary T. Leavens and William E. Weihl. Subtyping, Modular Specification, and Modular Verification
for Applicative Object-Oriented Programs. Forthcoming.

16. Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented Programs that use
Subtypes. ECOOP/OOPSLA '90 Proceedings, 1990.

17. Udo Lipeck. Semantics and Usage of Defaults in Specifications. Foundations of Information
Systems Specification and Design, March, 1992. Dagstuhl Seminar 9212 Report 35.

18. B. Liskov and J. Guttag. Abstraction and Specification in Program Design. MIT Press, 1985.

19. S.J. Garland and J.V. Guttag. An Overview of LP, the Larch Prover. Proceedings of the Third
International Conference on Rewriting Techniques and Applications, Chapel Hill, NC, April, 1989, pp.
137-151. Lecture Notes in Computer Science 355.

20. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Proc. of 6th ACM
Symposium on Principles of Distributed Computation, Aug., 1987, pp. 137-151.

47

21. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
22. Greg Nelson, editor. Systems Programming with Modula-3. Prentic Hall, -1991.
23. Carroll Morgan. Programming from Specifications. Prentice Hall, 1990.

24. M. Hammer and D. McLeod. "A semantic database model". ACM Trans. Database Systems 6, 3
(1981), 351-386.

25. Craig Schaffert, Topher Cooper and Carrie Wilpolt. Trellis: Object-Based Environment Language
Reference Manual. Tech. Rept. 372, Digital Equipment Corp./Easter Research Lab., 1985.

26. Mark Utting. An Object-Oriented Refinement Calculus with Modular Reasoning. Ph.D. Th.,
University of New South Wales, Australia, 1992.

