A Simulator for Concurrent Objects

Jeannette M. Wing and Chun Gong

July 19, 1990

1. Introduction

A concurrent object is a data structure shared by concurrent processes. The traditional approach to imple-
menting a concurrent object isto use critical regions|[7], letting only a single process access the object at a
time. Critical regions unnecessarily limit the degree of concurrency possiblewhen thetype semantics of the
object are ignored [11]. For example, multiple processes wishing to insert elements into a multiset should
be permitted to go on concurrently without one blocking any of the others. Moreover, critical regions are
ill-suited for asynchronous, fault-tolerant systems. if a faulty process haltsin a critical region, non-faulty
processes will aso be unable to progress[9].

Recently, other approaches for implementing concurrent objects have been proposed [10, 11, 1, 13, 14,
15, 16, 2, 5]. In the design and implementation of a concurrent object, we are faced with two problems:;

1. What is our notion of correctness for a system composed of concurrent objects?

2. Given some notion of correctness, how can we show a given implementation is correct?

Answering the first question is one of definition; the second, of method. While there is no genera
agreement on an answer to the first, we choose the correctness condition called linearizability, which has
recently captured the attention of the research community. Linearizability, first coinedin Herlihy and Wing's
1987 POPL paper [11], generalizes correctness notions that had previously been defined for specific data
structures like atomic registers and FIFO queues. It is an intuitively appealing notion of correctness, and
also enjoysother propertieslikelocality, which simplifiesthe proof method, that other notionsof correctness
do not.

With regard to the second guestion, we advocate using the complementary techniques of verification and
testing. Thispaper in particular describes an environment for testing i mplementations of concurrent objects
through simulation. Proving linearizability of adataobjectisanontrivia task. In[15], the proof of asimple
concurrent set consists of five propositions, one lemma and one theorem. The more definitive approach of
verification is the subject of other papers[6, 15] including Herlihy and Wing's original POPL paper.

Our simulation package provides ameans of finding bugsin implementations, as well as hinting at ways
for improvingthem. Weintend our packageto servethefollowing purposes: (1) to detect an implementation
isincorrect, (2) to give some additional assurance that an implementation is correct 1 (3) as a basis to do

Testing can show only the presence, not absenceof bugs[4].

1

practical performance analysis of implementations by producing useful statisticsfor comparing the relative
efficiency of different implementations.

In this paper we describein detail the user interface to the simulator package, the structure of itsinternal
components, and most importantly, the underlying analysis agorithm used to test an implementation.
Section 2 defines our terminology, in particular the definition of linearizability; we adopt the notations and
definitions as defined in [12], which contains a lengthier discussion and motivating examples. Section 3
describes the structure of the simulation package in detail. Section 4 presents some examples and Section 5
shows part of the package's source code, in particular the a gorithm for checking the correctness of a given
history.

2. Concurrent Objects and Linearizability

2.1. Modd of Computation

A concurrent system consists of a collection of sequential threads of control called processes that commu-
nicate through shared data structures called concurrent objects. A concurrent object provides afinite set of
primitive operationsthat are the only means to manipul atethe object. Processes are sequential: each process
applies a sequence of operations to objects, aternately issuing an invocation and receiving the associated
response. Several processes might issue an invocation to the same object concurrently.

Formally, we model an execution of a concurrent system by a history, which is a finite sequence of
operation invocation and response events. An operation invocation iswritten asx op(args*) A, wherexisan
object name, op is an operation name, args* isa sequence of argument values, and Aisaprocessname. The
response to an operation invocation is written as x term(res*) A, where termis the (normal or exceptional)
termination condition and res* is a sequence of result values. We use “Ok” for normal termination. A
response matches an invocation if their object names agree and their process names agree. An invocation
is pending in a history if no matching response follows the invocation. If H is a history, complete(H) is
the maximal subsequence of H consisting only of invocation and matching responses. An operation, e, ina
history is apair consisting of an invocation, inv(e), and the next matching response, res(e). Operations of
different processes may be interleaved.

A history H is sequential if:

1. Thefirst event of H is an invocation.

2. Eachinvocation, except possibly the last, isimmediately followed by a matching response.
In other words, except for possibly the last event, a sequential history is a sequence of operations, i.e., pairs
of invocation and matching response events. A process subhistory, H|P (H at P), of a history H is the
subsequence of all eventsin H whose process names are P. An object subhistory, H|X, is similarly defined

for an object x. Two historiesH and H’' are equivalent if for every process P, H|P = H'|P. A history H is
well-formed if each process subhistory H|P of H is sequential.

A history H induces an irreflexive partial order <y on operations.

e <y € if res(ep) precedes inv(e;) in H.

Informally, <y captures the “real-time” precedence ordering of operationsin H. Operations unrelated by
<y aresaid to be concurrent. If H issequentia, < isatotal order.

A set Sof historiesis prefix-closed if, whenever Hisin S every prefix of Hisasoin S. A single-object
history is one in which all events are associated with the same object. A sequential specification for an
object isa prefix-closed set of single-object historiesfor that object. A sequential history H islegal if each
object subhistory H|x belongs to the sequential specification for x. Many conventional techniques exist for
defining sequential specifications. In this paper, we use operational specifications expressed as (sequential)
program code. Herlihy and Wing use the axiomatic style of Larch [§].

2.2. Definition of Linearizability

A history H islinearizableif it can be extended (by appending zero or more response events) to some history
H’ such that:

L1: complete(H) is equivalent to some legal sequential history S, and
L2: <y C<s.

