A Specifier’s Introduction to Formal Methods

Jeannette M. Wing
21 May 1990
CMU-CS-90-136

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

A formal method is a mathematically-based technique used in Computer Science to describe
properties of hardware and/or software systems. It provides a framework within which large.
complex systems may be specified, developed, and verified in a systematic rather than ad hoc
manner. A method is formal if it has a sound mathematical basis, typically given by a formal
specification language. A. formal method is only a method, rather than an isolated mathematical
entity in itself, because of a number of pragmatic considerations: who uses it, what it is used for,
when it is used, and how it is used. This paper elaborates on what makes up a formal method
and compares six different well-known formal methods, three used to specify abstract data types
and three used to specify properties of concurrent and distributed systems.

© 1990 J.M. Wing

A version of this paper will appear in /[EEE Computer, September 1990. This TR supersedes
CMU-CS-TR-89-200, ‘‘What is a Formal Method?’’

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract No.
F33615-87-C-1499. Addidonal support was provided in part by the National Science
Foundation under grant CCR-8620027. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency, the National Science
Foundation or the U.S. Government. .

Keywords: Formal methods, specification languages, software engineering, abstract data types, concurrent and
distributed systems.

A Specifier’s Introduction to Formal Methods

Jeannette M. Wing
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

May 21, 1990

1. Introduction

Formal methods used in the development of computer systems are mathematically-based techniques for describing
system properties. Formal methods provide frameworks within which people can specify, develop, and verify systems

in a systematic rather than ad hoc manner.

A method is formal if it has a sound mathematical basis, typically given by a formal specification language.
This basis provides the means of defining precisely notions like consistency and completeness, and more relevantly,
specification, implementation, and correctness. It provides the means of proving that a specification is realizable,
proving that a system has been implemented correctly, and proving properties of a system without necessarily running

it to determine its behavior.

A formal method also addresses a number of pragmatic considerations: who uses it, what it is used for, when
it is used, and how it is used. Most commonly, system designers use formal methods to specify a system’s desired
behavioral and structural properties. However, anyone involved in any stage of system development can make use
of formal methods. They can be used in the initial statement of a customer’s requirements, through system design,
implementation, testing, debugging, maintenance, verification and evaluation. Formal methods are used to reveal
ambiguities, incompleteness, and inconsistencies in a system. If used early in the system development process, they
can reveal design flaws that otherwise would only possibly be discovered in the costly testing and debugging phases.
If used later, they can help determine the correctness of a system implementation and the equivalence of different

implementations.

For a method to be formal, it must have a well-defined mathematical basis; it need not address any pragmatic

considerations, but then it would be a pretty useless method. Hence, a formal method should come with a set of

guidelines, or “style sheet,” that tells users under what circumstances the method can and shouid be applied and how

most effectively to apply it.

One tangible product of the application of a formal method is a (formal) specification. A specification serves as a
“contract” between the client and the impiementor. A specification serves as a valuable piece of documentation and
as a means of communication between clients, specifiers, and implementors. Because of the mathematical basis of a

formal method, formal specifications are more precise, and usually more concise, than informal ones.

Since a formal method is a method, not just a computer program or language, it may or may not have tool support.
If the syntax of a formal method’s specification language is made explicit then it would be straightforward to provide
standard syntax analysis tools for formal specifications. If the language’s semantics are sufficiently restricted, varying
degrees of semantic analysis can be performed with machine aids as well. Thus, formal specifications have the

additional advantage over informal ones of being amenabie to machine analysis and manipulation.

We encourage the reader to read Meyer’s article (78] on the benefits of formal specification and Lamport’s article
[64] for further remarks on the distinction between a method and a language, and what it means to specify a computer

system.

We begin in Section 2 by first defining those elements necessary to give a formal basis to a formal method, and
then address in Section 3 pragmatic concerns. In Section 4 we present examples of the application of six different
methods. The accompanying survey article in this issue contains a more comprehensive listing of example methods,
plus citations. We discuss in Section 5 some of the theoretical bounds of formal methods, and close in Section 6 by

listing some general conclusions and directions of current research.

2. What is a Specification Language?

A formal specification language provides a formal method’s mathematical basis. We borrow the following terms and
definitions from Guttag, Homing and Wing [48]. Burstall and Goguen use the term “language” (17} and later the term

“institution” [39] for our notion of a formal specification language.

Definition 1 A formal specification language is a triple, <Syn, Sem, Sat>, where Syn and Sem are sets and
Sat C Syn x Sem, is a relation between them. Syn is called the language’s syntactic domain; Sem, its semantic

domain; Sat, its satisfies relation.

Definition 2 Given a specification language, <Syn, Sem, Sat>, if Sat(syn, sem), then syn is a specification of sem, and

sem is a specificand of syn.

Definition 3 Given a specification language, <Syn, Sem, Sar>, the specificand set of a specification syn in Syn is the

set of all specificands sem in Sem such that Sai(syn, sem).

Somewhat less formally, a formal specification language provides a notation (its syntactic domain), a universe of
objects (its semantic domain), and a precise rule defining which objects satisfy each specification. A specification
is a sentence written in terms of the elements of the syntactic domain. It denotes a specificand set, a subset of the
semantic domain. A specificand is an object satisfying a specification. The satisfies relation provides the meaning, or

interpretation, for the syntactic elements.

BNF is an example of a simple formal specification language, with a set of grammars as its syntactic domain and a
set of strings as its semantic domain. Every string is a specificand of each grammar that generates it. Every specificand

set is a formal language.

In principle, a formal method is based on some well-defined formal specification language; in practice, however,
this language may not have been explicitly given. The more explicit the specification language’s definition, the more
“well-defined” the formal method.

Formal methods differ because their specification languages have different syntactic and/or semantic domains.

Even if they have identical syntactic and semantic domains, they may have different satisfies relations.

2.1. Syntactic Domains

We usually define a specification language’s syntactic domain in terms of a set of symbols, e.g., constants, variables,
and logical connectives, and a set of grammatical rules for combining these symbols into well-formed sentences. For
example, using standard notation for universal quantification (V) and logical implication (=), let x be a logical variable
and P and Q be predicate symbols. Then this sentence, ¥x.P(x) = Q(x), would be well-formed in predicate logic, but

not this one, Vx. = P(x) = Q(x), because = is a binary logical connective.

A syntactic domain need not be restricted to text; graphical elements such as boxes, circles, lines, arrows, and
icons can be given a formal semantics just as precisely as textual ones. A well-formedness condition on such a visual

specification might be that all arrows start and stop at boxes.

2.2. Semantic Domains

Specification languages differ most in their choice of semantic domain. Some examples:

e “Abstract data type specification languages” are used to specify algebras [40, 32], theories [16, 81], and
programs {46]. Though specifications written in these different specification languages range over different

3

semantic domains, they often look syntactically similar.

« “Concurrent and distributed systems specification languages” are used to specify state sequences [18, 74, 65],
event sequences (52, 74], state and transition sequences [33], streams [13], synchronization trees [79], partial

orders [90], and state-machines {73].

e Programming languages are used to specify functions from input to output [96], computations [100], predicate

transformers [29], relations [21], and machine instructions {3].

Note that each programming language (with a well-defined formal semantics) is a specification language, but not
vice versa because specifications in general do not have to be executable on some machine whereas programs do.
By using a more “abstract” specification language, we gain the advantage of not being restricted to expressing only
computable functions. It is perfectly reasonable in a specification to express notions like “For all x in set A, there

exists a y in set B such that property P holds of x and y,” where A and B might be infinite sets.

Programs, however, are formal objects, susceptible to formal manipulation, e.g., compilation and execution. Thus
programmers cannot escape from formal methods; the question is whether they work with informal requirements and
(formal) programs, or whether they use additional formalism to assist them.

When a specification language’s semantic domain is over programs or systems of programs, the term implements
is used for the satisfies relation, and the term implementation is used for a specificand in Sem. An implementation

prog is correct with respect to a given specification spec if prog satisfies spec. More formally,

Definition 4 Given a specification language, <Syn, Sem, Sat>, an implementation prog in Sem is correct with respect

to a given specification spec in Syn if and only if Sat(spec, prog).

2.3. Satisfies Relation

We often would like to specify different aspects of a single specificand, perhaps using different specification languages.
For example, we might want to specify the functional behavior of a collection of program modules as the composition
of the functional behaviors of the individual modules. We might additionally want to specify a structural relationship

between the modules such as what set of modules each module directly invokes.
In order to accommodate these different “views” of a specificand, we first associate with each specification language

a semantic abstraction function, which partitions specificands into equivalence classes.

Definition 5 Given a semantic domain, Sem, a semantic abstraction function is @ homomorphism, A: Sem — 2Sem

that maps elements of the semantic domain into equivalence classes.

For a given specification language, we choose a semantic abstraction function so as to induce an abstract satisfies

relation between specifications and equivalence classes of specificands. This relation defines a view on specificands.

