CMU-CS-85-146

ADDING TEMPORAL LOGIC TOINA JO

Jeannette M. Wing'
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Mark R, Nixon
~ System Development Corparation
Santa Monica, CA 90406

24 July 1985

Copyright © 1985 Jeannette M. Wing and Mark R. Nixon

This work was partially supported by the System Development Corporation, a Burroughs Company.
Additional support for J.Wing was provided by the National Science Foundation under grant

ECS-8403905.

ADDING TEMPORAL LOGIC TO INA JO

Jeannette M. Wing

Department of Computer Science
Carnegie-Mcllon University
Pittsburgh, PA 15213

Mark R. Nixon

S&stem Development Corporation
Santa Monica, CA 90406

ABSTRACT

Toward the ovcrall goal of putting formal specifications to practical use in
the design of large systems, we cxplore the combination of two specification
methods; using temporal logic to specify concurrency propertics and using an
cxisting specification language, Ina Jo, to specify functional behavior of nondcter-
ministic systems. In this paper, we give both informal and formal descriptions of
both current Ina Jo and Ina Jo enhanced with temporal logic. We include details
of a simple example to demonstrate the use of the proof system and details of an
extended cxample to demonsirate the expressiveness of the enhanced language.
We discuss at length our language design goals, .decisions, and their implications.
The appendices contain complete proofs of derived rules and theorem schemata

for the enhanced formal system.

A July 24, 1985

ADDING TEMPORAL LOGIC TO INA JO

Jeannette M. Wing

Department of Computer Science
Carnegic-Mellon University
Pittsburgh, PA 15213

Mark R. Nixon

System Development Corporation
Santa Monica, CA 90406

1. Introduction

1.1. Motivation and Focus of Paper

Toward achieving the goal of putting formal specifications to practical use in the software
development process. some limitations of formal specifications quickly manifest themselves. ‘One of
these limitations - is the impracticality of formally specifying large software systems; methods,
languages, and tools applicable for specifying small programs do not scalc up for specifying large
sysiems. If onc expects specifications to be used in practice, one would like to be able to demon-
strate that formal specifications can be realistically developed for large systems.

i Once one begins to cxplore the practical use of specification technology for. larger systems,
one finds that stating only the constraints of a system’s functional behavior of a system is usually
insufficient to satisfy the customer. The specification of the behavior of a program, no matter how.
large, must certainly include a description of the program’s effcct on the statc of a computation, i.e.,
the program’s functional behavior. Most of the past specification work has concentrated on describ-
ing only functional behavior, however. Specifying other properties, such as concurrency, reliability,
security, performance, and rcal-time behavior, is in as much of the customer’s intcrest as specifying
functional behavior. The importance of specifying these kinds of propertics may be more prom-
inent in the context of large systems than for small programs--perhaps this is one of the reasons
why some of these properties have so far eluded rigorous methods of specification. '

Combining methods, languages, and modcls of specifications is a reasonable approach toward
handling the problem of specifying many kinds of properties. For example, for concurrency, a
definitional method of specifying concurrent propertics, ¢.g., via temporal logic, should blend in
well with a definitional method of specifying (scquential) functional bchavior, e.g., via algebraic
specifications. In the same spirit, CCS and Meta-1V, the language of the Vienna Definition Mcthod
(VDM) would also be a good blend [Fantechi 84] (also see {Folkjar and Bjorner 80] for combining
CSP and VDM) of operational methods. :

In this paper, we focus on the specification of functional behavior and concurrency properties
of systems. The approach we present is to combine an existing specification language with tem-
poral logic. The language, Ina Jo, * is currently used to specify functional behavior of systems,
typically, sccure operating systems. Because of the underlying model of current Ina Jo, we enhance
Ina Jo with a branching time temporal logic system. The cssence of our approach is to cnrich Ina
Jo’s asscrtion language to gain cxpressibility, and not to change the underlying model of Ina Jo.
Performing this combination should be viewed as more than an exercisc in combining specification
methods and languages; it reveals subtlctics, some of which we will discuss in Section 6, in the

* Ina Jo is a trademark of SDC, a Burroughs Company,
© Copyright 1985 by Jeannctic M. Wing and Mark R. Nixon

-2 -

individual methods as well as in their combination.

Our focus on concurrency is motivated by the surging interest of those in the systems and
softwarc engincering communitics who would like more formal ways than currently available to
state concurrency requirements. With the advent of cheaper hardware, a proliferation of large sys-
tems of mainframes, microcomputers, and personal workstations, and a corresponding proliferation
of support and applications softwarc uscd in such systems, there is a nced for a systematic approach
to specifying, designing, and implementing large, concurrent systems. Whereas there is some agree-.
ment on the formal nature of scquential programs there is much less agrcement on that of con-
current systems. Much of the conflict arises because of different assumptions about the underlying
models, ¢.g, communication through shared resources versus message-passing; different emphases
on certain behavioral properties, ¢.g., synchronous versus asynchronous or livencss versus safety;
and different intended realizations, e.g., tightly-coupled processors versus weakly-linked nodes on a
distributed network. Typically, methods and languages used to define the semantics of concurrent
systems work well under some assumptions and not others. Since there is a general lack of agree-
ment on what an appropriate formal model of a concurrent system is and what its interesting pro-
perties are, there is, not surprising, a lack of agreement as to how one to specify concurrent systems
and their properties. The way we present is mainly to illustrate onc reasonable approach and is not
intended to be necessarily applicable in general. :

1.2. Rclatcd Work

Methods, languages, and tools for formally specifying functional bchavior are too numerous
to list completely. Some of the oncs known to the authors include two well-known methods used
primarily for verifying simple programs: Dijkstra's weakest pre-condition [Dijkstra 76] and Hoare
triples [Hoare 69]; several languages primarily for specifying abstract data types: CLEAR [Burstalt
and Goguen 81], OBJ [Gogucn and Tardo 793, Larch [Guttag and Horning 83], fota [Nakajima and
Yuasa 83}, ACT-ONE (Ehrig and Mahr 85}, Z {Abrial 80}, PLLUSS [Bidoit et al. 84]; and several
tools and languages used primarily for specifving cither or both simple programs and abstract data
types: SRT's Hicrarchical Development Methodology and Special [Robinson 79, Robinson and
Roubine 77]. SDC’s Formal Development Mcthodology (FDM) and Ina Jo [Scheid and Ardcrson
85] AFFIRM [Musscr 80, AFFIRM 81}, Gypsy [Good 84], VDM/VDL [Bjorner and Jones 78,
_ Bjorner and Jones 82). and Asspcgique [Bidoit and Choppy 85]. Since so much work on language
design and tool support has been done in the arca of specifying functional behavior, one contribu- '
tion of this paper is to demonstrate that one can build on what has already been done instead of
starting from scratch. Ina Jo is a reasonable choice from which to start because its intended use is
for specifying large systems, it supports a definitional specification method, and it has software tools
such as syntax proccssors and a thcorem prover {0 support both the method (FDM) and the
language. :

Lcss language design and tool building has been done for concurrency, however. Definitional
methods for specifying and verifying concurrency properties include extensions to Hoare’s
axiomatic method by Owicki and Grics {Owicki and Grics 76a, Owicki and Gries 76b] extensive
work on temporal logic by Manna and Pnueli [Pnueli 79, Manna 81, Manna and Pnuecli 8la,
Manna and Pnucli 81b), Owicki, Lamport [Owicki and Lamport 82, Lamport 80, Lamport 83], and
others [Hailpern 82, Emerson and Halpern 83, Clarke 83], and more rccently Broy’s work on
strcams [Broy 84]. Operational mcthods and languages include Hoarc’s CSP [Hoare 78], Milner’s
CCS [Milner 80), and Ackerman and Dennis’s dataflow work [Ackerman and Dennis 79]. The
foundations of our temporal logic extension to Ina Jo is related most closcly to work of Manna and
Pnueli.

Little work has addresscd the language and model issues of integrating the specification of
many properties of a system, ¢.g., functional behavior and performance. Work done on formaily
specifying one of these properties is typically done at best with the assumption that thc other pro-
pertics are satisfied or at worst in complete disregard of them. A few exceptions include initial
attempts for concurrency [Lamport 33, Good 82, Good, Cohen, and Keeton-Williams 79}, fault-
tolerance [Melliar-Smith and Schwartz 82, Cristian 83], and performance {Durham and Shaw 82].

-3-

Our work shares the intent of these other atiempts at combining spccification techniques.

1.3. Contributions of Paper and Roadmap

The main contribution of our work is the combination of two specification methods: using
temporal logic to specify concurrency propertics and using a non-procedural specification language
to specify a system's functional behavior. Two significant contributions of a formal nature included
in this paper are: (1) the combination of a unified branching tcmporal logic system that includes .
only henceforth, eventually, and next operators with a temporal logic system that includes an until
operator, and (2) a formal definiton of a core of Ina Jo, a specification language that has been in
use since the early 1980's. Finally, another contribution of this paper is a specification of a non-
trivial example, in particular, one chosen to contrast assertions using temporal operators from asser-
tions that use cxplicit time variables.

We present an informal overview of existing and enhanced Ina Jo in Section 2 and their for-
mal foundations in Scction 3. In Section 4 we present a simple example of a specification and its
related proofs in enhanced Ina jo. In Section 5 we present part of a larger example specification,
which is an elaboration of one introduced in Scction 2. In Section 6 we motivate some of our
language design decisions and discuss some of the lessons learncd in performing the combination of
Ina Jo and temporal logic. Finally, in Section 7 we mention some directions for further work.

2. An Informal Overview of Existing and Enhanced Ina Jo

In this scction we give an informal overview of the syntax and scmantics of the Ina Jo
specification language (Section 2.1) and of the temporal logic system (Scction 2.3) that we have
chosen to add to the existing first-order logical system of Ina Jo. We avoid giving an exhaustive
presentation of Ina Jo syntax and semantics, but instead base our presentation on the grammatical
forms affected by the introduction of temporal operators. A more completc, informal description of
the Ina Jo language can be found in the Ina Jo Reference Manual [Scheid and Anderson 85}, Sec-
tion 2.2 contains a simple example specification, which we revisit in Section 5. Henceforth, we use
the terms enhanced Ina Jo to mean Ina Jo enhanced with temporal logic and simply /na Jo t0
mean Ina Jo as it is currently used.

.2.1. An Overview of Ina Jo

Ina Jo is a nonprocedural specification language that is an extension of first-order predicate
calculus. The underlying model of an Ina Jo specification is a nondeterministic state machine.
“Each state is a mapping from a set of typed variables to values. A state transition occurs if there is
_one or more changes tg the values of state variables.

An Ina Jo top-level t specification of a system is a single syntactic unit. Figuré 1 shows a
template of an Ina Jo specification. It can be broken into roughly three parts: a description of the
(global) state, a sct of assertions, and a set of transforms that describe legal state transitions.

—_—
t For those readers famitiar with Ina Jo, we ignore Ina Jo lower-level specifications, and thus, we will not ad-
dress mappings in this paper.

specification <system_name>

type <...>
constant <..>
variable <..>

axiom <..>
define <..20
criterion <...>
constraint <...>
initial <...>

transform <transform_name;>
refeond <.
effect <...>

transform <{transform_name,>
refeond <..>
effect <..>

end <system_name>

Figure 1. Template of an Ina Jo Specification.

The description of the global state is given by defining types, constants, and variables. A type
definition can be either just a name or a name plus a representation of values of that type in terms
of previously-defined types or buiit-in types (in particular, lists and sets). Constants are objects.of a
state whose valucs never change from state to state. Variables arc objects whose values may change
from state to state. Variables may take parameters; those that do are called function variables.

Asscrtions come in a variety of forms in Ina Jo. Each serves a special purposc. Assertions in
axiom state what is true in all models; their validity is independent of any state of any state
machine and of any particular state machine. Asscrtions in define are named and can be used it
subscquent assertions; defines are like syntax macros. Assertions in criterion statec what must hold
in all states of the state machine. Assertions in constraint statc what must hold in any pair of suc-
cessive states in any legal execution scquence of states of the state machine: F inally, assertions in
initial state what must hold in any initial statc of the state machine.

A transform describes a legal state transition for the underlying statc machine. It can have
input parameters, but cannot rcturn arguments. It specifies what the valucs of the state variables
will be after the state transition relative to what their values were before the transition was “fired.”
The body of a transform consists of a pre-condition (refcond) and a post-condition (cffect). 'The
pre-condition statcs what must be true upon firing the transform and the post-condition states what
is guaranteed to be true after the transform has been fired.

The state machine model is nondeterministic because any transform whose refcond is satisfied
at any state may be fired; thus, if the refconds of two or more transforms are satisfied, the effects of
any one of those transforms will hold in the next state. Nondcterminism may also be introduced in
an cffects clause. If its assertion is a disjunction, therc may be more than onc next state that
satisfics it: not all disjuncts would nccessarily Hold in cach of these possible next states.

2.2. A Sample Ina Jo Specification

Figure 2 gives a picture of a simplc a nctwork of uscr hosts where (wo hosts on the nctwork
communicate by scnding messages. As the diagram shows, hosts and the network itsclf are all con-
sidered as processes. Communication between two host processes is through input and output
buffers of messages routed by the nctwork process. Figure 3 contains a specification of this net-
work: it is a much simplified version of Britton’s sccurc communications nctwork specification
[Britton 84]. In the specification, message, hostid, and buffer are type names. Buffers have three
components: contents, of type message, a cender and a receiver, both of type hostid. EMP [Yisa
constant value of type buffer. Net-in and net-out, which both take a hostid parameter, arc of type
puffer. They arc cxamples of function variables. For example, for a hostid h, the buffer value of
net-in(h) may change in a state transition.

The criterion states what is required to be invariant over all states: for all processcs, if a
process’s output buffer is not cmpty, then the receiver of that buffer (intitively, the receiver of the
message in the buffer) is that process. The initial condition of the network states that all input and
output buffers arc initially empty. Ina Jo uses A" (E") for universal (existential) quantification.

The routing-cvent transform takes two parameters both of type hostid. For a routing-cvent to
occur from the process from to the process /o. it must be truc that from's input buffer is not empty
(there is a message in it), the hostid of the receiver process is “to,” the hostid of the sender process
is “from.” and fo’s output buffer is empty (so that a message can be put in it). The cffect of firing
the routing-cvent transform is that the new value of from’s input buffer is empty and the new value
of to's output buffer is the old value of from's input buffer. Intuitively, from's input buffer is emp-
tied and the message that was in from’s input buffer is now in t0's output buffer. The valucs of all
other buffers are unchanged. Ina Jo uscs P => A O B for the if-P-then-A-clse-B construction.

The new-value operator denoted by N™ may appcar only in cffects and constraints clauscs. It
can be applicd to any state variable, including function variables. State variables not prefixed by
N" refer to the values of the variables in the state in which the transform is fired. Notice that the
N opcrator allows us yct another way of introducing nondeterminism: the cffects clause may state
that in the next state the value of a state variable can fall within a range of values. For example,

N"x > x, as opposed to N"x = x + 1, docs not specify a unique value for x-in the next state.

net-out(A)

net-in(A) net-in(B)

net-out(B)

Figure 2. A Picture of a Simple Network.

specification network

type
message, hostid,
buffer = structure of (contents = message,
sender = hostid,
receiver = hostid)
constant
EMPTY: buffer

variable _
net-in(hostid): buffer,
net-out(hostid): buffer

criterion ‘ .
A"p:hostid (net-out(p) ~= EMPTY -> net-out(p).receiver = p)

initial
A"p:hostid (net-in(p) = EMPTY & net-out(p) = EMPTY)

transform routing-cvent (from: hostid, to: hostid)
refcond
net-in(from) ~= EMPTY &
net-in(from).recciver = to &
net-in{from).sender = from &
net-out(to) = EMPTY
cffect
A"h:hostid {
(h = from) => N"nct-in(h) = EMPTY
< N"net-in(h) = net-in(h))
&
A"h:hostid (
(h = to) => N"net-out(h) = net-in(from)
< N'net-out(h) = net-out(h))

end network

Figure 3. An Ina Jo Specification of a Simple Network.