L1 states that processes act as if they were interleaved at the granularity of complete operations. L2
states that this apparent sequential interleaving respects the real -time precedence ordering of operations.

3. Structure of the Package

3.1. TheSimulator

The simulation package consists of several C functions stored in separate files. It uses C Threads [3] to
create a user-specifiable number of threads to simulate a MIMD system. C Threads is a run-time library
that providesa C languageinterface to aset of low-level, language-independent primitives for manipulating
threads of control. We usethese primitivesto implement variousatomic instructions, e.g., TEST_AND_SET,
FETCH_AND_ADD, which in turn are used in the implementation of a concurrent object.

Below wefirst give a high-level description of our simulation package and then implementation details
of each of the components.

3.1.1. User'sView of the Package

Figure 1 showsthe logical structure of the package, where we use ovals to represent data and rectangles for
procedures. Solid lines show control flow; dotted lines show data flow.

There are three basic modules: simulate, test, and analyze. Simulate is the user’s interface to the
simulator; its main function is, in response to the user’s request, to test whether a given implementation,
ConcObj, exhibits only linearizable behavior with respect to a given specification, SeqObj. The user can
specify various test conditions for the simulation, e.g., the number of processes to run, whether to use an
input file of test cases (in theform of historiesof events) or to generate arandom set of test cases. Test creates

3

User

{

sinmul ate

Concnj

(i npl enent ati on)

Ll

Is History linearizable?

t est

SeqObj
(specification)

Figure 1. Simulator Package

N processes, and invokes concurrently on their behalf afinite number of operations on ConcObj. After all N
processes terminate, the resulting finite concurrent history is stored in the event list History and the analyze
function is called to determine the linearizability of the history. If an input file of (afinite number of) test
casesis not given, test loops, thereby generating, upon the user’s request, either an infinite or afinite number
of finite historiesto test on a given implementation; it stopsif a history isfound not to be linearizable even
the user’s request has not been met. A user can aways abort the simulation by typing < CTRL >c. >>
Below isauser-level specification of the simulation package. The simulator prompts for valuesfor optional
parameters, indicated in square brackets, if not given at the command line.

simulate [-cConcObj] [-sSeqObj] [-iinput_filg] [-ooutput_filg] [-d]
Smulateisthe user’sinterface to the simulator. It accepts the following options:

-cConcObj Simulatetheimplementation of the concurrent object whose executableisin thefile ConcObj.o.
If ConcObj is not a pathname, simulate will search in the current working directory for the file
ConcObj.o. E.g., giventhat thereexistsaqueue.ofileto execute, “ queue’ and* /usr/cgong/sim/bin/queue”
and “/sim/bin/queue” are all reasonable values for ConcObyj. If it failsto find thefile, simulate termi-
nates, printing an error message.

-sSeqObj SeqObj.oisthe sequential specification against which the simulator will test the linearizability of
ahistory. Aswith ConcObj, simulate will search in the current working directory for SeqObj.o if a
pathnameis not given.

-iinput_file Thesimulator tests each history inthefileinput_file of input test cases. Appendix A containsthe
grammar for the input file format. 1f no input file is specified, the simulator will generate a random

4

set of test cases.

-ooutput_file For each history read from input_file simulate will write to output_file the history and whether
or not it islinearizable. If no input file is specified, then if the simulation conditions are set for the
simulator to runindefinitely, only thefirst non-linearizabl e history encountered iswrittento output_file;
if they are set for the simulator to run for a fixed length of time, each history generated and tested
withinthat timeiswritten, along withitslinearizability status, to output_file. Anoutput file of histories
can be used as an input file of test cases.

-d Use default simulation conditions as set in the working directory’s .init file. If the user does not
choose the -d option, the simulator will prompt the user to set various simulation conditions. These
conditionsinclude: the number of concurrent processes to execute, an average number of operations
each process should invoke, how long (either in terms of seconds or number of histories generated)
to run the simulator, and the names of input and output files to use. Reasonable default values are: 4
processes, 10 operations, 10 seconds (any negative number indicates “infinite”), and if an input file
nameis provided, “/dev/tty” for the output file name.

test(input_file : file_name, output_file: file.name)

Test is the main function of the simulation package. It creates the user-specified (or default) N number
of concurrent threads. It tests one history at a time where the history is either taken from input_file (the
user-specified input test file) or randomly generated. When all N processes terminate, test stores the history
inalist of events, and then callsanalyze (see bel ow) with thishistory asaparameter. If analyzereturnsfalse,
indicating that the input history is not linearizable, test writes the history into output_file (the user-specified
output file), and terminates; otherwiseit repeats the above steps.

bool analyze(event « p)
Thisfunction returnstrueif the history p (i.e, list of events) islinearizable; otherwiseit returns false. This
isthe guts of the simulation package; we describe the algorithm used in Section 5.

3.1.2. Implementor’s View of the Package

Users of the simulation package should skip this section in which we discuss the implementation in more
detail.

simulate [-cConcObj] [-sSeqObj] [-iinput_filg] [-ooutput_filg] [-d]
This function provides an interactive interface to the simulation package. If not given in the command
line, it promptsthe user to choose a concurrent object, ConcObj, to simulate, and a sequential specification,
SeqObj, to test against. Smulate can read its input from input_file or generate its own test cases; it writes
its output into output_file. 1t establishes a simulation environment for the concurrent object based on values
obtained from prompting the user or default values set in a..init file.

