
A Library of Concurrent Objects and Their Proofs of Correctness

Chun Gong and Jeannette M. Wing

July 20, 1990

1. Focus and Motivation of Paper

A concurrent object is a data structure shared by concurrent processes. It provides a set of primitive
operations that are the only means for processes to manipulate the object. In the design and implementation
of a concurrent object, we are faced with two problems:

1. What is our notion of correctness for a system composed of concurrent objects?

2. Given some notion of correctness, how can we show a given implementation is correct?

Answering the first question is one of definition; the second, of method. While there is no general
agreement on an answer to the first, we choose the correctness condition called linearizability, which has
recently captured the attention of the research community. Informally, we say an implementation of a
concurrent object O is correct if and only if each concurrent history H accepted by O is “equivalent” in some
sense to some legal sequential history, where (1) legality is defined in terms of the (sequential) type semantics
of the object and (2) the “equivalent” sequential history preserves the real-time ordering of operations in H.

Linearizability, first coined in Herlihy and Wing’s 1987 POPL paper [3], generalizes correctness notions
that had previously been defined for specific data structures like atomic registers and FIFO queues. It is an
intuitively appealing notion of correctness, and also enjoys other properties like locality, which simplifies
the proof method, that other notions of correctness do not.

With regard to the second question, we advocate using the complementary techniques of verification and
testing. This paper in particular describes a library of concurrent objects that we have designed, implemented,
tested and verified. We focus here on the proofs of correctness of the implementations of these objects; a
companion paper [8] describes our simulator, used for testing our implementations.

Proving linearizability of a data object is a nontrivial task. In [6], the proof of a simple concurrent set
consists of five propositions, one lemma and one theorem. All our proofs are structured similarly by first
giving a list of three to five lemmas and then a final theorem. Thus, in the spirit of reuse through program
libraries, one of our goals is to supply users with a library of “verified” concurrent objects. The application
writer is then freed from having to design, implement, and verify commonly-used abstractions. What we
present here is just the beginning of a concurrent object library and we welcome additions from others.

In the remainder of this section we first describe our model of computation, thereby allowing us to define
linearizability formally. We proceed to describe our specification language (Larch) used to define the type
semantics of an object and then discuss the key property of our proofs.

1

In the remainder of this paper, we then present for each of the following data types, a specification, an
implementation, and a proof of correctness (or cite other work that contains a proof):

� FIFO queue (unbounded and bounded versions).

� Priority queue (unbounded and bounded versions).

� Semiqueue.

� Stuttering queue.

� Set.

� Multiset.

� Register.

1.1. Model of Computation

A concurrent system consists of a collection of sequential threads of control called processes that commu-
nicate through shared data structures called concurrent objects. A concurrent object provides a finite set of
primitive operations that are the only means to manipulate the object. Processes are sequential: each process
applies a sequence of operations to objects, alternately issuing an invocation and receiving the associated
response. Several processes might issue an invocation to the same object concurrently.

Formally, we model an execution of a concurrent system by a history, which is a finite sequence of
operation invocation and response events. An operation invocation is written as x op(args*) A, where x is an
object name, op is an operation name, args* is a sequence of argument values, and A is a process name. The
response to an operation invocation is written as x term(res*) A, where term is the (normal or exceptional)
termination condition and res* is a sequence of result values. We use “Ok” for normal termination. A
response matches an invocation if their object names agree and their process names agree. An invocation
is pending in a history if no matching response follows the invocation. If H is a history, complete(H) is
the maximal subsequence of H consisting only of invocation and matching responses. An operation, e, in a
history is a pair consisting of an invocation, inv(e), and the next matching response, res(e). Operations of
different processes may be interleaved.

A history H is sequential if:

1. The first event of H is an invocation.

2. Each invocation, except possibly the last, is immediately followed by a matching response.

In other words, except for possibly the last event, a sequential history is a sequence of operations, i.e., pairs
of invocation and matching response events. A process subhistory, H|P (H at P), of a history H is the
subsequence of all events in H whose process names are P. An object subhistory, H|X, is similarly defined
for an object x. Two histories H and H

�
are equivalent if for every process P, H

�
P = H

� �
P. A history H is

well-formed if each process subhistory H
�
P of H is sequential.

A history H induces an irreflexive partial order � H on operations:

e0 � H e1 if res(e0) precedes inv(e1) in H �

2

Informally, � H captures the “real-time” precedence ordering of operations in H. Operations unrelated by
� H are said to be concurrent. If H is sequential, � H is a total order.

A set S of histories is prefix-closed if, whenever H is in S, every prefix of H is also in S. A single-object
history is one in which all events are associated with the same object. A sequential specification for an
object is a prefix-closed set of single-object histories for that object. A sequential history H is legal if each
object subhistory H

�
x belongs to the sequential specification for x. Many conventional techniques exist for

defining sequential specifications. In this paper, we the axiomatic style of Larch [2].

1.2. Definition of Linearizability

A history H is linearizable if it can be extended (by appending zero or more response events) to some history
H

�
such that:

L1: complete(H
�
) is equivalent to some legal sequential history S, and

L2: � H � � S.

L1 states that processes act as if they were interleaved at the granularity of complete operations. L2
states that this apparent sequential interleaving respects the real-time precedence ordering of operations.

1.3. Specification Language

We use the Larch Specification Language [2] to specify the sequential behavior of an object. We use a Larch
trait to specify its set of values and Larch interfaces to specify its set of operations. In a trait, the set of
operators and their signatures, shown following the keyword introduces, defines a vocabulary of terms to
denote values. For example, from the Bag trait of Figure 1, emp and ins(emp � 5) denote two different bag
values. The set of equational axioms following the asserts clause defines a meaning for the terms, more
precisely, an equivalence relation on the terms, and hence on the values they denote. For example, from
Bag, one could prove that del(ins(ins(ins(emp � 4) � 3) � 3) � 3) = ins(ins(emp � 4) � 3). The generated by clause
of Bag asserts that emp and ins are sufficient operators to generate all values of bags. Formally, it introduces
an inductive rule of inference that allows one to prove properties of all terms of sort B.

