A Library of Concurrent Objects and Their Proofs of Correctness

Chun Gong and Jeannette M. Wing

July 20, 1990

1. Focusand Motivation of Paper

A concurrent object is a data structure shared by concurrent processes. It provides a set of primitive
operationsthat are the only means for processes to manipulate the object. In the design and i mplementation
of a concurrent object, we are faced with two problems:

1. What is our notion of correctness for a system composed of concurrent objects?

2. Given some notion of correctness, how can we show a given implementation is correct?

Answering the first question is one of definition; the second, of method. While there is no genera
agreement on an answer to the first, we choose the correctness condition called linearizability, which has
recently captured the attention of the research community. Informally, we say an implementation of a
concurrent object O iscorrect if and only if each concurrent history H accepted by O is*equivalent” in some
senseto somelegal sequential history, where (1) legality isdefined interms of the (sequential) type semantics
of the object and (2) the “equivaent” sequential history preserves the real-time ordering of operationsin H.

Linearizability, first coined in Herlihy and Wing's 1987 POPL paper [3], generalizes correctness notions
that had previously been defined for specific data structures like atomic registers and FIFO queues. Itisan
intuitively appealing notion of correctness, and also enjoys other properties like locality, which simplifies
the proof method, that other notions of correctness do not.

With regard to the second guestion, we advocate using the complementary techniques of verification and
testing. Thispaper in particular describesalibrary of concurrent objectsthat we have designed, implemented,
tested and verified. We focus here on the proofs of correctness of the implementations of these objects; a
companion paper [8] describes our simulator, used for testing our implementations.

Proving linearizability of a data object is a nontrivial task. In [6], the proof of a simple concurrent set
consists of five propositions, one lemma and one theorem. All our proofs are structured similarly by first
giving alist of three to five lemmas and then a final theorem. Thus, in the spirit of reuse through program
libraries, one of our goalsisto supply userswith alibrary of “verified” concurrent objects. The application
writer is then freed from having to design, implement, and verify commonly-used abstractions. What we
present hereisjust the beginning of a concurrent object library and we wel come additionsfrom others.

In the remainder of this section wefirst describe our model of computation, thereby allowing usto define
linearizability formally. We proceed to describe our specification language (Larch) used to define the type
semantics of an object and then discuss the key property of our proofs.

1

In the remainder of this paper, we then present for each of the following data types, a specification, an
implementation, and a proof of correctness (or cite other work that contains a proof):

¢ FIFO gueue (unbounded and bounded versions).

¢ Priority queue (unbounded and bounded versions).
e Semiqueue.

e Stuttering queue.

o Set.

¢ Multiset.

e Register.

1.1. Modd of Computation

A concurrent system consists of a collection of sequential threads of control called processes that commu-
nicate through shared data structures called concurrent objects. A concurrent object provides afinite set of
primitive operationsthat are the only means to manipulatethe object. Processes are sequential: each process
applies a sequence of operations to objects, aternately issuing an invocation and receiving the associated
response. Several processes might issue an invocation to the same object concurrently.

Formally, we model an execution of a concurrent system by a history, which is a finite sequence of
operation invocation and response events. An operationinvocation iswritten asx op(args*) A, wherexisan
object name, op is an operation name, args* isa sequence of argument values, and Aisaprocessname. The
response to an operation invocation is written as x term(res*) A, where termis the (normal or exceptional)
termination condition and res* is a sequence of result values. We use “Ok” for normal termination. A
response matches an invocation if their object names agree and their process names agree. An invocation
is pending in a history if no matching response follows the invocation. If H is a history, complete(H) is
the maximal subsequence of H consisting only of invocation and matching responses. An operation, e, ina
history is apair consisting of an invocation, inv(e), and the next matching response, res(e). Operations of
different processes may be interleaved.

A history H is sequential if:

1. Thefirst event of H is an invocation.

2. Eachinvocation, except possibly the last, isimmediately followed by a matching response.
In other words, except for possibly the last event, a sequential history is a sequence of operations, i.e., pairs
of invocation and matching response events. A process subhistory, H|P (H at P), of a history H is the
subsequence of all eventsin H whose process names are P. An object subhistory, H|X, is similarly defined

for an object x. Two historiesH and H’' are equivalent if for every process P, H|P = H'|P. A history H is
well-formed if each process subhistory H|P of H is sequential.

A history H induces an irreflexive partial order <y on operations.
€ <H & if res(ey) precedes inv(e)) in H.

2

Informally, <y captures the “real-time” precedence ordering of operationsin H. Operations unrelated by
<y aresaid to be concurrent. If H issequentia, < isatotal order.

A set Sof historiesis prefix-closed if, whenever Hisin S every prefix of Hisasoin S. A single-object
history is one in which all events are associated with the same object. A sequential specification for an
object isa prefix-closed set of single-object historiesfor that object. A sequential history H islegal if each
object subhistory H|x belongs to the sequential specification for x. Many conventional techniques exist for
defining sequential specifications. In this paper, we the axiomatic style of Larch [2].

1.2. Definition of Linearizability

A history H islinearizableif it can be extended (by appending zero or more response events) to some history
H’ such that:

L1: complete(H’) is equivalent to some legal sequential history S, and

L2: <y C<s.

L1 states that processes act as if they were interleaved at the granularity of complete operations. L2
states that this apparent sequential interleaving respects the real -time precedence ordering of operations.

1.3. Specification Language

We use the Larch Specification Language [2] to specify the sequential behavior of an object. WeusealLarch
trait to specify its set of vaues and Larch interfaces to specify its set of operations. In atrait, the set of
operators and their signatures, shown following the keyword intr oduces, defines a vocabulary of terms to
denote values. For example, from the Bag trait of Figure 1, emp and ins(emp, 5) denote two different bag
values. The set of equational axioms following the asserts clause defines a meaning for the terms, more
precisaly, an equivalence relation on the terms, and hence on the values they denote. For example, from
Bag, one could prove that del(ins(ins(ins(emp, 4), 3), 3), 3) = ing(ing(emp, 4), 3). The generated by clause
of Bag assertsthat emp and ins are sufficient operatorsto generate all values of bags. Formally, it introduces
an inductiverule of inference that allows one to prove properties of all terms of sort B.

