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Abstract

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers o specify and reason about concurrent objects using
known techniques from the sequential domain. Linearizability provides the illusion that each operation
applied by concurrent processes takes effect instantaneously at some point between its invocation and its
response, implying that the meaning of a concurrent object's operations can be given by pre- and post-
conditions. This paper defines linearizability, compares it to other correctness conditions, presents and
demonstrates a method for verifying implementations of linearizable objects, and shows how to reason
about concurrent objects using their (sequential) axiomatic specifications.
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1. Introduction

1.1. Overview

Informally, a concurrent system consists of a collection of sequential processes that communicate through
shared typed objects. This model is appropriate for muitiprocessor systems in which processors
communicate through reliable, high-bandwidth shared memory. Whereas “memory” suggests registers
with read and write operations, we use the term concurrent object to suggest a richer semantics. Each
object has a type, which defines a set of possible values and a set of primitive operations that provide the
only means to create and manipuiate that object. We can give an axiomatic specification for a typed
object to define the meaning of its operations when they are invoked one at a time by a single process. In
a concurrent system, however, an object’s operations can be invoked by concurrent processes, and it is
necessary to give a meaning to possible interleavings of operation invocations. -

A concurrent computation is linearizable if it is “equivalent,” in a sense formally defined in Section 3, to a
legal sequential computation. We interpret a data type’s (sequential) axiomatic specification as perrhitting
only linearizable interleavings. Instead of leaving data uninterpreted, linearizability exploits the semantics
of abstract data types; it permits a high degree of concurrency, yet it permits programmers to specify and
reason about concurrent objects using known techniques from the sequential domain. Unlike alternative
correctness conditions such as sequential consistency [11] or serializability [17], linearizability is a /ocal
property: a system is linearizable if each individual object is linearizable. Locality enhances modularity
and concurrency, since objects can be implemented and verified independently, and run-time scheduling
can be completely decentralized. Linearizability is also a non-blocking property: processes invoking
totally-defined operations are never forced to wait. Non-blocking enhances concurrency.and implies that
linearizability is an appropriate condition for systems for which real-time response is critical.
Linearizability is a simple and intuitively appealing correctness condition that generalizes and unifies a
number of correctness conditions both implicit and expiicit in the literature.

Using axiomatic specifications and our notion of linearizability, we can reason about two kinds of
problems:

*We reason about the cormrectness of linearizable object implementations using new
techniques that generalize the notions of representation invariant and abstraction function
[3, 9] to the concurrent domain.

* We reason about computations that use linearizable objects by transforming assertions

about concurrent computations into simpler assertions about their sequential counterparts.
Section 2 presents our model of a concurrent system and our specification techniques; Section 3 defines
and discusses linearizability. Section 4 presents techniques for reasoning about implementations of
linearizable objects, and Section 5 illustrates these techniques by verifying a novel implementation of a
highty concurrent queue. Section 6 presents examples of how to use linearizability to reason about
concurrent registers and queues. Section 7 surveys some related work and discusses the significance of
linearizability as a correctness condition.



1.2. Motivation »

When defining a correctness condition for concurrent objects, two requirements seem to make intuitive
sense: First, each operation should appear to “take effect” instantaneously, and 'second, the order of
non-concurrent operations should be preserved. These requirements allow us to describe acceptable
concurrent behavior directly in terms of acceptable sequential behavior, an approach that simplifies both
formal and informal reasoning about concurrent programs. We capture these notions formally in the next
section; here we review some informal examples to illustrate what we do and do. not consider intuitively
acceptable concurrent behavior. Our examples employ a first in, first out (FIFO) queue, a simple data
type that provides two operations: Eng inserts an item in the queue, and Deq retums and removes the
oldest item from the queue. Figure 1-1 shows four different ways in which a FIFO queue might behave
when manipulated by concurrent processes. Here, a time axis runs from left to right, and each operation
is associated with an interval. Overlapping intervals indicate concurrent operations. We use “E{x) A"
(“D(x) A") to stand for the enqueue (dequeue) operation of item x by process A.

The behavior shown in H, (Figure 1-1.a) corresponds to our intuitive notion of how a concurrent FIFO
queue shouid behave. In this scenario, processes A and B concurrently enqueue x and y. Later, B
dequeues x, and then A dequeues y and begins enqueuing z. Since the dequeue for x precedes the
dequeue for y, the FIFO property implies that their enqueues must have taken effect in the same order.
In fact, their enqueues were concurrent, thus they could indeed have taken effect in that order. The
uncompleted enqueue of z by A illustrates that we are interested in behaviors in which processes are
continually executing operations, perhaps forever.

The behavior shown in H,, however, is not intuitively acceptabie. Here, it is clear to an external observer
that x was enqueued before y, yet y is dequeued without x having been dequeued. To be consistent with
our informal requirements, A should have dequeued x. We consider the behavior shown in H, to be
acceptable, even though x is dequeued before its enqueuing operation has retumed. Intuitively, the
enqueue of x took effect before it completed. Finally, H, is clearly unacceptable because y is dequeued
twice. ’ '

To decide whether a concurrent history is acceptable, it is necessary to take into account the object's
intended semantics. For example, acceptable concurrent behaviors for FIFO queues wouid not be
acceptable for stacks, sets, directories, etc. When restricted to register objects providing read and write
operations, our intuitive notion of acceptabiiity corresponds exactly to the notion used in Misra's careful
axiomatization of concurrent registers {14]. Our approach can be thought of as generalizing Misra’'s
approach to objects with richer sets of operations. For example, Hg in Figure 1-2a is acceptable, but Hg is
not (examples are taken from {14]). These two behaviors differ at one point: in He, B reads a 0, and in
Hg, Breads a 1. The latter is intuitively unacceptable because A did a previous read of a 1, implying that
B'’s write of 1 must have occurred before A's read. C's subsequent write of 0, though concurrent with B's
write of 1, strictly follows A’s read of 1.

In the next two sections, we formalize the intuition presented here by defining the notion of linearizability
to encompass those histories we have argued are intuitively acceptable.
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Figure 1-1: FIFO Queue Histories
2. System Model and Specification Technique

2.1. Histories

An execution of a concurrent system is modeled by a history, which is a finite sequence of operation
invocation and response events. An operation invocation is written as (x op(args®) A), where x is an
object name, op is an operation name, args” denotes a sequence of argument values, and A is a process
name. The response to an operation invocation is written as (x term(res*) A), where term s a termination
condition, and res” is a sequence of results. We use “Ok” for normal termination. A response matches
an invocation if their object names agree and their process names agree. An invocation is pending in a
history if no matching response follows the invocation. If H is a history, complete(H) is the longest
subhistory of H consisting only of invocations and matching responses. ‘

A history H is sequential if:
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Figure 1-2: Register Histories
1. The first event of H is an invocation. e
2. Each invocation, except possibly the last, is immediately followed by a matéhing response.
3. Each response, except possibly the last, is immediately followed by an invocation.

A process subhistory, H | P (H at P), of a history H is the subsequence of events in H whose process
names are.P. An object subhistory H | x is similarly defined for an object x. Two hlstoﬂes H and H' are
equivalent it for every process P, H | P = H’ | P. A history H is well-formed it each process subhistory H | P
of H is sequential. All histories considered in this paper are assumed to be well-formed. Notice that

whereas process subhistories of a well-formed history are necessarily sequential, object subhistories are
not.