Larch provides two ways of reusing traits: a trait T can include or assume another trait T1. If T1 is
included, then T extends the theory denoted by T1 by adding more operators and equations explicitly in T.
For example, FifoQ of Figure 2 includes Bag and adds two operators, first and rest, and two equations to
those of Bag. From FifoQ, one could show that first(ins(ins(ins(emp � 4) � 3) � 3)) = 4. If T1 is assumed, then T
may use T1’s operators with their meaning as given in T1; a further use of T must discharge the assumption
of T1’s theory. For example, a trait for priority queues (q.v., Section 3) might assume the existence of a total
ordering on the items inserted in the queue. With either kind of reuse, a with clause allows renaming of
operator and sort identifiers.

We use Larch interfaces to describe an object’s set of operations. For example, interfaces for the Enq
and Deq operations for Bags and FIFO queues are shown in Figures 1 and 2, respectively. An interface’s
header is of the form x :: op(args*)/term(res*) where x is the object’s identifier, and op(args*)/term(res*)
is the (matching pair of) invocation and response events of the operation being specified. The object’s
identifier is an implicit argument and return formal (parameter) of each operation. A requires clause states

3

Bag: trait
introduces

emp: � B
ins: B, E � B
del: B, E � B
isEmp: B � Bool
isIn: B, E � Bool

asserts
B generated by [emp, ins]
for all [b: B, e, e1: E]

del(emp, e) = emp
del(ins(b, e), e1) = if e = e1 then b else ins(del(b, e1), e)
isEmp(emp) = true
isEmp(ins(b, e)) = false
isIn(emp, e) = false
isIn(ins(b, e), e1) = (e = e1)

�
isIn(b, e1)

b:: Enq(e)/Ok()
ensures b’ = ins(b, e)

b:: Deq()/Ok(e)
requires � isEmp(b)
ensures isIn(b, e) � b’ = del(b, e)

Figure 1: Bag Trait and Interfaces

FifoQ: trait
includes Bag with [Q for B]
introduces

first: Q � E
rest: Q � Q

asserts for all [q: Q, e: E]
first(ins(q, e)) = if isEmp(q) then e else first(q)
rest(ins(q, e)) = if isEmp(q) then emp else ins(rest(q), e)

q:: Enq(e)/Ok()
ensures q’ = ins(q, e)

q:: Deq()/Ok(e)
requires � isEmp(q)
ensures q’ = rest(q) � e = first(q)

Figure 2: FIFO Queue Trait and Interfaces

4

the precondition that must hold when an operation is invoked. An omitted requires clause is interpreted as
equivalent to “requires true.” An ensures clause states the postcondition that the operation must establish
upon termination. An unprimed argument formal, e.g., q, in a predicate stands for the value of the object
when the operation begins. A return formal or a primed argument formal, e.g., q

�
, stands for the value of the

object at the end of the operation. For an object x, the absence of the assertion x
�

= x in the postcondition
states that the object’s value may change. We use the vocabulary of traits to write the assertions in the pre-
and postconditions of an object’s operations; we use the meaning of equality to reason about its values.
Hence, the meaning of ins and = in the postcondition for the Bag is given by the Bag trait, but that for the
FIFO queue, by the FifoQ trait. Note that the postcondition for the Deq operation for the Bag is weaker than
that for the FIFO queue.

1.4. Informal Proof Method

Consider the FIFO queue which has two operations, Enq and Deq, as specified in Figure 2. Its specification
makes sense only when there is a total order relation between the items in queue, i.e., to know which is
the first item in the queue. If we perform Enq and Deq operations sequentially, we get a natural total
order relation on the queue’s items. Suppose now we do multiple Enq operations concurrently. What total
order relation can we define that will still give meaning to f irst? The answer is that the implementor of a
concurrent object needs to define a total order relation; a proof of correctness amounts to showing that the
implementation maintains this total order.

As mentioned, proving the correctness of an implementation can be a daunting task. In this paper we
follow no formal proof method in the sense of writing a syntax-directed proof or a machine-checkable proof.
Based on our work described in [3], we found that the most difficult part of the verification task is in defining
an ordering relation in terms of the representation operations used to implement the (abstract) operations of
a concurrent object, and then to argue, informally or formally, that the implementation maintains it. This
ordering information is the key insight that a (human) prover must provide for each proof of correctness.

2. FIFO queues

2.1. Specification

See Figure 2.

2.2. Implementations

We provide two implementations, an unbounded version and a bounded version.

2.2.1. Unbounded Version

Figure 3 contains the source code for the queue representation and Enq and Deq operations. We store the
elements of the queue in a list with head and tail pointers, head and tail, and keep track of the number of the
elements in back (initialized to 0).

5

The implementation of each object’s operation is given in terms of a set of atomic instructions, i.e.,
representation operations that are indivisible. Our implementation makes use of the following atomic
instructions 1:

slot FETCH AND ADD(reptype Q, slot s)
ensures Allocates a new, empty slot (with item = NULL) to Q, increases Q �back by 1, and

returns the old value of s, which is a slot.

void STORE(slot s, elt x)
ensures Stores x in the slot s.

int READ(int *x)
ensures Returns the value of the integer pointed to by x.

elt SWAP(slot s, elt x)
ensures Stores x in the slot s and returns the old value of the item stored in s.

An Enq execution occurs in two distinct steps: a slot is atomically allocated (back is also increased) and
the new element is stored as the item of the allocated slot. Deq traverses the list of slots, starting at the
first slot. For each slot, it atomically swaps NULL with the current item. If the value returned is not equal
to NULL, Deq returns that value, otherwise it tries the next slot. If it has searched back � 1 slots without
encountering a non-NULL item, the operation tries again. Deq does not return until a non-NULL item is
found.

2.2.2. Proof of Correctness for the Unbounded Version

Given a well-formed history H, we use the following notation:

� Hi is the ith event in H. We assume that an invocation event of an abstract operation is associated
with the execution of the first instruction of the operation and a response event associated with the
execution of the last instruction.

� If Hi = e then label(e) = i.

� �
H

�
is the length of H.

� [Hi] is the subhistory of H consisting of the first i events in H.