Given values for these parameters, simulate will first create a simulation environment by linking the
concurrent data object ConcObj.o0 and the sequential specification SeqObj.o with test. It puts the resulting
executive in a.out. Once the environment is created simulate forks a child process to execute a.out under
the specified or default simulation conditions.

test(input_file : file_name, output_file: file.name)
This is the main function of the package. It requires the file name argument output_file into which the
simulator can write simulation histories. It takes an optional file name argument input_file from which

5

the simulator reads histories to test; if not provided, test generates an infinite number of test histories.
Termination of test also terminates simulate.

test assumes the existence of the following functions:

e Init() (written by user)

e End() (written by user)

e process(outline * p) (provided by package)
¢ analyze(event * p) (provided by package)

where Init() and End() are called to initialize and clean up ConcObj, processis a (sequential) process that
invokes operations on ConcObj. test links these functions together and establishes various user-specifiable
simulation conditions. It maintains a global datastructure, a history, which isrepresented as alist of events
with head and tail pointers hhead and htail. This list records events of the concurrent processes executing
operations on ConcObj.

test operates as follows:

1. Initializes the concurrent data object the user wants to simulate by calling Init(). The user needs to
define this function and End() when implementing a concurrent object.

2. Defines N process outlines, each of which includes the name of the process and the number of
operationsthe process will invoke.

3. Creates N threads by executing cthread_fork(process, p;) fori = 1...N, where p; is a pointer to
outling.

4, Waits until all N threads terminate. At this point, simulator has finished a simulation of one history
with N processes. The history is saved inthelist of events pointed to by hhead.

5. Callsthe procedure analyze(hhead) to check if the history islinearizable. (a) If yes, clearstheworking
history, cleans up the concurrent object by calling End(), and then goes back to step 2; (b) otherwise,
it cleans up, returns false, and terminates.

process(outline x* p)
The user defines a single (sequential) process using process(outline * p) where outlineis a structure that

containsa process name and the number of operationsit shouldinvoke. Thisfunction assumesthe existence
of aset of operationsthat can be invoked on a ConcObj. According to the outline given, processinvokesa
random sequence of operations on the concurrent object and writes the invocation and response eventsinto
thefile output_file given as an argument to test. To prevent thisfile from being written by several processes
simultaneously, it is protected by a mutex variable. A global data structure, also protected by a mutex
variable, maintains arecord of all processes operation invocation and response events.

bool analyze(event « p)

Givenahistory with ahead pointer p, this procedure checksif the history islinearizable. It usestheinstances
of the operation function (see below) for the ConcObj to determine if the operation op is alowed on the
current val ue of the ConcObj.

bool operation(char op, char item, char result, bool b)

If bistrue, thisfunction simulates an operation op(item) with the argument item on the current value of the
SeqObj and gets a response value result’. If b is false, this function undoes the operation op(item). After
simulating an operation, thisfunction returnsatruevalueif result = result’ , which meansthat the operation
completes successfully, i.e., is allowed given the current value of SeqObj; otherwise, it returns a false. It
always returns true after undoing an operation.

3.2. Library of Concurrent Objects

Currently we have implemented and simulated the following data objects. A separate paper contains
descriptions of the implementations and proofs of correctness[17].

¢ Bounded FIFO queues.

¢ Unbounded FIFO queues.

e Bounded priority queues.

¢ Unbounded priority queues.

e Semiqueue.

e Stuttering queue.

o Set.

¢ Multiset.

¢ Register.

e B-trees.

Asareminder toimplementorsof other concurrent objectswho wishto useour simulator, implementations
of these objects need to include two functions, Init() and End(), which are called by test respectively before

and after the test of a single history. The name of the implementation file must start with X- where X
indicatesthe object’stype. For example, for aqueue, X should be queue; for aregister X, should beregister.

4, Examples

In this section we show how the simulator can be used to test both correct and incorrect i mplementations.

4.1. Simulatinga Correct Implementation: FIFO Queue

To show a naive use of the simulator, we give below two sample scripts of a simulation for a bounded
FIFO queue whose implementation appears in Appendix B. Thefirst script showshow the user can set some
simulation conditions. The second uses default values.

bi n>si mul at e - cqueue-unbound -ooutput <CR>

Pl ease provide a sequential specification. [filenane]

-1 ../lib/spec/queue

Just a nonent. ..

How many processes would you like to run?

-1 4

On the average, how many operations do you want to execute per process?
-1 10

Wuld you like to simulate your object for a fixed length of tine? [y/n]
_: y

For how | ong? [seconds]

-1 10

Start the simulation by typing <start>.

-1 start

Starting sinulation...

Time has run out!

bi n>

At this point, the user could read the file output to see what histories within 10 seconds were generated
and tested by the simulator (since no input file was specified) and whether or not they are linearizable.

In the second script below, the user manually aborts the simulator at the end by typing < CTRL > c.
Sincetheimplementationiscorrect and an input test fileisnot given, were the user not to abort the simulator,
it would continue generating and testing concurrent histories forever. Our added comments are prefixed by

*
% si mul ate -cqueue-bound -squeue -ooutput -d <CR>

Just a nonent. ..
Starting simulation...

/* This is sinulation nunber 1 */

Q Deq() P1 * P1,

Q Deq() P2 * P2, and

Q Deq() P3 * P3 cannot dequeue anyt hing
Q Eng(b) P4 * on an enpty queue.

Q () P4 * P4 enqueues b and

Q Eng(s) P4 * starts enqueueing s.

Q &(b) P1 * P1 dequeues b.

Q Enqg(y) P1

Q () P1 * P1 enqueues vy.

Q Deq() PI1

Q &(y) P2 * P2 dequeues vy.