An operation, e, in a history is a pair consisting of an invocation, inv(e), and the next matching response,
res(e). We denote an operation by [q inv/res A}, where g is an object and A a process. An operation -3
lies within another operation e, in H if inv(e,) precedes inv(e,) and res(e,) precedes res(e,) in H. Angle
brackets for events and square brackets for operations are omitted where they would otherwise be
unnecessarily confusing; object and process names are omitted where they are clear from context.

For example, H, of Figure 1-1 is the following well-formed history for a FIFO queue q.

q Enq(x) A (History H,)
qEnq(y) B ’

qOk() B

q Ok() A

q Deq() B

q Ok(x) B

q Deq() A

q Ok(y) A

qEnq(2) A

The first event in H, is an invocation of Enq with argument x by process A, and the fourth event is the
matching response with termination condition Ok and no results. The [q Enq(y)/Ok() B] operation lies
within the [q Enq(x)/Ok() A] operation. The subhistory, complete(H,), is H, with the last (pending)
invocation of Enq removed. Reordering the first two events yields one of many histories equivalent to H,.



2.2. Specifications
A sequential history for an object can be summarized by the object's value at the end of the history. We
use standard axiomatic specifications to reason about object values, and hence, indirectly about
sequential histories. A specification is a set of axioms of the form:
(P}
op(args”) 6 term(res*®)

where P is a pre-condition on the object's value and the argument values that must be met before an
invocation, and Q is a post-condition on the object's value and the result vaiues that is guaranteed to hold
upon return for the given termination condition. Identifiers in args* and res® denote values of arguments
and results. A sequential history H is legalif for all object subbhistories, H | x, of H, each operation in H | x
satisfies its axiomatic specification. '

The axioms presented in this paper are essentially Larch interface specifications [4, 5] for operations of
abstract data types. For example, axioms for the Enq and Deq operations for FIFO queues are shown in
Figure 2-1. The queue’s value before the operation is denoted by q and the value after the operation by
q'. The post-condition for Enq states that upon termination, the new queue value is the oid queue value
with e inserted. The specification for Deq states that applying that operation to a non-empty queue
removes the first item from the queue, but applying it to an emptv queue retums an exception and leaves
the queue unchanged. Notice that the specification for Deq is partial: Deq is undefined for the empty
queue.

The assertion language for the pre- and post-conditions is based on the Larch Shared Specification
Language. It is akin to algebraic specification languages and is used to describe the set of values of a
typed objec* Figure 2-2 shows the Larch trait that defines queue values. The set of operators and their
signatures tollowing Introduces defines a vocabulary with which to compose terms that denote values.
For example, emp and ins(emp, 5) denote two different queue values. The set of equations following the
constrains clause defines a meaning for the terms, more precisely, an equivalence relation on the terms,
and hence on the values they denote. For example, from QVals, we couid prove that rest(ins(ins(emp, 3),
5)) = ins(emp, 5). The generated by clause of QVals asserts that emp and ins are sufficient operators to
generate all values of queues. Formally, it introduces an inductive rule of inference that allows one to
prove properties of all queue values. We use the vocabulary of traits to write the assertions in the pre-
and post-conditions of a type's operations; we use the meaning of equality to reason about its values.
Hence. the meaning of ins and “=" in Axiom E’s post-condition is given by the trait QVals.

3. Linearizability _
This section defines the notion of linearizability, proves that it is a /ocal and non-blocking property, and
discusses the differences between it and other correctness conditions.

3.1. Definition
A history H induces an irreflexive partial order <y, On operations:
€y <y @, if res(e,) precedes inv(e,) in H.
(Where appropriate, the subscript is omitted.) Informally, <y Captures the “real-time” precedence
ordering of operations in H. Operations unrelated by <y are said to be concurrent. It H is sequential, <, is



Axiom E:
{true}
Enq(e) / Ok()
{q' = ins(q, e)}
Axiom D:
{—isEmp(q)}
Deq() / Ok(e)
{q' = rest(q) A e = first(q)}
Figure 2-1: Axioms for Queue Operations
QVals: trait
introduces
emp: = Q
ins:Q,E—Q
first Q= E
rest: Q — Q
isEmp: Q — Bool
constrains Q so that

Q generated by [ emp, ins ]

forallq:Q,e:E
first(ins(emp, ¢)) = @
first(ins(q, e)) = if iSEmp(q) then e else first(q)
rest(ins(q, e)) = if isSEmp(q) then emp eise ins(rest(q), )

isEmp(emp) = true
isEmp(ins(q, e)) = faise

Figure 2-2: Trait for Queue Values
a total order.

A history H is /inearizable it can be extended (by appending zero or more responée events) to some
history H' such that:

L1: complete(H’) is equivalent to some legal sequential history S, and
L2: <y S <g-

L1 states that processes act as if they were interleaved at the granularity of complete operations. L2
states that this apparent sequential interleaving respects the real-time precedence ordering of operations.
We call S a linearization of H. Non-determinism is inherent in the notion of linearizability: (1) For each H,
there may be more than one extension H' satistying the two conditions, L1 and L2, and (2) for each
extension H’, there may be more than one linearization S.

3.2. Queue Examples Revisited
Let “-” denote concatenation of events. The history H, shown in Figure 1-1 is linearizable, because H, -
(q Ok() A) is equivalent to the following sequential history:



qEnq(x) A (History H,)
q Ok() A
qEnq(y) B
qOk() B
qDeq() B
q Ok{x) B

q Deq() A
q Ok(y) A

qEnq(z) A
q Ok() A
H, is not linearizable:
q Eng(x) A (History H,)
qOk() A
q Enq(y) B
q Deq() A
qOk() B
q Ok(y) A

because the complete Enq operation of x precedes the Eng of y, but y is dequeued before x.

Linearizability does not rule out histories such as H,, in which an operation “takes effect” before its return
event occurs:
q Enq(x) A (History H,)
qDeq() B
q Ok(x) B .
H, can be extended to Hy' = H, - (q OK() A), which is equivalent to the sequential history in which the
engqueue operation occurs before the dequeue.

Finally, H,,
q Eng(x) A’ (History H,)
q Enq(y) B
q Ok() A
qOk() B
q Deq() A
q Deq() C
q Ok(y) A
q Ok(y) C
is not linearizable because y is enqueued once but dequeued twice, hence H, is not equivalent to any
sequential FIFO queue history.

3.3. Locallty
Linearizability is a /ocal property.

Theorem 1: H is linearizable if and only if H | x is linearizable at each object x.
Proof: The “only if” part is obvious. '

From the assumption that each object's history is linearizable, there exists for each object x an
induced total order <, on its own operations, and by the well-formedness criteria fof histories,
each process P induces a total order <p on its operations. We claim that the transitive closure
of the union of all <, and <p is a partial order, <, and hence can be extended to a total order, <.
Notice that each <, and <, is compatible with <.
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Suppose < is not a partial order. Then we can construct a cycle of operations e, - ... - e, where
e, = @,, such that 8y <@y < .. <8, where e, and e, 1 <i<n, are related by some <, or <.
The contradiction is mmediate |f no pair is related by a <p, because then all relations are
induced by the same <,, which is assumed to be a total order. Otherwise, we can assume
without loss of generality that e, <, e, for some process P. Because processes are sequential,
the response of e, precedes the invocation of e,, and because all relations are consistent with
<, the invocation of e, precedes the response of e, which is identical to the response of e,.
Hence the response of e, precedes itself, a contradiction.

Henceforth, we need only consider histories involving single objects.

