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Abstract

We examine a well known confidentiality requirement
called noninterferencand argue that many systems do not
meet this requirement despite maintaining the privacysof it
users. We discuss a weaker requirement caifezident-
insensitive noninterferendhat captures why these systems
maintain the privacy of its users while possibly not satisfy
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One of the most well known and earliest confidentiality
requirements isioninterferences defined by Goguen and
Meseguer [7] and later extended to nondeterministic sys-
tems by McCullough [20, 21]. Informally, the confidential-
ity assertion that the usét is noninterfering with the user
L requires that the set of possible outputs seeh kg/the
same regardless of any inputs providedbio the system.
This requirement is so strong that the usenay not even

ing noninterference. We extend this requirement to depencknow if H has provided any inputs to the system.

on dynamic information in a novel way. Lastly, we present

Such a strong requirement is often too stringent, that is,

a method based on model checking to extract from programit places so much emphasis on privacy that it prevents some

source code the dynamic incident-insensitive noninterfer
ence policy that the given program obeys.

1 Introduction

Given a multi-user system, a user might wonder how it
protects his privacy. Such a user would benefit from a sum-
mary of who else may use the system to access his informa
tion and under what conditions. We hope to develop a tool

that automatically produces such a summery, or dynamic

confidentiality policy, from the source code of the program

controlling such a system. Before we may describe an ap-

proach to this problem, we must first consider what it means
for a user’s information to remain confidential.

Confidentiality Requirements. What must a system
keep secret to maintain the privacy of its users? No single
answer is correct for all systems: different balances of pri
vacy and functionality result in systems with different eon
fidentiality guarantees.

Consider a system with a high-level ud¢rand a low-
level userL, whomH does not trust. The usét desires
that the system guarantees that the uséas no way of
learning about the inputs &f to the system. This guaran-
tee may be formalized asca@nfidentiality assertionSuch a
formalization must make clear what exactly it means for the
untrusted usek to learn about an input dii. Each differ-
ent formalization of this concept corresponds to a differen
confidentiality requirement

systems from achieving a reasonable level of functionality
In many realistic systems, allowing the useto know that

the useH has entered an input into the system is acceptable
aslong at does not learn about the contents of the input. In
Section 3, we provide examples of such systems and present
a weakened form of noninterference that alldw® learn
thatH has provided inputs to the system while still protect-

ing the contents of these inputs. We also formalize a weak-

ened confidentiality requirement based on this observation

that we callincident-insensitive noninterferensince the
userL is allowed to learn of the incident of the input. Like-
wise, we call the original noninterference requirement of
Goguen and Meseguarcident-sensitive noninterference

Dynamic Confidentiality Assertions. The confidential-

ity assertions described thus far have been static: thay hol
between two users regardless of their actions. Often static
requirements cannot capture the confidentiality guarantee
that a system should make to its users. For example, con-
sider a system that stores emails for its users. The system
should not allow a user to read any of the emails unless
that user provides the correct password. To formally cap-
ture such a guarantee requiredyamamic confidentiality as-
sertion an assertion that some confidentiality requirement
should hold between two users unless some condition that
depends on dynamic information is met at runtime.

Along with noninterference, Goguen and Meseguer in-
troduced a form of dynamic confidentiality assertion [7]. A
dynamic assertion of their form declares that an input from
a high-level useH should remain unknown to a low-level



userL unless some predicate holds of the inputs that pre-istrator could examine the extracted policy by hand or use
ceded the input in question. Since the dynamic assertiontools to answer queries about the policy. Furthermore, such
may only depend on the inputs that precede the input ina tool could verify that an extracted policy meets the re-
guestion, we term their formulatiat-input-checking qguirements of a specified policy. Even in the absence of
In the password example above, the dynamic assertiona formal specification, change-impact analysis is possible
should hold unless the uskrenters the correct password, given application code before and after some set of edits,
an event that might occuafter the system has already re- one could compare the extracted policies to ensure that the
ceived an email (fronH). Since at-input-checking asser- program edits has introduced no new security holes.
tions may depend only on inputs receivieeforesuch an In Section 5, we present an approach based on model
email arrived, they cannot capture the needed assertion.  checking for this policy extraction problem. Our approach
To fix this problem, we remove the requirement that the tracks the flow of information through the program in
predicate of a dynamic assertion may only depend on inputsa manner similar to type systems that track information
that precede the input in question. Under our formulation, flow [29]. However, our approach allows the same vari-
a dynamic assertion will require that an input be protected able to carry both high- and low-level information without
until enough dynamic information is collected to rule oth- the low-level information being considered high-level-pre
erwise. This information may come at anytime as long the venting an overly conservative analysis. Furthermore, our
input in question does not affect any outputs to the liser approach attempts to rule out infeasible paths. While these
until it arrives. If such input never comes, the input will features matter little in the context of writing a program
always be protected. We term this formulatiatoutput- with type analysis in mind, they become important in our
checkingsince at the time of an output, all the inputs that primary use case of extracting policies from legacy code.
have arrived may affect whether the output may depend on
some previous input, rather than just those inputs that pre-
ceded the input in question. In Section 4, we formalize this
new form of dynamic assertion.