23. A Temporal Logic System for Ina Jo

The kinds of concurrent properties one would like to state for the kinds of systems typically
specified by Ina Jo users are safety, liveness, and precedence properties. Safcty ensures that noth-
ing ever bad happens; liveness ensurcs that something good eventually happens; precedence ensures
that some cvents always happen before others. An example of a safety requirement for an operat-
ing system is that a printer buffer accessed by a number of concurrent processes should be
deadlock-free, i.c., at all times, at least one proccss must be runnable. An cxample of a liveness
requirement for a computer network. system is that no message should be indcfinitely delayed at a’
node before being serviced or forwarded. An example of a precedence requirement for a network
is that a message received must previously have been seat (no spurious messages).

In order to provide as much expressive power as possiblc to state these kinds of propcrties.’

-7-

we use the five temporal operators: henceforth (h™), eventually (v"'), next (n"), until (u"), and
before (b"). However, sincc the underlying statc machine modcl for an Ina Jo specification is non-
deterministic, we want to allow for universal (a) and existential (c) quantification over paths, thus
obtaining a unified branching time temporal logic system for Ina Jo similar to that of Manna and
Pnucli [Manna and Pnucli 79, Ben-Ari, Pnucli, and Manna 83]. Thercfore, we combinc the five
operators with quantification over paths to obtain a total of ten temporal operators. Although we
introduce so many temporal opcrators, we hope to counterbalance number with expressibility (see
Section 6 for further discussion).

Below we give an intitive interpretation of the ten operators, which arc symmetrically
represented by the the type of quantification implied with respect to choice among possible compu-
tation: paths. The sccond symbol denotes the temporal quantification over statcs along a path, with
truth on a path. The intuition driving our cxposition is that of a nondeterministic state machine
thought- of graphically as a forest of finitely-branching trees rooted in the alternative initial states.
A computation path can be thought of as an entirc branch of some such tree from root to leaf. Let
T be a branch (subtree) of a tree, let s be a state in T, and let a and b be simple wffs (containing no
temporal operators) that can hold at some states in the branch. We have:

ah"a holds in s iff a is true at all states of the branch rooted at s
(including s). :

eh"a holds in s iff there cxists a path departing from s such that a is
true in all states on this path. :

av"a holds in s iff every path departing from s has on it some state
satisfying a.

ev'a holds in s iff there exists a path departing from s such that a is
true at some state on this path.

an"a holds in s iff a is true in every immediate successor of s.

en"a holds in s iff a is true in some successor oOf s.

aau"b holds in s iff every path departing from s has on it some state, §',
satisfying b, and a is true at every predecessor state of s’

aeu"b holds in s iff ‘some path departing from s has on it some state, s,
satisfying b, and a is truc at cvery predecessor state of §’.

aab" b holds in s iff for cvery path departing from s; if eventually b holds
in some state, s, then b is false at cvery predeccssor state of § in
which a is true.

acb"b holds it{ s iff there cxists a path dcparting from s such that if even-
tually b holds in some state, §’, then b is false at every predecessor
state of 8’ in which a is true.

The before operators are dérived operators defined in terms of the eventually and until opera-
tors (see Section 3.2.3), so strictly speaking before operators are not mecessary. In our examples,
however, we have found it uscful to include them in the language explicitly so that one class of pre-
cedence properties can be more succinctly stated (e.g., see Section 5.2) than if they were not
included. .

From a methodological vicwpoint, the appearance of temporal logic operators makes scnse in
only some parts of an Ina Jo specification. For cach place where an assertion can appear in a
specification, we check that only appropriatc temporal opcrators, as fisted below, can appear:

-8-

axiom None (ah" is implicit).
define None.

criterion All

constraint an"”, en".

initial All

refcond None.

cffect an”, en".

From the above, we sce that it is in initial and criterion where we statc most of the desired
concurrency requircments of our system. One could view that in present Ina Jo, critcria are impli-
citly prefixed by ah”. Thus, in enhanced Ina Jo, the criterion of Figure 3 would be:

ah” A"p: hostid (net-out(p) ~= EMPTY -> nct-out(p).receiver = p)

3. Formal Foundations

The formal proof system used for Ina Jo is assumed to be standard first-order predicate cal-
culus with cquality with the usual axioms and rules of inference, e.g., substitution for equality,
modus ponens, and generalization. In order to definc the nondeterministic state machines underly-
ing Ina Jo and its relation to Ina Jo's proof system, we need to definc the class of models from
which state machines are constructed, and the notions of truth and validity for thesc models. In
‘what follows, we provide thesc definitions first for Ina Jo, and then make necessary extensions to
the definitions to handle our temporal logic enhanccements.

These enhancements arc bascd largely upon and combine formal techniques due to Ben-Ari,
Kripke, Manna and Pnucli [Ben-Ari and Pnueli 80, Ben-Ar, Pnueli, and Manna 83, Kripke 63,
Manna 81, Manna and Pnueli 81a, Manna and Pnucli 81b]. They represent traditionally well-
founded extensions to the sort of first-order predicate logic underlying Ina Jo.

3.1. Interpretation of Ina Jo Assertions

3.1.1. Syntax

Below is the extended BNF for Ina Jo's assertion language. We use the usual order of bre-
cedence of boolean conncctives and allow for elimination of redundant parentheses.

Assn = ~Assn | Assn BinOp Assn | (Assn) | Assn => Assn <> Assn
- | Quant Binding {, Binding} (Assn) | Term = Term | Term
Term = Var | N"Var | Func_Name(Term {, Term})
| N"Func_Name(Term {, Term})
BinOp = &|qI>1<>
Quant = A"|E" .
Binding = 1d{, Id} : Type

3.1.2. Ina Jo Models, Truth, and Validity

Adapting the methods of Kripke {Kripke 63], we definc an Ina Jo model structure as an
ordered quintuple, <Ini, State, Dom, Trans, EvaD, of:

1. a set, Inil, of alternative initial states;

2. a set of states, State, Init C State;

3. a primitive domain, Dom, of typed values;

4. a finite set, Trans, of binary state transition rclations on State;

5. a scmantic evaluation function, Eval, for the class of Ina Jo assertions (in Assn).

We first present the definitions for an Ina Jo machin, its states, transforms, and computation
paths, all in terms of components of the above structure. We then define the two notions, fruth in

an Ina Jo model and validity.

Let Id be a st of identifiers. A machine, M C ‘Id, is a set of Ina Jo state variables dis-
tinguished by declaration in an Ina Jo specification in variable. A state, s € Siate, of a machine,
M, is a function,

s:M—Val
. where Val, the sct of primitive semantic values, is defined as follows:
Val = DomPem'
Let there be the class of all functions, f, -
(f:Dom'—>Dom) € Val

each mapping i-tuples of Dom into Dom. We consider simple Ina Jo state variables, x, as zero-
placed functions, so that we have for s € Sute, .

s(x) € DomP°™® = Dom®} = Dom

as primitive semantic values. For Ina Jo state variables, £, of finite non-zero degree j, used as func-
tion symbols, we¢ have: :

s(f) € DomPom! = Doni«'l'""/’}

as primiti've semantic values. The type of a function variable, f is the type of the value of the
range of £ '

A binary statc-transition relation, tr € Trans, is such that for every sy, 5; € State, there is at
least one x € M, {v,v'} C Val and <x,v> in 5, such that:

tr(sy5y) iff s = s1[<x,v'>7<x,v))

That is, a state, sy, is obtained from a state, sy, and a state-transition, ir, by. replacing the assign-
ment, <x,v> € s, of some element, v € Val, to some state variable, x € M, with another, <x,v'>.
We define the binary relation, R, of immediate accessibility among states as the union over all the
state transitions so that:

R = {Ks,0>:3tr € Trans, <s,> € tr}

When <s,1> € R we say that ¢ is an immediatc succcssor (descendent) of s. To capture the concept
of non-ending time, we requirc that R be total. Let the relation, R*, of accessibility be the reflexive
transitive closure of R. We say that a computation path is a countable sequence, <s;>, of states of
M such that tr(s; s; +1) for some state transform, tr € Trans C R.

To obtain semantic interpretations for the asscrtions in Assn, we first distinguish the State-
induced assignment function:

-10 -

A: Id X State = Val

given, for all s, s’ € Siate, and x € Id, by the conditions:

A)s = s(x), for x € M.
Ax)s = A®s, forx € (Id-M).

The A-induced valuation function:
V: Tenn X State X State —> Val

is given, for all s, s’ € State, and Ina Jo terms, x, t;, 1<i<n, and f{t....t,), by the recursive cqua-
tions:

V(x)ss = A®)s
V(N"x)s s = AR)s .
V(Rty.ty)) s § = s(fV(t)ss, .. V(t,)ss)

V(IN"flty ...rtn)) s 8’ SOV s s, .., Vt,) s s)
Third, we distinguish the V-induced boolcan-valued assignment function:

Eval: Assn X State - {true, false} C Val

given, for all s € State, by the recursive equations:

Evaf(t) s V(t) s s, for boolean-valued terms t and some s’ such that R(ss’).
Evaltl = 2) s Vit s s’ = V(12) s s, for some s such that R(s,5°).
EvaK~a) s ~Evaka) s

EvalA"x:T (a[x]))) s
" EvaKE"x:T (a[x])) s

N { Eval(afx]) s : v € M (Eval(v) s = Evalv)s) }
\ { Eval(a[x]) s : ®¥v € M (Eval(v) s = Evakv)s)}
Evallal #2a2) s EvaKal) s # EvaKal)s, for # € BinOp
- Evaal=>a2<{>al3) s (EvaKal) s -> EvaKa2) s) & (~Evakal) s -> Eval(a3) s)
where afx] is an arbitrary Ina Jo assertion in Assn with free occurrences of x € (Id - M).
The basic formal semantic notions of zruth and validity for Ina Jo are then defined for Ina Jo
assertions, a € Assn, over Ina Jo model structures, X = </nit, State, Dom, Trans, EvaD, as follows:

Truth

i. a is true at 5; on K iff for some s;., such that if R¥(s;,s;+1), Eval () s;5;+1 = true.
ii. a is true on K iff a is true at some initial state so € Init on K.

Validity)
a is valid iff a is true on every Ina Jo model structure, X, in which case we write |= a,

3.2. Extcnding Ina Jo with Temporal Logic

3.2.1. Bnriching the Ina Jo Vocabulary
We add to the syntax for Assn as follows:

Assn := .| N"Assn| UnOp Assn
UnOp = ah"|eh"]av"[ev"|an" |en"
BinOp = ..|au"|eu"|ab"|eb"

Note that the grammatical role of the ‘N™ operator has been generalized to apply to com-
pound boolcan-valued strings in Assn rather than merely to atomic terms (boolean and other). We
present definitions of the before (ab”, ¢b") opcrators in terms of the eventually and until operators
in Section 3.2.3.

-11-

322. Extending the Eval Function

We extend Eval as follows for non-boolean terms, t, terms tl, 2, and boolcan atoms a, al,
and a2:

Evaka2) s | (Evaal) s & /\ { Fvakal au” a2) s’ : R(s5) })
Evaka2) s | (Evalal) s & \/ { Evalal au” a2) s’ : R(ss) })

The definitions of V, truth on an Ina Jo model structure, and validity remain the same,

EvaKal au” a2) s
EvaKal cu" a2) s

EvakKN"(a)) s =

ifaist then V(N"t) s §', for some s’ such that R(s.s")

ifais(tl=12) then EvalN"t1=N"t2) s

ifaisal then EvaKal) s', for some s’ such that R(s.S)

if a is ~al then Eva~N"al) s .

if ais A"x:T (al) then Eval(A"x:T (N"al)) s

ifais E"x:T (al) then EvaKE"x:T (N"al)) s

ifais #al then Eval(#N"al) s, for # in UnOp

if ais (al # a2) then Eval(N"al # N"a2)s, for # in BinOp

ifais(al =>a2 < al) then EvaN"al => N"a2 <> N"a3) s
EvaKan"(a)) s = N{Evala)s : R(ss)}
Evalen"(a)) s = \ { Evaia) s’ : R(s,5) } '
EvaKah"(a)) s = FEvaKa)s & /\ { EvaKah"(a)) s’ : R(s,s) }
EvaKch"(a)) s = EvaKa)s & \I { Evallch"(a)) 5" : R(sS) }
EvaKav'(a)) s = Evaka)s| I\ { EvaKav"(a)) 8’ : R(s,s) }
EvaKev"(a)) s = EvaKa)s| V2 { Evalev'(a)) s’ : R(s;s) }

3.2.3. Extending Ina Jo’s Deductive Methods

We extend Ina Jo’s basis for first-order predicate logic (EOPL) with the following axiom sche-
mata:

-12 -

N1. |- en"a<-> ~an"~a
N2. |- an"(al -> a2) -> (an"al -> an"a2)
N3.}-an"a-> N"a
N4, |- N"~a <{-> ~N"a
NS. |- N"(a & b) <-> (N"a & N"b)
A1 |- av"a <-> ~c¢h"~a
2. |- ah"(al -> a2) -> (ah"al -> ah"a2)
A3 |- ah"a -> an"a & an"ah"a
'A4 |- ah"(a -> an"a) -> (a -> ah"a)
5.} (al au” a2) <-> (a2 | al & an"(al au" a2))
6. |- (al au” a2) -> av"a2
El. |- ev"a {-> ~ah"~a
E2. |- ah"(al -> a2) -> (eh"al -> eh"a2)
F3 eh"a -> a & en"eh"a

|
|
|-
4. |- ah"a -> ch"a
. |- ah"(a -> cn"a) -> (a -> eh"a)
6. |- (al eu” a2) <-> (a2 | al & en"(al eu" a2))
7. |- (al eu” a2) -> av"a2
a"x:Type (an"a) <-> an"a"x:Type (a)
e"x:Type (an"a) <-> an"¢"x:Type (a)
a"x Type (ah"a) <-> ah"a"x:Type (a)
- a"x:Type (eh"a) <-> ch"a"x:Type (a)

We add the following primitive rules of inference; °

R1: NEC (necessitation)
|-a

I- ahl'a

R2: ENINST (en"-instantiation)
|- en"a
|-N"a->b where b has no terms prefixed by N™.

R3: ANGEN (an"-generalization)
I. N"a

l- an"a

We extend the stock of temporal operators through the following two forms of syntactic elim-
ination:

AB: (aab"b) =df. av"b->(~bau" a)
EB: (aeb"b) =df av'b->{(~becu" a)

-13 -

Appendix 1 contains a list of sixtcen derived rules of inference and sixty-three thcorem sche-
mata that we have found uscful in proving propertics about Ina Jo spccifications, including FDM
correctness theorems. Appendix 1l contains annotated proofs of these rules and theorem schemata,

4. An Example of a Liveness Property in Enhanced Ina Jo

The following specification written in enhanced Ina Jo contains a liveness property expressed
as a criterion with the nondctcrministic eventually operator, ev".

specification LIVE

variable
x . integer;

initial
00 & ah"(an"x = x-1)

criterion
/** if x>0 then eventually x=0 **/
00 > ev'(x=0)

transform decrement ‘
/** x is decremented in every next state **/
cffect

an"x = x-1

In order to demonstrate the use of the cnhanced [na Jo proof system, let us consider the
proofs of two thecorems one might want to show of the above specification. * The two kinds of
theorems together amount to a computational induction principle for a statc machine model of the
specification. The first kind is the initial condition theorem, which states the basis case: that all ini-
tial states satisfy the state-machine invariant. The second kind is a set of transform theorems, which
comprise the inductive steps: that all state transitions preserve the invariant, The initial condition
theorem is of the form: g S

|- ev*"(IC -> CR) -> (IC -> CR)

where IC is the initial condition and CR is the criterion. For each transform in a specification, its
transform thcorem is of the form: .