Definition 6 Given a specification language, <Syn, Sem, Sat>, and a semantic abstraction function A defined on Sem,

an abstract satisfies relation, ASat: Syn — 25, is the induced relation such that

Vspec € Syn,prog € Sem(Sat(spec,prog) = ASat(spec,A(prog))]

Different semantic abstraction functions make it possible to describe multiple views of the same equivalence class
of systems, or similarly, impose different kinds of constraints on these systems. It can be useful to have several
specification languages with different semantic abstraction functions for a single semantic domain. This encourages

and supports complementary specifications of different aspects of a system.

For example, in Figure 1 there is a single semantic domain, Sem, on the right. One semantic abstraction function
partitions specificands in Sem into a set of equivalence classes, three of which are drawn as blobs in solid lines.
Another partitions specificands into a different set of equivalence classes, two of which are drawn as blobs in dashed
lines. Via the abstract satisfies relation ASatl, specification A of syntactic domain Synl maps to one equivalence class
of specificands (denoted by a solid-lined blob), and via ASat2, specification B of syntactic domain Syn2 maps t0 a
different equivalence class of specificands (denoted by a dashed-line blob). Note the overlap between the solid-lined
and dashed-lined blobs. To be concrete, suppose Sem is a library of Ada program modules. Imagine that A specifies
(perhaps through a predicate in first-order logic) all procedures that sort arrays, and B specifies (perhaps through a call
graph) all procedures that call functions on a user-defined enumeration type E. Then a procedure that sorted arrays of
E’s might be in the intersection of ASat1(A) and ASat2(B).

Two broad classes of semantic abstraction functions are those that abstract preserving each system’s behavior and
those that abstract preserving each system’s structure. In the example above, A specifies a behavioral aspect of the
Ada program modules, but B describes a structural aspect.

Behavioral specifications describe constraints only on the observable behavior of specificands. The behavioral
constraint that most formal methods address is a system’s required functionality, i.e., mapping from inputs to outputs.
Current research in formal methods addresses other behavioral aspects such as fault-tolerance, safety, security, response
time and space efficiency. Often some of these behavioral aspects, such as security, are included as part of, rather
than separate from, a system’s functionality. If the overall correctness of a system is defined so that it must satisfy
more than one behavioral constraint, then a system that satisfies one but not another would be incorrect. For example,
if functionality and response time were the constraints of interest, a system producing correct answers past deadlines

would be just as unacceptable as a system producing incorrect answers in time.

Structural specifications describe constraints on the internal composition of specificands. Example structural

specification languages are module interconnection languages [28]. Structural specifications capture various kinds of

5

Synl
Syn2
Figure 1: Abstract Satisfies Relations

hierarchical [86] and “uses” relations such as those represented by procedure call graphs, data dependency diagrams,
and definition-use chains. Systems that satisfy the same structural constraints do not necessarily satisfy the same
behavioral constraints. Moreover, the structure of a specification need not bear any dircct relationship to the structure

of its specificands.

2.4. Properties of Specifications

Each specification language should be defined so that each well-formed specification written in the language is
unambiguous.

Definition 7 Given a specification language, <Syn, Sem, Sat>, a specification syn in S»n is unambiguous if and only

Sat maps syn to exactly one specificand set.

Informally, a specification is unambiguous if and only if it has exactly one meaning. This key property of formal
specifications means that any specification language based on or that incorporates a natural language (like English) is
not formal since natural languages are inherently ambiguous. It also means that a visual specification language that

permits for multiple interpretations of a box and/or arrow is ill-defined, and hence not formal.

Another desirable property of specifications is consistency.

Definition 8 Given a specification language, <Syn, Sem, Sat>, a specification syn in Syn is consistent (or satisfiable)

if and only if Sat maps syn to a non-empty specificand set.

Informally, a specification is consistent if and only if its specificand set is non-empty. In terms of programs,
consistency is important because it means that there exists some implementation that will satisfy the spéciﬁcalion.
Viewing a specification as a set of facts, consistency implies that we cannot derive anything contradictory from the
specification. If we were to pose a question based on a consistent specification, we will not get mutually exclusive
answers. It is obvious that we want to have consistent specifications, since an inconsistent specification means we

have no knowledge at all, as the specification negates on one occasion what it asserts on another.

Specifications need notbe “complete” in the sense used in mathematical logic, though certain “relative-completeness™
properties might be desirable (e.g., sufficient-completeness of an algebraic specification [45]). In practice, we must
usually deal with incomplete specifications. Why? Specifiers may intentionally leave some things unspecified, giving
the implementor some freedom to choose among different data structures and algorithms. Also, specifiers cannot
realistically anticipate all possible scenarios in which a system will be run, and thus, perhaps unwittingly have left
some things unspecified. Finally, specifiers develop specifications gradually and iteratively, perhaps in response to

changing customer requirements, and hence work more often with unfinished products, rather than finished ones.

There is a delicate balance between saying just enough and saying too much in a specification. Specifiers want
to say enough so that implementors do not choose unacceptable implementations. Specifiers are responsible for
not making oversights; any incompleteness in the specification should be an intentional incompleteness. On the
other hand, saying too much may leave little design freedom for the implementor. A specification that overspecifies
is guilty of implementation bias [57]. Informally, a specification has implementation bias if it specifies externally
unobservable properties of its specificands; hence, it places unnecessary constraints on its specificands. For example,
a set specification that keeps track of the insertion order of its elements has implementation bias, e.g., toward an

ordered-list representation and against a hash table representation.

2.5. Proving Properties of Specificands

Most formal methods are defined in terms of a specification language that has a well-defined logical inference system.
A logical inference system defines a consequence relation, typically given in terms of a set of inference rules, mapping

a set of well-formed sentences in the specification language to a set of well-formed sentences.

We use this inference system to prove properties from the specification about specificands. Again taking a
specification as a set of facts, we derive new facts through the application of the inference rules. When we prove
a statement inferrable from these facts, then we prove a property that a specificand satisfying the specification will
have—a property not explicitly stated in the specification. An inference system gives users of formal methods a way

to “predict” the behavior of a system without having to execute or even build it. It gives users a way to state questions,

7

What does this
O program do?

Client

O O
Y ==

Customer Specifier Implementor

o

Does this program
satisfy this specification?

Verifier

Figure 2: Specification Users

in the form of conjectures, about a system cast in terms of just the specification itself. Users can then answer these
questions in terms of a formal proof constructed through a formal derivation process. The inference system gives users
a way to increase their confidence in the validity of the specification itself since if they were able to prove a surprising

result from the specification, then perhaps the specification is wrong.

A formal method with an explicitly defined inference system usually has the further advantage that this system can
be completely mechanized, e.g., if it has a finite set of finite rules. Theorem provers and proof checkers are example
tools that assist users with the tedium of deriving and managing formal proofs.

3. Pragmatics

3.1. Users

Some users of formal methods are actually going to produce something tangible—formal specifications. However, not
everyone need write specifications to benefit from using formal methods. Most people need only read specifications,
not develop their own from scratch. Besides specification writers, there are different kinds of specification readers.
Figure 2 depicts a scenario in which each stick figure represents a different role in the system development process. A
person playing any of these roles is a potential specification user. In practice, one person may play muitiple roles, and

some role may not be played at ail.

Specifiers (in red) write, evaluate, analyze, and refine specifications. They prove that their refinements preserve
certain properties and prove properties of specificands through specifications. Specification readers (in blue), besides
specifiers, are customers, those people who may have hired the specifiers; implementors, those people who realize a
specification; clients, those people who use a specified system, usually withoutknowledge of how it is implemented; and
verifiers, those people who prove the correctness of implementations. All these people can benefit from the assistance
of machine tools (another kind of specification “reader”), some of which might blindly manipulate specifications

without regard to their meaning,

One point of tension in many formal methods is that its language may be more suitable to one type of specification
user than to others. Most language designers will target their language for least two, e.g., clients and specifiers, or
speciﬁers and implementors. Some specification languages have a lot of syntactic sugar to make specifications more
readable by customers. Some have a minimal amount because the intent of the method is to do formal proofs by
machines or because the meaning of a rich set of cryptic mathematical notation is assumed.

An advocate of a particular formal method should tell potential users the method’s domain of applicability. For
example, a formal method might be applicable for describing sequential programs, but not parallel ones; or, for
describing message-passing distributed systems, but not transaction-based distributed databases. Without knowing
the proper domain of applicability, a user may unknowingly inappropriately apply a formal method to an inapplicable

domain.

A formal method’s set of guidelines should identify different types of users the method is targeted for and what the
abilities of each should be. To apply some methods properly, users might need to know modern algebra, set theory,
and/or predicate logic. To apply some domain-specific methods, users might need to know additional mathematical
theories such as digital logic, e.g., if specifying hardware, or probability and statistics, €.g., if specifying system

reliability.