Road Map and Contributions. The order of this paper
mirrors the development of this introduction: After han-
dling some technical preliminaries in Section 2, we mo-
tivate and present incident-insensitive noninterfereimce
Policy Extraction. A set of dynamic incident-insensitive  Section 3. Then we present our formulation of dynamic
noninterference (DIINI) assertions defines a DIINI policy. confidentiality assertions in Section 4. With the notatién o
Given a DIINI policy, a programmer can take two different dynamic confidentiality policy fully formalized, we at last
approaches to ensuring that a program obeys the policy. Inreturn to the original motivation of this work, automated
the first approach, the programmer codes with the policy in policy extraction, in Section 5. Lastly, we cover related
mind and manually inserts any dynamic checks that the pro-work.
gram must perform to ensure that the policy is obeyed. In  The three main sections of this work each represent a
the second approach, the programmer abstracts the policgeparate contribution:
enforcement mechanism from core application logic of the ) _ o ] -
program and configures the program with an explicit repre-  ® Section 3 motives the need for incident-insensitive

sentation of the policy. noninterference clarifies its relation to the original def-

While the first approach is usually easier to implement, inition of noninterference. (Since a similar confiden-
the second approach has many advantages. Firstly, an or-  tality requirement has appeared in the literature be-
ganization with an explicit policy may apply that policy to fore [25], we do not consider the presentation of the
multiple programs. Secondly, the decoupling of policy from requirement to be our contributiqrer se)

application logic allows multiple organizations with diff

ing confidentiality policies to use a single program since

each organization may separately configure the program to

enforce its policy. Thirdly, having a centralized policy fa

cilitates reasoning about the policy and editing it. e Section 5 provides an approach to automated policy
To gain these advantages for legacy programs written extraction.

using the first approach, the program maintainers should

convert them to use a explicit policy as in the second ap- An additional contribution is that of unwinding conditions

proach. A tool that aggregates the manually inserted dy-for incident-insensitive noninterference in both itsistand

namic checks used to ensure that the program obeys thelynamic form. Using unwinding conditions eases proving

policy together into an explicit representation of thisippl  that a system satisfies a noninterference policy. We demon-

would ease this conversion, especially for large programs. strate their usefulness by employing them to prove the cor-
Many other uses for such a tool exist. A system admin- rectness of our approach to policy extraction.

e Section 4 motives the need for and presents a more
general notation of dynamic confidentiality assertion,
which allows for the expression of realistic policies.



2 The System Model Each behavior represents one way in which the system
might operate. Since each domain has control over its input

Automata. The input-output behavior of a system deter- actions, each domain may affect which behaviors the sys-

mines what confidentiality assertions it satisfies. Agents tem can execute. Lete I* represent a sequence of inputs.

acting in varioussecurity domainsreate the inputs and re-  If the system is subjected to the inputs.and no other in-

ceive the outputs. Each domain is a different entity or class Puts, then the system may only execute those behaviors that

of entities that might interact with the system. For exam- include all the inputs of in order and no other inputs.

ple, the domains might bEop Secret, Secret, Classified, To formalize this notion, let us first define thmestrict

andUnclassified for modeling the flow of information be- ~ function|-]. : A* x 2 — A*. The restrict function takes

tween security classes in a military system and if the actual@ sequence and a subset’ of A and returns the sequence

identity of the entity is irrelevant (only its security ctea L] a- which only includes the elements afthat are in4’.