Larch provides two ways of reusing traits. atrait T can include or assume another trait T,. If Ty is
included, then T extends the theory denoted by T, by adding more operators and equations explicitly in T.
For example, FifoQ of Figure 2 includes Bag and adds two operators, first and rest, and two equations to
those of Bag. From FifoQ, one could show that first(ins(ins(ins(emp, 4), 3), 3)) = 4. If T, isassumed, then T
may use T1's operators with their meaning as given in Ty; afurther use of T must discharge the assumption
of T1'stheory. For example, atrait for priority queues (g.v., Section 3) might assume the existence of atotal
ordering on the items inserted in the queue. With either kind of reuse, a with clause alows renaming of
operator and sort identifiers.

We use Larch interfaces to describe an object’s set of operations. For example, interfaces for the Eng
and Deq operations for Bags and FIFO queues are shown in Figures 1 and 2, respectively. An interface's
header is of the form x :: op(args*)/term(res*) where x is the object’s identifier, and op(args*)/term(res*)
is the (matching pair of) invocation and response events of the operation being specified. The object’s
identifier is an implicit argument and return formal (parameter) of each operation. A requires clause states

3

Bag: trait
introduces
emp: — B
ins: B,E— B
de: B,E—B
isEmp: B — Booal
isin: B, E — Bool
asserts
B generated by [emp, ins]
for all [b: B, e, el: E]
del(emp, €) = emp
del(ins(b, €), el) = if e= el then b elseins(del (b, €1), €)
isEmp(emp) = true
isEmp(ins(b, €)) = false
isin(emp, e) = false
isin(ins(b, €), e1) = (e=€e1) v isin(b, el)

b:: Eng(e)/Ok()
ensuresb’ =ins(b, €)

b:: Deqg()/Ok(e)
requires — isemp(b)
ensuresisin(b,) A b’ = del(b, €)

Figure 1: Bag Trait and Interfaces

FifoQ: trait

includes Bag with [Q for B]

introduces
first: Q— E
rest: Q — Q

assertsfor all [g: Q, e E]
first(ins(q, €)) = if isEmp(q) then e e sefirst(q)
rest(ins(q, €)) = if isEmp(q) then emp e seins(rest(q), €)

g:: Enqg(e)/Ok()
ensuresq =ins(q, €)

g:: Deq()/Ok(e)
requires - isEmp(q)
ensuresq’ = rest(q) A e = first(q)

Figure 2: FIFO Queue Trait and Interfaces

the precondition that must hold when an operation isinvoked. An omitted requires clauseisinterpreted as
equivaent to “requires true.” An ensures clause states the postcondition that the operation must establish
upon termination. An unprimed argument formal, e.g., g, in a predicate stands for the value of the object
when the operation begins. A return formal or a primed argument formal, e.g., ¢, standsfor the value of the
object at the end of the operation. For an object X, the absence of the assertion X' = x in the postcondition
states that the object’s value may change. We use the vocabulary of traitsto write the assertionsin the pre-
and postconditions of an object’s operations; we use the meaning of equality to reason about its values.
Hence, the meaning of ins and = in the postcondition for the Bag is given by the Bag trait, but that for the
FIFO queue, by the FifoQ trait. Notethat the postcondition for the Deqg operation for the Bag isweaker than
that for the FIFO queue.

1.4. Informal Proof Method

Consider the FIFO queue which has two operations, Eng and Deq, as specified in Figure 2. Its specification
makes sense only when there is a total order relation between the items in queue, i.e., to know which is
the first item in the queue. If we perform Enq and Deq operations sequentially, we get a natural total
order relation on the queue’s items. Suppose now we do multiple Eng operations concurrently. What total
order relation can we define that will still give meaning to f irst? The answer is that the implementor of a
concurrent object needs to define a total order relation; a proof of correctness amounts to showing that the
implementation maintains thistotal order.

As mentioned, proving the correctness of an implementation can be a daunting task. In this paper we
follow no formal proof method in the sense of writing asyntax-directed proof or a machine-checkabl e proof.
Based on our work described in [3], we found that the most difficult part of the verification task isin defining
an ordering relation in terms of the representation operations used to implement the (abstract) operations of
a concurrent object, and then to argue, informally or formally, that the implementation maintainsit. This
ordering information is the key insight that a (human) prover must provide for each proof of correctness.

2. FIFO queues

2.1. Specification

See Figure 2.

2.2. |Implementations

We provide two implementations, an unbounded version and a bounded version.

2.2.1. Unbounded Version

Figure 3 contains the source code for the queue representation and Eng and Deq operations. We store the
elements of the queuein alist with head and tail pointers, head and tail, and keep track of the number of the
dementsin back (initialized to 0).

The implementation of each object’s operation is given in terms of a set of atomic instructions, i.e.,
representation operations that are indivisible. Our implementation makes use of the following atomic
instructions®:

slot FETCH_AND _ADD(reptype Q, slot s)
ensures Allocates a new, empty slot (with item = NULL) to Q, increases Q.back by 1, and
returnsthe old value of s, which isasdlot.

void STORE(dlot s, €t X)
ensures Storesx intheslot s.

int READ(int *x)
ensur es Returns the value of the integer pointed to by x.

et SWAP(slot s, €t x)
ensures Stores x in the slot s and returns the old value of theitem stored in s.

An Eng execution occurs in two distinct steps. aslot is atomically alocated (back is also increased) and
the new element is stored as the item of the alocated slot. Deq traverses the list of slots, starting at the
first dot. For each dlot, it atomically swaps NULL with the current item. If the value returned is not equal
to NULL, Deq returns that value, otherwise it tries the next slot. If it has searched back — 1 slots without
encountering a non-NULL item, the operation tries again. Deq does not return until a non-NULL item is
found.

2.2.2. Proof of Correctness for the Unbounded Version

Given awell-formed history H, we use the following notation:

e Hj istheith event in H. We assume that an invocation event of an abstract operation is associated
with the execution of the first instruction of the operation and a response event associated with the
execution of the last instruction.

o If Hj = ethenlabel(e) =i.
¢ |H|isthelength of H.
¢ [Hi] isthe subhistory of H consisting of thefirst i eventsin H.

o If the operation Enq(x) isin H, we use enq(x) and eok(x) to refer to itsinvocation and response event;
if the operation Deq() is in H and the value returned by its response event is x, we use deq(x) and
dok(x) to refer to itsinvocation and response event. Here we assume that no two items are equal.