3.2. Uses

Formal methods can be applied in all phases of system development. Such application ought not to be considered as
a separate activity, but rather as an integral one. The greatest benefit gained in applying a formal method is often in

the process of formalizing rather than the end result. Gaining a deeper understanding of the specificand by forcing

ourselves 1o be abstract, yet precise, about the desired properties of a system can sometimes be more rewarding than

having the specification document alone.

Let us consider, for each system development phase, some of the uses of formal specifications and example formal

methods that support these uses.

Requirements analysis. Applying a formal method helps to clarify a customer’s set of informally stated require-
ments. A specification helps to crystailize the customer’s vague ideas and helps to reveal contradictions, ambiguities,
and incompleteness in the requirements. A specifier has a better chance of asking pertinent questions and evaluating
the customer’s responses through the use of a formal specification rather than through an informal one. Both the
customer and specifier can pose and answer questions based on the specification to see whether it reflects the cus-
tomer’s intuition and whether the specificand set has the desired set of properties. Systems such as KATE [34] and the
Requirements Apprentice (91] address the problem of transforming informal requirements into formal specifications;
the Gist explainer [98] addresses the converse problem of translating a formal specification into a restricted subset of

English.

System design. Two of the most important activities during design are decomposition and refinement. The Vienna
Definition Method (VDM) [58], Z [97], Larch [46], and Lamport’s transition axiom method [64] are formal methods
that are especially suitable for system design.

Decomposition is the process of partitioning a system into smatler modules. Specifiers can write specifications to
capture precisely the interfaces between these modules. Each interface specification provides the module’s client the
information needed to use the module without knowledge of its implementation. The interface specification simulta-
neously provides the module’s implementor the information needed to implement the module without knowledge of its
clients. Thus, as long as the interface remains the same, the implementation of the module can be replaced, perhaps by
a more efficient one, at some later time without affecting its clients. The interface provides the place for the designer
to record design decisions; moreover, any intentional incompleteness can be succinctly captured as a parameter in the

interface.

Refinement involves working at different levels of abstraction, perhaps refining a single module at one level to be
a collection of modules at a lower level, or choosing for an abstract data type its representation type. Each refinement
step requires showing that a specification (or program) at one level “satisfies” a higher-level specification. The process
of proving satisfaction often generates additional assumptions, called proof obligations, that must be discharged for the
proof to be valid. A formal method provides the language to state these proof obligations precisely and the framework

1o carry out the proof itself.

Program refinement dates back to Dijkstra’s work on stepwise refinement [30] and predicate transformers [29],
and Hoare’s work on data representation [53] and abstraction functions [54]. Related work on program transformation

(15, 6], program synthesis (75], and inferential programming [95] spawned more recent activity exemplified by the

10

design of languages like Refine [41] and Extended ML [94], and programming environments like CIP-S (8] and
the Ergo Support System [66]. Whereas these refinement approaches are based on classical mathematical logic,
an alternative approach to program development based on constructive logic [76] gave rise to proof development

environments like NuPRL [23] in which programs are proofs, and vice versa.

System verification. Verification is the process of showing a system satisfies its specification. Formal verification
is impossible without a formal specification. Though in practice we may never completely verify an entire system, we
can certainly verify smaller critical pieces of a system. The trickiest part is in stating explicitly the assumptions about
the environment in which each critical piece is placed. (Section 5 elaborates on this point.) Systems such as Gypsy
[42], HDM [69], FDM [70], and M-eves [25] evolved as a result of a primary focus on program verification. HOL

(43] was originally developed for hardware verification.

System validation. Formal methods can be used to help in testing and debugging systems. Specifications alone
can be used to generate test cases for black-box testing. Specifications that explicitly state assumptions on a module’s
use identify test cases for boundary conditions. Specifications along with implementations can be used to do other
kinds of testing analysis such as path testing, unit testing, and integration testing. Testing based solely on an analysis
of the implementation is not sufficient; the specification must be taken into account. For example, a test set may be
complete for doing a path analysis of an implementation, but may not reveal missing paths that the specification would
otherwise suggest. The success of unit and integration testing depends on the precision of the specifications of the
individual modules.

Only a few formal methods have been developed explicitly for helping the testing process. Three examples are:
the DAISTS system [77], used for testing implementations of abstract data types; Kemmerer s symbolic execution tool
(62], used to generate and execute test cases from Ina Jo specifications [70]; and the Task Sequencing Language (TSL)

Runtime System [93], used to check automatically the execution of Ada tasking statements against TSL specifications.

System documentation. A specification is a description alternative to the implementation of the system itself. It
serves as a communication medium—between a client and a specifier, between a specifier and an implementor, and
among members of an implementation team. Nothing is more exasperating to hear in reply to the question “What does
itdo?” than the answer “Run it and see.” One of the primary intended uses of formal methods is to capture in a formal
specification the what rather than the how. A client can then read the specification, rather than read the implementation

or worse, execute the system, to find out the system’s behavior.

System analysis and evaluation. In order to learn from the experience of building a system, developers should do
a critical analysis of its functionality and performance once it has been built and tested. Does the system do what the
customer wants? Does it do it fast enough? If formal methods were used in its development then they can help system
developers formulate and answer these questions. The specification serves as a reference point. In the case that the
customer is unhappy, but the system meets the specification, then the specification can be changed and the system

changed accordingly.

11

Indeed much recent work in the application of formal methods to non-trivial examples has been in specifying a
system already built, running, and used, rather than in specifying one yet to be buiit. Some of these exercises revealed
bugs in published algorithms [14] and circuit designs [12]—serious bugs that had gone undiscovered for years. Most

revealed, as expected, unstated assumptions, inconsistencies, and unintentional incompleteness in the system.

Example medium-sized systems that have been specified formally include VLSI circuits {37, 20, 82, 38], micropro-
cessors [55, 26], oscilloscopes [27], operating systems kernels [9], distributed databases [24, 22], and secure systems
[80]. Most formal methods have not yet been applied to specifying large-scale software and/or hardware systems;
most are still inadequate to specify many important behavioral constraints beyond functionality, e.g., fault-tolerance
and real-time.

This problem of scale exists in two different, often confused, dimensions: size of the specification and complexity
of the specificands. Tools can help address specification size, since managing large specifications is just like managing
other large documents, e.g., programs, proofs, and test suites, and their structural interreiationships.

The problem of dealing with a specificand’s inherent complexity remains, since no magic will make it disappear.
System complexity results from internal complexity and/or interface complexity. For example, an optimizing compiler
is internally more complex than a non-optimizing one for the same language; yet, in principie, they would both provide
the same simple interface to their clients (e.g., “compile <program_name>"). By providing a systematic way of
thinking and reasoning about specificands, formal methods are precisely what can help humans grapple with both
kinds of system complexity.

3.3. Characteristics

A formal method’s characteristics, such as whether its language is graphical or whether its underlying logic is first-
order, influence the style in which a user applies it. It is not the subject of this paper to give a complete taxonomy
of all possible characteristics of a method nor to classify exhaustively all methods according to these characteristics.
Instead, we give a partial listing of different characteristics, noting that a method typically reflects a combination of

many different ones.

3.3.1. Model- Versus Property-Oriented

Two broad classes of formal methods are called model-oriented and property-oriented. Using a model-oriented method,
aspecifier defines a system’s behavior directly by constructing a model of the system in terms of mathematical structures
such as tuples, relations, functions, sets, and sequences. Using a property-oriented method, a specifier defines the
system’s behavior indirectly by stating a set of properties, usually in the form of a set of axioms, that the system

must satisfy. A specifier following a property-oriented method tries to state in a specification no more than the

12

necessary minimal constraints on the system’s behavior. The fewer the properties specified, the more the possible

implementations that will satisfy the specification.

Example model-oriented methods used for specifying the behavior of sequential programs and abstract data types
include Parnas’s state-machines, [87], Robinson and Roubine’s extensions to them with V-, O-, and OV-functions (92,
VDM and Z. Example methods used for specifying the behavior of concurrent and distributed systems include Petri
Nets [88], Milner’s Calculus of Communicating Systems (CCS) [79], Hoare’s Communicating Sequential Processes
(CSP) [52], Unity [18], /O automata [73], and TSL. The Raise Project represents more recent work on combining
VDM and CSP [83].

Property-oriented methods can be further broken into two categories, sometimes referred (0 as axiomatic and
algebraic. Axiomatic methods stem from Hoare’s work on proofs of correctness of implementations of abstract data
types [54], where first-order predicate logic pre- and post-conditions are used for the specification of each operation
of the type. Iota [81], Anna [72], and Larch are examplie specification languages that support an axiomatic method.
In an algebraic method, data types and processes are defined to be heterogeneous algebras [10]. This approach uses
axioms to specify properties of systems, but the axioms are restricted to equations. Much work has been done on
the algebraic specification of abstract data types (40, 45, 105, 16, 31, 99, 591 including the handling of error values,
nondeterminism, and parameterization. The more widely-known specification languages that have evolved from this
work are CLEAR [16], OBJ [35], and ACT ONE [32].