ance matters). For modeling the use of different resourceset [a] 4+ be defined as follows:

the domains might belard Drive, Network, andUser. ) ar = ]

These domains interact with one another by using the
system. We will model such a system as an automaton. For- _ Ja(laja) ifac A
mally, ansystem automatom consists of ] ar = L] ar otherwise

e asetofinputd, whereA’ € 2. For example|[a,c,a]] (.} = [a,a] and

¢ aset of output® such thatf N O = 0, L[e,a,b,¢,a] | fapy = _[a, b, a]. _ _
The set of behaviors that are possible given a sequence
e a set of domain®, that provides all the inputs to the systemis given byruns :

I — 2” where
e a functiondom : A — D that assigns to each action
the domain that created or received it where the set of runs(t) = { @ € behv(m) | [a]r = ¢}

actionsA is U O, A domaind cannot observe all the actions of a system:

can only observe those actionssuch thatdom(a) = d.

e a set of stateg), ) .
® Thus, if the system executes a behawigrthen the do-

e astart statey € @, and main d only sees the sequence of actions| 4« where
- _ Al = {a€ A | dom(a) =d}. If two behaviorse; and
e atransition relation- C @ x A x Q. ap are such thatay | 4 = |z 44, thena; andas, provide

the domaind with the same observations and thus look the
same to domaid. In general, if a domaid sees the action
sequence, d will only be able to tell that some behaviaf

We write g1 % qo if {q1,a,q2) € —». We write q; = g, for
a € A* if either

e o= [ andg = g, or such that o’ | 4« = « was executed] will not know which
one.
o a=ad,q%q,, andg, o @ Let us raise|-|. to work over sets of sequences as fol-

lows: |_{041, a9, .. -}JA’ = {|_041JA’7 LO(QJA/, .. } Then,
where|] is the empty sequence anck is the sequence if for two input sequences; and ., of a systemm,
formed by prependingto «. (For examplea:b:[] = [a, b].) [runs(e1)] 4« = |runs(z2)] 4¢, then domaind cannot tell
Since we never have a list of lists, we abuse notation andbetween whem, or :, is the input sequence ia. This pro-
also use to append lists and to add elements to their end. vides an opportunity to prevent a domain from learning the
The above automaton model is asynchronous and nondeinputs of another domain.
terministic, which greatly complicates proofs about them.
We use asynchronous automata since programs often proaqding Internal Transitions. A problem with the above
duce output for one user without producing it for other aytomation model is that each transition either results in
users. We require nondeterminism since we have the encyytput or is the result of input. This limitation does not
goal of model checking in mind and model checking works jiow internal transitions. To allow internal transitionee
over a nondeterministic abstraction of an actual program.  gjjow a distinguished action ¢ Athatrepresents an action
that no domain can observe. If the users may deduce the

Behaviors. Let the set of behaviors of an automaten= execution of an internal transition (perhaps by timinggrth
(I,0,D,dom,Q, qo,—) be this model is inappropriate.
Since users cannot observe internal transitions, they
behv(m) = {a € A* |3 € Qs.t.qo > q} should not show up in the behaviors of a system and we



must redefinéehv with this in mind. Lety - ¢’ iff ¢ % ¢/,
or bothg 5 ¢” andg” - ¢’ for someg” Let

behv(m) = {a € A* |3g € Qs.t.qo ¢}

where— is raised to sequencesin the same manner as
— Wwas.

3 Noninterference
3.1 What is Confidentiality?

Consider the following simple program:

bool in | oad("secret-file.db");
print(‘x");

The first line reads in the contents of a secret file. The
second line simply prints the character ‘X’ to the low-level

user. If we model the reading of the secret file as receiv-
ing input from a high-level user, then this program fails to

meet the requirements of incident-sensitive noninteneze

as defined by Goguen and Meseguer [7]. The reason is

that the low-level user does not see the output ‘X’ unless
the high-level user produces input, which allows tead
statement to stop blocking and terminate. Thus, the low-
level user has learned that the high-level user has inestact
with the system. This violation occurs even though the low-
level user clearly does not learn anything about the costent
ofsecret-fil e. db. (We formalize this example in Ap-
pendix A.1.)