Locality is important because it allows concurrent systems to be designed and constructed in a modular
fashion; linearizable objects can be implemented, verified, and executed independently. A concurrent
system based on a non-local correctness property must either rely on a centralized scheduler for all
objects, or else satisty additional constraints placed on objects to ensure that they follow compatible
scheduling protocols. Locality shouid not be taken for granted; as discussed below, the literature includes
proposals for alitemative correctness properties that are not local.

3.4. Blocking versus Non-Blocking
Linearizability is a non-blocking property:
Theorem 2: Let inv be an invocation of an operation whose sequential specification is total, i.e.,

it has a response defined for every value. If (x inv P) is a pending invocation in a linearizable
history H, then there exists a response (x res P) such that H - {x res P) is linearizable.

Proof: Let S be ény linearization of H. If S includes a response to (x inv P), we are done.
Otherwise, because x is total, there exists a response (x res P) such that
S'aS: - (xinvP)- (xres P)

is legal. S’, however, is a linearization of H - (x res P), and because [x inv/res P] precedes no
other operation, it is also a linearization of H.

This theorem implies that linearizability per se never forces a process with a pending invocation of a total
operation to block. Of course, blocking (or even deadlock) may occur as artifacts of particular
implementations of linearizability, but it is not inherent to the comrectness property itseif. (Techniques for
constructing non-blocking implementations of linearizable objects are discussed elsewhere [8].) This
theorem suggests that linearizability is an appropriate correctness condition for systems where
concurrency and real-time response are important. We shall see that alternative correctness conditions,
such as serializability, do not share this non-blocking property.

-

The non-blocking property does not rule out blocking in situations where it is explicitly intended. For
example, it may be sensible for a process attempting to dequeue from an empty queue to biock, waiting
until another process enqueues an item. Our queue specification captures this intention by making Deq's
specification partial, leaving it undefined for the empty queue. The most natural concurrent interpretation
of a partial sequential specification is simply to wait until the object reaches a state in which the operation
is defined.



3.5. Comparison to Other Correctness Conditions
Lamport's nofion of sequential consistency [11] requires that a history be equivalent to a sequential
history. Sequential consistency is weaker than linearizability, because it does not require the original
history’s precedence ordering < to be preserved. For example, history H, is sequentially consistent, but
not linearizable:

g Enq(x) A (History H,)

qOk() A

q Enq(y) B

qOk() B

qDeq() B

q Ok(y) B _
Sequential consistency is not a local property. Consider the following history Hg, in which processes A
and B operate on queue objects p and q.

p Enq(x) A (History Hy)

p Ok() A

q Enqly) B

qOk() B

q Enq(x) A

q Ok() A

p Enq(y) B

p Ok() B

p Deq() A

p Ok(y) A

qDeq() B
q Ok(x) B.

Itis easily checked that Hg | p and H, | q are sequentially consistent, but Hg itself is not.

Much work on databases and distributed systems uses senalizability (17] as the basic correctness
condition for concurrent computations’. In this model, a transaction is a thread of control that applies a
finite sequence of primitive operations to a set of objects shared with other transactions. A history is
senalizable if it is equivalent to one in which transactions appear to execute sequentially, i.e., without
interleaving. A partial precedence order can be defined on non-overlapping pairs of transactions in the
obvious way. A history is strictly senalizable it the transactions’ order in the sequential history is
compatible with their precedence order. Strict serializability is ensured by some synchronization
mechanisms, such as two-phase locking [1], but not by others, such as muiti-version timestamp schemes
{18], or schemes that provide high levels of availability in the presence of network partitions [7].

To compare serializability and linearizability, we must draw a correspondence between the elements of
the two models. Processes do not correspond to transactions. Processes may appear to be interleaved,
while transactions may not. Moreover, processes may run forever, while transactions must eventually
terminate if they are to accompiish any useful work. Instead, a process corresponds roughly to a
sequence of transactions, and a transaction corresponds to a primitive operation on a single object.
Linearizability can thus be viewed as strict serializability where transactions are restricted to consist of a
single operation applied to a single object. We will see that this single-operation restriction has important
consequences, both formal and practical.

'In practice, serializability is aimost always provided in conjunction with failure atomicity, ensuring that a transaction unabie to
execute to completion will be automatically rolled back. There is no counterpart to failure atomicity for linearizability.
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One important formal difference between linearizability and serializability is that neither serializability nor
strict serializability is a local property. In the history Hg shown above, both Hg | p and Hy | q are strictly
serializable, but Hy is not. (Because A and B overlap at each object, they are unrelated by transaction
precedence in either subhistory.) Moreover, since A and B each dequeue an item enqueued by the other,
Hg is not even serializable. A practical consequence of this observation is that implementors of objects in
serializable systems must rely on giobal conventions to ensure that ail objects’ concurrency control
mechanisms are compatible with one another. For example, one object shouid not use two-phase locking
while another uses multi-version timestamping.

Another important formal difference is that serializability places much more rigorous restrictions on
concurrency. Serializability is inherently a blocking property: under certain circumstances, a transaction
‘may be unable to complete a pending operation without violating serializability, even it the operation is
total. Such a transaction must be rolled back and restarted, implying that additional mechanisms must be
provided for that purpose. For example, consider the following history involving two register objects: x
and y, and two transactions: A and B.

x Read() A - (History Hg)

y Read() B

x Ok(Q) A

y Ok(0) B

x Write(1) B

y Write(1) A
Here, A and B respectively read x and y and then attempt to write new values to y and x. It is easy to see
that it is impossible to compiete both pending invocations without violating serializability. Although
different concurrency control mechanisms wouid resoive this conflict in different ways, such deadlocks are
not an artifact of any particular mechanism; they are inherent to the notion of serializability itseif. By
contrast, we have seen that linearizability is not a blocking property: linearizability never forces processes
executing total operations to wait for one another.

Perhaps the major practical distinction between serializability and linearizability is that the two notions are
appropriate for different problem domains. Serializability is appropriate for applications such as
databases that must preserve complex application-specific invariants spanning muitiple objects. A
property preserved by transactions executing in isolation will be preserved by transactions executing
concumrently. Linearizability, by contrast, is intended for applications such as multiprocessor operating
systems in which concurrency is the primary interest, and the ease of preserving muiti-object invariants is
less important.

3.6. Derived Definitions: Linearized Values and Possibilities _
So far, linearizability is discussed in terms of histories. This historic (!) characterization is useful for
motivating the property, and for demonstrating properties such as locaiity, but it is awkward for
verification. For linearizable histories, however, assertions about interleaved histories can be transformed
into assertions about sets of sequential histories, and thus, sets of values. The transformed assertions
can be stated and proved with the help of familiar axiomatic methods developed for sequential programs.

For a given history H, we call the value of an object at the end of a linearization of H a lineanzed value.
Since a given history may have more than one linearization, an object may have more than one linearized
value at the end of a history. We let Lin(H) denote the set of linearized values of H.
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A linearized value for an object summarizes the set of possible histories that can yield that vaiue. A
possibility for a history H is a triple (v, P, R), where v is a linearized value of H, P is the subset of pending
invocations in H that are not completed to form v, and R is the set of responses appended to H to form v.
We let Poss(H) denote the set of possibilities of a history H. The relationship between the set of
possibilities and set of linearized values for a given history H is the following: for each (v, P, R) e
Poss(H), ve ll.in(H).

Informally, a history’s linearized values represent the object’s possible values from the point of view of an
external observer. Figure 3-1 shows a queue history with its set of linearized values after each event.?