Example property-oriented methods used for specifying the behavior of concurrent and distributed systems include
extensions to the Hoare-axiom method (84, 5], temporal logic [89, 74, 85], and Lamport’s transition axiom method.
The LOTOS specification language [1] represents more recent work on the combination of ACT ONE and CCS (with

some CSP influence).

3.3.2. Visual Languages

Visual methods include any whose language contains graphical elements in its syntactic domain. The most prominent

visual method is Petri Nets, and its many variations, used most typically to specify the behavior of concurrent systems.

More recent visual language work includes Harel’s statecharts based on higraphs {49], used to specify state
transitions in “reactive” systems. Figure 3 gives a simple example of a statechart that describes the behavior of a
one-slot buffer. Rounded rectangles (“roundtangles”) represent states in a state machine and arrows represent state
transitions. Initially, the one-slot buffer is empty; in the event that a message arrives and gets put in the buffer, the
buffer becomes full; when the message has been serviced and removed from the buffer, its state changes back to
being empty. The example shows one of the more notable features of statecharts that distinguish them from “flat”
state-transition diagrams: A roundtangle can represent a hierarchy of states (and in general, an arrow can represent a

set of state transitions), thereby letting users “zoom-in” and “zoom-out” of a system and its subsystems.

13

one-slot buffer
/ full \
busy

message arrived
.) message Serviced
done
1
N

message_removed

o

Figure 3: Statechart Specification of a One-Slot Buffer

Harel’s higraph notation inspired the design of the Mir6 visual languages, which are used to specify security
constraints [S1]. Like statecharts, the Mir6 languages have a formally defined semantics and tool support.

Many informal methods use visual notations. These methods allow for the construction of ambiguous specifications,
perhaps because English text is attached to the graphical elements or because multiple interpretations of a graphical
element (usually different meanings for an arrow) are possible. Many popular software and system design methods
such as Jackson’s method [56], HIPO [61], Structured Design [103] and SREM (4] are examples of semi-formal
methods that use pictures.

3.3.3. Executable

Some formal methods support executable specifications, specifications that can be run on a computer. An executable
specification language is by definition more restricted in expressive power than a non-executable language because its
functions must be computable and defined over domains with finite representations. As long as users realize that the
specification may suffer from implementation bias, executable specifications can play an important role in the system
development process. Specifiers can use them to gain immediate feedback about the specification itself, to do rapid
prototyping (the specification serves as a prototype of the system), and to testa specificand through symbolic execution
of the specification. For example, Statemate [50] is a tool that lets users run simulations through the state transition
diagram represented by a statechart.

Besides statecharts, executable specification languages include OBJ, an algebraic specification language; Prolog
[21], a logic programming language, which when used in a property-oriented style lets specifiers state logical relations

14

on objects; and PAISley {104], a model-oriented language, based on a model of event sequences and used to specify

functional and timing behavioral constraints for asynchronous parallel processes.

33.4. Tool-Supported

Some formal methods evolved from the semantic-analysis tools that were built to manipulate specifications and
programs. Model checking tools let users construct a finite-state model of the system and then show a property holds
of each state and/or state transition of the system. These tools such as EMC [12, 19] are especially useful for specifying

and verifying properties of VLSI circuits.

Proof checking tools that let users treat algebraic specifications as rewrite rules include Affirm, Reve [67], the
Rewrite Rule Laboratory (RRL) [60], and the Larch Prover (36]. Tools (and their associated specification language)
that handle subsets of first-order logic include the Boyer-Moore Theorem [11] Prover (and the Gypsy specification
language), FDM (Ina Jo), HDM (SPECIAL), and m-EVES (m-Verdi). Finally, tools that handle subsets of higher-order
logics include HOL, LCF [44], and OBJ [38].

4. Some Examples

The purpose of this section is to illustrate a few example methods to give the reader a taste of some of the more
well-known or commonly-used ones. We present six different formal methods, three applied to one simple example,
and three applied to another. All six methods have been used to specify much more complex systems. First, we
will specify a symbol table data type using Z, VDM, and Larch, which are formal methods especially appropriate for
specifying sequential programs modules like procedures, functions, classes, and packages. Then we wiil specify the
behavior of an unbounded buffer process using temporal logic, CSP, and Lamport’s transition axiom method, which

are formal methods especially appropriate for specifying properties of concurrent and distributed systems.

Sometimes when specifying the same problem using different methods, the resulting specifications look remarkably
similar (e.g., the first three examples); sometimes not (e.g., the last three examples). The similarity or difference is
attributable sometimes to the nature and/or simplicity of the specificand and sometimes to the methods themselves.
The choice of a method is likely to affect what a specification says and how it is said. A method’s guidelines may
encourage the specifier to be explicit about some system behaviors, €.g., state changes, and not others, e.g., error
handling. Syntactic conventions (e.g., indentation style), special notation (e.g., vertical and horizontal lines), and
keywords affect a specification’s physical appearance and its readability.

Most proponents of methods that are used primarily to specify behavioral properties of concurrent and distributed
systems have historically paid attention to defining carefully the satisfies relation for a given semantic domain. What

many of their methods lack are the niceties that formal methods for sequential systems provide: the syntactic sugar

15

and software support tools. For certain specific theories or models of concurrent and distributed systems more

“user-friendly” specification languages, e.g., LOTOS and RAISE, are just beginning to appear.

4.1. Abstract Data Types: Z, VDM, Larch

Z is formal method based on set theory. Though Z can be used in both model-oriented and property-oriented styles,
Figure 4 gives a model-oriented specification of a symbol table. We follow the Z notation of Spivey’s book [97]. The
state of the table is modeled by a partial mapping from keys to values (X-+Y denotes a set of partial mappings from
set X to set Y; a partial mapping relates each member of X to at most one member of Y.) By convention, unprimed
variables in Z stand for the state before an operation is performed and primed variables for the state afterwards; we will
use the same convention in the VDM and Larch specifications. There are four operations on the table, INIT, INSERT,
LOOKUP, and DELETE. INIT initializes the symbol table to be empty. INSERT modifies the table by adding a new
binding to st, in the case that the key k is not already in the domain of st. LOOKUP requires that the key k be in the
domain of the mapping, returns the value to which k is mapped, and does not change the state of the symbol table (st’
= st). DELETE also requires that the key k be in the domain of the mapping, and modifies the table by deleting the
binding associated with k from st (< is a domain subtraction operator). The proof checker B (2] has been used for
proving theorems based on Z specifications.

VDM supports a model-oriented speciﬁcatidn style. VDM defines a set of built-in data types, €.g., sets, lists, and
mappings, which specifiers use to define other types. The VDM specification in Figure 5 defines a symbol table also
in terms of 2 mapping from keys to values. We follow the VDM notation given in Jones’s book [57]. The behaviors
of the INIT, INSERT, LOOKUP and DELETE operations are the same as specified in the Z specification; however,
the pre-conditions, specified in pre clauses, are made explicit and separate from the post-conditions, specified in post
clauses. A pre-conditionon an operation is a predicate that must hold in the state upon each invocation of the operation;
if it does not hoid, then the operation’s behavior is unspecified. A post-condition is a predicate that holds in the state
upon return. An operation’s clients are responsible for satisfying pre-conditions and its implementor is responsible
for guaranteeing the post-condition. The fact that LOOKUP does not modify the symbol table (hence st' = st), but
INSERT and DELETE do, is specified by using rd (for “read only™ access) instead of wr (for “write and read” access)
in the declaration of the external state variables accessed by each operation.

Larch is a property-oriented method that combines both axiomatic and algebraic specifications into a “two-tiered”
specification [101]. The axiomatic component specifies state-dependent behavior, ¢.g., side effects and exceptional
termination, of programs; the algebraic component specifies state-independent pfépem’es of data accessed by programs.
Figure 6 gives a Larch specification of the symbol table example. We follow the Larch notation given in [47].