Q Eng(w P2

Q () P4 * P4 conpl etes enqueuei ng s.
Q Eng(j) P4 * P4 starts enqueueing j.

Q &(s) P3 * P3 dequeues s.

Q Eng(u) P3 * and starts enqueuei ng u.
Q () P4 * P4 conpl etes enqueueing j.
Q Eng(w P4

Q &(w P1 * P1 dequeues w

Q () P4 * enqueued by P4.

<CTRL>c * P3's enqueue of u is pending.

% Qs value is [j], [u, jl, or [j, u].

Here we see that four processes, P1, P2, P3 and P4, execute concurrently on queue object Q. In the first
half of the script above we seethat P1 returns Q's first element b, enqueued by P4, and that P1 enqueuesay

8

later dequeued by P2. More enqueues and dequeues occur until at the end of this history, Q's abstract value
isthe set of (sequential) queue values, [j], [u, j], [j, u], corresponding to whether or not P3's enqueue of u
occurred or not; if so, sinceit is concurrent with the enqueue of j, it can appear as either the first or second
dementin Q.

4.2. Detecting an Implementation islncorrect: Set

We can use our simulation package to demonstrate that it is possible to detect an implementation exhibits
non-linearizable behavior. Lanin and Shasha [15] give a correct implementation of a concurrent set using
a dliding array agorithm (see Appendix C). Our intentionally incorrect version given below is unlike the
original oneinthat it does not use locksfor the insert operation.

The set operationsareimplemented in terms of thefoll owing atomicinstructions(which we implemented
using the primitives provided by C Threads). Thefirst two are operations on integer variables; the last three
on arrays.

int READ(int *x)
ensures Atomically reads and returns the value of the integer pointed to by x.

int INC(int *x)
ensures Atomically increments by 1 the value of theinteger pointed to by x and returnsthe new
value.

char FETCH(char A[], inti)
ensures Atomically reads and returns the value at locationi of the character array A.

bool REMOVE(char A[], inti, char x)
ensures Atomically checks whether the value at locationi of array Aisequal to x. If so, it sets
thevaueat location i to NULL and returns true. Otherwise, it returns false.

bool ADD(char A[], int i, char X)
ensures Atomically checks whether the value at location i of array Ais currently NULL. If so,
it setsthe value at location i to x and returns true. Otherwise, it returns false.

The Siding Array Algorithm: We use an array data structure, containing either characters or a specia
NULL value. We use the variable length to hold the length of the currently used portion of the array.

#define S 200 /* Upper bound on size of the array */
char Al S]; /* Array of characters */
int length; /* Length counter */

Member (X) reads the value of length, and then scans the array from 1 up to the index equal to length,

looking for x. If it sees X, it returnstrue; otherwiseit returns false.

bool
menber (char x) {
int nylength, i;
bool found = fal se;
char v;
nyl engt h = READ(& engt h) ; /* get the current value of index */
i = 0;
while ((i < mylength) & !found) { /* scan the array */
i ++;
v = FETCH(A, i); /* get the value at location i */
found = (v == x);
}
if (found) {return(true);} /[* x is in the array */
el se {return(false);}
}

Delete(x) behaves just like member(X), except that if it seesx in positioni, it writes NULL in positioni,
and returns true ; otherwiseit returnsfalse.

bool

del ete(char x) {
int nylength, i;
bool found = fal se, renoved = fal se;
char v;

nyl engt h = READ(& engt h) ;

i =0
while (i < nylength & !found) {
i ++;
v = FETCH(A, i);
found = (v == x);
if (found) { /* x is in location i */
renoved = REMOVE(A, i, x); /* if x is still there, renove it */

if (renmoved) {return(true);}
el se {return(false);} /* x was renoved by other process */

}

Insert(x) also scansthearray looking for x just likemember and delete. If it seesx, it terminatesreturning

10

false. Otherwiseit increments the length counter, writes X in the returned position and returnstrue.

bool
i nsert(char x) {

}

int nylength, i;
bool found = fal se, added =
int holes[S], nholes = 0;
char v;
nyl engt h = READ(& engt h) ;
i = 0;
while (i
i ++;
v = FETCH(A, i);
if (v NULL) {
nhol es++;
hol es[nhol es] = i;
}

found = (v

< nylength & !found) ({

== X);
}
if (!'found) {
whil e (!added && nholes > 0) {
added = ADD(A, hol es[nhol es],
nhol es- -;
}
whil e (!added) {
| NC(& engt h);
added = ADD(A, i,
}
}
if (added) {return(true);}
el se {return(false);}

X);

fal se;

/*

/*

/*
/*
X);

/*
/*
/*

find one hole in location i */

renenber the index */

X is not in the array */
try to find a hole */
/* put x in the hole */

no holes left */
get anot her slot */
put x in the new slot */

Note that delete leaves “holes’ in the array. These holes might be re-used by subsequent inserts. An
insert keepstrack of these holesin theinitial scan of the array by an array (holes) of indices. Wheninsertis
ready to write the element, it triesthe holesin this array one by one (a concurrent insert might have filled a
hole). If no holesremain, insert then performs an increment on the length counter.