History Linearized values
)

Enq(x) A {0 (<1}

Enq(y) B {0 (x] [yl [xy1, by.x]}

Ok() B {y), [x.yh Iy <1}

Ok() A {[x.yl, by x]}

Deq() C {[x}, Iy} [xy1 ly-x]}

Ok(x) C {ly}

Figure 3-1: Linearized Values

Initially, only the empty queue is associated with the empty history. After the invocation of Enq(x), there
are two linearized values, since the enqueue may or may not have taken effect. After the invocation of
Enq(y), there are five linearized values: either Eng may or may not have occurred, and if both have
occurred, either ordering is possible. After the response to Enq(y), y is known to have been enqueued,
and after the response to Eng(x), both x and y must have been enqueued. although their order remains
ambiguous until x is dequeued. The possibilities, (J, {(Enq(x) A}, &) and ([x], D, {Ok() A}) are in
Poss((Enq(x) A)); two possibilittes (among many others), ([x, yJ, &, {Ok() A, Ok() B}) and
(ly. X, D, {Ok() A, Ok() B)) are in Poss((Enq(x) A) - (Enq(y) B)).

4. Veritying Linearizability
In this section, we motivate and describe our method for verifying implementations of linearizable objects.

4.1. Representation Invariant and Abstraction Function

We begin by reviewing how to verify the correctness of sequential objects [3, 9]. In the sequential
domain, an implementation consists of an abstract type A, the type being implemented, and a
representation (or rep) type R, the type used to implement A. The subset of R values that are /egal
representations is characterized by a predicate called the rep invariant, . R — bool. The meaning of a
legal rep is given by an abstraction function, A: R — A, defined for rep values that satisfy the invariant.

An abstract operation o is implemented by a sequence, p, of rep operations that carries the rep from one
legal value to another, perhaps passing through intermediate values where the abstraction function is
undefined. The rep invariant is thus part of both the pre-condition and post-condition for each operation’s
implementation; it must be satisfied between abstract operations, although it may be temporarily violated
while an operation is in progress. An implementation, p, of an abstract operation, «, is correct if there

2When convenient, we use [| for emp and [x.y] for ins(ins(emp, x).y), etc.
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exists a rep invariant, /, and abstraction function, A, such that whenever p carries one legal rep value r to
another r', a carries the abstract value from A(r) to A(r).

This verification technique must be substantially modified before it can be applied to concurrent objects:
we change both the meaning of the rep invariant and the signature of the abstraction function. To help
motivate these changes and to make our discussion as concrete as possible, consider the following highty
concurrent impiementation of a linearizable FIFO queue. The queue’s representation is a record with two
components: items is an array having a low bound of 1 and a (conceptually) infinite high bound, and back
is the (integer) index of the next unused position in items.

rep = record {back: int, items: array [item]) .
Each element of iterns is initialized to a special nufl value, and back is initialized to 1. Enq and Deq are
implemented as follows: )

Enq = proc (q: queue, x: item)

i: int := INC(q.back) % Allocate a new slot.

STORE (q.items[i], x) % Fill it.
end Eng

Deq = proc (gq: queue) returns (item)
while true do
range: int := READ (q.back)-1
for i: int in 1l..range do
x: item = SWAP (q.items{i}], null)
if x ~= null then return(x) end
end
end
end Deq
An Enq execution occurs in two distinct steps, which may be interleaved with steps of other concurrent
operations: an array slot is reserved by atomically incrementing back, and the new item is stored in
items.® Deq traverses the array in ascending order, starting at index 1. For each element, it atomically
swaps null with the current contents. if the value retumned is not equal to nuil, Deq retums that value,
otherwise it tries the next slot. If the index reaches g.back-1 without encountering a non-nuil element, the
operation is restarted. (Note there is a small chance that a dequeuing process may starve if it Is
continually overtaken by other dequeuing processes.) All atomic steps can be interleaved with steps of
other operations. An interesting aspect of this implementation is that there is no mutual exclusion: no
process is ever forced to wait for another. As an aside, we note that this implementation could be
rendered more efficient by reclaiming slots from which items have been dequeued, reducing both the
overall size of the rep of the queue and the cost of dequeuing an item. Such optimizations, however,
would add nothing to our discussion of verification, so we ignore them in this paper.

The first difficulty arises when trying to define a rep invariant for this implementation. For sequential
objects, the rep invariant must be satisfied at the start and finish of each abstract operation, but it may be
violated temporarily while an operation is in progress. For concument objects, however, it no longer
makes sense to view the object's representation as assuming meaningful values only between abstract
operations. For example, our queue implementation permits operations to be in progress at every instant,
thus the object may never be “between operations.” When implementing a queue operation, one must

3Like the FETCH-AND-ADD operation {10}, INC returns the value of its argument from before the invocation, not the newily
incremented vaiue.
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be prepared to encounter a rep value that reflects the incomplete effects of concurrent operations, a
problem that has no analog in the sequential domain. To assign a meaning to such transient values, the
abstraction function must be defined continually, not just between abstract 'operations. As a
consequence, the rep invariant must be preserved by each rep operation in the sequence implementing
each abstract operation.

Another, more subtie difficuity arises when attempting to define an abstraction function. One natural
approach is the following, proposed by Lamport [12]. A (continually defined) abstraction function A is
chosen so that each abstract operation “takes effect” instantaneously at some step in its execution. In
our queue example, when a process enqueues an item x, exactly one of the operations impiementing the
Eng would carry the rep from rto r, where A(r) = ins(A(r), x). Unfortunately, this technique fails to work
for our queue implementation. To see why, we assume that one can define such a function A, and we
derive a contradiction. Consider the following scenario. Processes A and B invoke concurrent Eng
operations, respectively enqueuing x and y. By incrementing the back counter, A reserves array position
1 and B reserves array position 2. B stores y in the array and retumns. This computation is represented
by the following history, where rep operations are indented and shown in upper-case.
Eng(x) A
Enq(y) B
INC(q.back) A
OK(1) A
INC(q.back) B
OK(2) B
STORE(q.items{2], y) B
OoK()B
Ok() B
Let r be the rep value after this history. Because B's Enq operation has retumned. A(r) must reflect B's
Enq. Because A’s Enq operation is still in progress, A(r) may or may not reflect A’'s Enq, depending on
how A is defined. Thus, since no other operations have occurred, A(r) must be one of [y], [y.x], or [x.y],

where the leftmost item is at the head of the queue.

We now derive a contradiction by showing that each of these values is contradicted by some future
computation. First, assume A(r) is [x,y]. If we now suspend A and allow a third process C to execute a
Deq, C's Deq will retum y, contradicting our assumption.
Deq() C
READ(qg.back) C
OK({2) C
SWAP(qg.items([1},y) C
OK{null) C
SWAP(q.items{2}, y) C
OK{y) C
Ok(y) C
Second, assume A(r) is [y] or [y.x]. Allow A to complete its Enq, leaving a rep value r'. Now x must be in
the queue, since its Enq is complete, and moreover it must follow y in the queue since, by hypothesis, A's
enqueue appears to take effect after B's. It follows that A(r') must be [y,x]. If C then executes a Deq,
however, it will return x, a contradiction.
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STORE(q.items{1], x) A
OK() A
Ok() A
Deq() C
READ(q.back) C
OK(2) C
SWAP(q.items(1], y) C
OK(x) C
Ok(x) C
The problem here is that the linearization order depends on a race condition: A's Enq will appear to occur
before B's f A stores into location 1 before C reads from it, otherwise the order is reversed. Such
non-determinism is perfectly acceptable, however, because all resuiting histories are linearizable. We
circumvent this difficulty by redefining the abstraction function to map a rep value to a set of abstract
values. This set represents the possible set of linearizations permitted by the current vaiue of the rep.
For objects that permit low levels of concurrency, the value of the abstraction function might be a
singleton set.