The first piece of the Larch specification, called an interface specification, looks similar to the Z and VDM
specifications. For each operation, the requires and ensures clauses specify its pre-and post-conditions. The modifies

clause lists those objects whose value may possibly change as a result of executing the operation. Hence, lookup is

16

ST=KEY -+ VAL

INIT-

st’: ST

INSERT:

st,st’: ST
k: KEY
v: VAL

k ¢ dom(st) A
st =stU{k—v}

LOOKUP:

st,st’: ST
k: KEY
v’ VAL

k € dom(st) A
v’ =stk) A

’

st' =5t

DELETE

st, st’ : ST
k: KEY

k € dom(st) A
st={k} dst

Figure 4: Z Specification of a Symbol Table

17

ST = map Key to Val

INIT()

ext wrst:ST

post st ={}

INSERT(k : Key,v: Val)
ext wrst:ST

pre k¢ dom st
post st =stU {k— v}

LOOKUP(k: Key)v: Val
ext rdst:ST

pre k€ dom st
post V' = sik)

DELETE(k: Key)

ext wrsi:ST

pre k& dom st
post st = {k}<dast

Figure 5: VDM Specification of a Symbol Table

18

symbol_table is data type based on S from SymTab

init = proc () returns (s: symbol_table)

ensures s’ =emp A new (s)

insert = proc (s: symboltable, k: key, v: val)
requires ~ isin(s, k)
modifies (s)

ensures s’ = add(s, k, v)

lookup = proc (s: symbol.table, k: key) returns (v: val)
requires isin(s, k)
ensures v’ = find(s, k)
delete = proc (s: symboitable, k: key)
requires isin(s, k)
modifies (s)

ensures s’ = rem(s, k)

end symboi_table

SymTab: trait
introduces
emp: — S
add: S,K, V=3
rem: S,K — S
find: S, K —V
isin: S, K — Bool
asserts
S generated by (emp, add)
S partitioned by (find, isin)
forall (s: S,k,k1: K, v: V)
rem(add(s, k, v), k1) == if k = k1 then s else add(rem(s, k1), k, v)
find(add(s, k, v), k1) == if k = k1 then v else find(s, k1)
isin(emp, k) = faise
isin(addg(s, k, v), k1) == (k = k1) V isin(s, k1)
implies
converts (rem, find, isin) exempting (rem(emp), find(emp))

end SymTab

: 19 .
Figure 6: Larch Specification of a Symbol Table

not allowed to change the state of its symbol table argument, but insert and delete are. One difference, not shown
in the example, between Larch and VDM (and Larch and Z), is that if thé target programming language supports
exception handling, the interfaces would specify whether and under what conditions an operation signals exceptions.
For example, we could remove insert’s requires clause and, instead, use a special signals clause in its post-condition
to specify that a signal should be raised in the case that the key k is already in the symbol table.

The second piece of the Larch specification, called a ¢rait, looks like an algebraic specification. It contains a set
of function symbol declarations and a set of equations that define the meaning of the function symbols. The equations
determine an equivalence relation on sorted terms. Objects of the symbol_table data type specified in the interface
specification range over values denoted by the terms of sort S. The generated by clause states that all symbol table
values can be represented by terms composed solely of the two function symbols, emp and add. This clause defines
an inductive rule of inference and is useful for proving properties about all symbol table values. The partitioned
by clause adds more equivalences between terms. Intuitively it states that two terms are equal if they cannot be
distinguished by any of the functions listed in the clause. In the example, we could use this property to show that
order of insertion of distinct key-value pairs in a symbol table does not matter, i.e., insertion is commutative. The
exempting clause documents the absence of right-hand sides of equations for rem(emp) and find(emp); the requires
and signals clauses in the interface specification deal with these “error values”.. The converts and exempting clauses
together provide a way to state that this algebraic specification is sufficiently-compiete.

Syntax analyzers exist for Larch traits and interfaces. The Larch Prover has been used to perform semantic analysis
on Larch traits.

The user-defined function symbols in a Larch trait are exactly those used in the pre- and post-conditions of the
interface specification; they serve the same role as the built-in symbois like U and < used in the Z and VDM
specifications. Unlike Z and VDM, Larch does not come with any special built-in notation nor any built-in types. The
advantage is that the user does not have to learn any special vocabulary for those concepts and is free to introduce
whatever symbols he or she desires, giving them exactly the meaning suitable for the specificand set. Exactly and only
those properties of a data type being specified need to be stated explicitly and satisfied by an implementation. The
disadvantage is that the user may often need to provide a large set of user-defined symbols, as well as the equations
that define their meaning. Since we modeied symbol tables in Z and VDM in terms of finite mappings, we did not need
to state explicitly that insertion is commutative since this is a property of mappings, i.e., this property came “for free.”
The Larch Handbook [47] serves as a compromise between the two extremes: it provides a library of traits that define

many general and commonly-used concepts, e.g., properties of finite mappings, partial orders, sets, and sequences.

4.2. Concurrency: Temporal logic, CSP, Transition axioms

As mentioned in Section 2.2, many formal methods for specifying the behavior of concurrent and distributed systems

differ because of their choice in semantic domain. To be more concrete here, we will model a system’s behavior as a

20

set of linear sequences of states and associated events, where sometimes we will focus on just the states and sometimes
on just the events. An alternative approach, used by CCS and EMC, is to model a system’s behavior as a set of trees
of states and associated events. When a specification is interpreted with respect to sets of sequences, it is common
to separate properties of concurrent and distributed systems into two general categories, safery and liveness [65].
Safety properties (“nothing bad ever happens™) include functional correctness and liveness properties (“something

good eventually happens”) include termination.

Temporal logic is a property-oriented method for specifying properties of concurrent and distributed systems. For
a given temporal logic inference system, special modal operators are used to state concisely assertions about system
behavior. Specifiers use these operators to refer to past, current, and future states (or events). There is no one standard
temporal logic inference system nor one standard set of operators. Modal operators commonly used are 0, ¢, and
O. Informally, when interpreted with respect to a sequence of states, (1P says in all future states the state predicate P
holds, OP says in some future state P will hold, and QP says in the next state P will hold. For example, P = <OQ says
that if P holds in the current state then eventually Q will hold. Temporal logic notation tends to be terse and a temporal
logic specification is simply an unstructured set of predicates all of which must be satisfied by a given implementation.

Figure 7 gives a temporal logic specification of the behavior of an unbounded buffer in an asynchronous environ-
ment. The exampie is adapted from [63] using the témporal logic system in [89], which has twelve different modal
operators. The formula are interpreted with respect to sequences of events. A buffer has a left input channel and a

right output channel. The expression (c!m) denotes the event of placing message m on channel c. The first predicate,
(rightim) = &(lef t'm)

states that any message transmitted to the right channel ({right!m)) must have been previously placed on the left

channel (©(lef tim)) The second predicate,

((right'm) A © S(righttm’)) = &({lef t'm) A @ O(lef !m’))

states that messages are transmitted in a first-in-first-out fashion: If a message m currently placed on the output channel
is preceded by some other message m’ also on the output channel (& ©(right!m’)), then there must have been a
preceding (the second) event of placing m on the input channel ((lef t!m)), and moreover, an even earlier event that

placed m’ on the input channel ahead of m (& €(lef t!m’)). The third predicate,
((lef t'm) A © S(lef t'm') = (m# m')

states that all messages are unique: For each message m currently placed on the input channel and for each previously
placed message m’ (© ©(lef t!m')), m and m’ are not equal. This property is not a property of the buffer, but an
assumption on the environment. This assumption is essential to the validity of the specification. Without it, a buffer
that outputs duplicate copies of its input would be considered correct. Whereas the first three predicates state safety
properties of the system (and its environment), the fourth predicate,

({lef ttm)) = O({right'm))

21

(right'm) = &(lef tim) 1

({right'm) A @ ©(rightim’)) = &({lef t!m) A © &(lef t'm')) 2)
({lef t'm) A @ O(lef t'm')) = (m# m") 3)
((lef ttm)) => O({rightim)) C))

Figure 7: Temporal Logic Specification of an Unbounded Buffer

states a liveness property: each incoming message will eventually be transmitted.

CSP uses a model-oriented method for specifying concurrent processes and a property-oriented method for stating
and proving properties about the model. CSP is based on model of traces, or event sequences, and assumes that
processes communicate by sending messages across channels. Processes synchronize on events so that the event of
sending an output message m on a named channel ¢ is synchronized with the event of simultaneously receiving an
input message on ¢. Figure 8 gives a CSP specification of an unbounded buffer (adapted from [52]). BUFFER itself is
specified to be a process P that acts as an unbounded buffer. The recursive definition of P is divided into two clauses
to handle the empty and non-empty cases. The first clause,

P<> =left?m —*P<m>

says that if the buffer is empty, in the event that there is a message m on the lef ¢ channel (lef t?m), it will input it. In
CSP, if x is an event and P is a process, the notation x — P denotes a process that first engages in the event x and then

behaves exactly as described by P. The second clause,
Pemss=(lef 2 — Pomsoscn> | right!m — Py)

says that if the buffer is non-empty, then either the buffer will input another message » from the lef ¢ channel, appending
it to the end of the buffer, or output the first message in the buffer to the right channel. CSP uses s’ to denote the
concatenation of sequence s to sequence ¢. It uses | to denote choice: If x and y are distinct events, x — Ply — Q
describes a process that initially engages in either x or y; after this first event, subsequent behavior is described by P if
the first event was x and Q if the first event was y.