When we simulated this set implementation, we got the following non-linearizabl e history:

/*

N LLOLOLOLOOnnn

This is the simulation nunber 84: */

insert(y) P1
del et e(x) P2
() P2 * cannot
del et e(y) P2
aK(f) P2
del et e(p) P2
aK(f) P2
nmenber (e) P2
aK(f) P2
del et e(d) P2
aK(f) P2
nmenber (w) P2
aK(f) P2

11

*initially, s = {}

delete x fromenpty set

* e is not a nenber of the enpty set

NDOLOLLOLOLOLOLOLOOLOOOLOOOOOOOOLOLOOOOLOOnOnOnOHnnnnnununununununoununununonunununununununununununnonon

del ete(t)
xK(f)
insert(s)
x(t)
insert(v)
x(t)
nmenber (g)
x(f)
insert(l)
x(t)
nmenber (u)
x(f)
del et e(f)
x(f)
insert(c)
xK(t)
del et e(v)
x(t)
insert(w)
x(t)
nmenber (t)
x(f)
insert(a)
x(t)
del et e(h)
x(f)
nmenber (w)
x(t)
insert(t)
x(t)
insert(i)
x(t)
del ete(l)
xK(t)
del ete(a)
x(t)
insert(z)
x(t)
x(t)
nmenber (j)
x(f)
insert(e)
del et e(b)
x(f)
nmenber (i)
x(t)
insert(b)
x(t)
insert(e)
xK(t)
del et e(s)
x(t)
insert(p)
x(t)
nmenber (0)
x(f)
del et e(n)
x(f)
insert(i)
x(f)

P2
P2
P2
P2
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P3
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4
P1
P1
P1
P1
P3
P3
P3
P3
P3
P3
P3
P3
P4
P4
P4
P4
P4
P4
P4
P4
P4
P4

{s}
{s,

{s,

{s,

{s,

{s,

a
{s,
{s,
{s,
{s,

{s,
{s,

{s,

{c,
{c,

v}

c}

12

a}

the set

a

t}

t,

i}

z}

y}

p}

S insert(x) P4

S &(t) P1 * Wong! pl should not insert e into S.
S insert(h) P1

S (t) P1

S (t) P4

S delete(q) P4

S (f) P4

/* This history is not linearizable! */

We see that process P1 successfully inserts an e into S after it was inserted already by P3. This situation
can arise since two processes trying to insert the same e ement x at the same time, while scanning the array
looking for x, may both find that there isno x. Both then proceed to insert x in the set (one after another).
The original (correct) solution associates with each element a lock and requires insert of an e ement first
acquire the associated lock, thereby allowing only one process at atime to insert a particular element in the
Set.

4.3. Detecting an Implementation islncorrect: Unbounded FIFO Queue

Theoriginal implementation of an unbounded queue appeared in[11] and waswrittenin CLU using dynamic
arrays as the representation type for queues. We repeat below an incorrect implementation where we use C
(dynamic) lists as the representation type 2. Appendix B contains the correct version.

We store the elements of the queuein alist with head and tail pointers head, tail. We keep track of the
number of the elementsin back.

typedef struct elts {

char item /* an element in the queue */
q
struct elts *next; /* pointer to the next element */
} *slotpt;

typedef slotpt slot;

typedef struct {

sl ot head, tail; /* first and last slots in queue */
i nt back; /* nunber of slots in queue */
} reptype;

reptype queue;

The queue operations make use of the following atomic instructions, which as for the set example we
a so implemented using mutex locks from the C threads package.

slot FETCH_AND_ADD(reptype Q, slot s)
ensures Atomically alocates a new, empty slot to the queue Q, increases
Q.back by 1, and returnsthe old value of s, whichisadlot.

void STORE(slot s, char x)
ensures Storesx intheslot s.

2\We also represent items as characters.

13

int READ(int *x)
ensur es Returns the val ue of the integer pointed to by x.

char SWAP(slot s, char x)
ensures Stores x in the slot s and returns the old value of the item stored
ins.

Eng increments the back pointer by one and stores an element in the empty position.

voi d Eng(char x) {
sl ot current;

current = FETCH AND- ADD(queue, queue.tail); /* get an enpty slot and */
/* increase back by 1 */
STORE(current, x); /* store x in enpty slot */
}

Deq fixesits search range and scans the list for anon-NULL element. If it does not find one, it changes
its search range and looks again.

char Deq() {
int i, range;
char ch;

sl ot current;

while (true) {

current = queue. head; /* start fromlist’'s first slot */

i =1

range = READ(&(queue. back)) - 1; [/* search up to back-1 slots */

while (i <= range) { /* scan list, looking for an non-NULL el ement */
if (i >1)

current = current->next;

ch = SWAP(current, NULL); /* put a NULL value in ith slot */

if (ch I'= NULL) { /[* if char returned is not a NULL val ue */
return(ch); [* return it */

)
i ++;
range = READ(&(queue. back)) - 1; /* nodify current search range */
}
}
}

We define a partial order <, ontheitemsin thelist: x <, y iff the STORE operation for x precedes the
FETCH_AND_ADD for y. We need to show that:

1. AnEngaddsanitem x that is maximal with respect to <;.

2. A Deg removes and returns an item x that is minimal with respect to <.

Our incorrect implementation still preserves the first property, but not the second. A process executing
a Deq operation could dequeue an element that is not minimal with respect to <. Suppose process Aisin

14

the middle of performing an Eng(x) on an empty queue and just finished FETCH_AND_ADD (back = 2).
Now process B starts a Deq, finding nothing in its first iteration (since A has not finished its STORE). It is
possiblethat before B rereads back, A finishesits STORE (x isin position 1) and then another process C also
finishes an Enq(y) (back = 3 andy isin position 2). If at this point B rereads back and enters the loop the
second time, what is going to happen? B will remove and returny instead of x. (Recall that x <, y according
to our definition of <;.)