� If the operation Enq(x) is in H, we use enq(x) and eok(x) to refer to its invocation and response event;
if the operation Deq() is in H and the value returned by its response event is x, we use deq(x) and
dok(x) to refer to its invocation and response event. Here we assume that no two items are equal.

� enqueue(H) =
�
x

�
Both enq(x) and eok(x) are in H � . Note, this is a partially ordered set with the

relation � r (see below) and we define the concept of chain as usual.

1We implemented these instructions using mutex locks from the C threads package [1]. The informal specifications of the
atomic instructions follow the style of Larch/C interfaces.

6

typedef struct elts {
elt item; /* an element in the queue */
struct elts *next; /* pointer to the next element */

} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail; /* first and last slots in queue */
int back; /* number of slots in queue */

} reptype; /* queue representation */

reptype queue;

void Enq(elt x) /* enqueue an element x */
{

slot current;

current = FETCH_AND_ADD(&queue, queue.tail); /* get an empty slot */
STORE(current, x); /* store x in slot */

}

elt Deq() /* Deq will return the first element */
{

int i, range;
elt ch;
slot current;

while (true) { /* keep trying till non-NULL value is found */
current = queue.head; /* starting from the first slot */
range = READ(&(queue.back)) - 1;/* search up to back-1 slots */
for (i = 1; i <= range; i++) {

if (i > 1) {
current = current->next;

}
ch = SWAP(current, NULL); /* put a NULL value in ith slot */
if (ch != NULL) { /* if non-NULL value */

return(ch); /* return it */
}

}
}

}

Figure 3: Code for FIFO Queue (Unbounded Version)

7

� dequeue(H) =
�
y

�
Both eok(y) and deq(y) are in H, and if dok(y) is in H, then label(eok(y)) �

label(dok(y))� .

� left(H) = enqueue(H) � dequeue(H).

We define a partial order relation � r on the items in the array:

x � r y iff the STORE for x precedes the FETCH AND ADD for y.

We will be interested in any total order relation consistant with � r.

We observe that:

1. Several Enq’s operations can occur concurrently.

2. If the queue is not empty, a Deq can execute with several Enqs concurrently and several Deqs can also
occur concurrently. Only one Deq can get the first item.

3. In Deq we limit the search range in terms of the current value of queue �back and then search from
1 to range. While one process is searching within the range, some other process might do an Enq,
increasing the value of queue �back. If we replace range in line 5 by queue �back, we would get
incorrect behavior since doing so would allow a process to delete an item that would not be the first
one by any total order relation defined above. Consider the following scenario:

Suppose process A is in the middle of performing an Enq(x) on an empty queue and
just finished FETCH AND ADD (back = 2). Now process B starts a Deq, finding nothing
in its first iteration (since A has not finished its STORE). It is possible that before B rereads
back, A finishes its STORE (x is in position 1) and then another process C also finishes an
Enq(y) (back = 3 and y is in position 2). If at this point B rereads back and enters the loop
the second time, what is going to happen? B will remove and return y instead of x. (Recall
that x � r y according to our definition of � r.)

Lemma 1.1 An item in the queue can be deleted at most once.
Proof: The only way to remove an item from queue is to execute the atomic instruction SWAP.

Lemma 1.2 If H is a history accepted by the unbounded FIFO queue, then for all i, 1 � i �
�
H

�
,

dequeue([Hi]) � enqueue([Hi]).
Proof: If not, there must be an integer i � 0 and an item x such that label(dok(x)) = i and

label(eok(x)) = j � i, which means that x is deleted before it had been stored, a
contradiction.

Lemma 1.3 If H is a history accepted by the unbounded FIFO queue, Hi = enq(x) and Hj = eok(x)
(i � j), then x is a maximal element in enqueue([Hj]).

Proof: Suppose not. Then there must be a y � enqueue([Hj]) and x � r y. According to
the definition of � r, the FETCH AND ADD instruction for y must be executed after
the execution of the STORE instruction for x, which implies that label(eok(x)) = j �
label(enq(y)). So, enq(y) cannot be an event in [Hj], let alone y be in enqueue([Hj]).

8

Lemma 1.4 Suppose H is a history accepted by the unbounded FIFO queue, eok(x) and eok(y)
are in H. If x and y are stored in the mth slots and the nth slots respectively, then
label(enq(x)) � label(enq(y)) � � m � n.

Proof: By the semantics of FETCH AND ADD.

Lemma 1.5 When a process P swaps out an item x from the mth slot (by executing SWAP), x must
be the minimal element with respect to the relation � r in the set S =

�
x

�
x is stored in

some slot between the first and mth slots, inclusive.�
Proof: Observe that once the value of range is changed, P searches the list from the first slot

and m � range. Suppose P swaps x from the mth slot, then the value of range must be
the same as when P starts searching from the first slot, so for any item y stored between
the first slot and the slot m � 1, label(enq(y)) � label(deq(x)). For any two items xa,
xb stored in the lth and nth slots, 1 � l � n � m, it is impossible that xb � r xa by
Lemma 1.4. If xa � r xb, then label(eok(xa)) � label(enq(xb)) � label(deq(x)), i.e.,
when P searches the lth slot, xa must have been already stored there; hence P would
get the item xa (if it is still there).

Theorem 1: If H is a complete historyaccepted by the unboundedFIFO queue, then H is linearizable.
Proof: We prove the linearizability of H by induction on the number of operations in H. For

H with 0 operations, it is trivial that Theorem 1 holds. Now we assume that for any
complete H with l operations this theorem is true. We need to show that for any
complete H with l + 1 operations it is also true. Note that

�
H

�
= 2(l + 1). Since H

is a complete history, the last event of H must be a response event. There are two
possibilities:
(1)The last event is H2(l+1) = eok() and its matching invocation event is Hj = enq(x) for
some x and 1 � j � 2(l + 1). We use Hold to denote H with the two matching events
Hj and H(2(l + 1)) deleted. Since x cannot be dequeued in Hold, Hold is also a complete
history accepted by the unbounded FIFO queue and so it is linearizable, equivalent to
a legal sequential history H

�
. By Lemma 1.3, H

�
HjH2(l+1) is a legal sequential history

and equivalent to H. So H is linearizable.
(2)The last event is H2(l+1) = dok(x) for some x and its matching invocation event is
Hj = deq(), 1 � j � 2(l + 1). The same arguments as above applies with Lemma 1.3
replaced by Lemma 1.5.