In conclusion, the rep invariant / must be continually satisfied and the abstraction function continually
defined, not only between abstract operations, but aiso between rep operations implementing abstract
operations. The abstraction function maps each rep value to a non-empty set of abstract values:

A:R—2A
The non-determinism inherent in a concurrent computation thus gives our notions of abstraction function
and rep invariant a ditferent flavor from their sequential counterparts.

4.2. Verification Method

In the next three sections, we define our notion of correctness and present our proof method, give a rep
invariant and abstraction function for our FIFO queue example, and give a set of “generic” axioms that
can be instantiated for any given type in order to carry out formal proofs of correctness.

4.2.1. Correctness and Proof Method

An implementation is a set of histories in which events of two objects, a representation object REP of type
R and an abstract object ABS of type A, are interleaved in a constrained way: for each history H in the
implementation, (1) the subhistories H | REP and H | ABS satisty the usual well-formedness conditions; and
(2) for each process P, each rep operation in H | P lies within an abstract operation. Informally, an
abstract operation is implemented by the sequencs of rep operations that occur within it.

An implementation is correct it for every history H in the impiementation, H | A8s is linearizable.

To show correctness, the verification technique for sequential implementations is generalized as follows.
Assume that the implementation of r is correct, hence H | REP is linearizable for all H in the
implementation. Qur verification technique focuses on showing the following property:

For all rin Lin(H | REP), Kr) holds and A(r) < Lin(H |aBS)

This condition implies that Lin(H | ABS) is non-empty, hence that H | ABS is linearizable. Note that the set
inclusion is necessary in one direction only; there may be linearized abstract values that have no
corresponding representation values. Such a situation arises when the representation “chooses” to
linearize concurrent operations in one of several permissible ways.
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4.2.2. The Queue Example

Returning to our queue example, our verification method is applied as follows. Let H | REP be a compiete

history for a queue representation, REP. If ris a linearized value for H | REP, define items(r) to be the set

of non-null items in the array r.items. Let <, be the partial order such that x <, y if the STORE operation

for x precedes the INC operation for y in H | REP. We can encode the partial order <, as auxiliary data.

Finally, we extend the trait of Figure 2-2 by defining the total order, <q @nd the operator, items, such that:
first(q) <; first(rest(q))

items(emp) = {}
items(ins(q, e)) = {e} U items(q)

The implementation has the following rep invariant:

Kr) = (r.back 2 1)
A (i 2 r.back = r.items(i] = null)
A (lbound(r.items) = 1)

where /bound is the iowest array index, and the following abstraction function:

A(r) = {q | items(r) = items(q) A <, & <q}

In other words, a queue representation value corresponds to the set of queues whose items are the items
in the array, sorted in some order consistent with the precedence order of their Enq operations. Thus, our
implementation allows for an item with a higher index to be removed from the array before an item with a
lower index, but only if the items were enqueued concurrently.

Figure 4-1 shows a sequence of abstract operations of Figure 3-1 along with their implementing sequence
of rep operations. Column two is the set of abstracted linearized rep values. Column three is the set of
linearized abstract values. Our comectness criterion requires showing that each set in column two is a
subset of the corresponding set in column three.

History A(Lin(H | REP)) Lin(H | ABS)

Eng(x) A {0} ' {0. [x}
INC(q.back) A {0 {0 x}}
OK(1) A {0} {0, [}
STORE(q.items(1], x) A {0, [xI} {0 (x])

Enq(y) B {0, [x} {0, [x]. Iyl, [x.y], ly.x]}
INC(q.back) B {0, [x}} (0. [xL. ] [x.yl [y.x]}
OK(2) B {0 [x}} {0 [x} vyl [yl ly.xD}
STORE(q.items(2], y) B {0 [x). byl [x.y]} {0 [x] vl [x.yl [y.x]}
Ok() B {ly}, [x.y]} {0, 1 yl, (x.yl, ly.x]}

Ok() B {Iyl. [x.y}} {Iyl, [x.yl. ly.x]}

OK() A {[x.y]} : {lyl [x.yl, by.x}}

Ok() A {[x.yl} {[x.y]. ly.x}} :

Deq() C {[x.yl} {[x.y), [y x1, [x], [y}
READ(q.back) C {[x.y]} {[x¥1 by.x]. [x], [y]}
OK(2) C {[xy1} {Ix.y), ly.xI, [x], [y]}
SWAP(q.items(1], null) C {[x.yl ly]} {[x.y], ly.x], [x], lyl}
OK(x) C {lyl} {[x.y). ly.x], [x], ly}}

Ok(x) C {tyl} {lyl}

Figure 4-1: A Queue History
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4.2.3. Four Generic Axioms

In order to carry out a formal proof of correctness for our queue example, it heips to appeal to the
following four type-independent axioms. These axioms are used to derive a history's set of possibilities,
and hences its set of linearized values.

Let x be the object whose operations appear in H. The following closure axiom states that if v is in Lin(H)
and (inv A) is a pending invocation in H that is not completed to form v, but couid be completed with a
response (res A) to yield a legal value v’ for x, then v’ is also in Lin(H):

Axiom C;
(v, P, R) € Poss(H) A (inv A) € P A {x = v} invires (x = V')
= (V', P - {inv A}), R U {res A}> € Poss(H)

We write “{x = v} inv/res {x = v’}” to indicate that the condition must be derivable from the sequential
axioms for x. ‘

The following invocation axiom states that any linearization of H is also a linearization of H - (inv A):
Axiom I:
(v, P, R) € Poss(H)
= (v, P U {inv A}, R) € Poss(H - (inv A))
The following response axiom states that any linearization of H in which the pending (inv A) is completed
with (res A) is also a linearization of H - (res A): -

Axiom R:
(v, P, R) € Poss(H) and (res A) € R
= (v, P, R - {res A}) € Poss(H - (res A))

The following initialization axiom states that the possibility for the initial value vo of an object corresponds
to the empty history. o

Axiom S:
{(vg, D, D)} = Poss(A)

For each operation of a typed object, Axioms C, |, R, and S are instantiated to yield type-specific axioms.

For a given history H with m events, we use Poss;(H) to denote the set of possibilities for the ith prefix of
H, for 0 <i < m. A denvation that shows that (v, P, R) Poss,,(H) is a sequence of implications of the
form:

(Vor Por Rg) € Possy(H)
= ..
= (vl, Pj, Ri> € Poss, (H)
=((.P,R)e Poss,, (H).
where v, = v, P = P, R, = R, and each implication is justified by Axiom C, |, or R.

Intuitively, a derivation is like a history. Each implication in a derivation is like a step in a proof, and each
such step is justified by an axiom.

We first show that the axioms C, |, R, and S are sound:

Theorem 3: If there exists a derivation showing that (v, P, R) is a possibility for H, then v is a
linearized value for H.
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Proof: Given a derivation showing that (v, P, R) is a possibility for H, we claim that the order in
which Axiom C is applied induces a valid linearization ordering on H, and hence that v is in
Lin(H).

Let (inv A) be the ith event of H, and let the matching response (res A) be the jth event. Since
the operation inv/res is complete, the derivation must include an application of Axiom C to infer:

(v',,P, R) € Poss,(H) = (v", P —{inv A}, RU {res A}) e Poss, (H).