" FR&E&CR ->en"CR

where R and E are transform’s refcond and cffect, and CR is the criterion. Note that the nondeter-
ministic new-value operator, en”, is used to express the new value of the critcrion.

For the above example, the initial condition theorem would be:
|- ev" (ah"(an"x=x-1) & x>0 -> x>0 > ev"(x=0)))
> (ah"(an"x=x-1) & x>0 -> (x>0 -> ev'(x=0)))

See Appendix I for the rule BIE and theorems T38, T36, T46, and T9, and Appendix II for the
mieanings of the annotations uscd in the steps of the following two proofs.

Proof:

1. | |- en" (ah"(an"x=x-1) & x>0 -> x>0 -> ev'(x=0))) assume

2. ||| ~(ah"(an"x=x-1) & x>0 -> (x>0 -> ev'(x=0))) assume

3. ||| ah"(an"x=x-1) & x>0 2: conj. climination (simp)

—_—_— .
** In fact, versions of these two theorems in {unenhanced) Ina Jo are automatically generated by FDM teols.
The specifier is required to prove them in order 1o show that an Ina Jo specification is “correct.”

[1] ~(>0 -> ev'(x=0))
| 1]- x>0
|- ~ev"(x=0)
H
N
I

- an"ah"(an"x=x-1)
- ~en"~ah"(an"x=x-1)

|

|

|- an"(x>=0)
|- en"(x=0) -> ev"(x=0)
|- ~en"(x=0)

|- an"~(x=0)

|- an"(x>=0 & ~(x=0))
|- an"(x>0)

|- ~en" ~(x>0)

|- en"(x>0 -> ev"(x=0)

I

|- en"ev"(x=0)
[- x=0{ en"ev"(x=0)
|- ev"(x=0)

- en"(~(ah"(an"x=x-1) & x>0) | (x>0 -> ev"(x=0)))
|- en"((~ah"(an"x=x-1) | ~x>0) | (x>0 -> cv"(x=0)))
- en"~ah"@n"x=x-1) | en"(~x>0) | en"(x>0 -> ev"(x=0))

- en"~x>0 | en" (x>0 -> ev"(x=0))

- en"~(x>0) | en"ev"(x=0)

- ah"(an"x=x-1) & x>0 -> (x>0 -> ev"(x=0))

-en” (ah"(an"x=x-1) & x>0 -> (x>0 -> cv"(x=0)))

2> (ah"(an"x=x-1) & x>0 -> (x>0 -> ev"(x=0))))

27. |- ev" (ah"(an"x=x-1) & x>0 > (x>0 -> ev"(x=0)))

> (ah"(an"x=x-1) & x>0 -> (x>0 -> ev"(x=0))))
QED .

2: simp

3: simp

4: simp

1: FOPL

7. FOPL

8,T38: subst <->

3,A3: simp, FOPL
10,N1: FOPL

9,11: disj. syllogism (ds)
5,3: simp, arith

T36

6,14: FOPL

15,N1: DN, subst <->, DNE
13,16,79: FOPL

* 17: arithmetic
18,N1: DNI, subst <->, DNE

12,19: ds

20,T38: FOPL

19,21: ds

22: addition

23,T46: subst <->
2-24: indircct proof
21-25: cond. proof (cp)

26: BIE

The transform theorem associated with the decrement transform is:

|- an"x=x-1 & (x>0 -> ev"(x=0)) -> en"(x>0 -> ev'(x=0))

Proof:

L1

2.11

3.]]- an"x=x-1

4. | |- x>0 -> ev'(x=0)

5. | |- an"(x>0 & ~ev"(x=0))
6. | |- an"(x>0) :
7.1 an"~ev"(x=0)

8.]| ~en"ev'(x=0)
9.]Fx>1

10.] J- ev"(x=0)

11. | |- x=0 | en"cev"(x=0)
12. | |- en"ev"(x=0)

13.]
QED

- an"x=x-1 & (0 > ev"(x=0)) -> en" (x>0 -> ev"(x=0))

- ~(an"x=x-1 & (x>0 -> ev"(x=0)) -> en"(x>0 -> ev"(x=0))) assume
- an"x=x-1 & (X0 -> ev"(x=0)) & ~en"(x>0 -> ev"(x =0)

1: FOPL
2; simp
2: simp
2,N1: simp, FOPL
5,T9: subst £->, simp
5,T9: subst <->, simp
7.N1: FOPL,, subst <{->
-3,6: arith

. 4,9: arith, mp
10, T46: subst <->
9,11: arith, ds
1-12: ¢p

In Appendix ITI we contrast the above initial condition theorem and transform theorem with

those that would be currently associated with a Ina Jo specification.

-15-

5. An Exténded Example

Britton presents a formal specification and part of the verification of a simple secure commun-
ications network [Britton 84). The specification was formally verified using the VERUS verification
system, which supports a language and underlying state machinc model similar to that of Ina Jo.
The two main requircments imposed on the network are security propertics: encryption and author-
ization. Both arc examples of safety propertics, but whereas the proof of encryption is time-
independent, the proof of authorization is not. Thus, although we will present both, we will con-
centrate our discussion on authorization. In Scction 5.1, we give an overview of the cxample and
the statement of the two sccurity requircments; in Section 5.2, we give a sketch of the proof of
authorization along with more details of the specification. We aim to illustrate the usefulness of
enhanced Ina Jo, i.c., having cxplicit temporal opcrators in the assertion language. Thus, we
preserve Britton's breakdown of the problem, borrow from her English descriptions of the system
and its properties, and closcly follow her prescntation.

In contrast to Britton’s specification, we do not use a time variable in assertions or a time
parameter in function variablcs, both of which she uses to specify time-dependent behavior. We
also do not define a NEXT function variable on time, which she uses to define an ordering on time.
Finally, precedence, which is implicit in her assertions, is ‘explicit in ours. For cxample, her use of
past tense in her predicate names and English descriptions suggests an implicit relative time depen-
dency. The use of temporal operators in our asscrtion language allows us to be more precise than
Britton in our translations of informally stated requirements into formally stated ones.

5.1. Specification of a Secure Network

Informally, the system is a network of an arbitrary number of hosts, including a key distribu-
tion center (KDC), an aceess controller (AC), and an unspecified number of USER hosts. AC and
KDC are assumed to run software trustcd to maintain the integrity of the system; the USERs are
not. A crypto device intercepts messages (0 and from each host. A single-key method of encryp-
tion and decryption is assumed. Upon authorization from the AC, the KDC distributes keys to
hosts who request to communicate. Thus, when a USER host wants to communicate with another
USER host, it sends a message to AC requesting the desire to communicate. AC determines
whether the two USERs are authorized to communicate; if so. AC sends a message to KDC to dis-
tribute matched encryption keys to both USERs. When KDC receives such a message from AC,
KDC generatcs a new encryption key and distributes it to the USERs. Only when both USERs
have received the key, will clear text sent from one to the other be received as clear text.

Initially, each host can communicatc with KDC. That is, KDC’s crypto device contains keys
.that match a key in each of the crypto devices of all the other hosts. Communication between AC
and USERs are set up by KDDC upon request from AC. o

The two security requircments of the nctwork are:

Encryption: All data transmitted over the network must be ¢ncrypted.
Authorization: Hosts may cxchange data over the network only if authorized to do so.

Let us specify cach of these requircments in urn. We first extend the picture of the network
of Figure 2 to include crypto devices, which we treat as processcs, to obtain the picture in Figure 4,
Here, the net-in and net-out buffers provide the means for crypto devices to communicate with the
network. In order to statc the encryption requirement, we add to the specification of Figure 3 to
obtain that in Figure 5. Visible changes are shown in italics.

The define in Figure S lets us state the cncryption requircment to be:
ah" A"p:hostid (is-encrypted(net-in(p)) & is-encrypted(net-out(p))).

This is an example of a safety property that must hold in all states in any computation path, which
is explicitly expressed by the ah” prefix. That is, the ah™ opcrator prefixes the assertion that for all
hosts, the contents of input and output buffers between hosts and the network are encrypted.

-16 -

" To specify the authorization requirement, we introduce host-in and host-out buffers similar to
net-in and net-out buffers so that USER hosts and crypto devices~can “communicate™; also, we
treat crypto devices as system processes (IFigure 4). Figure 6 shows the modified specification. The
definition of the host-reccives-message predicate (in define) asserts that for a host p to receive mes-
sage m from host q, the host-in buffer for p must not be empty, the sender associated with the mes-
sage in the host-in buffer must be q. the message must be in clear text, and the contents of the
buffer must be m. The function variable may-communicate is defined for pairs of hostids; the first
and second criteria state that every host may communicate with KDC and that the relation is com-
mutative.

The statement of the authorization requircment is:

ah" A"p.q:hostid (E"m:message (host-reccives-message(p,m,q)) -> may-communicate(p,q))

Like the cncryption requirement, it is a statcment about all states in all computation paths. It says
that for all states, for all pairs of hosts, if there is a message m sent from p 10 q then p and q are

allowed to communicate.

host-out

Figure 4. Secure-Network.

-17 -

specification secure-network

message, hostid, key,
buffer = structure of (contents = message,
sender = hostid,
. recciver = hostid)
constant
EMPTY: buffer, -
KDC, AC: hostid

variable
net-in(hostid): buffer,
net-out(hostid): buffer,
encrypi(key, message): message,
decryp’key, message): message

define .
is-encrypted(b: buffer): boolean = =
b ~= EMPTY = E"k:key (F" m:message(b.contents = encryp(k,m)))

initial -
A"p:hostid (net-in(p) = EMPTY & net-out(p) = EMPTY)

end secure-network

Figure 5. Partial Specification of a Secure Network.

-18 -

specification secure-nctwork

type
message, hostid, key,
buffer = structure of (contents = message,
sender = hostid,
recciver = hostid)
constant
EMPTY: buffer,
KDC, AC: hostid

variable
net-in(hostid): buffer,
net-out(hostid): buffer,
encrypt(key, message): message,
decrypt(kcy, message): message,
host-in(hostid): buffer,
host-out(hostid): buffer,
may-communicate(hostid, hostid): boolean,
clear-text{message): boolean

define _
is-encrypted(b: buffer): boolean = =
b ~= EMPTY = E"k:key (E"m:message(b.contents = encrypi(k,m))),
host-receives-message(p: hastid, m: message, q: hostid): boolean = =
host-in(p) ~= EMPTY &
_ host-in(p).sender = q &
cleartexq(m) &
host-in(p).contents = m

criterion
ah" A" p:hostid (may-communicate(KDC,p) & may-communicate(p,KDC)),
ak" A" p,g:hostid (may-communicate(p,q) -> may-communicate(q,p)), :
ah"’ A" k:key (A" m:message (cleartexd(decrypt(k,m)) ->
E" x:message (m = encrypi(k.x) & cleartexd(x) & decrypi(km) = X))

initial
A"p:hostid (net-in(p) = EMPTY & net-out(p) = EMPTY), -
A"p:hostid (host-in(p) = EMPTY & host-oul(p) = EMPTY),
ah" A"p:hostid (may-communicaie(KDC,p) & may-communicate(p,KDC)),
ak" A" p,q-hostid (may-communicate(p,q) ->.may-communicate(q,p)),
ah" A" k:key (A" m:message (cleartexddecrypk.m)) ->
E” x:message (m = encrypi(k.x) & cleartexi(x) & decryptk.m) = X))

end sccurc-network

Figure 6. Modificd Partial Specification of a Secure Network.

-19 -

5.2. Proof Sketch of the Authorization Requirement

What we mecan by proving the authorization requirement is showing that it can be deduced
given asscrtions about the behavior of the system as detailed in the specification. What -makes
authorization of interest is that although its statement is of the form of a safety property, its proof
involves precedence propertics, typically of the form p ab" q, of the system. Furthermore, we will
rely heavily on the transitivity of precedence in the proof.

Before we can give the proof sketch, we necd to add to. the specification of the network-
example. First, let us definc one more constant and two more state (function) variables:

constant
“NIL: key

variable
distribute-keys(hostid, hostid): message,
key-distribution(hostid, key): message,
keys(hostid,hostid); key

The value of distribute-keys is a type of message sent from AC to KDC to request that the first host
wants to communicate with the second. The value of key-distribution is a type of message used by
the KDC to send a key to a host’s crypto device. The value of keys is the key used by the first host
to encrypt messages scnt to the sccond. Initially, KDC has a different non-nil key for communicat-
ing with cach host, and cvery host has a matching key for communicating with KDC:
initial

A"p:hostid (keys(KDC,p) = ~NIL),

A"p,q:hostid (keys(KDC,p) = keys(KDC,q) > (p = @),

A"p:hostid (keys(KDC,p) = keys(p,KDC))

We add the following three definitions to define:

crypto-decrypts-key: The crypto device for host p receives and successfully decrypts a key-
distribution message from KDC, which gave out key k for communication with host q.

crypto-decrypts-key(p: hostid, q: hostid, k: key): boolean = =
E"m:message
(net-out(p) ~= EMPTY &
net-out(p).sender = KDC &
m = decrypt(keys(p,KDC), net-out(p).contents) &
cleartext(m) &
m = key-distribution(q, k))

host-sends-message: Host q sends a message m to host p.

host-sends-message(q: hostid, m: message, p: hostid): boolean ==
host-out(q) ~= EMPTY &
host-out(g).receiver = p &
host-out(q).contents = m

kdc-sends-key: KDC sends to host p a key-distribution message, giving out key k for communica-
tion with host q.
kdc-sends-key(p: hostid, q: hostid, k: key): boolean = =
host-ou(KDC) ~= EMPTY &
host-ou(KDC).receiver = p &
host-out(KDC).contents = key-distribution(q, k)

We add to criterion the following six critcria, which allow us to prove the authorization
requirement:

-20 -

Matching Keys: If a host receives a cleartext message apparcntly from some other host, then at
some previous time the two hosts had the same non-nil key stored in their crypto devices for com-
munication with cach other.
ah” A"p,q: hostid)
(E"k: key (k ~= NIL & k = keys(p,q) & k = keys(q,p))
ab"
E"m:message (host-receives-message(p,m,q)))

Cryptos Key Decryption: If the crypto device for a host has a non-nil key for communication with a
host other than KDC, then at some previous time the crypto device must have received and suc-
cessfully decrypted a key-distribution message, apparcntly from KDC, which gave it the key for
communication with the other host.

ah" A"p,q:hostid (q = KDC |
(crypto-decrypts-key(p.q,keys(p,q)) ab" keys(p,q@) ~= NIL)

Key Authenticity: 1f ‘the crypto device for a host receives and successfully decrypts a key-
distribution message apparently from KDC, then the message was sent in fact from KDC.
ah" A"p,q:hostid A"k:key :
(kdc-sends-key(p.q.k) ab" crypto-decrypted-key(p,q.k))

KDCS Authorization: 1If KDC sends key-distribution messages to two hosts, giving them the same
key for communication with each other, then KDC must have previously received (in cleartext) a
distribute-keys message from AC to cstablish a communication link between two hosts. :
ah" A"p,q:hostid A"k:key
(E"m:message ((host-receives-message(KDC,m,AC) &
(m = distribute-keys(p,q) | m = distribute-keys(q.p))))
ab"
(kdc-sends-key(p,q,k) & kdc-sends-key(q,p,k)))

Message Authenticity: If a host receives a cleartext message apparently from some other host, then
at some previous time the other host actually sent the message. ‘

ah" A"p,q:hostid A"m:message
(host-sends-message(q,m,p) ab" host-reccives-message(p,m,q))

ACS Authorization: If AC sends out a distribute-kcys message to establish a communication link
between two hosts,_thcn the two hosts are authorized to communicate.

ah" A"p,q:hostid
(E"x:hostid E"m:message
(m = distribute-keys(p.q) & host-sends-message(AC,m,x))
-> may-communicate(p,q))

Finally, to prove the authorization requirement, stated informally,
Autharization.: Hosts may exchange data over the network only if authorized to do so,
or formally,
ah" A"p,q: hostid (E"m:message (host-receives-message(p,m,q)) -> may-communicate(p,q))
we have the following proof sketch:

Proof:

-21-

1L For arbitrary hosts P and Q, assume the hypothesis. That is, P reccives and decrypts a mes-
sage from Q. :
2. From Maiching Keys, it follows that P and Q must have previously had the same non-nil key
in their crypto devices. Call this key K.