2.2.3. Bounded Version

The code for our second implementation of a FIFO queue is given in Figure 4. We use a bounded array to
store the elements of the queue and the back counter to keep track of the number of elements in the queue.
We use modular arithmetic to “fold” an unbounded array into the bounded array. To preserve the FIFO
ordering, each queue element is tagged with a generation number that counts the number of times the back
counter has “wrapped around”. In addition to the READ instruction described in the unbounded version,
the bounded version makes use of the following atomic instructions:

entry EXCHANGE(entry e1, int gen, entry e2)
ensures If e1 � tag matches gen, then e2 is set to the value of e1; otherwise e1 is unchanged. The

old value of e1 is returned.

9

void FETCH AND MAX(location l, int i)
ensures This operation replaces a memory location l with the maximum of i and l’s current

value.

Figure 4 contains the source code for the bounded version of the FIFO queue. From the code, we see
that initially each entry’s tag is equal to � 1 and back = � 12. Enq reads the index of the last enqueued item,
and cyclically scans the array starting at the slot after that index. EXCHANGE checks whether each slot
is empty, and if so, swaps in the item x tagged with its generation number. If the tag of the entry returned
is NULL, then the slot was empty and queue �back is updated to the maximum of i and the current value
of queue �back (other concurrent Enq’s could have updated queue �back before this one completes). Deq
cyclically scans the array, starting at index 0 and ending at the observed value of queue �back. For each
element, it atomically compares to see if its tag is the current generation number; if so, it swaps in the
“empty” entry. If the tag of the entry returned is not equal to -1, then Deq returns the associated item.

2.2.4. Proof of Correctness for the Bounded Version

We change the definition of � r to be as follows:

x � r y iff FETCH AND MAX for x precedes the READ for y

Lemma 1.1 still holds. Again we assume that only distinct items are inserted in a queue.

Lemma 2.1 Suppose H is a history accepted by the bounded FIFO queue and Hj = eok(x), then x is
a maximal element in enqueue(Hj).

Proof: The same argument as in Lemma 1.3 with the FETCH AND ADD instruction replaced
by READ, and STORE by FETCH AND MAX.

We need the following new notations:

� For an item x, entry(x) denotes the entry holding x.

� i(x) for the index of queue where x (or entry(x)) is stored.

� slot(x) = i(x) + (SIZE � entry(x) � tag).

Lemma 2.2 If H is a history accepted by the bounded FIFO queue and x � r y � enqueue(H), then
slot(x) � slot(y).

Proof: We use back to remember the most recently used index of a slot. An enqueueing
process P first gets a slot index by reading back + 1 (several concurrent processes may
get the same index); then it atomically does the following: (a) checks if the slot is
empty, and (b) if so stores the item there, prohibiting other concurrent processes from
using this slot again. After storing the item, P will increase the value of back by at
least 1 through FETCH� AND� MAX. Since x � r y, according to our definition of � r,
we know that the operation READ for y must be after the FETCH� AND� MAX for x.
So y’s enqueuer can get only a greater slot value.

2C arrays start indexing from 0.

10

typedef struct {
elt item; /* a queue element */
int tag; /* its generation number */
} entry;

typedef struct rep {
entry elts[SIZE]; /* a bounded array */
int back;
} reptype;

reptype queue;

void Enq(elt x)
{

int i;
entry e, *olde;

e.item = x; /* set the new element’s item to x */
i = READ(&(queue.back)) + 1; /* get a slot in the array for the new element */
while (true) {

e.tag = i / SIZE; /* set the new element’s generation number */
olde = EXCHANGE(&(queue.elts[i % SIZE]), -1, &e);

/* exchange the new element with slot’s
value if that slot has not been used */

if (olde->tag == -1) { /* if exchange is successful */
break; /* get out of the loop */

}
++i; /* otherwise, try the next slot */

}
FETCH_AND_MAX(&(queue.back), i); /* reset the value of back */

}

elt Deq()
{

entry e, *olde;
int i, range;

e.tag = -1; /* make e an empty entry */
e.item = NULL;
while (true) { /* keep trying until an element is found*/

range = READ(&(queue.back)) - 1; /* search up to back-1 slots */
for (i = 0; i <= range; i++) {

olde = EXCHANGE(&(queue.elts[i % SIZE]), i / SIZE, &e);
/* check slot to see if it contains the oldest element */

if (olde->tag != -1) { /* if so */
return(olde->item); /* return the item in it */

}
} /* otherwise try the next one */

}
}

Figure 4: Code for FIFO Queue (Bounded Version)

11

PQueue: trait
assumes TotalOrder with [E for T] % > denotes the total order relation
includes Bag with [PQ for B]
introduces

best: PQ � E
asserts for all [q: PQ, e: E]

best(ins(q, e)) = if isEmp(q)
then e
else if e > best(q) then e else best(q)

q:: Enq(e)/Ok()
ensures q’ = ins(q, e)

q:: Deq()/Ok(e)
requires � isEmp(q)
ensures e = best(q) � q’ = del(q, e)

Figure 5: Priority Queue Trait and Interfaces

Lemma 2.3 If H is a history accepted by the bounded FIFO queue and Hj = dok(x), then x is the
minimal item of left([Hj]).

Proof: If not, there must be a y � left([Hj]) such that y � r x; by Lemma 2.2, slot(y) � slot(x),
since a process starts its search range from the first slot and its search range is limited
by back. Hence, the same reasoning as in Lemma 1.5 applies here.

Theorem 2 If H is a complete history accepted by the bounded FIFO queue, then H is linearizable
under the constraint of FIFO queue semantics.

Proof: Similer to the proof of Theorem 1 using Lemmas 1.1 and 2.1-2.3.

3. Priority Queue

3.1. Specification

Figure 5 contains the specification of a priority queue.