¢ enqueue(H) ={x | Both enq(x) and eok(x) are in H}. Note, thisis a partialy ordered set with the
relation <, (see below) and we define the concept of chain as usual.

!We implemented these instructions using mutex locks from the C threads package [1]. The informal specifications of the
atomic instructions follow the style of Larch/C interfaces.

typedef struct elts {

elt item /* an elenent in the queue */
struct elts *next; /* pointer to the next elenent */
p
} *slotpt;

typedef slotpt slot;

typedef struct {

slot head, tail; /* first and last slots in queue */
int back; /* nunber of slots in queue */
} reptype; /* queue representation */

reptype queue;
void Eng(elt x) /* enqueue an el enent x */
{

slot current;

current = FETCH AND ADD(&queue, queue.tail); /* get an enpty slot */

STORE(current, X); /* store x in slot */
}
elt Deq() /* Deq will return the first elenent */
{ . .
int i, range;
elt ch;
slot current;
while (true) { /* keep trying till non-NULL value is found */
current = queue. head; /* starting fromthe first slot */
range = READ(&(queue. back)) - 1;/* search up to back-1 slots */
for (i =1; i <=range; i++) {
if (i >1) {
current = current->next;
}
ch = SWAP(current, NULL); /* put a NULL value in ith slot */
if (ch !'= NULL) { /* if non-NULL val ue */
return(ch); /* return it */
}
}
}
}

Figure 3: Code for FIFO Queue (Unbounded Version)

¢ dequeue(H) ={y | Both eok(y) and deq(y) are in H, and if dok(y) is in H, then label(eok(y)) <
label (dok(y))}.

o left(H) = enqueue(H) — dequeue(H).
We define a partia order relation <, ontheitemsin the array:
x < y iff the STORE for x precedesthe FETCH_AND_ADD for y.

We will be interested in any total order relation consistant with <.

We observe that:

1. Severa Eng's operations can occur concurrently.

2. If thequeueisnot empty, a Deq can execute with several Engs concurrently and several Degs can also
occur concurrently. Only one Deq can get the first item.

3. In Deg we limit the search range in terms of the current value of queue.back and then search from
1to range. While one process is searching within the range, some other process might do an Eng,
increasing the value of queue.back. If we replace range in line 5 by queue.back, we would get
incorrect behavior since doing so would alow a process to delete an item that would not be the first
one by any total order relation defined above. Consider the following scenario:

Suppose process A isin the middle of performing an Eng(X) on an empty queue and
just finished FETCH_AND_ADD (back = 2). Now process B starts a Deqg, finding nothing
initsfirst iteration (since A has not finished its STORE). It is possiblethat before B rereads
back, A finishesits STORE (x isin position 1) and then another process C also finishes an
Enq(y) (back = 3and yisin position 2). If at this point B rereads back and enters the loop
the second time, what is going to happen? B will remove and returny instead of x. (Recall
that X <; y according to our definition of <;.)

Lemma 1.1 Anitem in the queue can be deleted at most once.
Proof: Theonly way to remove an item from queueisto execute the atomic instruction SWAP.

Lemma 1.2 If H is a history accepted by the unbounded FIFO queue, then for dl i, 1 < i < |H]|,
dequeue([Hi]) C enqueue([H;]). _ _
Proof: If not, there must be an integer i > 0 and an item x such that label(dok(x)) = i and
label(eok(x)) = j > i, which means that x is deleted before it had been stored, a
contradiction.

Lemma 1.3 If H isahistory accepted by the unbounded FIFO queue, H; = eng(x) and H; = eok(x)
(i <j), then xisamaximal element in enqueue([H;]).
Proof: Suppose not. Then there must be ay € enqueue([H;j]) and X <, y. According to
the definition of <., the FETCH_AND_ADD instruction for y must be executed after
the execution of the STORE instruction for x, which implies that label (eok(X)) = | <
label (enqg(y)). So, eng(y) cannot be an event in [H;], let aloney be in enqueue([H;]).

Lemma 1.4 Suppose H is a history accepted by the unbounded FIFO queue, eok(x) and eok(y)
arein H. If x and y are stored in the mth slots and the nth slots respectively, then

label (eng(x)) < label(enq(y)) <= m < n.
Proof: By the semantics of FETCH_AND_ADD.

Lemma 1.5 When aprocess P swaps out an item x from the mth slot (by executing SWAP), X must
be the minimal element with respect to therelation <, intheset S= {x | xisstored in

some slot between the first and mth slots, inclusive. }
Proof: Observethat once the value of rangeis changed, P searches the list from the first slot

and m < range. Suppose P swaps x from the mth slot, then the value of range must be
the same aswhen P starts searching from thefirst slot, so for any itemy stored between
thefirst slot and the slot m — 1, label(enq(y)) < label(deq(x)). For any two items X,
Xp stored inthelth and nth dlots, 1 < | < n < m, it isimpossible that x, <, X5 by
Lemma 1.4. If X5 <; Xy, then label(eok(xy)) < label(enq(xy)) < label(deq(x)), i.e.,
when P searches the Ith slot, X, must have been aready stored there; hence P would
get theitem x, (if itis still there).

Theorem 1. If Hisacompletehistory accepted by the unbounded FIFO queue, then Hislinearizable.

Proof: We prove the linearizability of H by induction on the number of operationsin H. For
H with O operations, it istrivial that Theorem 1 holds. Now we assume that for any
complete H with | operations this theorem is true. We need to show that for any
complete H with | + 1 operationsiit is also true. Notethat |[H| = 2(I + 1). Since H
is a complete history, the last event of H must be a response event. There are two
possibilities:
(DThelast eventisHy(+1) = eok() and its matching invocation event isH; = enq(x) for
somexand 1l <j < 2(+1). We use Hgg to denote H with the two matching events
H; and H(2(I + 1)) deleted. Since x cannot be dequeued in Hgiq, Holq IS also acomplete
history accepted by the unbounded FIFO queue and so it is linearizable, equivalent to
alegal sequential history H'. By Lemma 1.3, H'HjHx(+1) is alegal sequentia history
and equivalent to H. So H islinearizable.
(2)The last event is Hyg+1) = dok(x) for some x and its matching invocation event is
Hj = deq(), 1 <j < 2(I + 1). The same arguments as above applies with Lemma 1.3
replaced by Lemma 1.5.