3. From Cryptos Key Decryption, we have two symmetric cases:

(@ Either Q is KDC or P’s crypto device received and decrypted K previously sent from
KDC.

(b) As in (a) where P and Q are reversed.

Thus, either P or Q is KDC, or the crypto devices for P and Q reccived and decrypted K for
communicating with each other, where K must have been previously sent by KDC.

4, IfPor Qis KDC, P and Q may communicate (from criteria about may-communicate--see
Figure 6).

5. Assume that the crypto devices for P and Q received and decrypted K, which was scnt by
KDC. From Key Authenticity, KDC must have previously distributed K (a) to P for com-
munication with Q and (b) to Q for communication with P.

6. From KDCS Authorization KDC must have reccived and decrypted a request sent from AC
to set up communication between P and Q.

7. From Message Authenticity AC must have scnt a request to KDC to sct up communication
between P and Q. '

8. The request from AC must have been cither distribute-keys(P,Q) or distribute-keys(Q,P). In
either case, from ACS Authorization it follows that P and Q may communicate.

QED

The justification necded in a formal proof of this property is based on using thcorem T62,
which essentially gives a transitivity relation for the before operators nceded in steps 2-7, and
theorem T63, which allows us to conclude step 8. See Appendix II for details.

6. Discussion of Our Experience in Combining Methods

In this section we discuss our experience in adding temporal logic to Ina Jo. In Section 6.1
we present some of the reasons behind the design decisions made in our combination of temporal
logic with Ina Jo. In Section 6.2 we identify some specific features of Ina Jo that made doing the
combination “casy” or “hard.” We hope the reader can gain an appreciation of the issues faced
when attempting to enhance existing specification languages or to combine different specification
methods. :

6.1. Motivation for Design Decisions and Their Implications

In investigating a solution to the problem of the inability to specify concurrency propertics in
Ina Jo, a number of language design goals were kept in mind. These motivated some of the rea-
sons certain decisions were made. Below we list some of these goals and discuss the implications
they had in our design effort.

1. Retain the scmantics of Ina Jo as much as possible.
2. Retain the spirit of the language and methodology as much as possible.

3. Changes to the language should be application-driven.- That is, the kinds of systems Ina Jo
users specify should guide what kinds of modifications to Ina Jo should bc made.

" The first goal turned out to be easicr to meet than originally expected. In fact, no change to
the nondeterministic state machine model for Ina Jo had to be made. In Scction 6.2.1, we highlight
some of the featurcs of Ina Jo that enabled us to mect this goal.

The second and third goals helped determine which temporal logic system to define: what
operators to introduce, what axioms and rules to incorporate. We chose greater cxpressibility for
the sake of semantic simplicity. Having tcmporal operators allows a specifier to make cxplicit

-22 -

references to time--no time variable with or without an explicit ordering on values of time nceds to
be introduced. Having five different modalities (h", v", n", u”, and b") allows one to more suc-
cinctly state a desired property, e.g., the specifier can state a precedence property dircctly using a
before operator instead of indirectly in terms of nexttime or until. Furthermore, having the univer-
sal (a) and cxistential (c) versions of temporal operators allows onc to be more cxplicit about inten-
tional nondeterminism. However, additional logical axioms and rules arc added to the usual first-
order oncs, and thus the complexity of the proof system increases.

The intended use of certain parts of an Ina Jo specification determined which operators can
appear in those parts. For instance, there is nothing about Ina Jo or temporal logic that would
prevent onc from given a formal meaning to an assertion with temporal opcrators appearing in a
refcond, but from a methodological viewpoint, the appearance of any temporal opcrators in a
refcond would be contrary to its intended use (a refcond asserts something about the current state
in which a transform may possibly be fired and its meaning should not depend on past or future
states). The same arguments holds for.the syntactic restrictions (sce Section 2.3) for the other
clauses in which not all temporal operators are permitted to appear.

Similarly, the intended meaning of certain aspects of the Ina Jo asscrtion language determined
how to define formatly the truth function, Eval for assertions in both Ina Jo and enhanced Ina Jo.
Of particular importance was how to handlc the appcarance of the new-value operator, N". The
Ina Jo reference manual states that N" cannot be factored and is not distributed. Thus, in
N"f(x) = 3., the N"" operator applies to the function variable f, not to its argument x. The user is
required explicitly to prefix with N” not only the function. f, but also every argument whose value
is to be taken in a successor state rather than in the current state. Thus, the A-induced V function
(see Scction 3.1.2) does not distribute N" over the arguments to a term of the form N8ty .eetn)
Further, by our definitions of cn” (and an") in extending Eval (see Section 3.2.2), we have that

en"(N"x = y) “for some next state, the next value of x is y”
means the same as what is expressed in current Ina Jo with,
N'x =y
where N" is read nondcterministically. Here the en” (and without loss of generality, an") serves to
_ existentially (universally) bind all inner terms prefixed by N"; it is not a nested double application,
en"N", of new-value operations. We automatically get the benefit of allowing the user to specify
explicitly the kind of next-state binding (existential or universal) inherited by inner N™-terms occur-
_ring within the scope of en" or an". Notice also that by the condition placed on the second
hypothesis of the en"- instantiation rule, ENINST, we require that b is implied by N"a only when
all occurrences of terms prefixed by N" are either rebound by en" or an” or. clsc eliminated
through derivation. '

Assumptions about the semantics of Ina Jo determined the inclusion (or exclusion) of some of
the axioms in the formal system of temporal logic chosen. The Barcan and conversc axioms (Q1-
Q4) allow, quantifiers and temporal operators to commute, e.g., the universal quantifier A" for
predicates (on variables and values, not paths and states) and the henccforth temporal operator ah”
commute. These axioms are inherited from an assumption about any initial state in an underlying
Ina Jo state machine. They imply that in any initial state of a computation, the size of the universe
of objects is fixed and in subsequent statcs, its size docs not grow (Barcan) or shrink (convcise Bar-
can). Onc might think that this is not an unrcasonable restriction or assumption to place on the
underlying model. However, it would be reasonable to increase the sizc of the state domain, e.g., a
user not logged on in the current state is logged on in the next state (a user who did not exist in the
current state exists in the next state); similarly, to decrease the state domain, c.g., a record existing
in a database in the current state is deleted and no longer exists in the next state. Ina Jo specifiers
introduce boolcan-valued state variables to handle both situations, e.g., logged_in(user): boolean,
which scrve as “existence” predicates on objects in the state. '

‘The cxpected community of users and the applications they specify guided some of the
methodological decisions we made. The kinds of concurrent behavior specifiers might want to

-23-

imposc on operating systems, nctworks, dynamic databascs are more casily stated with a rich set of
temporal operators than with a smaller one. Ina Jo specificrs already have a notion of nondeter-
minism in mind when they write transforms, in particular, assertions in the effect clauses. Support
for a branching time tcmporal logic allows one to state intended or desired nondeterministic
behavior explicitly. : ’

Similarly, since we found that specifiers would like to be able to talk about the past as well as
the future, adding the before operators enables them to do so easily. At first, we considered using
the precedes operator as defined by Manna and Pnueli [Manna and Pnucli 83] (extended for deter-
ministic and nondetcrministic varicties): ‘

AP: (aap"b) =df ~(~aau"b)
EP: (aep"b) =df ~(~aeu"b)

Note the differences in intended meaning among the until, before, and precedes varicties of
operators as we have defined them. The precedes operators do not require that b eventually holds
whereas the until operators do. However, the precedes operators imply that a precedes b only if b
is not already the case in a given state (sce T58 of Appendix I or II). Whereas we wanted the first
property of precedes, we did not want the second. Thus, we defined our precedence operators, ab™
and cb", different from Manna and Pnucli’s so we could more casily express the kinds of properties
that arosc in our examples.

6.2. Lessons Learned Specific to Ina Jo

We cousider both Ina Jo semantics and syntax in assessing the ease of enhancing Ina Jo with
temporal logic. First we_discuss some of the specific features that lent themsclves to a natural
extension based on temporal logic. We then mention some difficulties that arose in the course of
our work. T

6.2.1. Features Faciliting the Combination

Semantics ' -

"The nondeterminism implicit in Ina Jo semantics lends itself readily to an underlying model
of concurrency. For instance, a natural way to implement a system that is intended to satisfy an
Ina Jo specification is in terms of a set of cooperating processes running concurrently. Thus, an Ina
Jo specification can be viewed as a description of a system of concurrent processes.

Furthermore, the state machine model of Ina Jo matches an underlying model of computation
for temporal logic that is based on sequences of states as opposed to sequences of events.
Transforms describe observable state changes; the firing of a transform Tepresents an atomic step in
a computation path. A computation path in a tree, thus, is a sequence of states and not a sequence
of transform firings.

Currently, there is no notion of modularity in Ina Jo. An Ina Jo specification specifies the
global state of a system through the type, constant, and variable declarations. State variables are
accessible to all system processes that might fire any of the transforms. Comununication between
processcs is assumed to be done through these state variables, i.c., shared resources, and not
through message-passing. This shared resource semantics matches well with the semantics of tem-
poral logic, which presumes the existence of shared resources for communication between
processes.

Syntax :
It is important to kecp clear the distinction between specifying desired propertics of a system
and specifying the structure of the system itself (c.g., what processes there should be, how their
communication is synchronized). Since we are interested in specifying propertics of concurrent sys-
tems, and not the concurrent systems themselves, there is no need nor dcsire to add to Ina Jo syn-
tax to define cither what concurrent processes are to cxist or how they arc synchronized. For

-24 -

cxample, we do not nced to add process or cobegin...coend constructs to Ina Jo.

Some clauses and fcaturcs of the assertion language in Ina Jo lend themsclves naturally to
extensions for temporal logic. For example, criteria in (current) Ina Jo arc safety requirements.
Enhancing the assertion language with temporal logic allows onc to state other kinds of rcquire-
ments, e.g., liveness, precedence. Also, no additional syntax is needed to describe the initial state of
any computation. Assertions in initial correspond to exactly the specification of what must hold in
the root (initial state) of any trec of computation modeling an Ina Jo specification. Finally, the
new-value operator (N") in Ina Jo, which is currently used to prefix only state variables, is simply

extended to operate over predicates in general in order to add the nexttime temporal operator to
" Ina Jo. No dramatically new concept nceds to be introduced; Ina Jo specifiers are already familiar
with the N" operator and the concept of nexttime (the next state).

6.2.2. Some Difficulties

The single major obstacle that made doing the combination of Ina Jo and temporal logic hard
is not inhercnt either to Ina Jo or temporal logic. Instcad, it is a *“meta-problem” that unfor-
tunately (and ironically) happens too often in practice: the lack of a written formal definition of Ina
Jo. Many questions arose in the coursc of enhancing Ina Jo with temporal logic. Most of these
questions dealt with the formal meaning of some feature in the language. Many of them were not
answered in the language reference manual to our satisfaction, so we inevitably turncd to the origi-
nal author and onc of the key implementers of Ina Jo, and the FDM tools 1o get a precise answer.
Some cxamples of the issucs we addressed were: whether Barcan and/or converse Barcan axioms
were inconsistent with the underlying logic, whether transforms could take functions (constant or
variable) as parameters, whether transforms can refer to other transforms (in their effects), whether
bound (and implicitly bound) variables in an assertion should be treated as logical variables whose
values remain constant from state to state. As a result, one by-product, but significant contribution,
of this work is a written formal definition of the core part of Ina Jo.

Two features we have completely ignored because their semantics are still not well-
understood arc Ina Jo mappings (c.g., from top-level to second-level specifications), and the Seq
operator. - Depending on their meanings, both of these might affect the level of atomicity of events
underlying the model of computation. What qualifies as atomic events, e.g., state transitions, at any
level of specification has to be addressed since we presume an interleaving semantics of temporal
logic.

Finally, nondcterminism is not completely discussed in the reference manual. We turned to
Ina Jo specifiers to determine whether indeterminacy of values of state variables is regarded as a
different kind of nondcterminism from nondcterminism introduced becausc of more than one
refcond being satisfied or because of a disjunctive effects clause. In fact, their answers persuaded us
that making nondeterminism explicit in the asscrtion language by using some kind of unificd
branching temporal logic would be more heipful than harmful. That is, the semantic compiexity of
the assertion language is worth the expressive power gained.

7. Future Directions

Specific to concurrency and temporal logic, directions to pursue for further work range from
theoretical to practical. One theoretical issuc of current interest is to provide a formal foundation
for the integration of temporal logic with the modularization. This issue ariscs because of the lack
of composability of temporal logic specifications, a problem currently addressed by those doing
work in theoretical aspects of concurrent systems [Barringer, Kuipcr, and Pnueli 84]. Another
theoretical issuc of interest to the verification community is that of defining correctness for imple-
mentations of concurrent systems whose behaviors are specified using temporal logic. Hecre,
verification methodology plays an important role in the approach one takes in dcfining corrcctness
(l.amport 85). Morc practical work that nceds to be done includes building prototype specification
and verification tools that support a temporal logic system; applying spccification languages
enhanced with temporal logic to other kinds of systems, e.g., hardware circuits [Moszkowski 82,
Browne ct al. 84. Bennett 85], and the nontrivial task of educating (or re-cducating) users to

-25-

determine 'if greater expressibility is really worth it.
Dircctions of further work more specific to the application of our approach of combining

specification methods and languages include looking at formal techniques for specifying other pro-
perties such as fault-tolerance, reliability, performance, rcal-time behavior.

Acknowledgments

~ The authors wish to thank System Development Corporation for partial support of this work.:
Additional support for J. Wing was provided by NSF under grant ECS-8403905 administered
through the University of Southern California.

-26 -
References

[Abrial 80] Abrial, J.R., “The Spccification Language Z: Syntax and Semantics,” Programming
Rescarch Group, Oxford University, 1980, '

[Ackerman and Dennis 79] Ackerman, W.B., and J.B. Dennis, “Val--A Value-Oriented Algorithmic
Language: Preliminary Reference Manual,” MIT Laboratory for Computer Sc1cnce TR-218, Cam-
bridge, MA, June 1979.

[AFFIRM 81] “AFFIRM Reference Manual,” Thompson, D.H., and R.W. Erickson, Eds., USC
Information Sciences Institute, 1981.

[Ban‘inéer. Kuiper, and Pnucli 84] Barringer, H., Kuiper, R., and A. Pnueli, “Now You May Com-
posc Temporal Logic Specifications,” ACM Proceedings of the 16th Annual ACM Symposium on
Theory of Computing, ACM SIGACT, Washington, D.C., pp. 51-63, 1984.

[Ben-Ari and Pnucli 80] Ben-Ar, M., and A. Pnucli, “The Logic of Nexttime,” Technical Report
80-13, Tel Aviv University, Tel Aviv, Israel, July 1980.

[Ben-Ari, Pnuecli, and Manna 83] Ben-Ari, M., Pnucli, A., and Z. Manna, “The Temporal Logic of
Branching Time,” Acta Informatica, Vol. 20, 1983, pp. 207-226.