3.2. Implementations

Again, we provide two implementations, one unbounded and one bounded.

3.2.1. Unbounded Version

This implementation (Figure 6) is almost the same as the one for the unbounded version of FIFO queue. The
only difference is that we assume a relation � (the “priority” ordering) on queue elements. Deq must return
the maximal (“best”) element with respect to � in the queue. We also need another atomic instruction:

12

elt FETCH� KEY(slot s)
ensures Returns the current item in slot s.

Enq is the same as for the unbounded FIFO queue. Deq scans the list, keeping track of the slot of the
highest priority element seen so far. If the dequeuer, D, has found a non-NULL element, it returns to that slot
and attempts to remove the element (by swapping). If another dequeuer has already removed that element,
D tries again.

3.2.2. Proof of Correctness for the Unbounded Version

Similar to that for the unbounded FIFO queue.

3.2.3. Bounded Version

The basic idea is the same one as that for the bounded FIFO queue. Figure 7 contains the code.

3.2.4. Proof of Correctness for the Bounded Version

Similar to that for the bounded FIFO queue.

4. Semiqueues

4.1. Specification

A Semiqueuek object (Figure 8) consists of a sequence of items. The Enq operation inserts an item in the
sequence, and the Deq deletes and returns one of the first k items in the queue. It is straightforward to show
that if k is one, the object is a FIFO queue (Figure 2) and if k is n, the maximum number of items allowed in
the queue, the object is a bag (Figure 1). The motivation for providing this “weaker” queue data type [4] is
to give better response time to dequeueing processes, as well as to let more of them proceed concurrently.

4.2. Implementation

Our implementation of a Semiqueuek (Figure 9) uses a list to store the queue elements and keeps the number
of slots in back. We use the following atomic instruction:

void ADD(int *p)
ensures:Atomically increases by one the value of the integer pointed to by p.

The code for Enq is as for the (unbounded) FIFO and priority queues. The while loop in Deq is similar to
that for the unbounded FIFO queue except that range can be increased during the search. The loop invariant
is that num� deqd is always less than the number of items deleted. When a dequeueing process starts its first

13

typedef struct elts {
elt item; /* an element in the queue */
struct elts *next; /* pointer to the next element */

} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail; /* first and last slots in queue */
int back; /* number of slots in queue */

} reptype; /* queue representation */

reptype queue;

void Enq(elt x)
{

slot current;

current = FETCH_AND_ADD(&queue, queue.tail);
STORE(current, x);

}

elt Deq()
{

elt best, ch;
int i, range;
slot current, myslot;

while (true) { /* keep trying until success */
myslot = NULL;
best = NULL; /* set best to the lowest priority value */
current = queue.head; /* search from the first slot */
range = READ(&(queue.back)) - 1; /* up to back-1 slots */
for (i = 1; i <= range; i++) {

ch = FETCH_KEY(current);
if (ch > best) { /* finds a element with higher */

/* priority in current slot */
best = ch; /* reset best to that element */
myslot = current; /* set myslot to current */

}
current = current->next; /* continues to compare */

}
if (best != NULL) { /* swap out the element */

ch = SWAP(myslot, NULL); /* with the highest priority */
if (ch != NULL) { /* if success */

return(ch); /* return the element */
}

}
}

}

Figure 6: Code for Priority Queue (Unbounded Version)

14

typedef struct {
elt item;
int tag;
} entry;

typeder struct rep {
entry elts[SIZE];
int back;
} reptype;

reptype queue;

void Enq(elt x)
{

int i;
entry e, *olde;

e.item = x;
i = READ(&(queue.back)) + 1;
while (true) {

e.tag = i / SIZE;
olde = EXCHANGE(&(queue.elts[i % SIZE]), -1, &e);
if (olde->tag == -1) {

break;
}
++i;

}
FETCH_AND_MAX(&(queue.back), i);

}

elt Deq()
{

entry e, *olde, best;
int i, range, myslot;

e.tag = -1;
e.item = NULL;
while (true) {

myslot = -1;
best.item = NULL;
best.tag = -1;
range = READ(&(queue.back)) + 1;
for (i = 0; i < range; i++) {

olde = FETCH_ENTRY(i);
if ((olde->tag == i / SIZE) && (olde->item > best.item)) {

best.item = olde->item;
best.tag = olde->tag;
myslot = i % SIZE;

}
}
if (best.item != NULL) {

olde = EXCHANGE(&(queue.elts[myslot]), best.tag, &e);
if (olde->item != NULL) {

return(olde->item);
}

}
}

}

Figure 7: Code for Priority Queue (Bounded Version)15

SemiQ: trait
includes FifoQ, Set with [SetE for C]
introduces

prefix: Q, Int � SetE
asserts for all [q: Q, i: Int]

prefix(q, i) = if (i = 0
�

isEmp(q))
then

� �
else prefix(rest(q), i-1)

� �
first(q)�

q:: Enq(e)/Ok()
ensures q’ = ins(q, e)

q:: Deq()/Ok(e)
requires � isEmp(q)
ensures q’ = del(q, e) � e � prefix(q, k)

Figure 8: Semiqueuek

search, range = back establishes the invariant since any inserted items between the first slot and the rangeth
slot are in order. After the first search, we can allow the dequeueing process to search further if we can
ensure that it would not reach an item that is not in the first K items of the queue. The local variable, differ,
keeps track of the number of items potentially enqueued that have not yet been dequeued within the slots 1
to range. (Recall that some enqueueing process might have reserved a slot between 1 and range but have
not yet done a STORE of it.) By checking differ in the last test (lines 13-14), we check that there are at most
differ items that could be ordered before those items in the slots after range, so we are safe in increasing
range by K � differ.

4.3. Proof of Correctness for the Semiqueue

The total order relation is the same as defined for the unbounded FIFO queue. Lemmas 1.1, 1.2, 1.3 and 1.4
still hold here (with unbounded FIFO queue replaced by semiqueue).

Lemma 3.1 num� deqd is always less than or equal to the number of items deleted from the queue.
Proof: Initially, we set num� deqd = 0. Num� deqd is changed only at one place in Deq and

only after a process has deleted an item from the queue. Once an item is deleted by
some process by executing the SWAP and the item is non-NULL, this dequeueing
process increases num� deqd by 1.