First, we note that i < k, since the only way to infer anything about Poss,(H) from Poss, ,(H) is to
apply Axiom | as follows:

(u, P’, R") € Poss,,(H) = (u, P’ U {inv A},R) e Poss,(H)
Next, we note that k < j, since the only way to infer anything about Poss](H) from Possj_1(H) is
by applying Axiom R:

(w, P", R e PossH(H) and (res A) e R" = (w, P", R" - {res A}) € Possl(H).
Between these two steps, the only way to remove (inv A) from the set of pending invocations is
by applying Axiom C as shown above. It follows that if one operation precedes another, then
the first operation’s application of Axiom C must precede the second’s, hence the order in which

Axiom C is applied to operations is compatible with the natural precedence order, and thus
induces a linearization order.

We next show that Axioms C, |, R, and S are complete.
Theorem 4: if v e Lin(H), then there exists a derivation that (v, P, R) € Poss(H).

Proof: By induction on the length of H. The base case is immediate, so we assume the resuit
for histories of length n. Let H be a history of length n+1.

fH=H - (res A), then Lin(H) ¢ Lin(H"). From the induction hypothesis, there exists a
derivation that (v, P, R) € Poss(H'), and an application of Axiom R yields a derivation that
(v, P, R—{res A}) € Poss(H).

- Suppose H = H' - (inv A). Let L be a linearization of H that has v as its final value. If (inv A)
does not appear in L, then, from the induction hypothesis, we can derive that (v, P, R)
Poss(H'), and a further application of Axiom | yields that (v, P U {inv A}, R) € Poss(H).
Otherwise, suppose L has k operations, where (inv A) is the ith invocation. Let L' be the prefix
of L that precedes that invocation, and let v’ be the value at the end of L'. Because any
operation linearized after (inv A) in L must have an invocation in H but not a response, L' is a
linearization of H', and, by the induction hypothesis, we can derive that (v', P, R) € Poss(H).
We now apply Axiom | to place (inv A) in P, and then apply Axiom C in sequence to each
invocation in L but not in L', yielding a derivation that (v, P', R") € Poss(H).

5. An Extended Proof of Correctness

5.1. Main Proof

Figure 5-1 shows the Enq and Deq implementation annotated with assertions that are true before and
after each abstract invocation and response and each rep operation. To avoid distraction, we assume
queue values are unique. It is convenient to keep as implicit auxiliary data the partial order, <,, on items
in the array, defined in Section 4.2.2. The set of possibilities, Poss, referred to in the annotations can
also be encoded as auxiliary data in terms of the sets, P (pending invocations) and R (possible
responses), which are components of a possibility.
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{3(q, P. R) € Poss}
Enq = proc (qQ: queue, x: item)
{3(q,P',R)e Poss'.q'=q AP =P U {Eng(x) A} A R’ = R}

{3 (q. P, R) € Poss . (Enq(x) A) € P}
i: int := INC(q.back)
{Poss’' = Poss}

{3 (q. P. R) e Poss . (Eng(x) A) € P}

STORE (q.items(i], =x)

{3(q. P, R) € Poss'. P' = P - {Eng(x) A} A R’ = R U {Ok() A} A
index(q.items’, x) = i A x € max(items(q’)) A q.back < g.back’}

{3 (q, P, R) € Poss . (Ok() A) € R}
end Enq :

{3(q.P' . RYe Poss'.q' =qAP =P AR =R-{Ok() A}}

{3 (q, P, R) € Poss}
Deq = proc (qQ: queue) returns (item)
{3(q,P".R) e Poss’.q'=qAP =PuU{Deq() A} AR =R}

{3 (q, P, R) € Poss . (Deq() A) € P}
while true do
range: int := READ(q.back)-1
{Poss’ = Poss}

for i: int in 1..range do

{3(q, P, R) € Poss. (Deq() A) € P}
xX: item := SWAP (q.items{i], null)
{3(q",P’,R) € Poss'.P" = P - {Deq() A} A R" = R U {Ok(x) A} A
(x = null v x e min(items(q’)))}

if x ~= null then return(x) end
end
and
end

{3 (a, P, R) € Poss . (Ok(x) A) € R}
end Deq

(3(q.P,R)e Poss'.q'=qAP' =P AR =R - {Ok(x) A}}
’ Figure 5-1: Annotated Queue Implementation

If 1 is a set of items partially oi'dered by <, define:
(L<)={q|l=ftems(q)and < g <ql

and
(b <), P.Rl={(q, P, R}| q e (I, <)}

The partially ordered set of queue items, (I, <), captures the nonéquiescent abstract state of the queue,
i.e., the possible values of the queue while there are concurrent Enq and Deq operations or pending
invocations. Notice that we can rewrite the abstraction function as A(r) = (items(r), <,). The set [(l, <), P,
R} identifies each of the possible sets of queue values with a set of pending invocations and a set of
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possible responses, thereby forming a set of (queue) possibilities. The following two lemmas make use of
Lemma 17, proved in the Appendix.

Lemma 5: If x is a maximal element with respect to <, x ¢ |, (Enq(x) A) € P, (Ok() A) € R, and
(), <), P w {Eng(x) A}, R — {Ok(} A}] g Poss, then [(| U {x}, <), P, R] ¢ Poss.

Proof: Pick any g € (, <), and any q' € (I U {x}, <). Since (q, P U {Eng(x) A}, R ~ {Ok() A}) €
Poss, (ins(q,x), P, R) € Poss by Axiom C. Since ins(q,x) is an element of (I U {x}, <), (g, P, R)
€ Poss by Lemma 17, where q' = ins(q,x).

Lemma 6: It (Deq() A) £ P, (Ok(x) A) € R, and [(l, <), P U {Deq() A}, R — {Ok(x) A}] < Poss,
then for all x such that x is a minimal element of |, [(I = {x}, <), P, R] ¢ Poss.

Proof: Pick any q € (l,<) such that first(q) = x, and any q' € (| - (x}, <). Since
(q, P L {Deq() A}, R—{Ok(x) A}) € Poss, (rest(q), P, R) € Poss by Axiom C. Since rest(q) is an
element of (1 - {x}, <), (¢, P,.R) € Poss by Lemma 17, where q' = rest(q).

Lemma 5 will allow us to show that the set of linearized queue vaiues does not change over a STORE
operation and similarly, Lemma 6, for a SWAP operation, by using <, for < and by recalling that for each
(v, P, R) € Poss, v is a linearized value. We use the next two lemmas to satisfy the conditions of the
previous two lemmas.

Lemma 7: Enq enqueues an item x that is maximal with respect to <.

Prootf: Suppose not. Then after the STORE there exists some non-nuil item y such that x <, y.
By definition of <., we have that the STORE for x precedes the INC for y. Thus, index(q.items,
x) < index(q.items, y). Since index(q.items, x) = q.back, then g.back < index(q.items, y). By the
rep invariant, for all i, i 2 q.back, q.items(i] = null so that q.items{index(q.items, y)] = null, i.e.,y =
null, a contradiction.

Lemma 8: Deq removes and returns an item x that is minimal with respect to <,.

Proof: Suppose not. Then there exists non-null y such that y <, x. For x to be retumned from
within the for loop, the SWAP of x must happen before the STORE of y. The STORE of x must
happen before the SWAP of x and the INC of x before the STORE of x, so then the INC of x
must occur before the STORE of y, which implies that x and y are incomparable, a
contradiction.