[Benneww 85] Bennett, M., “Verifying Hardware Using Temporal Logic,” Ph.D. dissertation,
University of California at Los Angeles, Los Angeles, CA, in progress, 1985.

[Bidoit et al. 84] Bidoit, M., Biebow, B., Gaudel, M-C,, Gresse, C., and G. Guiho, “Exeception
Handling: Formal Spccification and Systematic Program Construction,” Proc. 7th International
Conference on Sofiware Engineering Orlando, Plonda, 1984, pp. 18-29. :

[Bidoit and Choppy 85] Bidoit, M., and C. Choppy, “ASSPEGIQUE: An Intcgmtcd Environment
for Algebraic Specifications,” Proc. of the International Joint Conference on Theory and Practice of
Software Development, Volume 2: Formal Methods and Sofiware Development, Springer-Verlag
Lecture Notes in Computer Science, No. 186, 1985, Pp. 246-260.

[Bjorner and Jones 78] Bjorner, D., and CB Jones, “The Vienna Development Method: The
Meta-Language,” Lecture Notes in Computer Science 61 Sprmger-Verlag, 1978.

[Bjorner and Joncs 82] Bjorner, D, and C.B. Jones, “Formal Specification and Sofiware Develop-
ment,”. Prentice-Hall, 1982.

[Britton 84] Britton, D., “Formal Verification of a Secure Network with End-to-End Encryption,”
IEEE Proc. on Security and Privacy, 1984, pp. 154-166.

[Browne et al. 84] Browne, M., Clarke, E., Dill, D., and B. Mishra, “Automatic Venﬁcauon of
Séquential Circuits using Temporal Logic,” Dcpartment of Computer Science, Carnegie-Mellon
University, Technical Report 85-100, December 1984.

[Broy 84] Broy, M., “Specification and Top Down Design of Distributed Systems,” Universitat Pas-
sau, MIP - 8401, December 1984.

[Burstall and Goguen 81] Burstall, R.M., and J.A. Gogucn, “An Informal Introduction to
Specifications Using CLEAR,” The Correclness Problem in Computer Science, cds. Boyer and
Moore, Academic Press, 1981.

-27 -

{Clarke, Emerson, and Sistla 83] Clarke, E.M., Emerson, E.A. and A.P. Sistla, “Automatic
Verification of Finite State Concurrent Systems Using Temporal Logic Specifications: A Practical
Approach,” Department of Computer Science, Carnegie-Mcllon University, CMU-CS-83-152, 1983.

[Cristian 83] Cristian, F., “A Rigorous Approach to Fault-Tolerant System Development,” IBM
Research Report RJ 4008 (45056), 1983.

[Dijkstra 76] Dijkstra, E.-W., 4 Discipline of Programming, Prentice-Hall, 1976.

[Durham and Shaw 82] Durham. 1., and M. Shaw, “Specifying Reliability as a Software Attribute,”
Technical Report CS-82-148, Carncgie-Mellon University, December 1982.

[Ehrig and Mahr 85] Ehrig, H., and B. Mahr, Fundamentals of Algebraic Specification I, Springer-
Verlag, 198S. _

[Emerson and Halpern 83] Emerson, E.A., and 1.Y. Halpern, “"Sometimes" and “Not Never”
Revisted: On Branching Versus Linear Time,” Proc. Principles of Programming Languages, Austin,
Texas, 1983, pp. 127-140. :

[Fantechi 84] Fantechi, A., “On Combining Meta-1V and CCS,” draft of notes presented at the
1984 Workshp on Formal Software Development: Combining Specification Mecthods, Nyborg, Den-
mark, May 1984. . '

[Folkjar and Bjorner 80] Folkjar, P., and D. Bjorner, “A Formal Model of a Generalized CSP-like
Language,” Proccedings of IFIP 1980, Tokyo, North-Holland Publishing, pp. 95-99.

{Goguen and Tardo 79] Goguen, J.A,, and J. Tardo, “An Introduction to OBJ: A Language for
Wiiting and Testing Formal Algebraic Program Specifications,” Proceedings of the Conference on
Specifications of Reliable Software. Boston, 1979.

[Good 82], Good, D.I “The Proof of a Distributed System in Gypsy,” Institute for Computing Sci-
ence, University of Texas at Austin TR 30, September 1982.

[Good 84] Good, D.I, “Revised Report on Gypsy 2.1-DRAFT--,” Institute for Compuiihg Sci-
ence, University of Texas, Austin, Texas, July 1984,

[Good, Cohen, and Kceton-Williams 79] Good, D.I, Cohen, R.M,, and J. Keeton-Williams, “Prin-
ciples of Proving Concurrent Programs in Gypsy,” Proceedings of the 6th Symposium of Principles
of Programming Languages, ACM, January.1979.

[Guttag and Homing 83] Guttag, J.V., and J.J. Horning, “An Introduction to the Larch Shared
Language,” Proc. IFIP Congress ‘83, Paris, 1983. ‘

[Hailpern 82] Hailpern, B.T., “Verifying Concurrent Processes Using Temporal Logic,” Lecture
Notes in Computer Science 129, Springer-Verlag, 1982.

[Hoare 69] Hoare, C.A.ﬁ., “An Axiomatic Basis for Computer Programming,” CACM, 12(10),
October 1969, pp. 576-583.

[Hoz{re 78] Hoare, C.A.R., “Communicating Sequcntial Processes,” CACM, 21(8), August 1978, pp.
666-6717.

[Kripke 63] Kripke, S.A. “Scmantical Considerations on Modal Logics,” Acta Philosophica Fennica,
Modal and Many-valued Logics, pp. 83-94, 1963. ,

-28 -

[Lamport ‘80] Lamport, L., “The ‘Hoare Logic’ of Concurrent Programs,” Acta Informatica, 14,
1980, pp. 21-37.

[Lamport 83] Lamport, L., “Specifying Concurrent Program Modules,” TOPLAS, 5(2), April 1983,
pp. 190-222.

{Lamport 85} Lamport, L., “What It Mcans for a Concurrent Program to Satisfy a Specification:
Why No One Has Specified Priority,” Proc. Principles of Programming Languages, New Orleans,
January 1985, pp. 78-83. ‘ _

[Manna 81] Manna, Zohar, “Verification of Sequential Programs: Temporal Axiomatization,”
Department of Computer Science, Stanford University, Technical Report No. STAN-CS-81-877,
September 1981. ‘

[Manna and Pnueli 79} Manna, Z,, and A. Pnueli, “The Modal Logic of Programs,” Automata,
Languages and Programming, Springer-Verlag Lecture Notes in Computer Science 79, pp. 385-409,
1979. : .

[Manna and Pnueli 81a] Manna, Z., and A. Pnueli, “Verification of Concurrent Programs, Part I:
The Temporal Framework,” Dept. of Computer Science, Stanford University, Technical Report
No. STAN-CS-81-836, Junc 1981.

[Manna and Pnucli 81b] Manna, Z., and A. Pnueli, “Verification of Concurrent Programs: Part II:
Temporal Proof Principles,” Department of Computer Science, Stanford University, Technical
Report No. STAN-CS-81-843, September 1981.

[Manna and Pnueli 83] Manna, Z., and A. Pnueli, “Proving Preccdence Properties: The Temporal
Way,” Proceedings on Automata, Languages, and Programming, Lecturc Notes in Computer Sci-
ence 154, Springer-Verlag, 1983, pp. 491-512. '

[Melliar-Smith and Schwartz 82] Melliar-Smith, P.M., and R.L. Schwartz, “Formal Specification
- and Mechanical Verification of SIFT: A Fault-Tolerant Flight Control System,” IEEE Transactions .
on Computers, Vol. 31, no. 7, July 1982, pp. 616-630.

- [Milner 80] Milner, R., “A Calculus of Communicating Systems,” Lecture Notes in Computer Sci-
ence 92, Springer-Verlag, New York, 1980,

[Moszkowski 82] Moszkowski, B., “A Temporal Logic for Multi-Level Rcasoning about
Hardware,” Deparunent of Computer Science, Stanford University, Report No. STAN-CS-82-952,
December 1982. ' :

[Musser 80] Musser, D.R., “Abstract Data Type Specification in the Affirm System,” IEEE Tran-
sactions on Sofiware Engineering, 6(1), January 1980, pp. 24-32.

[Nakajima and Yuasa 83} Nakajima, R. and T. Yuasa, “The IOTA Programming System,” Lecture
Notes in Computer Science, Vol. 160, Springer-Verlag, 1983.

[Owicki and Gries 76a] Owicki, S., and D. Gries, “An Axiomatic Proof Technique For Paralle] Pro-
grams,” Acta Informatica, 6(4), 1976, pp. 319-340.

[Owicki and Gries 76b], Owicki, S., and D. Gries, “Verifying Properties of Parallc] Programs: An
Axiomatic Approach,” CACM, 19(5), May 1976, pp. 279-285.

[Owicki and Lamport 82] Owicki, S., and L. Lamport, “Proving Liveness Properties of Concurrent

-29 -

Programs,” TOPLAS, 43), July 1982, pp. 455-495.

[Pnueli 79] Pnueli, A., “The Temporal Semantics of Concurrent Programs,” Semantics of Con-
current Computation, Lecture Notes in Computer Science 70, Springer-Verlag, 1979, pp. 1-20.

[Robinson 79] Robinson, L., “The HDM Handbook, Volume I: The Foundations of HDM,” SRI
Project 4828, June 1979.

[Robinson and Roubine 77] Robinson, L., and O. Roubine, “SPECIAL: A Specification and Asser-
tion Language,” SRI Technical Report CSL-46, Menlo Park, CA, January 1977.

[Schéid and Anderson 85] Scheid, J., and S. Anderson, “The Ina Jo Specification Language Refer-
ence Manual,” TM-(L)-6021/001/01, System Development Corporation, Santa Monica, March
1985. -

-30 -

Appendix I: List of Axioms, Rules, Theorem Schemata

This appendix contains a list of twenty-two axioms, three primitive rules of inference, sixteen
derived rules, and sixty-three thcorem schemata. Appendix I1 contains the complete proofs with
annotations of the derived rules and theorems.

L1. Axioms.
N1. |- en"a<-> ~an"~a :
N2. |- an"(al -> a2) -> (an"al -)> an"a2)
N3. | an"a-> N"a
N4, |- N"~a<-> ~N"a
NS. |- N"(a & b) <-> (N"a & N"b)
Al. |- av"a <-> ~eh"~a
A2. |- ah"(al -> a2) -> (ah"al -> ah"a2)
A3. |- ah"a -> an"a & an"ah"a
A4. |- ah"(a -> an"a) -> (a -> 4¢h"a)
AS. |- (al au” a2) <-> (a2 | al & an"(al au" a2))
A6. |- (al au" a2) -> av"a2
El. |- ev"a <{-> ~ah"~a .
E2. |- ah"(al -> a2) -> (eh"al -> eh"a2)
E3.|-eh"a -> a & en"ch"a

. |- ah"a -> eh"a
. |- ah™(a -> en"a) -> (a -> eh"a)

- (al eu" a2) <-> (a2 | al & en"(al eu" a2))
- (al eu" a2) -> av"a2 .

QRO

- a"x:Type (an"a) <-> an"a"x:Type (a)
- e"x:Type (an"a) <-> an"e"x:Type (a)
- a"x:Type (ah™a) <-> ah"a"x:Typc (a)
- a"x:Type (¢h"a) <-> ch"a"x:Type (a)

.

RERBR

-31-
1.2. Primitive Rules of Inference

R1: NEC (necessitation)
|- a

l- ah"a

R2: ENINST (en"-instantiation)
|- en"a
. |FN"a->b where b has no terms prefixed by N".

b

R3: ANGEN (an"-generalization)
I- Nl' a

|- an"a

1.3. Derived Rules

DRO: AHIMP
lFa->b

. I_ ‘ah"a .> ah"b
DR1: EHIMP
lFa->b

+ |-eh"a->eh"d

DR2: AVIMP
lFa->b

|- ay"a -> av"b

DR3: EVIMP
lFa->b

ewusssssscsonanen

|- ev'a > ev"b

DR4: ANI
-a

DRS: ANIMP
Fa->b

|- an"a -> an"b

-32-

DR6: ENIMP
lFa->b
|- en"a -> en"d
DR7: ENI
-a

DRS: CIA (computational induction rule)
|-a->an"a

DRY: CIE (computational induction rule)
|-a->en"a

|-a->eh"a

DR10: BIA (backward induction rule)
|-an"a->a

DR11: BJE (backward induction rule)
|-en"a->a

|-ev'a->a

DR12: NPA (next to present mic)
I (an"a <-> an"b) > (@ <> b)
|-a->av'(a& b)
|-b->av"(a & b)

|-a<->b

DR13: NPE (next to present rule)
|- (en"a <-> en"b) -> (a <> b)
|- a->av'(a & b)
|-b->av"(a&b)

lFa<>b

DR14: TSUBST <>
Let ¢’ be the result of replacing an occurrence
of a subformula al in ¢ by a2. Then
|-al <> a2

[Fe<>¢

-33-

DR15: WNPA (weak next-to-present rule)
|- (an"a -> an"b) -> (a > b)
|-a->av"(a & b)
|-b->av'(a & b)

Fa->b

DR16: WNPE (weak next-to-present rule)
|- (en"a -> en"d) -> (a -> b)
fa->av"(@&b)
|-b->av"(a & b)

lFa->b

The backward induction rules, BIA and BIE, may be used in proving specification correctness
theorems in enhanced Ina Jo. The initial condition correctness theorem of the examplc of Section

4, for instance, uses BIE. :

-34 -

L4. Theorem Schemata
Tl: |-ah"a->a
T2 : |-ah"a->av"a
T3 : |- an"(a-> b) -> (en"a -> en"b)
T4 : |- ah"(a-> b) -> (av"a -> av"b)
TS : |-ch"a-> en"a
T6: |-an"a->en"a
T7: |-ah"(a & b)<->(ah"a & ah"b)
T8 : |-eh"(a & b)<-> (eh"a & ch"b)
T9 : |- an"(a & b)<-> (an"a & an"b)
T10: |- en"(a & b) -> (en"a & en"b)

|
I
I
: |- ch"a<-> eh"eh"a
|
I
I
I

: |-an"a & en"b -> en"(a & b)
|

- ah"a & ch"b -> ch"(a & b)
-ah"a<{->a & an"ah"a
-ch"a ¢-> a & en"ch"a

- ah"a ¢~ ah"ah"a

- ch"(a -> an"a) -> (a -> eh"a)

- av"ah"a -> ah"av"a)

- ech"((a | eh"b) & (ch"a | b)) <-> (eh"a | eh"D)
- an"ah"a <-> ah"an"a

: |- en"eh"a -> eh"en"a
: |-a->av"a .

: Fa->ev'a

: | avta <> av'av'a

: |-ev'ad->evev'a

- ah"(a -> b) -> (ev"a -> ev"b)
-av"(a| b)<-> (av"a | av"'b)

-av"(a & b) -> (av"a & av"b)
- &v"(a & b) -> (ev"a & ev'"D)

|

g8

: = ev'(a| b) <> (ev"a | ev'™D)
|

: |- (ah"a | ah"b) -> ah™(a| b)
: |- (ch"a) eh"b) -> ech™(a | b)
v |- (ah"a & ev"b) > ev(a & b)

- (eh"a & av"b) > ev'(a & b)
-an"a-> av'a

|
I
: |-en"a-rev'a
: |- (an"a | an"b) -> an"(a | b)
|
|
|

-en"(a |.b) <-> (en"a | en"b)

+ |- an"(a <-> b) -> (an"a <-> an"b)

- an"(a <-> b) > (en"a <-> en"b)

-35-

T41: |- av"an"a -> an"av"a
T42: |- ev"cn"a <-> en"ev"a
T43: |- av'an"a-> av"a

-
-
T44: |- ev”en"a-> cv™a
|-
B
B
|-

T45: |- av"a<-> (a] an"av"a)
T46: |- ev*a<-> (a | cn"ev'a)
T47: |- (a & av"~a) -> ev"(a & an"~a)
T48: | (a & ev"~a) -> ev"(a & en"~a)

T49: |-a&(~aau"b)>b
|

TSO: |-~b& (@au"b)->a

T51: |-b->{(aau" b)

T52: |- a & an"(a au” b) -> (a au” b)
T53: |- av"(a au” b) <-> (av"a au” av"b)

|-
=.