Within CSP’s formalism, BUFFER is a CSP program; we can state and prove properties about the traces it denotes.
Using algebraic laws on traces we can formally verify that a given CSP program satisfies a specification on traces.
The last line in Figure 8 states that BUFFER describes a set of traces each of which satisfies the predicate given on the
right-hand-side of sat. The predicate’s first conjunct says that the sequence of (output) messages on the right channel

is a prefix of the sequence of (input) messages on the left channel. CSP uses the notation s < ¢ to denote that the

22

BUFFER = P<>

Where'P<> = lef t’m — P<m>

AN Pemss = (lef 1T — Pomss<n> | right!m — Ps)

BUFFER sat (right < lef t) A (if right = lef t then lef t & ref else right & ref)

Figure 8: CSP Program and Specification of an Unbounded Buffer

sequence s is a prefix of sequence ¢. The prefix property of sequences guarantees that only messages sent from the left
will be delivered to the right, only once, and in the same order. The second conjunct, says that the process never stops:
it cannot refuse to communicate on either the right or left channel. This implies that input messages will eventually be

delivered, which is the same property as stated in the temporal logic specification’s fourth predicate.

B, previously mentioned for proving theorems from Z specifications, has also been used to prove properties of
CSP specifications {102]. Occam is a programming language derivative of CSP that has been implemented and used
on Transputers [71]. '

Lamport’s transition axiom method combines an axiomatic method for describing the behavior of individual
operations with temporal logic assertions for specifying safety and liveness properties. In the buffer example of
Figure 9 (adapted from [65]) we use Lamport’s original notation, although he introduced two other notations in a more

recent description of his method [64].

In the example, the functions, buffer, parg, and gval define the state of the buffer, which has two operations, PUT
and GET, and an initial size of 0. For this example, we assume that invocations of different operations can be active
concurrently, but at most one invocation of a given operation can be active at once. The predicates at(OP), in(OP),
and af ter(OP) state whether control is at the point of calling the operation OP, within the execution of OP, or at the
point of return from OP. The first pair of safety properties states that the value of the state function parg is equal to the
input parameter to PUT at the time of call and equal to NULL upon return. The second pair states similar properties
for GET. The third pair of properties indicates how the state functions change as a result of executing PUT and GET:
If control is in PUT, buf f er gets updated by appending the non-NULL message to its end; if control is in GET and
the buffer is non-empty, buf f er gets updated by removing its first message, which is GET’s return value gval. (The
« denotes appending an element to a sequence.) The fourth and fifth properties are liveness properties requiring that
PUT return whenever there are fewer than min messages in the buffer and that GET return whenever the buffer is
non-empty. (The temporal logic operator ~ stands for “leads to.”) These requirements ensure that progress is made:
that once control is within the PUT (or GET) operation, control will reach its corresponding return point. The fifth

implies that messages received (through PUT) are eventually transmitted (through GET) since if control is in GET, it

23

module BUFFER with subroutines PUT, GET
state functions:

buf f er : sequence of message
parg : message or NULL
gval : message or NULL
initial conditions:
| buf fer |=0
safety properties
1. (@) at(PUT) = parg = PUTPAR
(b) after(PUT) = parg = NULL"
2. (a) at(GET) = gval = NULL
(b) after(GET) = GET.PAR = gval
3. allowed changes to buffer
parg when in(PUT)
gval when in(GET)
(a) o{BUFFER:in(PUT) A parg # NULL —
parg' = NULL A buff er' = buf f er » parg
(b) o{BUFFER]:in(GET) A gval = NULL A | buf fer |>0 —
gval' # NULL A\ buf f er = gval’ = buf f er’
liveness properties
4. in(PUT) A | buf f er |< min ~+ af ter(PUT)
5. in(GET) A | buf f er |> 0 ~» af ter(GET)

Figure 9: Transition Axiom Specification of an Unbounded Buffer

24

must eventually return.

Unlike the temporal logic and CSP examples, but like the Z, VDM, and Larch examples, the last example uses
keywords and distinctclauses for highlightinga model of state (state functions), state initialization (initial conditions),
and state changes (allowed changes to). Again, unlike the temporal logic and CSP examples, it uses similar notational
conveniences to highlight synchronization conditions (the enabling predicates to the left-hand-side of —) and safety
and liveness constraints on the processes’ behaviors. Hence, this last exampie shows a combination of linguistic
features borrowed from formal methods used to specify sequential programs and others used to specify concurrent

ones.

5. Bounds of Formal Methods

5.1. Between the Ideal and the Real Worlds

Formal methods are based on mathematics but are not entirely mathematical in nature. There are two important
boundaries between the mathematical world and the real world that users of formal methods must acknowledge.

The first boundary is crossed in the codification of the customer’s informally stated requirements. Figure 10
illustrates this mapping where the cloud symbolizes the customer’s informal requirements and the oval symbolizes a
formal specification of them. This mapping from informal to formal is typically achieved through an iterative process
not subject to proof. A specifier might write an initial specification, discuss its implications with the customer, and
revise it as a result of the customer’s feedback. The formal specification is always only a mathematical representation of
the customer’s requirements. On the one hand, any inconsistencies in the réquirements would be faithfully preserved
in the specifier’s mapping. On the other, the specifier might incorrectly interpret the requirements and formally
characterize the misinterpretation. For these reasons, it is important that specifiers and customers interact. Specifiers
can help customers clarify their fuzzy, perhaps contradictory, notions; customers can help specifiers debug their

specifications. The existence of this boundary should not be surprising because human beings use formal methods.

The second boundary is crossed in the mapping from the real world to some abstract representation of it. Figure 11
illustrates this mapping where the cloud symbolizes the real world and the oval symbolizes an abstract model of it. The
formal specification language encodes this abstraction. For example, a formal specification might describe properties
of real arithmetic, abstracting away from the fact that not all real numbers can be represented in a computer. The
formal specification is only a mathematical approximation of the real world. This boundary is not unique to formal

methods, or computer science in general; it is ubiquitous in ail fields of engineering and applied mathematics (7, 64].

25

Informal
Requirements

Formal
Specification

Figure 10: Mapping Informal Requirements to a Formal Specification

Abstract
Model

Real
World

Figure 11: Mapping the Real Worid to an Abstract Model

-26

5.2. Assumptions About the Environment

There is another kind of boundary that is often neglected by even experienced specifiers: the boundary between a real
system and its environment [64]. A system does not run in isolation; its behavior is affected by input from the external

world which in turn consumes the system’s output.

Given that we can formally model the system (in terms of a specification language’s semantic domain) then if we
can formaily model the environment, we can formally characterize the interface between a system and its environment.
Most formal methods leave the specification (formal or otherwise) of the environment outside of the specification
of the system. An exception is the Gist language (33] used to specify closed-systems. In theory, a “complete” Gist
specification includes not only a description of the system’s behavior, but also of its clients and other environmental

factors like hardware.

A system’s behavior as captured in its specification is conditional on the environment'’s behavior:

Environment = System

This implication says that if the environment satisfies some precondition, Environment, then the system will behave
as specified in System. If the environment fails to satisfy the precondition, then the system is free to behave in any
way. Environment is a set of assumptions. Whereas a system specifier places constraints on the system’s behavior, he
or she cannot place constraints on the environment, but can only make assumptions about its behavior. For example,
in the temporal logic specification of the unbounded buffer, the assumption that messages are unique is an obligation
expected of the environment to satisfy, not a property expected of the buffer to satisfy nor a constraint that the system

specifier can place on the environment.

A specifier often makes implicit assumptions about a system’s environment when specifying something like a
procedure in a programming language because the environment is usually fixed or at least well-defined. A procedure’s
environment is defined in terms of the invocation protocol of the programming language. A procedure’s specification
will typically omit explicit mention of what the language’s parameter passing mechanism is, or, for a compile-time
type-checked language, that the types of the arguments are correct. The specifier presumably knows the details of
the programming language’s parameter passing mechanism, and assumes the programmer will compile the procedure,

thereby do the appropriate type-checking.

However, when specifying a large, complex, software and/or hardware system, the specifier should take special care
to make explicit as many assumptions about the environment as possible. Unfortunately, too often when specifying

a large system, specifiers forget to state explicitly the circumstances under which the system is expected to behave

properly.
In reality, it is impossible to model formally many environmental aspects such as unpredictable or unanticipated

27

events, human error, and natural catastrophes (lightning, hurricanes, earthquakes). Hazard analysis, as acomplementary
technique to formal methods, can be used to identify safety-critical components of a system [68]. Formal methods
can then be used to describe and reason about these components, where reasoning holds only for those system input

parameters that are made explicit.

6. Conclusions and Future Work

In a strict mathematical sense, formal methods differ greatly from one another. Not only does notation vary, but the
choice of the semantic domain and definition of the satisfies relation both make a tremendous difference between what
a specifier can easily and conciscly express in one method versus another. An idiom in one language might translate

into a long list of unstructured statements in another or might not even have a counterpart.

But in a more practical sense, formal methods do not differ so radically from one another. Within some well-defined
mathematical framework, they let system developers couch their ideas in a precise manner. The more rigor applied in
system development, the more likely developers get the requirements stated “correctly,” the more likely they get the

design “right,” and ef course the more precisely they can argue the correctness of the implementation.