Lemma 3.2 When a process P swaps out an item x from the mth slot (by executing SWAP), the set
S =

�
x

�
x is stored in slot between the first slot and the mth slot � contains no chain

with length � K.

16

#define K ...

typedef struct elts {
elt item;
struct elts *next;

} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail;
int back;

} reptype;

reptype queue;
static int num_deqd = 0;

void Enq(elt x)
{

slot current;

current = FETCH_AND_ADD(&queue, queue.tail);
STORE(current, x);

}

elt Deq()
{

int i, range, differ;
elt value;
slot current;

1 while (true) {
current = queue.head;
range = READ(&(queue.back)); /* range initially is back */
i = 0; /* starting search from first slot */
while ((i < range) && (i < queue.back)) {

value = SWAP(current, NULL);
if (value != NULL) { /* successful dequeue */

ADD(&num_deqd); /* number of items actually deq’d */
return(value);

}
i++; /* try the next location */
current = current->next;
differ = range - num_deqd;

/* differ is the number of items potentially enq’d but */
/* not yet deq’d (and possibly not yet stored) from 1 to range. */

13 if (differ < K) {
14 range += K - differ; /* ok to incr range since there were */

/* fewer than K items from 1 to range */
}

}
}

}

Figure 9: Code for Semiqueue

17

Proof: Observe that the value of range can be changed at only two places, at beginning of
the loop (because of some concurrent enqueueing process) and at the end of the loop
(because of this dequeueing process). We define Phase 1 to be the interval from when
range is changed at the beginning of the loop to when it is changed at the end, and
Phase 2 to be the interval from when range is changed at the end of the loop to when it
is changed at the beginning. During the execution of a Deq, a process passes through
these two Phases alternatively.
By Lemma 3.1 and the test in line 13, we can prove the following properties about
range:
(1) m � range.
(2) In Phase 2, there can be at most K items between the first and rangeth slots.
So if P gets x in Phase 2, the Lemma must be true since there are less than K items
between slots 1 and range.
Suppose P swaps x in Phase 1, then the value of range must be the same as when
P starts searching from slot 1, so for any item y stored between slot 1 and m � 1,
label(enq(y)) � label(deq(x)). For any two items xa, xb stored in slots l and n,
1 � l � n � m, it is impossible that xb � r xa by Lemma 1.4. If xa � r xb, then
label(eok(xa)) � label(enq(xb)) � label(deq(x)), i.e., when P searches slot queue[l],
xa must have been stored there. Thus P can get xa (if it is still there). In this case, we
showed that there is even no chain with length � 2 before queue[m].

Lemma 3.3 If H is a history accepted by semiqueue and x is an item such that Hi = deq(x) � Hj =
dok(x), then x � enqueue([Hj� 1]) and there is no chain C in left([Hj� 1]) such that x is
after the Kth item on C.

Proof: Since Hj = dok(x), we have enqueue([Hj� 1]) = enqueue([Hj]). We also know that
x � dequeue([Hj]). By Lemma 1.2, x � enqueue([Hj]), so x � enqueue([Hj� 1]).
Suppose that there is a chain C in left([Hj� 1]):

x1 � r . . . � r xk � r . . . � r x � r . . .

then label(eok(xl)) � label(enq(x)) � j � (1 � l � k) and no event deq(xl) is in [Hj].
There must be a slot m from which x was removed. By Lemma 1.4, all xl are stored in
slots before slot m.
Combining the above two sentences, we have: at the time x was removed from the
slot m, there is a chain with length � K between slot 1 and m � 1, which contradicts
Lemma 3.2.

Theorem 3: If H is a complete history accepted by semiqueue, then H is linearizable.
Proof: Similar to that for the unbounded FIFO queue using Lemmas 1.1-1.4 and 3.1-3.3.

5. Stuttering Queues

5.1. Specification

A Stutteringj Queue object (Figure 10) is like a FIFO queue except that the first item in the queue may be
returned as many as j times.

18

StutQ: trait
includes FifoQ
StQ record of [items: Q, count: Int]

q:: Enq(e)/Ok()
ensures q’.items = ins(q.items, e)

q:: Deq()/Ok(e)
requires � isEmp(q.items)
ensures

q.count � j � [e = first(q.items) �
[[q’.count = q.count + 1 � q’.items = q.items]

�

[q’.count = 0 � q’.items = rest(q.items)]]]

Figure 10: Stutteringj Queue

5.2. Implementation

Figure 11 gives an implementation of a Stutteringj Queue queue. We do not use the atomic instructions
SWAP and ADD, but instead we use FETCH AND ADD, STORE, and SUB:

void SUB(int *p)
ensures Decreases by one the value of the integer pointed to by p.

As with the implementation of FIFO queue, we use back to limit the search range of a Deq operation. We
use hold to remember how many processes are currently “looking at” the item stored in a slot. Whenever
a process wants to search for an item from a slot, it first checks and increases this value. J determines
the maximum number of processes that are allowed to look at the same slot concurrently and hence, the
maximum times an item could be returned. In contrast to the FIFO queue implementation, here when a
Deq operation gets a non-NULL value from a slot it does not immediately swap in the NULL element, thus
giving other dequeueing processes the chance to get the same item from the slot. However, the maximum
number of processes that can get an item from one slot is limited to be less than J. By carefully ordering the
updates to hold and item, we ensure that before hold of a slot is decreased, the item has been initialized to
NULL, prohibiting more processes from getting this item from this slot.

5.3. Proof of Correctness for the Stuttering Queue

Lemmas 1.2, 1.3 and 1.4 hold for the Stutteringj Queue Queue.

Lemma 4.1 No item can be dequeued more than J times in the Stutteringj Queue Queue.
Proof: By observing the following two facts: (1) We allow at most J processes to access a slot

concurrently (determined by the value of hold of the slot); (2) If exactly one process
has gotten an item from the mth slot and decreases hold value in that slot, then slot
m will be set to NULL. So several processes can get an item from slot m only if they
access slot m before any one of them has decreased the hold value of that slot; however,
only J processes are allowed to do so.