TS4: |- ev"(a cu” b) <-> (ev"acu” ev"'db)
-
I

T55: |- (aau" b) -> (aeu” b)

Ts6: |- (an"a au”" an"b) -> an"(a au” b)
T57: Fa& ~b->aap"b

T58: |-(aap” b)-> ~b

B
-
-T59: |- (alblc) & (a ap” b) & (b ap" ¢) ->{a ap" ¢)
T60: |-(aap” b)-> (> c)

T61: |-a ->(aab" b)
T62: |- (alblc) & (a ab” b) & (b ab” ¢) -> (a ab" ¢)
T63: |- (a -> d) & (a ab" b) & (b ab" c) -> (¢ > d)

where .
AP: (aap"b) =df. ~(~aau"b)
.EP: (aep"b) =df. ~(~aeu"b)
AB: (aab"b) =df. av"b->(~bau" a)
"EB: (aeb"b) =df av'b->(~beu"a)

We include T57-T60 for the precedes operators to show a contrast between them and the
" before operators.

- 36 -

8. Appendix II: Annotated Proofs

In this section, we give complcte proofs of the dcrivcd theorems and rules of inference
prescnted in the previous appendix. Proofs arc given in a natural deduction style using the follow-

ing notation:

subst <->
TSUBST <->
FOPL
contraposition
mp

ds
add
syll
dni
dne
simp
ip
cp

I1.1 Derived Rules

=df. substitutivity of material cquivalents.

=df. substitutivity of temporal equivalents.

=df, tautology or simple conscquence of first-order predicate logic
=df. from a->b to infer ~b->~a .

=df. modus ponens, from a and a->b to infer b

=df, disjunctive syllogism, from ~a and alb to infer b

=df. addition, from a to infer ajb

=df. hypothetical syllogism, from a->b and b->c to infer a->¢
=df. double-negation introduction .

=df. double-negation elimination -

=df. conjunction elimination

=df, indirect proof

=df. conditional proof

DRO: AHIMP
lFa->b
|- ah"a -> ah"b
Proof:-
1 |l-a->b assume
2. ||-ah"(@->b) 1: NEC
3. ||-ah"a->ah"b 2,A2: mp
QED .
DR1: EHIMP
Fa->b
|- eh"a -> eh™b
Proof: .
1. ||]-a->b assume
2. |}-ah"(a->b) 1: NEC
3. ||-ech"a->eh"b 2,E2: mp
QED
DR2: AVIMP
lFa->b
|- av"a -> av"b
Proof:
L. ||Fa->b assume
2. |F~b->~a 1: contraposition
3. |l ah"~b -> ah"~a 2: AHIMP
4. | |- ~ah"~a -> ~ah"~b 3: contraposition
5. |{-av"a->av"b 4, Al: subst <->

QED

DR3: EVIMP
Fa->b

|- ev"a -> ev"d

Proof:

1L |[|ra->b

|- ~b>~a

.. |{- eh"~b ->eh"~a

. | |- ~eh"~a -> ~eh"~b
. ||-ev'a->ev"

ED

OUI-PDJN)

DR4: ANI
-a

l_ an"a

Proof:

L ||a assume

2. ||-ah"a 1L NEC
3. ||-an"a 2.A3: mp
QED

DRS: ANIMP
lFa->b
|- an"a -> an"b

1

Proof:

-37..

assume

1: contraposition
2: EHIMP

3. contraposition
4,E1: subst <->

L ||la->b assume
2. ||ran"@->b) 1: ANI
3. ||-an"a->an"b 2,N2: mp

QED

DR6: ENIMP
lFa->b

g

Jo Rl ol ol bl o

.- assume

1: contraposition
2: ANIMP

3: contraposition
4,Al: subst <->

DR7: ENI
- a
|- en"a
Proof:
1l ||-a assume
2. | |- ah"a 1: NEC
3. ||-eh"a 2,E4: mp
‘4, ||- eh"a-> en"ch"a -E3: FOPL
S. ||- en"eh”a-> en"a E3: FOPL, ENIMP
6. | |- en"a. 3,4,5: FOPL
QED '
DRS$: CIA (computational induction rule)
|-a->an"a
|- a -> ah"a
Proof:
L. |}-a->an"a assume
2. ||-ah"(a->an"a) 1: NEC
3. |}a->ah"a 2,A4: mp
QED
| DR9: CIE (compu_nitional induction rule)
|-a->¢n"a '
|-a->ch"a
Proof: .
‘1. ||-a->en"a assume
2. ||-ah"(a->en"a) 1:NEC
3. ||Fa->ch"a 2,ES: mp
-QED
| DR10: BIA (backward induction rule)
|-an"a->a
l-ava-> a
Proof:
. |lran"a->a assume

. | |- ~a-> ~an"a 1: contraposition

. |- ~a->en"~a 2,NI: dni, subst <->
. |[F~a->eh"~a 3 CIE

. | |- ~a-> ~av"a 4,Al: dni, subst <->
. ||-av"a->a S: contraposition
ED

[= I Ve S N

o)

-38 -

-39 -

DR11: BIE (backward induction rule)
[-Fen"a->a
|-evia->a
Proof:
1. ||Fen"a->a assume
2. | |- ~a-> ~en"a 1 contraposition
3. ||-~a->an"~a 2,NI: dni, subst <->
4. ||-~a->ah"~a 3 CIA
5. | |- ~a-> ~ev"a 4,El: dni, subst <->
6. ||-ev'a->a 5: contraposition
QED

DR12: NPA (next to present rule)

|- (an"a <-> an"b) -> (a <> b)
|-a->av"(a & b)
|-b->av"(a & b)

Fa<>b

g
Q
by]

W N =

w b

o0 ~J ON

0

g;;r—n—u—-b—-
o

LWN-O

IlFa->av"(@a&b)
|Fo->av'(@@a&b)
||-@]b)->av"(a&b)

|- (a& b)->(a<->b)

| |- av"(a & b) -> av"(a <> b)

| |- (an"a ¢-> an"b) -> (a <-> b)

| |- an™(a <*> b) -> {an"a <-> an"b)
||- an"(a <> b) > (a <> b)

|- av"@<> b) > (@<>b)

|- @@lb)->@<> by
{|-~@|b)|(@a&b|~a& ~b)
|-~a& ~b|(@a&b]| ~a& ~b)
= -a&b|~a&~b

DR13: NPE (next to present rule)
I
|
|

- (en"a <-> en"b) -> (a <> b)
-a->av'(a&b)

Fa<->b

assume
assume - -
1,2: FOPL
FOPL

4; AVIMP
assume

N2: FOPL
6,7: FOPL
3: BIA
3,5,9: FOPL
10: FOPL
11: FOPL
12: FOPL
13: FOPL

Proof is similar to proof of DR12 using T3 in place of N2.

DR14: TSUBST <->

Let ¢’ be the result of replacing an
|- al <-> a2

Fci>¢

occurrence of a subformula al in ¢ by a2. Then

Proof: By induction on the structure of ¢, For each

case: ¢ of the form ~b, we have:

LiFb<H>VY induction hypothesis
2.]|-~b<>~b> FOPL
NN LY KON 2: df.

case: ¢ of the form bl | b2, we have:

Lijbl<>bl induction hypothesis
2. |- b2<> b2 induction hypothesis
3.] |- (b1 | b2) <-> (b1’ | b2') FOPL

4. ||-c<>¢ 3: df.

cases: ¢ of any of the FOPL fom:s' bl & b2, bl -> b2, a"x:Type (b), etc. are similar.

case: ¢ of the form ah"b, we have:

LI|Fb<&>V induction hypothesis
2.||-ah"b<-> ah"b” 1: AHIMP, FOPL, subst <>
Lilec>¢ 2. df.

cases: ¢ of any of the the forms ch"b, av"b, ev"'b, an"b and en"b,
we proceed similarly using EHIMP, AVIMP, EVIMP, ANIMP and ENIMP,

respectively, for AHIMP,

case: ¢ of the form bl au” b2, we have:

bl <> bl’
b2<>b2' -
bl au” b2 <->(b2 | (bl & an"(bl au” b2)))
bl au” b2’ <-> (b2’ | (b1’ & an"(bl’ au" b2’)))
- bl’ aa" b2' <> (b2] (bl & an"(bl’ au” b2")))
- (an"(bl au" b2) <-> an"(b1’ au” b2"))
-> (bl au” b2) <> (b1’ au” b2"))
7.1]- bl au” b2 -> av"b2
8.1]- b2 -> ((bl au" b2) & (b1’ au” b2")
9. | |- av"b2 > av"((bl au" b2) & (b1’ au” b2’))
1
1
1

L1l
2.1
311
4.1\
5.1
611

0. I bl au” b2 -> av"((bl au" b2) & (b1’ au" b2’))
1.} |- b1’ au” b2' -> av"b?’

2| |- av"b2 <-> av"b2’

13] |- b’ au” b2’ -> av"b2

14} |- av"b2 -> av"((bl au" b2) & (b1’ au” b2")

15, |- bl au" b2 -> av"((bl au” b2) & (b1’ au” b2?)
16.] |- (b1 au” b2) <-> (b]l’ au" b2’)

TlFc<>¢ '

induction hypothesis
induction hypothesis
AS

AS

1,2,4: subst <>

3,5: subst <->

A6

3,5: add, mp, subst <>
8: AVIMP

1.9: FOPL

A6

2: AVIMP, FOPL
11,12: subst <->

8: AVIMP

13,14: FOPL
6,10,15: NPA

3. df.

case: ¢ of the form bl cu” b2 is similar, using E6 for AS, E7 for A6, and NPE for NPA.

These are all the cases of ¢’.
QED

-4]-

|- (an"a -> an"b) -> (a -> b)
|- a-> av"(a & b)
Fb->av"(a& b)

| DR1S: WNPA (weak next-to-preseént rule)

Fa->b
Proof:
L |Fa>av"(a&b) assume
2 |Fb->av"(a&b) assume
3. |}(@]b)->av"(a & b) 1,2: FOPL
4, |[F@&b)->(@->b) FOPL
5. | }-av'(a & b) -> av"(a -> b) 4: AVIMP
6. | |- (an"a-> an"b) -> (a -> b) assume
7. ||- an"(a > b) -> (an"a -> an"b) N2
8 ||-an"(@a->b)->(@->b) 6,7: FOPL
9. |[Fav"@->b)->{(a->b) 8: BIA
10.]}Fa]b)->@->b) 3,5,9: FOPL
11 || ~@|b) | (~a| b) 10: FOPL
12.|]F~a& ~b| ~a|b 11: FOPL
13.| |- ~a|b 12: FOPL
14.]Fa->b 13: FOPL
QED

|- (en"a > en"b) -> (2 -> b)
|-a->av(a&b)
|- b -> av"'(a & b)

lFa->b

DR16: WNPE (weak next-to-present rule)

_ Proof is sinlilar to proof of DR15 using T3 in place of N2.

1.2, Theorem Schemata
1Tl |-ah"a->al|

Proof:

1. ||]-ah"a->ch"a E4

2. ||-ch"a->a E3

3. ||ah"a->a 1,2: FOPL
QED

T2: |-ah"a->av"a

Proof:
1. ||-ah"a->a Tl
2. ||-eh"~a-> ~a E3
3. |Fah"a&ch"~a->a& ~a 1,2: FOPL
| |- ah"a -> ~eh"~a 3. FOPL
| |- ah"a -> av"a 4 A1: FOPL, subst <->

-42 -

T3: |- an"(a-> b) -> (en"a -> en"b)

Proof: ‘
L |F@>b)>(~b-> ~a) FOPL.: contraposition
2. | |- an"(a -> b) -> an"(~b -> ~a) A3N2: FOPL

3. | |- an"(a -> b) -> (an"~b -> an"~a) 2,N2: FOPL
4. | |- an"(a -> b) -> (~an"~a -> ~an"~b) 3: FOPL

5. | |- an"(a -> b) -> (en"a -> en"b) 4N1: subst <->
QED :

T4: _ |- ah"(a -> b) -> (av"a -> av"b)

Proof: . .
1. | |- ah"((a -> b) -> (~b -> ~a)) FOPL: NEC
2. | |- ah"(a -> b) -> ah"(~b -> ~a) 1,A2: mp
3. | |- ah"(~b -> ~a) -> (eh"~b -> ch"~a) E2
4. | |- (eh"~b -> eh"~a) -> (~eh"~a -> ~eh"~b) 4: contraposition, E2
S. | |- ah"(@@-> b) -> (~ch"~a -> ~eh"~b) 2,34: FOPL
6. | |- ah"(a -> b) -> (av"a -> av"b) . 5,Al: subst <->
QED
T5: |-eh"a->en"a
Proof: .
1. ||-eh"a->a ‘E3: simp

1. | |- eh"a-> en"ch"a E3: simp

2. ||-en"ch"a->en"a 1: ENIMP
4. | |- ch"a->en"a 3,E3: FOPL
QED :

T6: |-an"a->en"a

Proof:

1 ||-en"(~a]a) FOPL, ENI

2. ||-en"~a|en"a 1,1T38: subst <->

3. | |- ~en"~a ->-en"a 2: FOPL, subst <->

4, ||-an"a->en"a 3,N1: dni, subst <->, dne
QED . .

T7: .| ah"(a & b) <-> (ah"a & ah"b)

Proof: :

1 ||-(a&b)->a : FOPL

2. | |- ah"(a & b) -> ah"a 1: AHIMP
. ||-(a&b)->b FOPL

4, | |- ah"(a & b) -> ah™d 3: ARIMP
5. ||-ah"(a& b) -> (ah"a & ah"b) 2,4: FOPL
6. [Fa>(b->@&hb)) FOPL

7. | |- ah"a > ah"(b -> (a & b)) 6: AHIMP
8. |lFah"db> (@ & b)) -> (ah"b > ah"(a & b)) A2

9. | |- ah"a-> (ah"b > ah"(a & b) 7.8: FOPL
10. | |- (ah"a & ah"b) -> ah"(a & b) 9: FOPL
11. | J ah"(a & b) <> (ah"a & ah"b) 5,10: FOPL

ED

Q

-43 -

T8: |- eh"(a & b) <-> (ch"a & ch"b)
Proof is similar to proof of T7 using E2 in place of A2, and EHIMP in place of AHIMP.

T9: |-an"(a&b)<>(an"a & an"b)
Proof is similar to proof of T7 using N2 in place of A2.

T10: |- en"(a & b) -> (en"a & en"b)
" Proof is similar to proof of T7 lines 1-5, using ENIMP in place of AHIMP.

T1l: |- an"a & en"b -> en"(a & b)

Proof:
Fa->(b->(@&b)

1] FOPL

2. |lan"a->an"(b> (@& b)) 1: ANIMP
3. ||-an"a->(en"b->en"(a & b)) 2,T3: FOPL
4. ||-an"a&en"d >en"@a & b) 3: FOPL

QED

T12; |-ah"a & ch"b-> eh"@ & b) .
Proof is similar to proof of T11, using AHIMP and E2 in place of ANIMP and T3.

T13: |- ah"a<-> a & an"ah"a

T1S: |- ah"a <-> ah"ah"a

Proof:
1. ||- ah"a -> an"ah"a A3: FOPL
2. || ah"(ah"a -> an"ah"a) 1: NEC

Proof: .)