In conclusion, existing formal methods can be used:

» To identify many, but not all, deficiencies in a set of informally stated requirements, to discover discrepancies

between a specification and an implementation, and to find errors in existing programs and systems;

¢ To specify “medium-sized” and “non-trivial” problems, especially the functional behavior of sequential pro-
grams, abstract data types, and hardware.

o To gain a deeper understanding of the behavior of large, compiex systems.
Many challenges remain. In an effort to push against some of the current pragmatic bounds (in contrast to the

two theoretical bounds discussed in the previous section), the formal methods community is actively pursuing the
following goals:

« To specify non-functional behavior such as reliability, safety, real-time, performance, and human factors;

¢ To combine different methods such as a domain-specific one with a more geneéral one, or an informal one with
a formal one;

e To build more usable and more robust tools, in particular tools to manage large specifications and tools to
perform more complicated semantic analysis of specifications more efficiently, perhaps by exploiting parallel

architectures and parallel algorithms;

28

o To build specification libraries so that systems and their components can be reused based on information captured
in their specification. General libraries like the Larch Handbook [47] and the Z Mathematical Toolkit [97], and

domain-specific ones like that for oscilloscopes [27] are recent exampies.

o To integrate formal methods with the entire system development effort, e.g., to provide a formal way to record

design rationale in the system development process;

» To demonstrate that existing techniques scale up to handle real-world problems and to scale up the techniques

themselves;

o To educate and train more people in the use of formal methods.

Acknowledgments

I thank Susan Gerhart for giving me this opportunity to express my thoughts about formal methods. I am grateful to
John Guttag and Jim Homing for being the ones who first introduced me to formal specifications. They have been
instrumental in shaping my opinions about the role formal methods can and should play in system development. I
thank all those who attended Formal Methods '89 in Halifax, Nova Scotia fc.>r helpful feedback and discussion. [
would especially like to credit Jim Horning for suggesting this paper’s title, a subject of much controversy, and J oseph
Goguen who has suggested that formal methods can be given a formal characterization in terms of institutions [39]
where semantic abstraction functions are institution morphisms. Finally, I thank Mark Ardis, Dan Craigen, Susan
Gerhart, Joseph Goguen, Bob Harper, Jim Horning, Lesliec Lamport, and David Parnas for their critical comments on
an earlier draft of this paper.

References

(1] DIS 8807. Information Systems Processing-Open Systems Interconnection-LOTOS. Technical Report, Inter-

national Standards Organization, 1987.
(2] J.-R. Abrial. B User Manual. Technical Report, Programming Research Group, Oxford University, 1988.
(3] A. Aho and J. Ullman. Principles of Compiler Design. Addison=Wesiey, 1977.
[4] M. Alford. SREM at the age of eight: the distributed computing design system. Computer, 3646, April 1985.

(5] K.R. Apt, N. Francez, and W.P. de Roever. A proof system for Communicating Sequential Processes. ACM
Transactions on Programming Languages and Systems, 2(3):359-385,July 1980.

[6] R. Balzer. Transformational implementation: an example. /EEE TSE, 7(1):3-14, January 1981.

[7] J. Barwise. Mathematical proofs of computer correctness. Notices of AMS, September 1989.

29

[8] Bauer et al. The Munich Project CIP, Volume 1: The Wide Spectrum Language CIP-L. Volume 183 of Lecture

Notes in Computer Science, Springer-Verlag, 1985.

[91 WR. Bevier. A Verified Operating System Kernel. Technical Report 11, Computational Logic, Inc., March
1987.

(10] G. Birkhoff and J.D. Lipson. Heterogeneous algebras. Journal of Combinatorial Theory, 8:115-133, 1970.

[11] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979. ACM monograph

series.

[12] M.C. Browne, EM. Clarke, and D. Dill. Checking the correctness of sequential circuits. In Proc 1985 IEEE
Int. Conf. Comput. Design, pages 545-548, 1985.

[13] M. Broy. A fixed point to applicative multiprogramming. In M. Broy and G. Schmidt, editors, Theoretical
Foundations of Programming Methodology, pages 565-623, Reidel Publishing Company, 1982.

[14] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Proc. of Symp. on Operating Systems,
1989.

(151 R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal of the
ACM, 24(1):44-67, January 1977.

[16] R.M. Burstall and J.A. Goguen. Putting theories together to make specifications. In Fifth International Joint
Conference on Artificial Intelligence, pages 1045-1058, August 1977. Invited paper.

{171 R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language. In Proceedings of the 1979
Copenhagen Winter School on Abstract Software Specification, pages 292-332, Springer- Verlag, 1980. Lecture

Notes in Computer Science 86.
(18] K.M. Chandy and I. Misra. Parallel Program Design. Addison-Wesley, 1988.

[19] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM TOPLAS, 8(2):244-263, 1986.

f20] E.M. Clarke and O. Grumberg. Research on automatic verification of finite-state concurrent systems. Ann. Rev.
Comput. Sci., 2:269-290, 1987.

[21] WF. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1984.

[22] B.P. Collins, J.E. Nicholls, and I.H. Sorensen. /ntroducing Formal Methods: the CICS Experience with Z.
Technical Report TR 12.260, IBM, United Kingdom Laboratories, Hursley, 1987.

[23] R.Constable etal. Implementing Mathematics with the NuPRL Proof Development Environment. Prentice-Hall,
1986.

30

[24] IBM Corporation. Customer Information Control System/Virtual Storage, Introduction to Program Logic. IBM
Corporation, sc33-0067-1 edition, June 1978.

[25] D. Craigen, S. Kromodimoeljo, I. Meisels, A. Neilson, B. Pase, and M. Saaltink. M-eves: a tool for verifying

software. In Proceedings of the 10th International Conference on Software Engineering, pages 324-333,

Singapore, April 1988.

[26] WJ. Cullyer. Implementing safety-critical systems: the Viper microprocessor. In VLSI Specification, Verifica-
tion and Synthesis, Kluwer, 1987.

[27] N. Delisle and D. Garlan. Formally specifying electronic instruments. In Proc. FifthInt’'| Workshop on Software
Specification and Design, pages 242-248, Pittsburgh, 1989.

(28] F. DeRemer and H.H. Kron. Programming-in-the-large versus programming-in-the-small. /EEE Trans. on Soft.
Eng., June 1976.

[29] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[30] E.W. Dijkstra. Notes on Structured Programming, pages 1-81. Academic Press, 1972.

[31] H.-D. Ehrich. Extensions and implementations of abstract data type specifications. In Mathematical Founda-
tions of Computer Science 1978 Proceedings, pages 155-164, Springer-Verlag, Poland, 1978. Lecture Notes in

Computer Science 64.
[32] H.Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer-Verlag, Berlin, 1985.

(33] M. Feather. Language support for the specification and development of composite systems. ACM Trans. on
Prog. Lang., 9(2):198-234, April 1987.

[34] S.Fickas. Automating the analysis process: an example. In Proceedings of the Fourth [nternational Workshop
on Software Specification and Design, pages 79-86, April 1987.

[35] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2. In Proceedings of ACM
POPL, pages 52-66, 1985.

(36] SJ. Garland and J.V. Guttag. Inductive methods for reasoning about abstract data types. In Proceedings of the
15th Symposium on Principles of Programming Languages, pages 219-228, January 1988.

(37] SJ. Garland, J.V. Guttag, and J. Staunstrup. Verification of VLSI circuits using LP. In Proceedings of the IFIP
WG 10.2, The Fusion of Hardware Design and Verification, North-Holland, 1988.

(38] J.A. Goguen. OBJ as a Theorem Prover with Applications to Hardware Verification. Technical Report SRI-
CSL-88-4R2, Stanford Research Institute, Menlo Park, CA, August 1988.

(39] J.A. Goguen and R.M. Burstall. Introducing institutions. In Proceedings of Logics of Programming Workshop,
pages 221-255, Springer- Veriag, 1983. Lecture Notes in Computer Science 164.

31

(40] J.A.Goguen,J.W. Thatcher, E.G. Wagner, and J.B. Wright. Abstract data types as initial algebras and correctness
of data representations. In Proceedings from the Conference of Computer Graphics, Pattern Recognition and
Data Structures, pages 89-93, ACM, May 1975.

[41] A. T. Goldberg. Knowledge-based programming: a survey of program design and construction techniques.
IEEE Trans. Software Eng., 12(7):752-768, 1986.

[42] DI Good, R.L. London, and W.W. Bledsoe. An interactive program verification system. /[EEE Transactions
on Software Engineering, 1(1):59-67, 1979.

[43] M. Gordon. HOL.: a proof generating system for higher-order logic. In VLSI Specification, Verification and
Synthesis, Kluwer, 1987.

[44] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF. Volume 78 of Lecture Notes in Computer
Science, Springer-Verlag, 1979.

[45] J.V.Guttag. The Specification and Application to Programming of Abstract Data Types. PhD thesis, University
of Toronto, Toronto, Canada, September 1975.

[46] J.V. Guttag, JJ. Homning, and J.M. Wing. The Larch family of specification languages. [EEE Software,
2(5):24-36, September 1985.