19

#define J ...

typedef struct elts {
char item;
int hold; /* used to remember the concurrent dequeuers */
struct elts *next;

} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail;
int back;

} reptype;

reptype queue;

void Enq(elt x)
{

slot current;

current = FETCH_AND_ADD(&queue, queue.tail);
STORE(current, x);

}

elt Deq()
{

int i, range, num;
elt value;
slot current;

while (true) {
current = queue.head;
range = READ(&queue.back);
for (i = 1; i <= range; i++) {
num = READ_AND_ADD(&(current->hold));

/* get the number of processes currently
looking at the same slot */

if (num < J) { /* if it is not greater than J */
value = current->item; /* not atomic because want to allow */

/* allow other process to get same value */
if (value != NULL) { /* successful dequeue */

current->item = NULL; /* set this location to NULL value */
SUB(&(current->hold));
return(value);

}
}
SUB(&(current->hold));

/* There have been J processes looking at this */
/* slot so this process should not try to deq it again */

current = current->next; /* try next slot */
}

}
}

Figure 11: Code for Stuttering Queue

20

Set: trait
includes Bag with [S for B]
asserts

for all s: S, e, e1: E]
del(emp, e) = emp
del(ins(s, e), e1) = if e = e1 then del(s,e) else ins(del(s, e1), e)

s: Member(e):/Ok(b)
ensures b = isIn(s,e)

s:: Delete(e)/Ok(b)
ensures s’ = del(s,e) � b=isIn(s,e)

s:: Insert(e)/Ok()
ensures s’ = ins(s,e)

Figure 12: Set Trait and Interfaces

Lemma 4.2When a process P gets an item x from the mth slot, x must be the minimal item in the
set S =

�
y

�
y is still stored in some slot between the first and mth slots and there are

less than J processes that have also dequeued y �
Proof: Since each time P must first get the value of back in determining its range and then

start its search from the first slot, for any y � S, it must be true that label(enq(y)) �
label(deq(x))). If there is an item y � S such that label(eok(y)) � label(enq(x)), then
label(eok(y)) � label(deq(x))), and also y was stored in a slot before the slot in which
x is stored (by Lemma 1.4). Thus, P could get a non-NULL item y before reaching x,
a controdiction.

Lemma 4.3 If H is a history accepted by the Stutteringj Queue Queue and x is an item such that
Hi = deq(x) and Hj = dok(x), then x � enqueue([Hj� 1]) and x is the minimal item in
left([Hj� 1])

Proof: If not, there must a y � left([Hj� 1]) such that label(eok(y)) � label(enq(x)) and it must
be true that y � S (defined as Lemma 4.2) since left(H) � S. By Lemma 4.2, this is
impossible.

Theorem 4 If H is a complete history accepted by the Stutteringj Queue Queue, then H is lineariz-
able.

Proof: Similar to the proof for the unbounded FIFO queue using Lemmas 1.2-1.4 and 4.1-4.3.

6. Set

6.1. Specification

Figure 12 contains the specification for a set.

21

6.2. Implementation

The original design appeared in [6]. Our implementation is given in Figures 13 and 14. The set operations
are implemented in terms of the following atomic instructions. The first two are operations on integer
variables; the last three on arrays.

int READ(int *x)
ensures Reads and returns the value of the integer pointed to by x.

int INC(int *x)
ensures Increments by 1 the value of the integer pointed to by x and returns the new value.

elt FETCH(char A[], int i)
ensures Reads and returns the value at location i of the character array A.

bool REMOVE(char A[], int i, char x)
ensures Checks whether the value at location i of array A is equal to x. If so, it sets the value

at location i to NULL and returns true. Otherwise, it returns false.

bool ADD(char A[], int i, char x)
ensures Checks whether the value at location i of array A is currently NULL. If so, it sets the

value at location i to x and returns true. Otherwise, it returns false.

The Sliding Array Algorithm: We use an array data structure, containing either characters or a special
NULL value. We use the variable length to hold the length of the currently used portion of the array.
Member(x) reads the value of length, and then scans the array from 1 up to the index equal to length, looking
for x. If it sees x, it returns true; otherwise it returns false. Delete(x) behaves just like member(x), except that
if it sees x in position i, it writes NULL in position i, and returns true ; otherwise it returns false . Insert(x)
first get a lock for the item x and then scans the array looking for x just like member and delete. If it sees x,
it terminates returning false. Otherwise it increments the length counter, writes x in the returned position,
releases the lock and returns true. If other process has locked the same item, this process will blocks.

Note that Delete leaves “holes” in the array. These holes might be re-used by subsequent inserts. An
insert keeps track of these holes in the initial scan of the array by an array (holes) of indices. When insert is
ready to write the element, it tries the holes in this array one by one (a concurrent insert might have filled a
hole). If no holes remain, insert then performs an increment on the length counter.

6.3. Proof of Correctness for the Set

See [6].

22

#define S 200 /* Upper bound on size of the array */
char A[S]; /* Array of characters */
int length; /* Length counter */

bool member(element x)
{

int mylength, i;
bool found = false;
element v;

mylength = READ(&length);
i = 0;
while ((i < mylength) && !found) {

i++;
v = FETCH(A, i);
found = (v == x);

}
if (found) {

return(true);
}
else {

return(false);
}

}

bool delete(element x)
{

int mylength, i;
bool found = false, removed = false;
element v;

mylength = READ(&length);
i = 0;
while (i < mylength && !found) {

i++;
v = FETCH(A, i);
found = (v == x);

}
if (found) {

removed = REMOVE(A, i, x);
}
if (removed) {

return(true);
}
else {

return(false);
}

}

Figure 13: Code for Set (Part 1)

23

bool insert(element x)
{

int mylength, i;
bool found = false, added = false, ADD();
int holes[S], nholes = 0;
element v;

mutex_lock(lock[x - CHAR_A]);
mylength = READ(&length);

i = 0;
while (i < mylength && !found) {

i++;
v = FETCH(A, i);
if (v == NULL) {

nholes++;
holes[nholes] = i;