We believe that in many cases allowing the low-level
user to know that the high-level user is interacting with the

system is acceptable as long as the low-level user does not

learn the contents of these interactions. Consider the fol-
lowing realistic examples:

e “Upon startup, a web server for online banking receives

financial records from a secure database before answer-

ing any queries from users.”

This web server violates incident-sensitive noninterfer-

“A student is applying for graduate school online. During
the application process, both the student and the profes-
sors recommending him must enter information into the
application database. Once the recommending professors
have finished, the student receives a notice stating that the
graduate school has received his recommendations. The
applicant is not allowed access to his recommendation.”

The low-level student only receives the notice if the pro-
fessors have entered their high-level recommendations.
Thus, by receiving the notice, the student learns that the
system has consumed high-level inputs. This violates
incident-sensitive noninterference even if the content of
the high-level recommendation does not affect the con-
tent of the notice.

“PhoneBook is a system produced by NS that organizes
phone numbers for a law firm. While adding a new con-
tact, PhoneBook reaches an error state. PhoneBook of-
fers to send a bug report to NS stating only that the sys-
tem failed to add a new contact. The law firm considers
any personally identifiable information about its contacts
to be private.”

Since the error state was reached during the addition of
contact information, the bug report indicates that the sys-
tem was receiving high-level contact information. Thus,
even if the bug report maintains the privacy of the con-
tacts by not providing any information about them, the
system will still violate incident-sensitive noninterfer
ence by sending the bug report to NS, which is low-level.

“A physician uses a computer to record his interactions

with patients. The physician enters into the computer

both the treatment rendered and the fee charged (the
physician negotiates the fee with each patient). The sys-
tem should only allow the physician to access the treat-

ment. However, the system provides the fee to his secre-
tary for billing.”

Since the low-level secretary receives a notice to bill a
patient from the system, he knows that the physician
has entered into the system a high-level input describ-
ing the treatment. This knowledge implies a violation of
incident-sensitive noninterference even if the noticesdoe
not reveal any information about the treatment.

ence since if the web server answers the user’s queries

with low-level outputs, the user will know that the server From these examples, it should be clear that often sim-
has consumed high-level input from the database. Thisply learning that some high-level input has taken place does
violation holds even if the inputs consumed from the not provide the low-level user with enough information to
high-level database did not influence the server’s re- constitute a violation of the high-level user’s confidehtia
sponse to the low-level user. However, such a systemity. However, most confidentiality requirements (e.g., re-
maintains an acceptable level of confidentiality since the strictiveness [20, 21, 22] and separability [23]) areident
low-level user cannot learn what inputs the high-level sensitive they prohibit low-level users from learning that
database provided to the server and the low-level userany high-level input has taken place.

learning that server has received high-level input only ~ What we desire aréncident-insensitiveequirements,
tells the low-level user that system is working correctly. ones that allow low-level users to learn that high-levelinp



has taken place while protecting tbententsof these high- A systemm obeys~» as an incident-sensitive noninter-
level inputs. Intuitively, a system obeys incident-ingeéwns ference policy iff for alld € D andiq, 15 € T*,
noninterference if the content of inputs from a high-level
user has no effect on the outputs that a low-level user sees. 1 o=d ) implies [ runs(i1) ] 40 € [runs(i2)] 4a
To make this slightly more formal, incident-insensitivanro
interference requires that the set of possible outputsisgen Intuitively, this definition says that if; has been received
a low-level user is the same regardless of the content of theby the system and should not be able to rule out the possi-
inputs from high-level users. Note that the low-level user bility that it was., that the system received, then there must
is, however, allowed to learn that the high-level user sentexist no behavior of the system underthat is impossible
inputs to the system. under., from the perspective af.

Incident-insensitive requirements have appeared in
works on ipformation-ﬂow type ,sys_tems (Sabelfeld and |, jyent |nsensitive Noninterference. Let >~ phe a
Myers provide a survey [29]). O'Neill et al. have proved relation on input sequences such that o ] and
that these type systems ensure that a program obeys an =~ _ 4. .
incident-insensitive requirement they simply call “nctein~~ '**1 —" 22 it
ference” [25].

The rest of this section formalizes a slightly weaker form
of O'Neill's noninterference. We delay describing how our ¢ dom(i) ~ d impliesi; = i5, and
formulation is weaker than O’Neill’s until Section 6.

e dom(i;) = dom(iz),

o 1 7% 4.