[47] 1.V. Guttag, J.J. Homing, and J.M. Wing. Larch in Five Easy Pieces. Technical Report 5, DEC Systems
Research Center, July 1985.

(48] J.V. Guttag, JJ. Horning, and J.M. Wing. Some remarks on putting formal specifications to productive use.
Science of Computer Programming, 2(1), October 1982.

{49] D. Harel. On visual formalisms. CACM, 31(5):514-530, 1988.

[50] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A. Shtul-Trauring. Statemate: a
working environment for the development of complex reactive systems. In Proc. 10th [EEE Int'l Conf. on

Software Engineering, April 1988.

{51] A. Heydon, M. Maimone, J.D. Tygar, J.M. Wing, and A. Moormann Zaremski. Constraining pictures with
pictures. In Proceedings of IFIPS '89, San Francisco, August 1989.

[52] C.AR. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
(53] C.A.R. Hoare. Notes on Data Structuring, pages 83-174. Academic Press, 1972.
[54] C.AR. Hoare. Proof of correctness of data representations. Acta Informatica, 1(1):271-281, 1972.

(551 W.A. Hunt. The Mechanical Verification of a Microprocessor Design. Technical Report 6, Computational
Logic, Inc., 1987.

32

[56] M.A. Jackson. Principles of Program Design. Academic Press, London, 1975.
[57] C.B. Jones. Software Development: A Rigorous Approach. Prentice-Hall International, 1980.
(58] C.B.Jones. Systematic Software Development Using VDM. Prentice-Hall International, 1986.

(59] S.Kamin. Final data types and their specification. ACM Transactions on Programming Languages and Systems,
5(1):97-121, January 1983.

(60] D. Kapur and D. Musser. Proof by consistency. Artificial Intelligence, 31:125-157, 1987.

(611 H.Katzan. Systems Design and Documentation: An Introduction to the HIPO Method. Van Nostrand Reinhold,
New York, 1976.

(62] R.A. Kemmerer and S.T. Eckmann. A User’s Manual for the UNISEX System. Technical Report, Dept. of
Computer Science, UCSB, Santa Barbara, CA, December 1983.

[63] R. Koymans, J Vytopil, and W.P. de Roever. Real time programming and asynchronous message passing. In
2nd ACM Symp. on Principles of Distributed Programming, pages 187-197, 1983.

(64] L. Lamport. A simple approach to specifying concurrent systems. CACM, 32(1):32-45, January 1989.

(65] L. Lamport. Specifying concurrent program modules. ACM Transactions on Programming Languages and
Systems, 5(2):190-222, April 1983.

[66] P. Lee, F. Pfenning, G. Rollins, and W. Scherlis. The Ergo Support System: an integrated set of tools for
prototyping integrated environments. In Proc. Third ACM SIGSOFT Symposium on Software Development

Environments, Boston, MA, November 1988.

[67] P. Lescanne. Computer experiments with the REVE term rewriting system generator. In Proceedings of the

10th Symposium on Principles of Programming Languages, pages 99-108, Austin, Texas, January 1983.
[68] N.G. Leveson. Software safety: what, why, and how. ACM Computing Surveys, 18(2):125-163,June 1986.

(69] K.N. Levitt, L. Robinson, and B.A. Silverberg. The HDM Handbook. Technical Report Volumes 1-3, SRI
International, Menlo Park, CA, 1979.

[70] R.Locasso, J. Scheid, D.V. Schorre, and PR. Eggert. The Ina Jo Reference Manual. Technical Report TM-(L)-
6021/001/000, System Development Corporation, Santa Monica, CA, 1980.

[71] INMOS Ltd. Occam Programming Manual. Prentice-Hall International, 1984.

[72] D.C. Luckham and F.W. von Henke. An overview of Anna, a specification language for Ada. IEEE Software, -
2(2):9-23, March 1985.

[73] N. Lynch and M. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms. Technical Report, MIT
Laboratory for Computer Science, Cambridge, MA, April 1987.

33

[74] Z. Manna and A. Pnueli. Verification of Concurrent Programs, Part I: The Temporal Framework. Technical
Report STAN-CS-81-836, Dept. of Computer Science, Stanford University, June 1981. '

[75] Z.Manna and R. Waldinger. A deductive approach to program synthesis. TOPLAS, 2(1):90-121, January 1980.

[76] P. Martin-Lof. Constructive mathematics and computer programming. In Sixth International Congress for
Logic, Methodology, and Philosophy of Science, pages 153175, North-Holland, Amsterdam, 1973.

[77] PR. McMullin and J.D. Gannon. Combining testing with formal specifications: a case study. /EEE Trans. on
Soft. Eng., 9(3), May 1983.

[78] B. Meyer. On formalism in specifications. /EEE Software, January 1985.

[79] AJR.G. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer Science,
Springer- Verlag, 1980.

[80] A.P. Moore. Investigating formal specification and verification techniques for COMSEC software security. In
Proceedings of the 1988 National Computer Security Conference, October 1988.

(81] R.Nakajima, M. Honda, and H. Nakahara. Hierarchical program specification and verification—a many-sorted
logical approach. Acta Informatica, 14:135-155, 1980. ‘

[82] P. Narendran and J. Stillman. Formal verification of the sobel image processing chip. In G. Birtwistle and P.A.
Subrahmanyam, editors, Current Trends in Hardware Verification and Automated Theorem Proving, pages 92—
127, Springer- Verlag, 1989.

(83] M. Nielsen, K. Havelund, K.R. Wagner, and C. George. The RAISE language, method and tools. Formal
Aspects of Computing, 1:85-114, 1989.

[84] S.Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach. Communications of
the ACM, 19(5):279-285, May 1976.

[85] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Transactions on
Programming Languages and Systems, 4(3):455-495, July 1982.

(86] D.L. Pamas. On a ‘Buzzword’ : Hierarchical Structure, pages 336-339. North-Holland Publishing Company,
1974.

[87] D.L.Pamas. A technique for software module specification with examples. CACM, 15(5):330-336, May 1972.
[88] J.L. Peterson. Petri nets. Computing Surveys, 9(3), September 1977.

[89] A.Pnueli. Applications of temporal logic to the specification and verification of reactive systems: a survey of
current trends. In W.-P. de Roever and G. Rozenberg, editors, Curren: Trends in Concurrency: Overviews and

Tutorials, pages 510-584, Springer-Verlag, 1986. Lecture Notes in Computer Science 224.

34

(90] V. Pratt. Modeling concurrency with partial orders. /nternational Journal of Parallel Programming, 15(1):33-
71, February 1986. '

[91] C.Rich, R.C. Waters, and H.B. Reubenstein. Toward a requirements apprentice. In Proceedings of the Fourth
International Workshop on Software Specification and Design, pages 79-86, April 1987.

[92] L. Robinson and O. Roubine. SPECIAL - A Specification and Assertion Language. Technical Report CSL-46,
Stanford Research Institute, Menlo Park, Ca., January 1977.

[93] D.S. Rosenblum and D.C. Luckham. Testing the correctness of tasking supervisors with TSL specifications. In
Proc. ACM SIGSOFT ' 89 3rd Symposium on Software Testing, Avanlysis, and Verification (TAV-3), pages 187-
196, Key West, FL, 1989.

[94] D. Sannella and A. Tarlecki. Program specification and development in standard ml. In Proceedings of the

Symposium on Principles of Programming Languages, 1985.

[95] WL. Scherlis and D. Scott. First steps toward inferential programming. In Proceedings of IFIPS ’'83, Paris,
1983.

[96] D. Scott. Toward a mathematical semantics for computer languages. In J. Fox, editor, Proc. Symposium on

Computers and Automata, Polytechnic Institute of Brooklyn Press, 1971.

[97] J.M. Spivey. Introducing Z: a Specification Language and its F\ ormal Semantics. Cambridge University Press,
1988.

(98] W. Swartout. The Gist behavior explainer. In Proc. American Association Artificial Intelligence Conf.,
pages 402-407, August 1983. ‘

[99] M. Wand. Final algebra semantics and data type extensions. Journal of Computer and System Sciences,
19(1):27-44, August 1979.

[100] P. Wegner. The Vienna Definition Language. Computing Surveys, 4(1):5-63, 1972.
[101] J.M. Wing. Writing Larch interface language specifications. ACM TOPLAS, 1-24, January 1987.

[102] J.C.P. Woodcock. Transaction processing primitives and CSP. IBM Journal of Research and Development,
31(5):535-45,1987.

[103] E. Yourdon and L.L. Constantine. Structured Design: F wundamentals of a Discipline of Computer Programs
and Systems Design. Yourdon Press, New York, 1978.

[104] P. Zave. An operational approach to requirements specification for embedded systems. /EEE Trans. Software
Eng., 8(3):250-269, May 1972.

[105] S.N. Zilles. Abstract specifications for data types. IBM Research Laboratory, San Jose, CA, 1975.

35