2.2.3. Bounded Version

The code for our second implementation of a FIFO queueis given in Figure 4. We use a bounded array to
store the elements of the queue and the back counter to keep track of the number of elementsin the queue.
We use modular arithmetic to “fold” an unbounded array into the bounded array. To preserve the FIFO
ordering, each queue element is tagged with a generation number that counts the number of times the back
counter has “wrapped around”. In addition to the READ instruction described in the unbounded version,
the bounded version makes use of the following atomic instructions:;

entry EXCHANGE(entry €1, int gen, entry €2)
ensures If el.tag matches gen, then e2 is set to the value of el; otherwise el isunchanged. The
old value of el isreturned.

void FETCH_AND_MAX(location|, int i)
ensures This operation replaces a memory location | with the maximum of i and I's current
value.

Figure 4 contains the source code for the bounded version of the FIFO queue. From the code, we see
that initially each entry’stag isequal to —1 and back = —12. Enq reads theindex of the last enqueued item,
and cyclically scans the array starting at the slot after that index. EXCHANGE checks whether each slot
is empty, and if so, swaps in the item x tagged with its generation number. If the tag of the entry returned
is NULL, then the slot was empty and queue.back is updated to the maximum of i and the current value
of gueue.back (other concurrent Eng's could have updated queue.back before this one completes). Deq
cyclicaly scans the array, starting at index 0 and ending at the observed value of queue.back. For each
eement, it atomically compares to see if its tag is the current generation number; if so, it swaps in the
“empty” entry. If thetag of the entry returned is not equal to -1, then Deq returns the associated item.

2.24. Proof of Correctness for the Bounded Version
We change the definition of <, to be asfollows:
X <, yiff FETCH_AND _MAX for x precedes the READ for y

Lemma 1.1 still holds. Again we assume that only distinct items are inserted in a queue.

Lemma 2.1 Suppose H isahistory accepted by the bounded FIFO queue and H; = eok(x), then xis
amaximal element in enqueue(H;).
Proof: Thesameargument asinLemmal.3 withtheFETCH_AND_ADD instructionreplaced
by READ, and STORE by FETCH_AND_MAX.

We need the following new notations:

e For anitem x, entry(x) denotesthe entry holding x.
¢ i(X) for theindex of queue where x (or entry(x)) is stored.

o dot(X) = i(X) + (SZE * entry(x).tag).

Lemma 2.2 If H isahistory accepted by the bounded FIFO queue and x <, y € enqueue(H), then

slot(x) < sot(y).
Proof: We use back to remember the most recently used index of a slot. An enqueueing

process P first gets a slot index by reading back + 1 (several concurrent processes may
get the same index); then it atomically does the following: (a) checks if the dlot is
empty, and (b) if so stores theitem there, prohibiting other concurrent processes from
using this slot again. After storing the item, P will increase the value of back by at
least 1 through FETCH_AND_MAX. Sincex < Y, according to our definition of <,
we know that the operation READ for y must be after the FETCH_AND_MAX for x.
S0 y's enqueuer can get only a greater slot value.

2C arrays start indexing from 0.

10

typedef struct {

elt item /* a queue el enent */
int tag; /* its generation nunber */
} entry;

typedef struct rep {
entry elts[SIZE]; /* a bounded array */
int back;

} reptype;
reptype queue;

void Eng(elt x)

{ . .
int i;
entry e, *olde;
e.item = x; /* set the new elenent’s itemto x */
i = READ(&(queue.back)) + 1; /* get a slot in the array for the new el ement */
while (true) {
e.tag =i / SlIZE /* set the new el enent’s generation nunber */
ol de = EXCHANGE(& queue.elts[i % SIZE]), -1, &e);
/* exchange the new elenment with slot’s
value if that slot has not been used */
if (olde->tag == -1) { /* if exchange is successful */
br eak; /* get out of the loop */
}
++i; /* otherwise, try the next slot */
}
FETCH_AND_MAX(& queue. back), i); /* reset the value of back */
}
elt Deq()
entry e, *olde;
int i, range;
e.tag = -1; /* make e an enpty entry */
e.item = NULL;
while (true) { /* keep trying until an elenent is found*/
range = READ(&(queue.back)) - 1; /* search up to back-1 slots */
for (i =0; i <=range; i++) {
ol de = EXCHANGE(& queue.elts[i % SIZE]), i / SIZE, &e);
/* check slot to see if it contains the ol dest element */
if (olde->tag !=-1) { /* if so */
return(olde->item; /* return the itemin it */
}
} /* otherwise try the next one */
}
}

Figure 4: Code for FIFO Queue (Bounded Version)

11

PQueue: trait
assumes Total Order with [E for T] % > denotes thetotal order relation
includes Bag with [PQ for B]
introduces
best: PQ — E
assertsfor all [g: PQ, e E]
best(ins(q, €)) = if isEmp(q)
then e
eseif e > best(q) then e ese best(q)

g:: Enqg(e)/Ok()
ensuresq =ins(q, €)

g:: Deq()/Ok(e)
requires — isEmp(q)
ensurese = best(q) A g = del(qg, €
Figure 5: Priority Queue Trait and Interfaces
Lemma 2.3 1f H isa history accepted by the bounded FIFO queue and H; = dok(x), then x is the
minimal item of left([H;]).
Proof: If not, theremust be ay € left([H;]) suchthaty <, x; by Lemma 2.2, slot(y) < slot(x),

since a process starts its search range from thefirst slot and its search range is limited
by back. Hence, the same reasoning asin Lemma 1.5 applies here.

Theorem 2 If H isacomplete history accepted by the bounded FIFO queue, then H islinearizable

under the constraint of FIFO queue semantics.
Proof: Similer to the proof of Theorem 1 using Lemmas 1.1 and 2.1-2.3.

3. Priority Queue

3.1. Specification

Figure 5 contains the specification of a priority queue.

3.2. Implementations

Again, we provide two implementations, one unbounded and one bounded.

3.2.1. Unbounded Version

Thisimplementation (Figure 6) isa most the same asthe one for the unbounded version of FIFO queue. The
only difference isthat we assume arelation < (the“priority” ordering) on queue e ements. Deq must return
the maximal (“best”) element with respect to < in the queue. We also need another atomic instruction:

12

elt FETCH_KEY(dots)
ensur es Returns the current itemin slot s.