Here is a proof of correctness.
Theorem 9: The queue implementation is correct.

Proof: Assuming every rep history is linearizable, we need to show that every queue history, H
| q, is linearizable. It sutfices to show that the “subset” property, U, Lin(H | ,)A(r) < Lin(H | q),
remains invariant over abstract invocation and responses and over complete rep operations.
Thus, it can be conjoined to the pre- and post-conditions of Figure 5-1 as justified by the
Owicki-Gries proof method {15]. Axioms | and R give us the result for abstract invocation and
response events. INC and READ leave the abstraction function the same. Thus, we are left
with two cases, STORE and SWAP. By Lemma 7 we know that STORE adds a maximal item
and thus, we can apply Lemma 5 to show that the subset property is preserved. Similarly, by
Lemma 8 we know that SWAP removes a minimal item and thus, we can apply Lemma 6 to
show that the subset property is preserved.

5.2. An Aside: Handling Critical Regions

An implementation without critical regions, such as the previous queue example, can be verified by
defining a rep invariant that is continually satisfied, and an abstraction function that is continually defined.
That is, each step of the sequence of répresentation operations implementing an abstract operation must
preserve the rep invariant, and exactly one such step causes the operation’s effects to become visible to
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other operations.

It an operation creates a temporary inconsistency, perhaps hidden from concurrent operations by some
form of critical region, then it may not be possible to define a meaningful abstraction function directly in
terms of the representation. Such inconsistencies can be eliminated by augmenting the representation
with appropriate auxiliary data.

i

6. Reasoning About Concurrent Objects

We now show how we reason about properties of concumrent objects given just their (sequential)
specifications and the assumption that they are implemented correctly, i.e., that they are linearizable. For
veritying implementations of objects, i.e., program text, it suffices to reason simply in terms of sets of
values, e.g., Lin(H) -for some history H, as we did in the previous section, but as we illustrate below,
sometimes it more convenient to reason in terms of sets of linearizations, i.e., sets of sequential histories.
We use Theorem 3 and type-specific instantiations of Axioms C, |, R, and S to prove properties about
concurrent objects. First, we look at concurrent registers, then concurrent queues.,

6.1. Concurrent Registers
Here are axioms for Read and Write operations for all concurrent register objects, r:

{true}
Read() / Ok(v)
{tetch(r) = fetch(r') = v}

{true}
Write(v) / Ok()
{fetch(r') = v}

where the Larch Shared Language specification for register values is:

RVais: trait

Introduces
new: = R
store: R, V=R
fetch: R —» V
dontcare: — V

constrains R so thatforallrr R, v: V
fetch(new) = dontcare .
fetch(store(r, v)) = v

These sequential axioms can be combined with our linearizability condition to prove assertions about the
interleavings permitted by concurrent registers.

Every value read was written, but not overwritten.

Theorem 10: If the last event of H is the Read response (Ok(v) A), then H includes an earfier
Write invocation (Write(v) B), and if the Write operation is complete, then it precedes no other
complete Write operation.

Proof: If the Read response is the mth event of H, then (v, P, R) € Poss_. In any derivation

showing that H is linearizable, the last application of Axiom C for a Write invocation must have
the form: ‘
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(u, Q, S) € Possy = (v, Q ~ (Write(v) B}, SU {ka() B}) € Poss,

This inference is legal only it B's Write is pending at event k. By Theorem 3, if B's Write is
complete and precedes another complete Write, then the derivation must include a later
application of Axiom C for a Write invocation, contradicting our assumption that B's was the
last.

Register values are persistent in the absence of Write operations.

Theorem 11: An interval in a history is a sequence of contiguous events. If /is an interval that
does not overlap any Write operations, then all Read operations that lie within / return the same
value.

Proof: Pick two Read operations that lie within the interval that retumn distinct values v and v'. If
H is linearizable, there exists a derivation showing that (v, P, R) € Poss {(H) and v, Q, S) e
Poss, (H) where one Read is pending at event j and the other at event k, where | S k. The only

way to deduce that (v, Q, S) € Poss,(H) from (v, P, R) € Poss;(H) is to apply Axiom C to a
pending Write at some intermediate step, which is permissible only it some Write operation
overiaps /.

6.2. Concurrent Queues _

The proofs of the following theorems about concurrent queues use the following fact about queues:
Lemma 12: If Q is a sequential queue history where x is enqueued before y, then x is not
dequeued after y.

Proof: From Axioms E.-D, and F of Figure 2-1.
Theorem 13: If [Eng(x)/Ok() P], [Enq(y)/Ok() Q], [Deq()/Ok(x). R], and [Deq()/Ok(y) S] are

complete operations of H such that x's Enq precedes y's Enq, then y's Deq does not precede
x's Deq. (l.e., either x’s Deq precedes y's, or they are concurrent.)

Proof: Pick a derivation showing H is linearizable. Theorem 3 implies that Axiom C is applied
to all four invocations, since the operations are complete. Moreover, because the enqueue of x
precedes the enqueue of y, the derivation must apply Axiom C to x's Enq first. By Lemma 12,
the derivation must aiso apply Axiom C to x’s Deq before y's Deq, thus y's Deq operation
cannot precede x's Deq.

Gottlieb, Lubachevsky, and Rudolph [2] adopt the property proved in Theorem 13 as the (informal)
correctness property for a linearizable queue implementation. The difficulty of reasoning informally about
concurrent histories is illustrated by observing that Theorem 13 by itself is incomplete as a concurrent
queue specification, since it does not prohibit implementations in which enqueued items spontaneously
disappear from the queue, or new items spontaneously appear. Such behavior is easily ruled out by the
following two theorems:

Items do not spontaneously vanish from the queue.

Theorem 14: If the Enq of x precedes the Enq of y, and if y has been dequeued, then either x
has been dequeued or there is a pending Deq concurrent with the Deq of y.

Proof: Any derivation showing that H is linearizable must use Axiom C to enqueue x before
enqueuing y, hence by Lemma 12 the derivation must apply Axiom C to dequeue x before it
can dequeue y. The Deq invocation that removed x may have returned, or it may be pending.

Items do not spontaneously appear in the queuse.

Theorem 15: If x has been dequeued, then it was enqueued, and the Deq operation does not
precede the Eng.
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Proof: Any derivation showing that (q, P, R) e Possk and x = first(q) must include an earlier
application of Axiom C showing that: :

q.P . R)e Pc>s=sl = (ins(q',x), P - {Enq(x) A}, R’ U {Ok() A}) € Poss'
which is legal only it the invocation has occurred.

7. Final Remarks

7.1. Related Work

Our notion of linearizability generalizes and unifies similar notions found in specific examplies in the
literature. One of the earliest papers to verify a linearizable concurrent object is due to Lamport [12], who
verifies a queue implementation that permits one enqueuing process to execute concurrently with one
dequeuing process. His verification technique is based on a continually-defined abstraction function
(called a state function) that maps the representation onto a single queue value. This abstraction function
defines the instant at which each operation appears to take effect: each primitive step of each operation
either leaves the function’s value unchanged, or it instantaneously causes the operation to take effect. As
noted above, this technique is not powertul enough to verify highly concurrent objects such as the queue
implementation given in Section 4.