3.2 Noninterference Formalized
A systemm obeys a policy~ as an incident-insensitive

First we present policies in general. Then we present thenoninterference policy iff for alll € D andu, 2 € I7,

statement of incident-sensitive noninterference as define
by McCullough for nondeterministic systems [20, 21]. Af-
ter showing our definition for incident-insensitive nomnt

11 2574 1y implies [ runs(1) | 4 C [runs(ia)] 4a

ference, we compare the two. Comparison. Note that for alld and~», both2%y¢ and
o4 gre equivalence relations. They are also alike in that
Policies. For a systemm, a generic confidentiality pol-  if dom(i1) ~ d anddom(iz) ~ d, both require that

icy ~ is an reflexive, transitive relation oR. We write i1 = i foripg 257% dgug OF gy 245577 igis to hold.

ds > dy iff =(ds ~ dy). If di 74 d, then information about ~ However, ifdom(iy) 4 d, then %ﬁ”’d still requires that
d¢ should not flow tod;. A generic policy does not spec-  dom(iy) = dom(iz) Whereasy " makes no requirements
ify exactly what it means for information to flow. Thatis, at all and simply drops; from consideration. This differ-
a generic policy does not specify a confidentiality require- ence is the difference between incident-sensitive noninte
ment. ference and incident-insensitive noninterference.

Below, we formalize two confidentiality requirements Since%ﬁ”’d places more requirements Onthan%.“s”’d,
that can give a generic policy meaning: incident-sensitive it should come as no surprise that od g implies
noninterference and incident-insensitive noninterfeeen ,; ~7°% ,, (see Lemma 3 in Appendix A.2). A direct result
Since these two requirements may be viewed as two differ-of this follows:
ent interpretations that one may assign to a generic policy,
we represent policies of either type usingas with generic ~ Theorem 1. If a system obeys a generic polisy as an
policies and let the surrounding text make clear which type incident-sensitive noninterference policy, then it witley
of policy it is. ~ as an incident-insensitive noninterference policy; the

converse is not true.

Incident-Sensitive Noninterference. Let z,“;d be arela-

: . h d Givops arod Appendix A.2 provides a proof.
Flon c:fr; input sequences such tias™" [, andiz: s A specification may place both an incident-insensitive
12112

noninterference policy and an incident-sensitive nominte
ference policy on the same system. A specification might

o i1 =iy andy 25 1y, ) e " .
require that some users be incident-sensitively noniaterf

e dom(i1) + d andi, oo, Or ing with a second group of users and incident-insensitively
noninterfering with a third group. The above theorem
e dom(iz) % dandiy:y %Ts”’d L. makes clear the relationship between these two policies.



3.3 Unwinding Theorem 2. If there exists an incident-insensitive unwind-
ing relation for a incident-insensitive noninterferenog-p

Since noninterference is a global property, proving that icy given an automaton, then that automaton obeys the pol-

a nontrivial system obeys a given policy is a daunting task. icy.

Thus, Goguen and Meseguer provided a property, the ex-

istence of arunwinding relation to ease this task [8]. We

provide such a property for incident-insensitive nonifeer

ence. 4 Dynamic Policies
Letgq %» q iff

Appendix A.3 offers the proof.

4.1 Motivation
°q=q;

Now we motivate the need for dynamic confidentiality
assertions by relating in more detail the email server exam-
. Y ple from the introduction. As described before, the server
o there exist® € O such thatlom(o) # d, ¢~¢",and  ghould only allow access to the emails if the user supplies

q" %’ q. the correct password. The following program written in a

C-like language enforces this requirement:

e g5 ¢" andq” %q'; or

Informally,g — ¢’ means that the automaton can transition _
d emai |l s = | oad(" nbox");

real _pw = | oad("password");
gi ven_pw = read();
i f(given_pw == real _pw)
print(enmails);
el se
print("w ong");

from ¢ to ¢’ by using only internal transitions, transitions
that produce output for a domain other thanand finally
one transition using.