Eng is the same as for the unbounded FIFO queue. Deq scans the list, keeping track of the slot of the
highest priority element seen sofar. If thedequeuer, D, hasfound anon-NULL e ement, it returnsto that slot
and attemptsto remove the e ement (by swapping). If another dequeuer has already removed that element,
D triesagain.

3.2.2. Proof of Correctness for the Unbounded Version

Similar to that for the unbounded FIFO queue.

3.2.3. Bounded Version

Thebasic ideais the same one as that for the bounded FIFO queue. Figure 7 containsthe code.

3.2.4. Proof of Correctness for the Bounded Version

Similar to that for the bounded FIFO queue.

4. Semiqueues

4.1. Specification

A Semiqueug, object (Figure 8) consists of a sequence of items. The Enq operation inserts an item in the
sequence, and the Deq dedl etes and returns one of the first k itemsin the queue. It is straightforward to show
that if kisone, the object isaFIFO queue (Figure 2) and if k is n, the maximum number of items allowed in
the queue, the object isabag (Figure 1). The motivation for providing this“weaker” queue datatype[4] is
to give better response time to dequeueing processes, as well as to let more of them proceed concurrently.

4.2. Implementation

Our implementation of a Semiqueug, (Figure 9) usesalist to store the queue el ements and keeps the number
of slotsin back. We use the following atomic instruction:

void ADD(int *p)
ensures.Atomically increases by one the value of the integer pointed to by p.

The codefor Engisasfor the (unbounded) FIFO and priority queues. Thewhileloopin Deqissimilar to
that for the unbounded FIFO queue except that range can be increased during the search. Theloop invariant
isthat num_deqd isawayslessthan the number of items deleted. When adequeueing process startsitsfirst

13

typedef struct elts {

elt item /* an elenent in the queue */
struct elts *next; /* pointer to the next elenent */
p
} *slotpt;

typedef slotpt slot;

typedef struct {

slot head, tail; /* first and last slots in queue */
int back; /* nunber of slots in queue */
} reptype; /* queue representation */

reptype queue;

void Eng(elt x)

{
slot current;
current = FETCH AND_ADD(&queue, queue.tail);
STORE(current, X);
}
elt Deq()
elt best, ch;
int i, range;
slot current, nyslot;
while (true) { /* keep trying until success */
nysl ot = NULL;
best = NULL; /* set best to the lowest priority value */
current = queue. head; /* search fromthe first slot */
range = READ(&(queue.back)) - 1; /* up to back-1 slots */
for (i =1; i <=range; i++) {
ch = FETCH KEY(current);
if (ch > best) { /* finds a elenent with higher */
/* priority in current slot */
best = ch; /* reset best to that elenent */
nyslot = current; /* set nmyslot to current */
}
current = current->next; /* continues to conpare */
}
if (best !'= NULL) { /* swap out the element */
ch = SWAP(nysl ot, NULL); /* with the highest priority */
if (ch !'= NULL) { /* if success */
return(ch); /* return the elenent */
}
}
}
}

Figure 6: Code for Priority Queue (Unbounded Version)

14

typedef struct {
elt item
int tag;
} entry;

typeder struct rep {

entry elts[SlZE];
int back;

} reptype;
reptype queue;

void Eng(elt x)

{ . .
int i;
entry e, *olde;
e.item = x;
i = READ(&(queue. back)) + 1;
while (true) {
e.tag =i / SlIZE
ol de = EXCHANGE(& queue.elts[i % SIZE]), -1, &e);
if (olde->tag == -1) {
br eak;
} .
++i
}
FETCH_AND_NMAX(& queue. back), i);
}
elt Deq()
{
entry e, *olde, best;
int i, range, nyslot;
e.tag = -1;
e.item = NULL;
while (true) {
nyslot = -1;
best.item = NULL;
best.tag = -1;
range = READ(&(queue. back)) + 1;
for (i =0; i <range; i++) {
ol de = FETCH_ENTRY(i);
if ((olde->tag ==1i / SIZE) && (olde->item > best.iten)) {
best.item = ol de->item
best.tag = ol de->tag;
nyslot =i % Sl ZE;
}
if (best.item != NULL) {
ol de = EXCHANGE(&(queue. el ts[nyslot]), best.tag, &e);
if (olde->item != NULL) {
return(ol de->iten);
}
}
}
}

Figure 7: Codefor Pri orit¥5Queue (Bounded Version)

SemiQ: trait
includes FifoQ, Set with [SetE for C]
introduces
prefix: Q, Int — SetE
assertsfor all [g: Q, i: Int]
prefix(q, i) =if (i =0 v isEmp(q))
then {}
else prefix(rest(q), i-1) U {first(q)}

g:: Enqg(e)/Ok()
ensuresq =ins(q, €)

g:: Deq()/Ok(e)
requires — isemp(q)
ensuresq =de(q, €) A e € prefix(q, k)

Figure 8: Semiqueug,

search, range = back establishestheinvariant since any inserted items between thefirst slot and the rangeth
dlot are in order. After the first search, we can alow the dequeueing process to search further if we can
ensure that it would not reach an item that is not in thefirst K items of the queue. Thelocal variable, differ,
keeps track of the number of items potentially enqueued that have not yet been dequeued within the slots 1
to range. (Recall that some enqueueing process might have reserved a slot between 1 and range but have
not yet donea STORE of it.) By checking differ inthelast test (lines 13-14), we check that there are at most
differ items that could be ordered before those items in the slots after range, so we are safe in increasing
range by K — differ.

4.3. Proof of Correctness for the Semiqueue

Thetota order relation isthe same as defined for the unbounded FIFO queue. Lemmas 1.1, 1.2, 1.3and 1.4
still hold here (with unbounded FIFO gueue replaced by semiqueue).

Lemma 3.1 num_deqd isaways less than or equal to the number of items deleted from the queue.

Proof: Initially, we set num_degd = 0. Num_deqd is changed only at one place in Deq and
only after a process has deleted an item from the queue. Once an item is deleted by
some process by executing the SWAP and the item is non-NULL, this dequeueing
process increases num_deqd by 1.

Lemma 3.2 When a process P swaps out an item x from the mth slot (by executing SWAP), the set

S = {x| x is stored in slot between the first slot and the mth slot} contains no chain
with length > K.