}
found = (v == x);

}
if (!found) {

while (!added && nholes > 0) {
added = ADD(A, holes[nholes], x);
nholes--;

}
while (!added) {

i = INC(&length);
added = ADD(A, i, x);

}
}
mutex_unlock(lock[x - CHAR_A]);
if (added) {

return(true);
}
else {

return(false);
}

}

Figure 14: Code for Set (Part 2)

24

MultiSet: trait
includes Bag

s: Member(e):/Ok(b)
ensures b = isIn(s,e)

s:: Delete(e)/Ok(b)
ensures � isIn(s’,e) � b=isIn(s,e)

s:: Insert(e)/Ok()
ensures s’ = ins(s,e)

Figure 15: Multiple Set Trait and Interfaces

7. Multiple Set

7.1. Specification

Figure 15 gives the specification for a multiple set. Multiple sets are different from bags in that an element
may occur multiple times in a multiple set but when it is deleted, all its occurrences are removed (whereas
for a bag, only one instance is removed).

7.2. Implementation

The original design appeared in [6]. Ours is given in Figures 16 and 17. We need two more atomic
instructions:

element FETCH� KEY(entry A[], i)
ensures Returns the element stored in the location i of array A.

int FETCH� GEN(entry A[], i)
ensures Returns the generation number in the location i of array A.

For the details of the algorithm, please see [6].

7.3. Proof of Correctness for the Multiple Set

See [6].

25

#define S 200

typedef struct {
element item;
int gen;
} entry;

entry A[S];
int length;

bool member(element x)
{

int mylength, i;
element v;

i = -1;
mylength = READ(&length);
while (i < mylength) {

while (i < mylength) {
i++;
v = FETCH_KEY(A, i);
if (v == x) {

return(true);
}

}
mylength = READ(&length);

}
return(false);

}

bool delete(element x)
{

int mylength, i, g;
int todo[S], gen[S], ntodo = -1;
bool removed = false;
element v;

mylength = READ(&length);
for (i = 0; i <= mylength; i++) {

v = FETCH_KEY(A, i);
g = FETCH_GEN(A, i);
if (v == x) {

ntodo++;
todo[ntodo] = i;
gen[ntodo] = g;

}
}
for (i = 0; i <= ntodo; i++) {

removed = removed || REMOVE(A, todo[i], gen[i]);
}
return(removed);
}

Figure 16: Code for Multiple Set (Part 1)

26

bool insert(element x)
{

int mylength, i;
bool added = false;
int holes[S], nholes = -1;
element v;

mylength = READ(&length);
for (i = 0; i <= mylength; i++) {

v = FETCH_KEY(A, i);
if (v == NULL) {

nholes++;
holes[nholes] = i;

}
}
while (!added && nholes > -1) {

added = ADD(A, holes[nholes], x);
nholes--;

}
while (!added) {

i = INC(&length);
added = ADD(A, i, x);

}
return(added);

}

Figure 17: Code for Multiple Set (Part 2)

8. Register

8.1. Specification

Figure 18 contains the specification for a register.

8.2. Implementation

The original design appeared in [5]. Our implementation is given in Figures 19 and 20.

8.3. Proof of Correctness for the Register

See [5].

27

Reg: trait
includes Integer
introduces

new: � R
fetch: R � Int
store: R, Int � R
dontcare: � V

asserts
R generated by [new, store]

for all r: R, i: Int]
fetch(new) = dontcare
fetch(store(r,i)) = i

r:: Read()/Ok(v)
ensures r’ = r � v = fetch(r)

r:: Write(v)/Ok()
ensures r’ = store(r,v)

Figure 18: Register Trait and Interfaces

References

[1] Eric C. Cooper. C threads. Technical Report CMU-CS-88-154, School of Computer Science, Carnegie
Mellon University, 1988.

[2] J.V. Guttag, J.J. Horning, and J.M. Wing. The larch family of specification languages. IEEE Software,
2(5):24–36, September 1985.

[3] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In Fourteenth ACM Symposium on
Principles of Programming Languages, pages 13–26, January 1987.

[4] M.P. Herlihy and J.M. Wing. Specifying graceful degradation. IEEE Transactions on Parallel and
Distributed Computing, June 1990. to appear.

[5] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811, November
1977.

[6] V. Lanin and D. Shasha. Concurrent set manipulation without locking. In Proceedings of the Seventh
ACM Symposium on Principles of Database Systems, pages 211–220, March 1988.

[7] Lehman and W.E. Weihl. Technical Report xx, MIT Lab. for Computer Science, 1990.

[8] J.M. Wing and C. Gong. A simulator for concurrent objects. Technical Report CMU-CS-90-150, CMU
School of Computer Science, July 1990.

28

#define VL 10
#define RL 7

static int reg[RL];
static int v1[VL], v2[VL];

int exp(int i)
{

int k, j;

k = 1;
for (j = 1; j <= i; j++)

k *= 2;
return(k);

}

bool compare(int j)
{

int i, k;

k = 0;
for (i = 0; i < VL; i++)

k = k + v1[i] * exp(i);
return(k == j);

}

int Read()
{

int i, tmp, value, exp();
bool compare();

do {
tmp = 0;
for (i = VL - 1; i >= 0; i--)

tmp = tmp + v2[i] * exp(i);
value = 0;
for (i = 0; i < RL; i++)

value = value + reg[i] * exp(i);
} while (!compare(tmp));
return(value);

}

Figure 19: Code for Register (Part 1)

29

void Write(int c)
{

int i, vt[VL], carry;

carry = 1;
for (i = 0; i < VL; i++) {

vt[i] = v1[i] + carry;
if (vt[i] > 1) {

vt[i] = 0;
carry = 1;

}
else carry = 0;

}
for (i = VL - 1; i >= 0; i--)

v1[i] = vt[i];
i = 0;
do {

vt[i] = c % 2;
c = c / 2;
i++;

} while (i < RL);
for (i = 0; i < RL; i++)

reg[i] = vt[i];
for (i = 0; i < VL; i++)

v2[i] = v1[i];
}

Figure 20: Code for Register (Part 2)

30