Running this version of the unbounded FIFO gueue through our simulator yielded the following non-
linearizable history:

/* This is sinmulation nunber 10 */ * initially, the queue is enpty
Q Deq() P1

Q Dedq() P2

Q Deq() P3

Q Eng(f) P4

Q () P4 * Q= [f]

Q Eng(y) P4

Q (f) P1 * Q= NULL

Q () P4 * Q= [yl

Q Eng(t) P4

Q Eng(e) P1

Q () P4 *Q=ly, t]

Q Eng(o) P4

Q () P1 *Q=1[y, e t] or Q=1[y, t, €]
Q Dedq() P1

Q &(e) P2 * Wong! e cannot be the first elenent of Q
Q Eng(c) P2

Q &(y) P1

Q () P2

Q &(c) P3

Q () P4

/* This history is not linearizable! */

5. ThelLinearizability AnalysisAlgorithm

For a given data type T, we have two objects, ConcObj and SeqObj, corresponding to a concurrent im-
plementation of an object of type T and a sequential implementation. We use SeqObj as our (operational)
specification for checking whether a history exhibited by ConcObj islinearizable.

The essence of the analysis agorithm is as follows: given a history H of a concurrent object, ConcObj,
we try every possible sequential order of H’s concurrent operations while preserving its rea-time order
relation <. We check if each sequential history Hg islinearizable by executing the operations on SeqObj.
If every possible ordering of H fails, by the definition of linearizability, the history H is non-linearizable.
During thisprocedure of rearranging the operationsof ahistory, analyze might need to undo some operations
on SegObj if it finds that a tentative reordering of a subhistory of H is non-linearizable.

15

i nv inv [T i nv | res | res res .
- nu
P1 P2 | ... P3Pl P3O P2l
) senti nel
section 3
section 2 TTTTTTTTTTTTTTTTTTTTmAmTmmmmmmmmmmmeeees
section 1

Figure 2: Snapshot of a History
5.1. TheAlgorithm

A history H is stored in adoublelinked list of events:

typedef struct ev {
char item
char op;
char nane[10];
struct ev *match, *next, *prev;
} event;

where itemis the argument for the operation op and name is the name of the process that invoked op. Next
and prev are two pointers pointing to the previous and next events in H respectively. For an invocation
event, match pointsto its matching response event. We use the specia “null” event as a sentinel and put it
at the end of the history. Figure 2 depicts a snapshot of a history represented as alist of events.

Definition: A section of a history H is an invocation event, its matching response event and the eventsin
between them.

Sections of a history H can be ordered by the positions of their first eventsin H. Figure 2 shows three
sectionsin the history H.

Analyze callsthe procedure search to search iteratively over events.

bool

anal yze(event *history) {
bool linearizabl e;
event *p;

linearizable = ((p = search(history)) !'= NULL);
return(linearizable);

}

If a history H is linearizable, search returns a linearization of H; otherwise it returns with an empty
list of events. The search function uses a stack to keep track of the portion of H that is linearizable so

16

i nv i nv B i nv o res a res res .
nu
P1 P2 o ... P3 o - P1 | P3|, P2 |,
section 1 _
__ senti nel
A\ s
pi inv pr
pi inv pr
pi inv pr
st ack

Figure 3: Top of the Stack Tracks Current Section and Operation

far. Conceptualy, the stack elements are operations (both invocation and response events per operation);
actually, the stack elements are pointersto the operations’ eventsin H (see Figure 3).

t ypedef struct {
event *pi, *pr, *inv, *resp;
char item op, result;
} elt_stack;

t ypedef struct {
elt _stack val ue[STACK_LENGTH] ;
int in;

} stacktype;

We use pi and pr to locate the first section of the subhistory that has not yet been checked; inv and resp
to locate the operation that we select as the first operation of the subhistory; item, op, resto remember this
operation.

We implemented the stack procedures, push, pop, top, and isempty, with their usual semantics (top is
non-mutating), and also the following auxiliary procedures on event lists:

void op_copy(event « inv, dt_stack = q)

ensures Makes alocal copy the operation whose invocation event isinv into g.

bool lift(event = inv, event * resp)

17

i nv \
P1 =
\ i nv
P2 o
1 7]
pi inv pr
pi inv pr
pi inv pr
st ack

P3

res
P1

res
P3

+ﬁ

J

Figure 4: Liftingan Operation in a History

res
P2

i

ensures Thisfunction “lifts” the invocation and response events inv and resp from the double
linked list (recall that the history isrepresented as adoublelinked list of events). If the
invocation event isthe first event in the remaining history lif t returns true, otherwise
it returns false. To “lift” an event e from a double linked list means that e is marked
as temporarily removed. Later, we might backtrack and need to return e to its original

position in the history (see Figure 4).

void unlift(event « inv, event * resp)
ensur es Puts the invocation and response eventsinv and resp back in their original positionsin

the history H.

event « linearization(stacktype *)
ensures Thisfunction linksthe operations stored in the stack s from bottom to top, creating and

returning a linearization of the history H.

nul |

senti nel

Informally, search always looks for the next operation in H that could happen (but not conflict with the
partial order relation <) from the current section and tries to form a legal history. Once it decides that
an operation could happen, it conceptually pushes the operation onto the stack and lifts the events of this
operation from the history; it repeats this procedure on the remaining history until the remaining history is

empty.

More specifically, we sketch below the gist of the search procedure, referring to linesin the code given
in Figure 6:

1. Initializethe stack.

2. Locate the current section of H by the pi and pr pointers of current (lines 3-5) if there is one (see
Figure 3); otherwise return a pointer to the linearized history (line 33).