Misra [14] has proposed an axiomatic treatment of concurrent hardware registers in which the register's
value is expressed as a function of time. Restricted to registers, our axiomatic treatment is equivaient to
his in the sense that both characterize the full set of linearizable register histories. Theorems 10 and 11
capture two properties of Misra's registers. Misra's explicit use of time in axioms is appropriate for
hardware, where reasoning in terms of the register’'s hypothetical value is useful as a guide to hardware
designers. Our approach, however, is also appropriate for objects implemented in software, as we have
found that reasoning directly in terms of partial orders generalizes more effectively to data types having a
richer set of operations.

7.2. Significance of Linearizability

Without linearizability, the meaning of an operation may depend on how it is interleaved with concurrent
operations. Specilying such behavior would require a more complex specification language, as well as
producing more complex specifications (e.g., Lamport's {12]). Linearizability provides the illusion that
each operation takes effect instantanecusly at some point between its invocation and its response,
implying that the meaning of a concurrent object’'s operations can still be given by pre- and post-
conditions.

The role of linearizability for concurrent objects is analogous to the role of serializability for data base
theory: it facilitates certain kinds of formal (and informal) reasoning by transforming assertions about
complex concurrent behavior into assertions about simpler sequential behavior. Like serializability,
linearizability is a safety property; it states that certain interleavings cannot occur, but makes no
guarantees about what must occur. Other techniques, such as temporal logic {16, 12, 13], must be used
to reason about liveness properties like fairness or priority.

An implementation of a concurrent object need not realize all interleavings permitted by linearizability, but
all interleavings it does realize must be linearizable. The actual set of interleavings permitted by a
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particular implementation may be quite difficuit to specify at the abstract level, being the resuit of
engineering trade-offs at lower levels. As long as the object's client relies only on linearizability to reason
about safety properties, the object’s implementor is free to support any level of concumrency that appears
to be cost-effective.

Linearizability provides benefits for specifying, implementing, and verifying concurrent objects in
muitiprocessor systems. Rather than introducing complex new formalisms to reason directly about
concurrent computations, we feel it is more effective to transform problems in the concurrent domain into
simpler problems in the sequential domain.
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I. Two Lemmas about Concurrent Queues
In our verification of the queue implementation of Section 5 we used the following two lemmas about
queues, which we prove below.

in a derivation, an Eng inference for x is an instantiation of Axiom C of the form:

(q!, Pi' R]) € Poss,

= (ins(ql,x), P- {Enq(x) A}, Rj U {Ok() A}) € Poss,

A Deq inference is defined analogously.

Two inferences commute in a derivation if their order can be reversed without invalidating the derivation.
A derivation showing (q, P, R) € Poss,, is in cananical form if each Enq inference for an item in q occurs
“as late as possible,” i.e., it does not commute with the next inference in the derivation. '
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Lemma 16 implies that if x is in g, the event following the Eng inference for x is either the return event for
x, or the retum event for an item that follows x in g. .
Lemma 16: If § is a canonical derivation showing that (g, P, R) € Poss, and x is an item in q,
then the inference following the Enq interence for x is either the Enq inference for the itam
following x in g, or an application of Axiom R for the matching response to Enq(x).

Proof: We show that x's Enq inference commutes with all other inferences. If the next
inference in & is the Deq inference for an item y, then & cannot be canonical, because:

(q’, Pi' H‘) € Poss,

= (ins(ql.x). P;- {Enq(x) A}, RjU {Ok() A}) € Poss,

= (rest(ins(ql.x)). Pi - {Enq(x) A, Deq() B}, R, U {Ok() A, Ok(y) B}) € Poss,
is equivalent to:

(ay P, Rp € Poss,

= (rest(q)).P; - {Deq() B}, R; U (Ok(y) B}) € Possy

= (ins(rest(qp,x). Pi - {Enq(x) A, Deq() B}, Rl U {Ok() A, Ok(y) B}) € Poss,
Here, we exploit the observation that because x is in g, q must be non-empty, hence
rest(ins(ql.x)) = ins(rest(q,).x).

Similar arguments show that x's Enq inference commutes with all applications of Axiom |, and
with all applications of Axiom R for non-matching response events. Finally, we observe that
any Enq inference for an item in q must follow all Enq inferences for items whose Deq
inferences appear in 5.

Lemma 17 states that we can consider equivalence classes of queues rather than individual queues.

‘Lemma 17: If (g, P, R) € Poss_, and q° is a queue value constructed by rearranging the items
of q in an order consistent with the partial precedence order of their Enqg operations, then
(q*, P, R) € Poss,,.

Proof: We argue inductively that if there exists a canonical n-step derivation that (q P, R) e
Poss,,, there also exists a canonical n-step derivation that (q°, P, R) & Poss,.

Base step: Trivial by Axiom S for a canonical derivation of length 0, where q = emp.

Induction hypothesis: If (g, P, R) € Poss, has a canonical derivation of length less than n,
(q*, P, R) € Poss_, has a canonical derivation of the same length. :

Induction step: Given an n-step canonical derivation § that (g, P, R) € Poss,, we construct an
n-step canonical derivation §° that (q°, P, R) € Poss,,. If the last step of 8 is an application of
Axiom | or R, then q,,_, = g, and we have an n-1 step canonical derivation that (q,, Py, Ry.¢)
€ Poss,,. The induction hypothesis yields an n-1 step canonical derivation that
(@*, P,.q» Ry) € Poss,,_,, and reapplying the last inference yields a derivation that (q°, P, R,)
€ Poss,,.

Otherwise, the last step of § is an Enq or Deq inference, which can be discarded to yieild an n-1
step canonical derivation that (q,,_,, P,.;» R,.,) € Poss,. Suppose the discarded inference is
an Enq inference for x by A. Define q,_,° to be q° with x deleted from the queue. By the
induction hypothesis, there exists an n-1 step canonical derivation 3,,_," that (Qn". Pa.q R..¢?
e Poss,. If x is the last element in q°, then we construct §* using Axiom C to engueue x to
q,,". Otherwise, let y be the item immediately following x in q°, let B be the process that
enqueued y, and let the jth inference of §__,* be the Enq inference for y. By Lemma 16, the
next eventin the history is the return event for some item z that follows x in q°. Since z's Enq
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operation is concurrent with x's Eng operation, (Eng(x) A) € P;*. We construct §° as follows: all
inferences before j are unchanged, and the jth inference of 3° is x's Engq inference:

(q", Pi" H,') € Poss,

= (ins(q".x). P - {Enq(x) A}, R" U {Ok() A}) € Poss,
which is justified because (Eng(x) A) is in Pi'. For j < k < n, the kth inference of 3° is the (k-1)st
inference of §, with ins(q)".x) substituted for q;°, P\’ for P, and Ry’ for R,. To show that 8" is
sound, we must check that each axiom's pre-condition is still satisfied. The resuit is immediate
for applications of Axioms | and R, as well as for Enq inferences, since it is always legal to
append an Enq to a history. For Deq inferences, we observe that every dequeued item was

enqueued before x, hence at each Deq inference, the value at the front of the queue is
unchanged. Finally, 5° is canonical because the Enq inferences for x and y do not commute.

Suppose the discarded inference was a Deq inference, where first(q,, ,) = x. Define q,,,° to be
the queue value such that first(q,, ;) = x and rest(q,,.,") = q°. By the induction hypothesis, there
exists a canonical n-1 step derivation §,,_," that (g,,.,", Pp.;. Ry.,) € Poss,,. Since (Deq() A) e
P, we can use Axiom C to extend § ,° to a canonical derivation 5° such that
(rest(q,,*) P,.q — {Deq() AL, R, W {Ok(x) A}) =(q°, P, R,) € Poss.

s