1. |}- ah"a-> a & an"ah"a A3,T1: simp, FOPL
2. ||- an"ah"a -> an"(a & an"ah"a) 1: ANIMP

3. ||Fa&an"ah"a->an"(@a & an"ah"a) 2: FOPL

4, ||-a & an"ah"a-> ah™(a & an"ah"a) 3:CIA

S. || ah"(a & an"ah"a) -> ah"a T7: simp
6. ||-a&an"ah"a->ah"a 4,5: FOPL

7. ||- ah"a<-> a & an"ah"a 1,6: FOPL

QED

T14: |-eh"a<-> a & en"ch"a

Proof:

1. | |- ch"a-> a & ch”eh"a E3

2. | |- en"eh”a -> en"(a & € "eh"a) 1: ENIMP

3. |{-a&en"eh"a->en"(a & cn"¢h"a) 2: FOPL

4. || ah"(a & en"eh"a > en"(a & en"eh"a)) 3: NEC

5. ||Fa&en"eh"a->eh"(@ & en"eh"a) 4,E5: FOPL

6. ||-a&en"ch"a ->¢eh'a 5,T8: simp, FOPL
7. ||- eh"a<-> a & en"eh"a 1,6: FOPL
QED

3. | | ah"a > ah"ah"a 2,A4: mp
4. || ah"ah"a-> eh"ah"a F4

5. | | ch"ah"a -> ah"a E3: FOPL |
6. | |- ah"ah"a -> ah™a 45: FOPL
7. | | ah"a <-> ah"ah"a 3,6: FOPL
QED

T16: |- ch"a <-> ch"eh"a

Proof:

1. ||-eh"a-> en"eh"a E3: FOPL
2. | |- ah"(ch"a -> en"ch"a) 1: NEC
3. | |- eh"a-> eh"eh"a 2,ES: mp
4. ||- eh”ch"a -> eh™a E3: FOPL
S. | |- eh"a<-> eh"eh"a 3,4: FOPL
QED

T17: |- eh"(a -> an"a) -> (a -> ch"a)

Proof:

1. | |- ch”(a-> an"a) -> (a -> an"a) & en"ch"(a -> an"a) E3

2. | |- a & eh"(a-> an"a) -> an"a & cn"ch"(a -> an"a) 1: FOPL, simp
3. |]-a&ch"(a-> an"a) -> en"(a & eh"(a -> an"a)) 2,T11: FOPL .
4, | |- a & eh"(a-> an"a) -> eh"(a & eh"(a -> an"a)) 3,ES: NEC, mp
5. | I-a&eh"(a-> an"a) -> ch"a 4,18: FOPL

6. | |- eh"(a-> an"a) -> (a -> eh"a) 5: FOPL

QED

T18: |- av"ah"a -> ah"av"a

Proof: ‘

- 1. || ah"ah"a -> av"ah"a T2
2. | |- ah"a-> av"ah"a 1,T15: subst <->
3. |- an"ah"a -> an"av"ah"a 2: ANIMP

-4, |{- ah"a -> an"av"ah"a 3,A3: FOPL

5. | |- ~eh"~~ev"~a T14,N1: FOPL

<> (~ev"~a | an"~eh"~~ev"~a)

6. | |- av"ah"a -> (ah"a | an"av"ah"a) 5: FOPL

7. 1| av"ah"a -> an"av"ah"a 6,4: FOPL

8. |} av"ah"a -> ah"av"ah"a 7,A4: NEC, mp

9. |fFah"a->a ' Tl

10. | |- ah"av"ah"a -> ah"av"a 9: AVIMP, AHIMP
11. | |- av"ah"a -> ah"av"a 8,10: syll

QED

T19: |- ch"((a| eh™b) & (ch"a | b)) <-> (ch"a | ch"b)

Proof:
1. | |- eh"((ch"alb) & {alch"b)) & ~eh"a & ~eh"b E3: FOPL
-> (aJch"b) & (eh"alb) & ~ch"a & ~ch"b
2. |- eh"((eh"a)b) & (ajch"b)) & ~eh"a & ~ch"b->a & b 1: FOPL
3. |4- ch"({ch"a]b) & (ajch"b)) & ~ch"a & ~ch"b 2,T14: subst <->, FOPL

->a&b&(~a] ~cn"ch"a) & (~b | ~en"ch"b)
| |- eh"{{ch"ajb) & (ajch"b)) & ~eh"a & ~ch"b 3: FOPL

b

- 45 -

-> ~en"ch"a & ~en"ch"b

5. | | ch"((eh"alb) & (alch"b)) & ~ch"a & ~eh"b 4,E3: FOPL
-> en"ch"((eh"ajb) & (aleh"b)) & ~en"ch"a & ~en"eh™b .

6. | |- ch"((ch"alb) & (ajch"b)) & ~ch"a & ~eh"b 5, T11,N1,T9: subst <->
-> en"(eh"((ch"a|b) & (aleh"b)) & ~ch"a & ~eh"b)

7. | |- ch"((eh"alb) & (ajch"b)) & ~ch"a & ~eh"b 6: CIE
-> ch"(eh"((ch"ajb) & (alch"b)) & ~eh"a & ~eh"b)

8. | |- ch"((eh"alb) & (ajch"b)) & ~eh"a & ~eh"b 7,E3: FOPL
-> ch"((ch"a|b) & (ajch"b) & ~ch"a & ~eh"b) :

9. | |- eh"((ch"alb) & (alch"b)) & ~eh"a & ~eh"b 8,E3: FOPL

. >eh"(b & a) ‘

10. | }- eh"((ch"ajb) & (alch™b)) & ~eh"a & ~eh"b 9,T8: FOPL
-> eh"a & eh"b

11. | |- ch"((eh"alb) & (ajech™b)) & ~ech"a 10: FOPL
-> (~eh"b -> ¢h"a & eh"b)

12. | | eh"((ch"ajb) & (aleh"b)) & ~eh"a 11: FOPL
-> (ch"b | eh"a & eh™) -

13.] |- eh"{(ch"a|b) & (alch"b)) & ~ch™a -> eh"b 12: FOPL

14. | |- eh"((eh"ab) & (aleh"b)) -> (~eh"a > eh"b) 13: FOPL

15. | |- ch™((eh”ab) & (alch"b)) -> (ch"a | eh™b) 14: FOPL

16. | |- ch"a->ch™a|b FOPL

17.| |- ch"a -> a| eh"b “E3: simp, add

18. |- ch"a -> (ci"a | b) & (a | eh"b)

19. | |- ch"eh"a -> eh"((ch"a | b) & (a | eh™D))

20. | |- ch"a -> eh"((ch"a | b) & (a | ¢h"b))

21. | |- eh"b -> eh"({ch"a | b) & (a | eh"b))

22. | |- (eh"a | ch"b) -> ch"{{eh"a | b) & (a | eh"b))

16,17: FOPL

18: EHIMP

19,T16: subst <->
16-20: symmetry for b’
20,21: FOPL

13. | |- ah"an"a -> an"ah"a
14. | |- an"ah"a <-> ah"an"a
QED

T21: |- en"eh”a -> ch”en"a

© 23.1 | eh"((ech"a | b) & (a | ch"b)) <-> (ch"a | ¢h"b) 15,22: FOPL
QED :
T20: |- an"ah"a <-> ah"an"a
Proof:
1. | |- ah"ah"a -> ah"an"a A3: FOPL, AHIMP
2. | |- ah"a -> ah"an"a ' 1,T15: subst <->
3. | |- an"ah"a ->-an"ah"an"a 2: ANIMP
4. | |- an"ah"a -> an"a T1: ANIMP
5. || an"ah"a -> an"a & an"ah"an"a = 3,4: FOPL
6. | |- an"ah"a -> ah"an"a 5,T13: subst <->
7. | |-.ah"an"a -> an"a & an"ah"an"a T13
8. | |- ah"an"a -> an"(a & ah"an"a) 7.1T9: subst <->, FOPL
9. ||- a & ah"an"a -> an"(a & ah"an"a) 8: FOPL
10. | |- a & ah"an"a -> ah"(a & ah"an"a) 9: CIA
11.]|- a & ah"an"a -> ah"a 10,T7: FOPL
12. | |- an"a & an"ah"an"a -> an"ah"a 11,79: ANIMP, TSUBST <->

7,12: FOPL
6,13: FOPL

Proof is similar to proof of T20 lines 1-6 using E3, T14, T16 and ENIMP in place
of A3 (T1), T13, T15 and ANIMP. Notc that the converse is not provable.

T22: |-a->av'a

Proof:

1. [{ch"~a-> ~a E3:FOPL

2. ||-a-> ~eh"~a 1 contraposition
3. ||-a->av"a 2,Al: subst <->
QED

T23: |-a->ev'a

Proof: -

1. || ah"~a-> ~a E4,E3: FOPL

2. ||Fa-> ~ah"~a 1 contraposition
L |Fa->ev"a 2,E1: subst <->
QED

T24: |- av"a <-> av"av"a

Proof:

1. | |- eh"~a<->eh"eh"~a T16: FOPL

2. | |- ~eh"~a <> ~ch"ch"~a 1:subst<-> ‘
3. | }-av"a <> ~eh"~~eh"~a 2,AL: TSUBST <->, dni
4, | |- av"a <-> av"av"a 3,Al; subst <->

QED ’

T25: |-ev'a<{->eviev'a

Proof: . ,

1. |} ah"~a<-> ah"ah"~a T15: FOPL

2. | |- ~ah"~a <-> ~ah"ah"~a 1. subst<->

3. || ev"a¢-> ~ah"~~ah"~a 2,El: TSUBST <->, dni

4, | |- ev'a¥-> evievia 3,E1: subst <->
QED
T26: |- ah"(a > b) -> (ev"a -> ev"b)
Proof: 4
L |lF@->b)>(~b-> ~a) FOPL
2. || ah"@a-> b) -> ah"(~b -> ~a) 1: AHIMP
3. | |- ah"(a -> b) -> (ah"~b -> ah"~a) 2, A2: FOPL
4, | |- (ah"~b ->.ah"~a) -> (~ah"~a -> ~ah"~b) 3,A2: contraposition
5. | |- ah"(a -> b) -> (~ah"~a -> ~ah"~b) 3,4: syll
6. | |- ah"(a -> b) ->{ev"a -> ev"b) S,E1: subst <->
QED .

T27: | av*(a|b) <> (av"a| av"b)

Proof: .

1. ||-eh"(~a & ~b) <> (eh"~a & eh"~b) T8

2. || eh"~(a] b) <> ~(~ch"~a | ~eh"~b) 1: TSUBST <->

3. || ~av"(a| b) <> ~(av"a| av"b) “2,E1: dni, subst <->
4. || av"(a | b) <> (av"a | av"b) 3: FOPL

QED

-47 -

T28: | »cv"(a [b) <> (ev"a | ev"b)
Proof is similar to proof of T27 using T7 and Al in place of T8 and El.

T29: |- av"(a & b) -> (av"a & av"b)

Proof:

L |la"(@a& b) ->av"a FOPL, AVIMP
2. ||Fav"(@a&b)->av'd FOPL, AVIMP
3 |lav(@a & b) S(ava & av"b) 1,2: FOPL
QED

T30: | cv'(a & b) > (ev"a & ev"b)
Proof is similar to proof of T29 using EVIMP for AVIMP.

T31: | (ah"a|ah"d)-> ah"(a| b)

Proof:

1. |} ah"a-> ah"(a|b) FOPL: AHIMP
2. | |- ah"b-> ah"(a|b) FOPL: AHIMP
3. | |- (ah"a] ah"b) -> ah"(a | b) 1,2: FOPL
QED

T32: |- (ch"a|ch"b)-> ch"(a|b)
Proof is similar to proof of T31 using EHIMP for AHIMP.

T33: | (ah"a & ev"b) -> ev'(a & b)

Proof:
- 1. |} ah"@@a -> ~b) -> (ah"a -> ah"~b) A2

2. ||-ah"~(a & b) > ~(ah"a & ~ah"~b) 1: TSUBST <>

3. | |- ~ev"(a & b) > ~(ah"a & ev'b) 2,E1: subst <->
-4, || (ah"a & ev'd) > ev'(a & b) 3: contraposition
. QED

T34: |- (ch"a & av'b) -> ev"(a & b)
Proof is similar to proof of T33 using E2 and Al for A2 and El

T35: |- an"a-> av"a

Proof:
L ||-eh"~a-> en"eh"~a E3: FOPL
2. | |- en"ch"~a-> en"~a E3: FOPL, ENIMP

3. ||reh"~a->en"~a 1,2: syll

4. ||- ~en"~a > ~eh"~a 3: contraposition

5. ||]-an"a-> av"a 4 N1,Al: subst £->, dne, TSUBST <->
QED

T36: |-en"a-> ev'a
Proof is similar to proof of T35 using A3, E1 and ANIMP in place of E3, Al and ENIMP.

- 48 -

T37: |- (an"a | an"b) -> an"(a | b)

Proof:

1. |}-an"a-> an"(a| b) FOPL: ANIMP
2. || an"b->an"(a|b) - FOPL: ANIMP
3. ||-(an"a|an"b) > an"(a | b) 1,2: FOPL
QED

T38: |-en"(a]b) <> (en"a| en"b)

Proof: '

1. || ~an"~~(~a & ~b) <-> (~an"~a| ~an"~b) T9: FOPL, subst <>
2. || en"(a] b) <-> (en"a | en"b) 1,N1: subst <->
QED :

T39: |- an"(a <-> b) > (an"a <-> an"b)

Proof:
1. ||-an"(@<> b)<>an"((@a->b)& (b->a) FOPL: ANIMP
2. ||Fan"((a -> b) & (b -> a)) T9

<> (an"(a -> b) & an™(b -> a))

3. || (an"@a -> b) & an"(b > a)) 2,T9,N2: FOPL -
-> (an"a -> an"b) & (an"b -> an"a)

4. ||- an"(a <-> b) -> (an"a <-> an"b) .1,2,3: FOPL

QED

T40: |- an"(é <> b) > (en"a <-> en"b)
Proof is similar to the proof of T39 using T3 in place of N2.

T4l: |- ay"an"'a -> an"av"a

Proof:

1. ||- ~eh"~~en"~a-> ~en"~~eh"~a T21: FOPL

2. || av"an"a -> an"av"a 1,N1: FOPL, TSUBST <=
QED . .

T42: |- ev"en"a <-> en"ev"a

Proof is similar to proof of T4l using T20 in place of T21.