18

i nv i nv B i nv o res [o res [+ res .
. nu
P1 =72 PO (=< T IR I = I N < P P2l
section 1 _
sentine

A

pi i nv

pi inv pr

pi inv pr
st ack

Figure 5: Select Another Operation

3. From the current section, select an operation and storeit in current (line 6, 8).

4. Simulate this selected operation on the sequential implementation of the object by calling operation
(line9).

5. (@) If operation returns true, meaning those events checked so far consists of a linearizable subhis-
tory, then push this operation onto the stack, lift this operation from the history H (lines 10-12
(see Figure 4) and go back to 2 (line 13);

(b) Otherwise:

i. If inthe current section, there is still some unsel ected operation whose invocation event is
not preceded by any response event, then select one by current’s inv pointer (line 16-18)
and go back to 4.

ii. Atthispoint, every operation in the current section has been tried without success. So we
have to backtrack to the previous section to try another arrangement. If the stack is empty,
meaning that the history isnot linearizable, then return a NULL va ue (line 20). Otherwise,
(1) get the top element of the stack, which contains all information about the previous
section and selected operation, by an auxiliary pointer and pop the stack (line 22-23); (2)
undo the previous operation and put it back to the history (line 24-25) (see Figure5); (3) set
current’s pointers to the previous section and operation (line 26-29); and (4) go to 5(b)i.

If the history is linearizable, then this procedure returns a pointer to the first event of the history, otherwise
it returnsaNULL value.

5.2. The Correctness of the Search Algorithm

We giveaninformal correctness argument for the search algorithm. For agiven history H, and alinearizable
subhistory H, of H, we maintain the following invariants:

19

/* search for the the next

O©CO~NOOUTAWNPE

13

14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29

30

31
32
33

possi bl e operation in the history H */

event *

search(event *h)

{

elt_stack current; /* used to locate the current section and the selected operation */

elt_stack *tnp; /* auxiliary pointer */

event *head; /* head pointer of the remaining subhistory */

bool found;

init_stack(&stack); /* initialize stack */

head = h;

while (head->next != NULL) { /* the remaining subhistory is not enpty */
current.pi = head; /* let the first section of the remaining */

current.pr = head->match; /* subhistory be the current section */

current.inv = current.pi; /* try the first

while (true) { /* keep trying until success */
op_copy(current.inv, ¤t); /* store the selected operation in current */
if (operation(current.op, current.item current.result, 1)) {
/* this operation is allowed by the sequential object */
push(&stack, ¤t);/* push current into stack */
if (lift(current.inv, current.resp)) { /* lift the selected */

head = current. pi->next;

/* operation fromH */

operation in the current

section */

} /* If it’s the first operation of the history, then update head */
br eak;

}

el se /* this operation is not allowed */

do { /* looking for another operation within the current
current.inv = current.inv->next;

found = true;
if ((current.inv->o0p == '0)

/* every operation in the current

found = fal se;

if (isenpty(&stack)) {
return(NULL) ;

}

tnp = top(&stack);

pop(&st ack) ;

(current.inv == current.pr)) {
section has been tried wthout success */

/* if no previous section */

/* return NULL val ue */

section */

/* backtrack to the previous section */

if (operation(tnp->op, tnp->item tnp->result, 0)) {
/* undo the previous selected operation */
unlift(tnp->inv, tnp->resp); /* put it back in history */

current.pi = tnp->pi;
current.pr = tnp->pr;
head = tnp->pi;
current.inv = tnp->inv;
}
}
} while (!found);
}
}

current.inv = head;
push(&stack, ¤t);

/* the previous section

*/

/* becones the current section */

/* push an extra event as sentinel

return(linearization(&stack)); /* return linearized history */

Figure 6: Source Code for Search Procedure

20

*/

I1: If top =i, then the operations pointed by the pointersinv and resp in stack[1], stack[2], .. . , stack[i — 1]
form alinearizable subhistory H; of H and <, C<n.

l>: The pointers pi and pr in stack[top] identify the first section of the subhistory H — H, (H with those
operations of H; removed) and inv and resp in stack[top] identify an operation whose invocation event isin
the first section.

I3: The pointer tmp always pointsto the head of thefirst sectionin H — H;.

We claim that search returnsanon-NULL valueif and only if H islinearizable, and argueinductively as
follows:

1. search can return anon-NULL value only at step 3 and only under the condition that the remaining
history is empty. At this point, we have processed the entire history successully, identifying a
linearization of H operations stored from stack[1], .. ., stack[top].

2. Suppose the history H is linearizable, then there must be a sequential H' such that H’' is legal and
<HC<n (définition). According to the definition of relation <y, the first operation of H” must bein
thefirst section of H and cannot be preceded by any responseevent (step 5(b)i). Searchwill eventually
sel ect thisoperation asthefirst operation of theremaining subhistory H— H;, removeit fromH (step 5)
and check theremaining history H;. If Hj denotesthe history H' with itsfirst operation removed, then
we have <H E<py- Using similar reasoning, we can prove that search will arrange H in the same
order asinH'. SinceH’ islegal, i.e., it islinearizable, search will return anon-NULL value.

6. Acknowledgments

The authors thank Maurice Herlihy for earlier collaborative work on linearizability and Francesmary Mod-
ugno for suggesting a polynomial-time analysis algorithm for the FIFO queue. This research was provided
in part by the National Science Foundation under grant CCR-8906483 under the special NSF/DARPA joint
initiative on Parallel Computing Theory.