Given a system automaton, leti@w partitionbe a func-
tion from a domain to an equivalence relation on states.
That is, a view partition is ilD — 2@%Q \We will write

q1 4 qo if for the domaind, the stateg; andg, are within

the relation. where the fil¢' rhox" holds the emails antipasswor d"
Let a view partitioning for a program automatenand holds the correct password.
policy ~» be called anncident-insensitive unwinding rela- To model this program, let the emails be represented by
tion if it satisfies the followingunwinding conditions the domaire, the password by the domasnand user by the
domainu. Since the usar can gain access to the emailsy
1. Local Respect: forall € D, q,¢; € Q, andiy, iz € entering the correct password, the system does not obey any
1, if dom(z1) = dom(iz), dom(iy) & d andqz—;>qg, policy ~ such that 4 u. However, such a static policy

) i fails to convey the design goal of only allowing the user
then there must exisf, € @ such thaty —¢; and  access to the emails if he provides the correct password.
We desire a policy that captures how supplying the correct
password at runtime changes the allowed information flows.
2. Step Consistency: forall € D, ¢1,q1,¢2 € @, and To address such concerns, Goguen and Meseguer pre-

iel,if g 4 g2 andgq; —— ¢}, then there must exist sented a dynamic version of mmdgnt-sensmve npmnterfe
d ence [7]. Informally, it allows an input from a high-level

d
/ /
q1 ~ 4.

¢, € Q such thaiy, — ¢4, andq) < G- domain to be treated as insecure (accessible to the low-leve

¢ domain) if the inputs that precede it satisfy some predicate

3. Output Consistency: for all € D, ¢1,¢},q2 € Q, This allows the security of an input to depend on the inputs
ando € O, if dom(o) = d, ¢1 ti, andq, %q’l. provided before it at runtime. Since all the information on

. Y which the security of an input may depend is present at the
then there must exisf, € @ such thatg - %2 and  {ime that the input enters the system, we call their formula-
tion at-input-checking

The inability of at-input-checking to consider informa-
The above unwinding conditions are much more complex tion that follows the input in question limits the expressiv
than the standard ones presented for incident-sensitive no ness of at-input-checking. In the above example, the emails
interference. However, incident-insensitivity is notrk were the first input to the system. Since no input precedes
this actually stems from using asynchronous, nondetermin-the emails and the security of an input may only depend on
istic automata for our system model instead of synchronous those inputs that precede the input in question, the emails
deterministic automata. must either always be secure or always be insecure. This

d
! !
a1 ~4qs-



has the same problem as static policies: we cannot have th@olicy ~ with the current input sequence to obtain the
emails be secure in some behaviors of the system and insestatic policy~** for use with=,,.
cure in others. A systemm obeys a DIINI policy~ using at-output-
To fix this problem, we must allow the security of an checkingiff for alld € D and¢, s € I*,
input to depend on inputs that arrive after it. In this case,
the security of the emails is undetermined until the user has
entered his input. It may seem that such information comes ) ) )
too late: How can information from the future be used to Discussion. Although the at-output-checking formulation
determine the security of an input now? The answer is that&/l0Ws us to formalize the email server policy, at-input-
the determination need not be made when the input has jusENecking does have some advantages. Both use the input
arrived: as long as the input is treated as though it is secures€duence on the left-hand side to produce a static policy.
until information becomes available indicating otherwise Civen this sequence, the at-output-checking formulaien s
this determination may be delayed. lects one such statlp policy using the whole input sequence.
To make use of this observation, we define a new version | N€ at-input-checking formulation, however, selects a new

of dynamic policy that depends not only on the inputs that static policy with e_ach recursiye applicatioq. _This allows
precede the input in question, but also those inputs that fol the at-input-checking formulation more flexibility to ttea
low it. At the time of an output, whether that output may €ach input of the sequence differently even if the inputs
provide information about an input depends on all the in- ¢OMe from the same domain.

puts that precede that output, not just those the precede the A related limitation of at-output-checking is its inabylit
input in question. Thus, we call our formulatiaoutput-  1© Capturerevocation the removal of a previously held ac-
checking cess right. For example, revocation takes placg i["]

dy butds 4021 4. Under the at-input-checking formula-
tion, this would mean thak may access the inpit but not

the inputiy. However, for a system to obey the policy un-

. o ) ) . der the at-output-checking formulation, the system must no
Dynamic Policies. Let a generic dynamic policoe a  produce output influenced iy for d; even if the output is
function from an input sequence to a static generic policy produced before, arrives. If the system did, it would lead
(a relation on domains). Give the set of inpdtsind do- g 3 violation of the policy oncé, arrives. Thus, for a sys-
mains D, the set of possible generic dynamic policies is tem to obey the above policy, it must actually also obey the