16

13
14

#define K ...

t ypedef

struct elts {
elt item
struct elts *next;

} *slotpt;

t ypedef

t ypedef
sl ot
int

slotpt slot;

struct {
head, tail;

back;

} reptype;

reptype queue;
static int numdeqd = O;

void Eng(elt x)

{
slot current;
current = FETCH AND_ADD(&queue, queue.tail);
STORE(current, X);
}
elt Deq()
{
int i, range, differ;
el t val ue;
slot current;
while (true) {
current = queue. head;
range = READ(&(queue.back)); /* range initially is back */
i = 0; /* starting search fromfirst slot */
while ((i < range) && (i < queue.back)) {
val ue = SWAP(current, NULL);
if (value !'= NULL) { /* successful dequeue */
ADD(&um deqd) ; /* nunber of itenms actually deq d */
return(val ue);
}
i ++; /* try the next location */
current = current->next;
differ = range - numdeqd;
/* differ is the nunber of items potentially enq d but */
/* not yet deq d (and possibly not yet stored) from1 to range.
if (differ < K {
range += K - differ; /* ok to incr range since there were */
/* fewer than Kitems from1l to range */
}
}
}
}

Figure 9: Code for Semiqueue

17

*/

Proof: Observe that the value of range can be changed at only two places, at beginning of
the loop (because of some concurrent enqueueing process) and at the end of the loop
(because of this dequeueing process). We define Phase 1 to be theinterval from when
range is changed at the beginning of the loop to when it is changed at the end, and
Phase 2 to betheinterval from when rangeis changed at the end of theloop to when it
is changed at the beginning. During the execution of a Deqg, a process passes through
these two Phases alternatively.

By Lemma 3.1 and the test in line 13, we can prove the following properties about
range:

(1) m < range.

(2) In Phase 2, there can be at most K items between the first and rangeth slots.

So if P gets x in Phase 2, the Lemma must be true since there are less than K items
between slots 1 and range.

Suppose P swaps x in Phase 1, then the value of range must be the same as when
P starts searching from slot 1, so for any item y stored between slot 1 and m — 1,
label(enqg(y)) < label(deq(x)). For any two items X5, X, stored in slots | and n,
1<l < n<m,itisimpossiblethat x, < Xq by Lemma 1.4. If X5 <; Xp, then
label (eok(xs)) < label(enq(xy)) < label(deq(x)), i.e.,, when P searches slot queug]l],
Xa Must have been stored there. Thus P can get x; (if it isstill there). In thiscase, we
showed that there is even no chain with length > 2 before queug[m].

Lemma 3.3 If H is a history accepted by semiqueue and X is an item such that H; = deq(x), H; =
dok(x), then x € enqueue([H;_1]) and thereisno chain Cin left([Hj_1]) suchthat x is

~ diter theKthitemon C.
Proof: Since H; = dok(x), we have enqueue([H;_1]) = enqueue([H;]). We aso know that

x € dequeug([H;]). By Lemma 1.2, x € enqueue([H;]), so x € enqueue([H;_1]).
Suppose that thereisachain Cin left([H;_1]):

X]_ <r <er<r <rX<r
then label (eok(x)) < label(enq(x)) < j, (1 < I < K) and no event deq(x) isin [H;].
There must be aslot m from which x was removed. By Lemma 1.4, al x; are storedin
slots before slot m.
Combining the above two sentences, we have: at the time x was removed from the

slot m, there is a chain with length > K between slot 1 and m — 1, which contradicts
Lemma 3.2.

Theorem 3: If H isacomplete history accepted by semiqueue, then H islinearizable.
Proof: Similar to that for the unbounded FIFO queue using Lemmas 1.1-1.4 and 3.1-3.3.
5. Stuttering Queues

5.1. Specification

A Suttering -Queue object (Figure 10) islike a FIFO queue except that the first item in the queue may be
returned as many asj times.

18

StutQ: trait
includes FifoQ
StQ record of [items: Q, count: Int]

g:: Enqg(e)/Ok()
ensures q'.items = ins(q.items, €)

g:: Deq()/Ok(e)
requires — isEmp(qg.items)
ensures
g.count < j = [e=first(g.items) A
[[g.count = g.count + 1 A (' .items = g.itemg] V
[q'.count =0 A ' .items = rest(qg.items)]]]

Figure 10: Stuttering -Queue

5.2. Implementation

Figure 11 gives an implementation of a Stuttering;_Queue queue. We do not use the atomic instructions
SWAP and ADD, but instead we use FETCH_AND_ADD, STORE, and SUB:

void SUB(int *p)
ensur es Decreases by one the value of the integer pointed to by p.

Aswith theimplementation of FIFO queue, we use back to limit the search range of aDeq operation. We
use hold to remember how many processes are currently “looking at” the item stored in aslot. Whenever
a process wants to search for an item from a dot, it first checks and increases this value. J determines
the maximum number of processes that are allowed to look at the same slot concurrently and hence, the
maximum times an item could be returned. In contrast to the FIFO queue implementation, here when a
Deq operation gets anon-NULL vaue from aslot it does not immediately swap inthe NULL element, thus
giving other dequeueing processes the chance to get the same item from the slot. However, the maximum
number of processesthat can get an item from one slot islimited to belessthan J. By carefully ordering the
updates to hold and item, we ensure that before hold of a slot is decreased, the item has been initialized to
NULL, prohibiting more processes from getting this item from this slot.

5.3. Proof of Correctness for the Stuttering Queue

Lemmas 1.2, 1.3 and 1.4 hold for the Suttering,_Queue Queue.

Lemma 4.1 No item can be dequeued more than J times in the Stuttering;_Queue Queue.

Proof: By observing thefollowingtwo facts: (1) Weallow at most J processesto accessaslot
concurrently (determined by the value of hold of the slot); (2) If exactly one process
has gotten an item from the mth slot and decreases hold value in that slot, then slot
m will be set to NULL. So severa processes can get an item from slot m only if they
access slot mbefore any one of them has decreased the hold val ue of that slot; however,
only J processes are allowed to do so.