21

Appendix A. Grammar for Input File Format

<file> = <hi st ory>*

<hi story> = <history_1> blank_line

<history_1> ::= [<comment new | ine>] <event_line>* [<comment>]

<event _line> ::= <event> new | ine

<event > = <obj ect _i d> <white_space>+ <oper>(<arg_list>) <white_space>+ <process_id>

| <object_id> <white space>+ <resp>(<res_list>) <white_space>+ <process_id>
<conment > i= /* ascii_text */

<object_id> ::= <id>
<process_id> ::= <id>

<oper > = <id>

<resp> = <id>
<arg_list> 1= <id, >*
<resp_list> ::= <id, >*

<id> = al phaNuneri c+
<white_space>::= blank | tab

22

Appendix B. The Correct Version of the Unbounded Queue

typedef struct elts {

char item /* an elenent in the queue */
struct elts *next; /* pointer to the next elenent */
p
} *slotpt;

typedef slotpt slot;

typedef struct {

slot head, tail; /* the first and the last slot in the list */
int back; /* the nunber of slots in the queue */
} reptype;

reptype queue;
mut ex_t back | ock, store_lock;

void Eng(char x) {
slot current;

current = FETCH AND- ADD(queue, queue.tail);
STORE(current, Xx);

}

char Deq() {
int i, range;
char ch;
slot current;

while (true) {
current = queue. head;
range = READ((&queue. back)) - 1;
for (i =1; i <=range; i++) {
if (i >1) {
current = current->next;
}
ch = SWAP(current, NULL);
if (ch !'= NULL) {
return(ch);

}

23

Appendix C. The Correct Version of Set

#define S 200
#defi ne CHAR A 97

char A S§];
int |ength;
mut ex_t | ock[26];

nmenber (Xx)
char x;

int nmylength, i;
int found = O;
char v;

get _| engt h(&yl engt h) ;
i = 0;
while ((i < nylength) && !found) {
i ++;
atomic_read(i, &v);
found = (v == x);
b
if (found)
return(’t’);
else return(’f’);

}

del et e(x)
char x;

{
int nylength, i, found = 0, renoved
char v;

get _| engt h(&yl engt h) ;
i = 0;
while (i < nylength &% !found) ({
i ++;
atomic_read(i, &v);
found = (v == x);
b
if (found)
remove(i, X, & enoved);
if (renoved)
return(’t’);
return(’f’);

i nsert (x)
char x;
{
int nylength, i, found = 0, added =
int holes[S];
int nholes = 0;
char v;

mut ex_| ock(l ock[x - CHAR A]);
get _| engt h(&yl engt h) ;

24

i = 0;
while (i < nylength &% !found) ({
i ++;
atomic_read(i, &v);
if (v == NULL) {
nhol es++;
hol es[nhol es] =i;
b
found = (v == x);
b
if (!found) {
while (!added && nholes > 0) {
add(hol es[nhol es], x, &added);
nhol es- - ;
b
while (!added) {
increnent _| ength(&);
add(i, x, &added);

}
b
mut ex_unl ock(l ock[x - CHAR A]);
i f (added)
return(’t’);
return(’f’);

25

References

[1]

[2]

(3]

[4]
(5]
[6]

[7]

(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

J.E. Burns and G.L. Peterson. Constructing multi-reader atomic values from non-atomic values. In
Proceedings of the Sixth ACM Sympaosium on Principles of Distributed Computing, pages 222-231,
1987.

B. Chor, A. Isradli,, and M. Li. On procesor coordinationusingasynchronoushardware. InProceedings
of the Sixth ACM Symposiumon Principles of Distributed Computing, pages 86-97, 1987.

Eric C. Cooper. Cthreads. Technica Report CMU-CS-88-154, School of Computer Science, Carnegie
Mellon University, 1988.

E.W. Dijkstra. Notes on Structured Programming, pages 1-82. Academic Press, 1972.
C.S. Ellis. Concurrent search and insertionin 2-3 trees. Acta Informatica, 1980.

Chun Gong and Jeannette Wing. A library of concurrent objects and their proofs of correctness.
Technical Report CMU-CS-90-151, School of Computer Science, Carnegie Méellon University, 1990.

F.B. Schneider G.R. Andrews. Concepts and notations for concurrent programming. Computing
Surveys, 15(1):1-43, March 1983.

J.V. Guttag, J.J. Horning, and J.M. Wing. Thelarch family of specification languages. |EEE Software,
2(5):24-36, September 1985.

M.P. Herlihy. Impossibility and universality results for wait-free synchronization. In Seventh ACM
S GACT-S GOPS Symposiumon Principles of Distributed Computing (PODC), August 1988.

M.P. Herlihy and J.M. Wing. Implementing queues without mutual exclusion. Some queue examples.

M.P. Herlihy and JM. Wing. Axioms for concurrent objects. In Fourteenth ACM Symposium on
Principles of Programming Languages, pages 13-26, January 1987.

M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects. Trans-
actions on Programming Languages and Systems, 12(3), July 1990.

L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806-811, Novem-
ber 1977.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
|EEE Transactions on Computers, C-28(9):690, September 1979.

V. Laninand D. Shasha. Concurrent set manipulation without locking. In Proceedings of the Seventh
ACM Symposiumon Principles of Database Systems, pages 211220, March 1988.

JM. Mdlor-Crummey. Concurrent queues. Practical f etch — and — ¢ algorithms. Technical Report
TR 229, Dept. of Computer Science, University of Rochester, November 1987.

JM. Wing and C. Gong. A library of concurrent objects and their proofs of correctness. Technical
Report CMU-CS-90-151, CMU School of Computer Science, July 1990.

26