0 %T,”Ll’d to implies|runs(t1)] 4a C [runs(t2)] 4a

4.2 Formalization

" — 2PXD Givena dynamic policy. we writeds ~* d policy whered; -41i1] d, andds -4[1+2] d,. For this reason,
if . is mapped to a policy that allows information to flow  5¢-gutput-checking policies cannot express revocation.
from df to d. We defined both of the above dynamic formulations to

depend on input sequences and domains but not the states

At-Input-Checking. To define dynamic incident- Of the automaton, making themput-based We view the
insensitive noninterference (DIINI) using at-input- States of an automaton to be implementation specific unlike
checking, we must replace the relatien,. Since the theinput-outputbehavior and domains of the system, which
Security of an input may 0n|y depend on the inputs that are at the Specification level. Since policies should beeat th
precede it, we define a new relatien,, that effectively specification level, we avoided referring to the states & th
forgets the inputs that follow the input currently in questi  definition of a policy.
To achieve this, we definez,, to work from the end of Henceforth, unless otherwise noted, all dynamic policies
input sequences to their front forgetting the inputs seenWill be at-output-checking.
along the way. . Lo

Let Lliil %Eﬁd L22i2 iff dom(zl) = dom(z'Q), 4.3 Dynamlc UnWIHdlng

dom(i1) ~*11 dimpliesi; = is, andi; 255% 15, Also let
=~

A systemm obeys a DIINI policy~ using at-input-
checking iff for alld € D andiq, 1o € T*,

Unlike policies that should be defined without reference
to the states of an automaton, unwinding conditions must
be. Thus, we need a version of dynamic policy that depends
on the states instead of being input-based. Lgeneric
state-based dynamic poliey be a function from a set of
states to a relation on domains.

To give the unwinding conditions meaning with respect
At-Output-Checking. Since DIINI using at-output-  to aninput-based policy, we must relate the input-based pol
checking does not need to forget any information, its icy to a state-based policy. Let the state-based dynamic pol
definition is actually simpler. We provide the dynamic icy ~» be asafe approximatiorof a input-based dynamic

1 2504 1 implies [runs(iy) | 4¢ € [runs(iz) | 4a



policy ~ iff d¢ +4* dy, |a]; = ¢, andgy - ¢ implies
ds 47 di. We call ~ non-revokingiff for all o € A*,
¢ ¢’ andds ~9 d; implies thatds ~~4" dy.

Given a system automaton, letdynamic view parti-
tion be a function from a pair of domains to an equiv-
alence relation on states. That is, a view partition is in

D x D — 29%9  wWe will write q1§q2 if for the pair
f

of domains(d, ds), the stateg; andg, are within the re-

lation. Intuitively, ¢ ? g2 means that the states andg.

should look the samé @, since they only differ by secret
inputs fromds.

Let a dynamic view partitioning~ - for a program au-
tomatonm be called adynamic unwinding relatiorfor a
state-based dynamic poliey if ~ satisfies the following
dynamic unwinding conditions

1. Local Respect: for all,,df € D, ¢q,¢; € @, and
i1,i2 € Iif dom(iy) = dom(iz) = d, q%»qi, and
de /% dy, then there must exist, € Q such that

d
q— gb andq} ~ gb.
dy ds

. Step Consistency: for adl,dr € D, q1,q1,¢2 € Q,
andi € I, if qli\SQQ, qldeﬁ, anddi A% dy,
f t

then there must exigt, € @ such thaty, % ¢, and

. Output Consistency: for alk, ds € D, ¢1,47,¢2 € Q,
ando € O if dom(o) = di, qlrjvt(p, andq; %q’l,
f t
andds 7%»‘11 dy, then there must exigt, € @ such that
° ! r de
andg; ~ gb.
q2 Tt’ d2 q1 Py a2
As with static unwinding relations, the existence of a dy-
namic unwinding relation implies that the system obeys the

policy:

Theorem 3. For all automatam, if ~» is a non-revoking
safe approximation of the at-output-checking DIINI policy
~ and there exists an unwinding relation fer and m,
thenm obeysw.