T43: |- av"an"a -> av"a

Proof:

1. ||-av"an"a-> av"av"a T35: AVIMP

2. | |- av"an"a -> av"a 1,T24: tsubst <->
QED

T44: |- ev"en"a -> ev”a

Proof:

1. ||-ev"en"a-> ev'ev'a T36: EVIMP

2. |- ev'en"a > ev"a 1,T25: tsubst <->
QED

-49 -

T45: |- av"a<-> (a| an"av"a)

Proof:

1. | |- ~eh"~a<-> ~(~a & en"ch"~a) T14: FOPL

2. | |- av"a <> (a| an"av"a) 1,N1: FOPL, tsubst <->
QED

T46: |-ev"a<-> (a| en"ev"a)

Proof is similar to Proof: of T4S using T13 in place of T14

T47: |-{a & av"~a) > ev"(a & an"~a)

Proof:

1. | |- ah"(a -> en"a) -> (a -> eh"a) ES

2. || ~ev"~(a -> ~an"~a) -> (a -> ~av"~a) 1,ELNI: FOPL, tsubst <>
3. |} ~ev"(a & an"~a) -> ~(a & av"~a) -2: FOPL

4, |} (a & av"~a) -> ev"(a & an"~a) 3: contraposition

QED

T48: |F(a & ev"~a) -> ev'(a & en"~a)

Proof is similar to Proof: of T47 using A4 and Al in place of ES and E1

T49: |2 & (~aau” b) > b

Proof:

L |fra&(~aau"b)& ~b assume

2. 1|a 1: simp

3. ||-~aau"b 1: simp

4, ||-~b 1: simp

5. ||-b| ~a&an"(~aau” b) 3,AS5: subst <D
6. | |- ~a & an"(~a au" b). 4,5: ds

7. | |- ~a 6: simp

8. Fa&(~aau"b)->b 1-7:ip

QED

TS0: |- ~b & (@aau"b) da|

Proof: -)
. ||-~b&(aau" b) & ~a assume

1

2. |- ~b . 1:simp

3. ||l-aau"d 1: simp

4, ||~ ~a . 1: simp

5. 11-b 3,4,T49: FOPL
6. F~b&(aau"b)->a 1-5: ip

QED

TS1: |-b->(aau" b)

Proof:
1. |{-b& ~(aau" b) assume

-50-

2. |0 1:'simp

3. ||-b)a&an"(aau” b) 2: add

4. ||-~(b|a&an"(aau" b)) 1AS: simp, subst <->
5. Fb->(aau" b) 1-4: ip

QED

T52: |- a & an"(a au” b) -> (a au” b)

Proof:

1. ||-Fa&an"(aau" b) & ~(aau" b) assume

2. | |- a & an"(a au" b) 1: simp

3. ||-bla&an"(aau"b) 2: add

4. |f ~bla&an"@au" b)) LAS: simp, subst <->
5. |-a& an{aau” b) -> (a au" b) 1-4: ip -
QED

TS3: |- av"(a au” b) <> (av"a au™ av"b)

Proof:

1. || av"(a au" b) assume

2. | |- av"av"b ‘ A6,1: AVIMP, mp
3. ||-av"d 2,T24: subst <->

4, || (av"a au" av"b) 3,TSL: mp

5. |- av"(a au” b) -> (av"a au” av"b) 1-4: CP

6. |- (av"a au” av"b) assume

7. | |- av"av"b . A6,6: mp

8. ||-av"b "~ 7,T24: subst <->

9. | |- av'(aau” b) TS1.8: AVIMP, mp

10. }- (av"a au" av"b) -> av"(a au" b) 6-9: CP
11. | av*(a au" b) <-> (av"a au” av"b) 5,10: FOPL
QED ‘

TS4: |- ev'(a cu” b) <-> (ev"a eu" ev"b)

- Proof:

1. ||-ev"(aau” b) assume '

2. || ev"av™d E7,1: EVIMP, mp

3. ||-av"b > ev'd E3,A1El: FOPL

4. | |- ev"av"b > ev'ev"b 3: EVIMP

5. |} ev'd 2,4,T25: mp, subst <->
6. | |- ev"b|ev"a & en"(ev'acu” ev'd) 5: add

7. || (ev"a au”" ev"b) 6,E6: subst <->

8. |- ev"(aau” b) -> (ev"a au" ev"b) 1-7: CP

9. | |- (ev"a au" ev"b) assume

10. | |- av"ev"d A6,9: mp

11.] |- av"ev"b -> ev"ev"b E3,A1El: FOPL

12. | |- ev"d 10,11,T25: mp, subst <->
13. |} ev"(a au”" b) T51,12: EVIMP, mp
14. |- (ev"a au" ev"b) -> ev”(a au” b) 9-13: CP

15. |- ev"(a au" b) <-> (cv"a au” ev"b) 8,14: FOPL
QED

T55: |-(aau" b)->(aeu”"b)

-§1-

Proof:

1. || |- an"(a au” b) -> an"(a cu” b)
2. 1111 (aau" b) & ~(aeu” b)

3. |11]-b]a&an"(a au" b)

4. |11{-bla&an"(aeu"b)

S. |11|-b]a&en"(aeu” b)

6. ||llraeu" b

7. |1|-(@aau" b) > (aeu" b)

8. |} (an"(a au” b) -> an"(a eu” b))

2> ((aau”" b) -> (aeu” b))

| |- (@aau” b) ->av"b '
0.]]- (aeu” b) -> av"b
LiFbo->(b] a&an"(aau" b))

&(b|a&en"(aeu" b))
12. | |- av"b

-> av"((bja&an"(a au” b)) & (bla&en"(a eu” b))
13.]]- (aau" b) .

2> av"((a au" b) & {a cu” b))
14.]|- (aeu" b)

2> av"((a au" b) & (a eu” b))
15.| | (aau” b) -> (acu” b)
QED

— O

TS6: |- an"a au” an"b -> an"(a au" b)

Proof:
1. | |- an"a au" an"d
‘ -> an"b | an"a & an"(an"a au™ an"b)
2. | |- an"(aau" b)
<> an"(b | a & an"(a au" b))
3. |}- an"b | an"a & an"an"(a au” b)
-> an"(b | a & an"(a au" b))
4. | }-an"b | an"a & an"an"(a au" b)
-> an"(a au” b)
5. | |- (an"(an"a au" an"b) -> an"an"(a au” b))

assume

assume

2,AS: simp, subst <->
3,1: FOPL

4,T6: FOPL

5,E6: subst <->

2-6: cp

1-8: cp

A6
E7
FOPL

“11: AVIMP

9,12,A5,E6: FOPL
10,12,A5,E6: FOPL
8,13,14: WNPA

AS: FO?L

AS: ANIMP

T9,T37: tsubst <->, FOPL
2,3: subst <>

1: FOPL

-> (an"a au” an"b) -> an"b | an"a & an"an"(a au” b)

6. | | (an"(an"a au" an"b) -> an"an"(a au” b))

->(an"a au” an"b) -> an™(@au” b)
7. | I an"b > an"(a au” b)
8. | |-.an"b -> (an"a au” an"b) '
9. | |- an"b -> (an"(a au” b) & (an"a au” an"b))
10. | |- av"an"b :
-> av"(an"(a au” b) & (an"a au" an"b))
11. | |- an"a au” an"b -> av"an"b
12. | |- an"a au” an"b

-> av"(an"(a au" b) & (an"a au” an"b))

13.]}-aau” b->av"d
14.| |- an"(a au" b) -> an"av"b
15. | |- an"(a au" b) -> av"an"b
16. | |- an"(a au" b) -

. > av"(an"(a au" b) & {an"a au" an"b))
17.] |- an"(a au" b) ->(an"a au™ an"b)
QED

4,5: sylL FOPL

TS1: ANIMP
TS51

7.8: FOPL
9: AVIMP

A6
10,11: syll

A6

13: ANIMP
14.T41: subst <->
10,15: syll

5,12,16: WNPA

-52-

TS7: |Fa& ~b->aap"b

Proof:

1. ||a& ~b& ~(aap”b)

2. ||-~aau”b

K o)

4, ||-~b

5. Fa& ~b->aap" b
QED

TS8: |- (aap” b)-> ~b

Proof:

1L ||Faap"b) &b
2. || ~(~aau"b)

3. | b]|~a&an"(~aau"
4,

5. |-{aap”" b) > ~b

QED

|
| |- ~(b| ~a & an"(~a au” b))
I.

assume

1: simp, AP, subst <->, dne

1,2,T49: simp
1: simp
1-4: ip

assumee

1: simp, AP, subst <->

b) 1: simp, addition
2,AS: subst <->

1-4: ip

T59: |- (alblc) & (a ap" b) & (b ap” c) -> (a ap” ¢)

Proof:
| |F-~(~aau" b) & ~(~b

|- ~b

| |- a| ~an"(~a au" b)

[l~c |

| |- b | ~an"(~b au" c)
.| |- ~a & an"(~a au" ¢)
) ~a
2.lblc
13. ¢

Pt et oed \D OO0 =3 ON N B LN
ol Tt R e e

14. |-(ajblc) & (a ap" b) & (b ap” ¢) > (a ap” c) .

. | I (alblc) & (a ap” b) & (b ap” ¢) & ~(a ap" c)

au" c) & (~aau" ¢)

| |- ~(b | ~a & an"(~a au” b))
| |- ~(c | ~b & an"(~b au"” c))
{|- | ~a& an"(~aau" c))

Proof:

1. ||-(aap"b)

2. |i|l-b& ~c
.1

4. [11-~b

5. |-b->¢c

6. |-(aap”"b)->(b->c)

T61: |-a -> (aab" b)

Proof:
1L |l-a

assume
assume
2: simp
1,T58: FOPL
2-4: ip, FOPL
1-5: cp

assume

assume

1: AP, FOPL
2,A5: simp, FOPL
2,A5: simp, FOPL

2,AS: simp, FOPL

3: FOPL

3: FOPL

4: FOPL,

4: FOPL

5,8: ds

10: simp

1,11: simp, ds
6,12: ds

1-13: ip, FOPL

-53-

bt et et ot ok ped b fd = S WO OO NI OV BN

\OOO\IO\MAUN’—‘Q

2. |]-~bau" a 1,TS51: mp

3. ||-av"b-> (~bau"a) 2:FOPL

4, ||-aab" b 3,AB: subst <->
5. Fa->(aab" b) 1-4: cp

QED

T62: | (ajblc) & (a ab™ b) & (b ab" c) -> (a ab” c)

Proof®

. {lalble-

. || av"b -> (~b au” a)

. | |- av"c <> (~c au" b)

A av"c & ~(~c au” a)

. |- av'c

. || ~(a| ~c & an"(~c au” a))

- ~a
blc
~cau" b
b | ~c & an"(~c au" b)
b|~c
b
av'd
~bau"” a
aj~b& an"(~b au” a)
- ~b & an"(~b au" a)

~

Al
At
Al
Al
A
A
Al
Al
I|

20. |- (alblc) & (aab" b) & (b ab" ¢)

QED

. | I (alblc) & (a ab" b) & (b ab" ¢) & ~(a ab" ¢)

. || ~a&(c| ~an"(~c au" a))

->(aab”c)

assume
1,AB: simp
1,AB: simp
1,AB: simp
1,AB: simp, FOPL
5: simp
5,AS: simp, FOPL
7: FOPL
8: simp
2,9:ds
4,6: mp
11,AS: subst <->
12: FOPL
10,13: FOPL
14,T22: mp
3,15: mp
16,AS: subst <->
9,17: ds
18: simp
* 1-19: ip, FOPL

| T63: |- (2> d) & (a ab” b) & (b ab” ©) > ¢ > d)

Proof:
1. || (a-> d) &(a ab” b) & (b ab" ¢)
2. |llFc& ~d
3. |}]-av'c
4. || av"c > (~c au" b)
5. {|]-b}~c &an"(~c au" b)
6. |||-c
7. {{ |- ¢ | ~an"(~c au" b)
8. || |- ~(~c & an"(~c au" b))
9. I1I-b
10. 11} av"b
11.]| |- av"b -> (~b au” a)
12.)| |- a] ~b & an"(~b au" a)
13.{| |- b| ~an"(~b au" a)
14.]] |- ~(~b & an"(~b au” a))
15. |1} a
16.1|I-d
17.1}c>d

18. |- (@ -> d) & (a ab" b) & (b ab" <) -> (c->d)

QED

assume

assume

2,T22: simp, mp
1,AB: simp, subst <->
3,4,A5: mp, subst <->
2: simp ’

6: add

7: FOPL

58: ds

9,T22: mp

1,AB: simp, subst <->
10,11,A5: mp, subst <->
9: add

13: FOPL

12,14: ds

1,15: simp, mp

2-16: ip, FOPL

1-17: ¢cp

-54 -

Appendix 111

In Section 4 we noted that the initial condition thcorem and transform theorems associated
with an enhanced Ina Jo spccification are slightly different from that associated with current Ina Jo.
For the bencfit of those readers who are familiar with Ina Jo and FDM, we cxplain the differences
in what follows. '

The initial condition theorem that currently would be generated is of the form:
|- IC->CR
where IC is the initial condition and CR is the criterion. That of enhanced Ina Jo is of the form:

|- ev"(IC > CR) > (IC->CR) (®

The following proof schema summarizes how the current form of initial condition correctness
is preserved under enhanced FDM:

.LFIC->CR ° assume
2. |- (IC -> CR) -> (ev"(IC -> CR) -> (IC -> CR)) FOPL tautology
3. - ev"(IC -> CR) -> (IC -> CR) 1,2: mp

Thus, the version of initial condition correctness for current Ina Jo entails the version for
enhanced lna Jo. The following proof schema summarizes how the consistency of a specification’s
criterion under cnhanced Ina Jo may be used to derive initial condition correctness in the scnse of
current Ina Jo. That is, (*) preserves the theoremhood of the initial condition theorem correctness
under current FDM.

1. |- ev"CR By criterion consistency
2.]-CR -> (IC -> CR) FOPL tautology
- 3.]-ev"CR > ev"(IC -> CR) 2: EVIMP
4, |- ev"(IC -> CR) . 1,3: mp .
5. ev"(IC->CR)->(IC->CR (*) enhanced Ina Jo IC theorem
6.-IC-2CR. : 1,5: mp

It is noteworthy that the the initial condition of specification LIVE of the example in Section
4 contains the subformula .

. ah"(an"x=x-1)
which is an instance of the following schema for that particular specification:
ah"(rp&eg| ... | 1n &en)

where 1y & € | ... | 1, & e, are the refconds and effects of the n +1 transforms of a specification.

If users of enhanced Ina Jo wish to include information in the initial state about all of the
differént ways in which state transitions may occur {a strong state-space completeness assumption),
they must make this explicit since the intended semantics of Ina Jo does not require it.

In other cases, users may wish to assume other properties of the underlying statc machine,
¢.g., that the time sequence is deterministically linear. Since the intended semantics of current Ina
Jo does not support such an assumption, an Ina Jo invariant of the form [Ben-Ari and Pnueli 80,

p.8]:

- S5 -

ah"((ofan"x] <> @ofen”x])
& (@fan"x] <> tpl[efl"XI)

& (@ [an"x] <> @ulen™xD)

(where @g,....p, are all of the sub-formulae of a specification’s transforms and constraints involving
either of the an” and en” operators) must be explicity asserted to require this.

The most important difference between the application of the mcthod (FDM) for current Ina
Jo versus enhanced Ina Jo is in the form of initial condition thcorem we have proved, |- ev'a - a,
as against the old unconditional form |- a. However, this difference vanishes if we extend FDM
with a methodological requirement that the FDM user prove the consistency of the criteria in a
specification, thus providing an indcpendent proof that: .

ev"CR is true in the intended model. .

To see that a consistency proof of a specification’s criterion is sufficient justification for this
result, note that from the consistency of a wff, p, we may infer that there is an Ina Jo model, K =
<Init, State, Dom, Trans, EvaD, such that p is truc at some 5; € State on K, so that sq € State may
be chosen such that ev"p is true on K. From this last result, we may infer by FOPL and T9:

ev"(IC -> CR) is true on the intended model.
so that we obtain from our new thcorem form, the consequence:
(IC-> CR) is true on the intended model.

which is precisely the point of the initial condition correctness theorem of current FDM.
in current Ina Jo, for each transform in a specification, its transform theorem is of the form:

FR&E & CR -> N"CR
whereas in enhanced Ina Jo, it is: '

IR & E & CR -> en"CR

In contrast to the initial condition theorem presented above, transform theorems take the
same form as in current Ina Jo. The only difference is the explicit use of the nondeterministic

new-value operator, cn”, used to express the new value of the criterion in the consequent of the
thcorem. The use of en" reflects the nondeterminism underlying an Ina Jo state machine,

1t should be noted.that FDM has hitherto provided no support for the expression of liveness
properties such as the eventuality requirement we imposed on states satisfying the consequent part
of the criterion in specification LIVE of Section 4. Proving that such propertics are prescrved
under arbitrary state transitions, however, requircs more sophistication of an Ina Jo specifier.