19

#define J ...

typedef struct elts {

char item
int hold; /* used to renenber the concurrent dequeuers */
struct elts *next;

} *slotpt;

typedef slotpt slot;
typedef struct {

slot head, tail;
int back;

} reptype;
reptype queue;

void Eng(elt x)

{
slot current;
current = FETCH AND_ADD(&queue, queue.tail);
STORE(current, X);
}
elt Deq()
{ . .
int i, range, num
el t val ue;
slot current;
while (true) {
current = queue. head;
range = READ(&queue. back);
for (i = 1; i <=range; i++) {
num = READ _AND ADD(&(current->hol d));
/* get the nunber of processes currently
| ooking at the same slot */
if (num< J) { /* if it is not greater than J */
value = current->item /* not atom c because want to allow */
/* allow other process to get sane value */
if (value !'= NULL) { /* successful dequeue */
current->item = NULL; /* set this location to NULL val ue */
SUB(& current ->hol d));
return(val ue);
}
}
SUB(& current ->hol d));
/* There have been J processes |ooking at this */
/* slot so this process should not try to deq it again */
current = current->next; /* try next slot */
}
}
}

Figure 11: Code for Stuttering Queue

20

Set: trait
includes Bag with [Sfor B]
asserts
for all s: S, e, el: E]
del(emp, €) = emp
del(ins(s, e), €l) = if e= el then del(s,e) eseins(del(s, €l), €)

s: Member(e):/Ok(b)
ensuresb =isin(s,e)

s:: Delete(e)/Ok(b)
ensuress = del(s,e) A b=isIn(s,e)

s:: Insert(e)/Ok()
ensuress =ins(s,e)

Figure 12: Set Trait and Interfaces

Lemma 4.2When a process P gets an item x from the mth slot, x must be the minimal item in the
set S= {y| yis till stored in some slot between the first and mth slots and there are

less than J processes that have also dequeued y }
Proof: Since each time P must first get the value of back in determining its range and then

start its search from the first slot, for any y € S it must be true that label (enq(y)) <
label(deq(x))). If thereisan itemy € Ssuch that label (eok(y)) < label (enq(x)), then
label (eok(y)) < label(deq(x))), and also y was stored in a slot before the slot in which
xisstored (by Lemma 1.4). Thus, P could get a non-NULL item y before reaching X,
acontrodiction.

Lemma4.31f H is a history accepted by the Suttering;_Queue Queue and x is an item such that
Hi = deq(x) and H; = dok(x), then x € enqueue([H;_1]) and x is the minimal item in
left([Hj_1])

Proof: If not, theremust ay € left([Hj_1]) such that |abel(eok(y)) < label(enqg(x)) and it must

be truethat y € S(defined as Lemma 4.2) since left(H) € S By Lemma 4.2, thisis
impossible.

Theorem 4 If H isacomplete history accepted by the Stuttering;_Queue Queue, then H islineariz-

able.
Proof: Similar to the proof for the unbounded FIFO queueusing Lemmas 1.2-1.4 and 4.1-4.3.

6. Set

6.1. Specification

Figure 12 contains the specification for a set.

21

6.2. Implementation

The original design appeared in [6]. Our implementation is given in Figures 13 and 14. The set operations
are implemented in terms of the following atomic instructions. The first two are operations on integer
variables; the last three on arrays.

int READ(int *x)
ensur es Reads and returns the value of the integer pointed to by x.

int INC(int *x)
ensures Increments by 1 the value of the integer pointed to by x and returns the new value.

elt FETCH(char A[], int i)
ensures Reads and returns the value at location i of the character array A.

bool REMOVE(char A[], inti, char x)
ensur es Checks whether the value at location i of array Aisequal to x. If so, it setsthe value
at locationi to NULL and returnstrue. Otherwise, it returnsfalse.

bool ADD(char A[], int i, char X)
ensur es Checks whether the value at location i of array Ais currently NULL. If so, it setsthe
value at location i to x and returns true. Otherwise, it returns false.

The Siding Array Algorithm: We use an array data structure, containing either characters or a specia
NULL value. We use the variable length to hold the length of the currently used portion of the array.
Member (X) reads the val ue of length, and then scansthearray from 1 up to theindex equal to length, looking
for x. If it seesx, it returnstrue; otherwiseit returnsfalse. Delete(x) behavesjust like member(X), except that
if it seesx in positioni, it writes NULL in position i, and returnstrue ; otherwiseit returns false . Insert(x)
first get alock for the item x and then scans the array looking for x just like member and delete. If it seesx,
it terminates returning false. Otherwise it increments the length counter, writes x in the returned position,
releases the lock and returnstrue. If other process has locked the same item, this process will blocks.

Note that Delete leaves “holes’ in the array. These holes might be re-used by subsequent inserts. An
insert keepstrack of these holesin theinitial scan of the array by an array (holes) of indices. Wheninsertis
ready to write the element, it triesthe holesin this array one by one (a concurrent insert might have filled a
hole). If no holesremain, insert then performs an increment on the length counter.

6.3. Proof of Correctnessfor the Set

See[6].

22

#define S 200 /* Upper bound on size of the

char A S§]; /* Array of characters
int |ength; /* Length counter
bool menber (el enent x)
{
int nylength, i;
bool found = fal se;
el ement v;
nyl engt h = READ(& engt h);
i =0;
while ((i < nylength) && !found) ({
i ++;
v = FETCH A, i);
found = (v == x);
}
if (found) {
return(true);
}
el se {
return(fal se);
}
}
bool del ete(el enent x)
{
int nylength, i;
bool found = fal se, renoved = fal se;
el ement v;
nyl engt h = READ(& engt h);
i =0;
while (i < nylength &% !found) ({
i ++;
v = FETCH A, i);
found = (v == x);
}
if (found) {
removed = REMOVE(A, i, X);
}
if (rermoved) {
return(true);
}
el se {
return(fal se);
}
}

array

*/
*/
*/

Figure 13: Code for Set (Part 1)

23

bool

{

insert (el ement x)

int nylength, i;

bool found = fal se, added = fal se, ADX);
int holes[S], nhol es = 0O;

el ement v;

mut ex_| ock(l ock[x - CHAR A]);
nyl engt h = READ(& engt h);
i = 0;
while (i < nylength &% !found) ({
i ++;
v = FETCH(A, i);
if (v == NULL) {
nhol es++;
hol es[nhol es] =i;
}

found = (v == x);

}
if (!found) {
while (!added && nholes > 0) {

added = ADD(A, hol es[nhol es],
nhol es- - ;
}
while (!added) {
i = INC(& ength);
added = ADD(A, i, Xx);
}
}
mut ex_unl ock(l ock[x - CHAR A]);
if (added) {
return(true);
}
el se {
return(fal se);
}

Figure 14: Code for Set (Part 2)

24

X);

MultiSet: trait
includes Bag

s: Member(e):/Ok(b)
ensuresb =isin(s,e)

s:: Delete(e)/Ok(b)
ensures —isin(s ,e) A b=isin(s,e)

s:: Insert(e)/Ok()
ensuress =ins(s,e)

Figure 15: Multiple Set Trait and Interfaces

7. Multiple Set

7.1. Specification

Figure 15 givesthe specification for a multiple set. Multiple sets are different from bagsin that an element
may occur multiple timesin a multiple set but when it isdeleted, al its occurrences are removed (whereas
for abag, only oneinstanceisremoved).

7.2. |Implementation

The original design appeared in [6]. Ours is given in Figures 16 and 17. We need two more atomic
instructions:

element FETCH_KEY (entry A[], i)

ensur es Returns the e ement stored in thelocation i of array A.

int FETCH_GEN(entry A[], i)
ensur es Returns the generation number in thelocationi of array A.

For the details of the algorithm, please see [6].

7.3. Proof of Correctness for the Multiple Set

See[6].

25

#define S 200

typedef struct {

el ement item

int gen;
} entry;
entry Al S];
int |ength;
bool menber (el enent x)
{
int nylength, i;
el ement v;
i =-1;
nyl engt h = READ(& engt h);
while (i < nylength) ({
while (i < nmylength) {
i ++;
v = FETCH KEY(A, i);
if (v ==x) {
return(true);
}
}
nyl ength = READ(& engt h);
}
return(fal se);
}
bool del ete(el enent x)
{

int nylength, i, g;

int todo[S], gen[S], ntodo = -1;
bool renoved = fal se;

el ement v;

nyl engt h = READ(& engt h) ;
for (i =0; i <= nylength; i++) {

v = FETCH KEY(A, i);
g = FETCH GEN(A, i);
if (v == x) {
nt odo++;
todo[ntodo] =i;
gen[ntodo] = g;
}
}
for (i =0; i <= ntodo; i++) {
removed = renoved || REMOVE(A, todo[i], gen[i]);
}
return(renoved);
}

Figure 16: Code for Multiple Set (Part 1)

26

bool insert(elenent x)

{
int nylength, i;
bool added = fal se;
int holes[S], nholes = -1;
el ement v;

nyl engt h = READ(& engt h);
for (i =0; i <= nylength; i++) {
v = FETCH KEY(A, i);
if (v == NULL) {
nhol es++;
hol es[nhol es] = i;

}
}
while (!added && nholes > -1) {

added = ADD(A, hol es[nhol es], x);
nhol es- - ;

}
while (!added) {

i = INC(& ength);
added = ADD(A, i, X);
}
ret urn(added);

Figure 17: Code for Multiple Set (Part 2)
8. Register
8.1. Specification

Figure 18 contains the specification for a register.

8.2. Implementation

Theoriginal design appeared in [5]. Our implementation isgiven in Figures 19 and 20.

8.3. Proof of Correctness for the Register

See[5].

27

Reg: trait
includes Integer
introduces
new: — R
fetch: R — Int
store: R, Int — R
dontcare: — V
asserts
R generated by [new, store]
for all r: R, i: Int]
fetch(new) = dontcare
fetch(store(r,i)) =i

r:: Read()/Ok(v)
ensuresr’ =r A v = fetch(r)

r:: Write(v)/Ok()
ensuresr’ = store(r,v)

Figure 18: Register Trait and Interfaces

References

[1]

[2]

3]

[4]

(5]

[6]

[7]
(8]

Eric C. Cooper. C threads. Technical Report CMU-CS-88-154, School of Computer Science, Carnegie
Mellon University, 1988.

J.V. Guttag, J.J. Horning, and J.M. Wing. The larch family of specification languages. |EEE Software,
2(5):24-36, September 1985.

M.P. Herlihy and JM. Wing. Axioms for concurrent objects. In Fourteenth ACM Symposium on
Principles of Programming Languages, pages 13-26, January 1987.

M.P. Herlihy and JM. Wing. Specifying graceful degradation. |EEE Transactions on Parallel and
Distributed Computing, June 1990. to appear.

L. Lamport. Concurrent reading and writing. Communicationsof the ACM, 20(11):806-811, November
1977.

V. Lanin and D. Shasha. Concurrent set manipulation without locking. In Proceedings of the Seventh
ACM Symposiumon Principles of Database Systems, pages 211-220, March 1988.

Lehman and W.E. Weihl. Technical Report xx, MIT Lab. for Computer Science, 1990.

J.M. Wingand C. Gong. A simulator for concurrent objects. Technical Report CMU-CS-90-150, CMU
School of Computer Science, July 1990.

28

#define VL 10
#define RL 7

static int reg[RL];
static int vi[VL], v2[VL];

int exp(int i)

{
int k, j;
k = 1;
for (j =1;] <=1i; j+4)
k *= 2;
return(k);
}

bool conpare(int j)

{
int i, k;
k = 0;
for (i =0; i < VL; i++)
k = k + vi[i] * exp(i);
return(k == j);
}
int Read()
{
int i, tnmp, value, exp();
bool conpare();
do {
tnp = 0;
for (i =WV - 1; i >=0; i--)
tnp = tnp + v2[i] * exp(i);
val ue = 0;
for (i =0; i <RL; i++)
value = value + reg[i] * exp(i);
} while (!conpare(tnp));
return(val ue);
}

Figure 19: Code for Register (Part 1)

29

void Wite(int c)

{
int i, vt[WL], carry;

carry = 1,

for (i =0; i <W; i++) {

vt[i] = vl[i] + carry;
if (vt[i] {

vt[i]

carry

\%

1)
0;
1.

}

else carry = 0;

}

for (i =VL - 1; i >=0; i--)
vi[i] = vt[i];

i =0;

do {
vt[i] = ¢ %2;
c=c/ 2
i ++;

} while (i < RL);

for (i =0; i <RL; i++)
regli] = vt[i];

for (i =0; i < VL; i++)
v2[i] = vi[i];

Figure 20: Code for Register (Part 2)

30