Appendix B provides the proof.

5 Automated Policy Extraction

Although using the dynamic unwinding conditions eases
proving that a program obeys an DIINI policy, we really

desire an automatic algorithm to check for obedience. Fur-

thermore, as motived in the introduction, often one would

like to know the most restrictive policy that a program
obeys. Thus, we describe an approach for extracting from
the source code of a program an approximation of the most
restrictive policy obeyed by that program.

Our approach tracks the flow of information through the
program in a manner similar to information-flow type sys-
tems [29, 25]. However, since our approach must work for
legacy code designed without the analysis in mind, some
of the limitations of these type systems render them unac-
ceptable. For example, type systems will consider high-
level any information stored in a variable that has ever
stored high-level information even if the current informa-
tion stored in the variable is low-level. Furthermore, type
systems make no attempt to rule out infeasible paths.

Thus, we approach the problem with model checking.
For each ordered pair of domaidsandd;, we will check
for the property that the static incident-insensitive moeii-
ference assertiods 4> d; is not violated by the program.
The collection of all counterexamples to this property will
form all the executions in whicli, gains access to informa-
tion aboutds. From these, we construct a DIINI policy that
the program obeys.

Our approach differs from standard model checking in
that we need all of the counterexamples to the noninterfer-
ence property, not just one. Furthermore, our approach dif-
fers in that the noninterference property is neither a gafet
nor liveness property and, thus, not expressible in anyeof th
standard temporal logics used as property languages [23].
Like a safety property, noninterference requires that some
thing does not happen: noninterference is not violated.
However, unlike a safety property, to determine if noninter
ference is violated requires comparing two behaviors of the
program. Thus, Terauchi and Aiken calls noninterference a
2-safety property33].

To address the first difference, we use an all-
counterexample extension to standard model checking [15,
30]. To address the second difference, our approach con-
structs a model of the program that reifies this 2-safetyprop
erty as a normal safety property. Before presenting this con
struction formally, we provide an example. In the example,
and most of the rest of the section, we will only concern our-
selves with extracting the dynamic conditions under which
one given domain gains access to one other given domain.
We discuss extending this approach to more than two do-
mains in Section 5.4.

5.1 An Example

Consider the program from the email server example in
Section 4.1. We would like to extract from this program
the most restrictive DIINI policy that it obeys. For simplic
ity, we restrict our attention to only cases where the user
(domainu) gains access to the emails (doma)n Thus,



we will model check for the property that the static policy
e+ uis obeyed.

governs access hy to the inputs ofpasswor d (the do-
main p) by tracking how the value of the filpasswor d

The first step of our approach performs a property- flows through the system instead of how the valuetodx

reifying transformation to the program making the 2-safety does.

property thate 4 u is obeyed into a safety property. For
each variabler, the transformation creates a shadow vari-
ablex’ that tracks ifx is independent of the value of all the
inputs produced by. The transformed program is

emai | s = | oad(" nbox");

emai |l s’ = fal se;

real _pw = | oad("password");
real _pw = true;

gi ven_pw = read();
given_pw = true;

i f(given_pw real _pw)
print(emails);
print’ (emils’

el se
print("w ong");
print’(given pw & real pw);

& given_pw & real _pw);

where & is boolean AND. The variablermai | s’ is the
shadow variable foermai | s. It is set tof al se because
emai | s depends on an input from. real pw , the
shadow variable of eal _pw, is set tot r ue since it is
independent oé. Likewise withgi ven_pw .

print’ is a special function that shadows calls to
print. It allows us to reify thau has gained access to
the inputs ofe since wheneven does,print’ is called
with the value off al se.

In the t hen branch of thei f statementprint’ is
passecenmai | s° & given_pw & real _pw . ltis
passecemnai | s since thepri nt statement it is shadow-

One may see from the above transformed pro-
gram, that bottpr i nt statements depend on the value of
passwor d. Thus, the user always gets access to the in-
put of p. Indeed, the user does learn if the password he has
supplied as input is equal to valuedsswor d or not. In
practice, this small bit of information is often negligipke
concept others have formalized [13, 18, 26], but we consider
outside the scope of this paper.

Since our approach relies on the semantics of the ana-
lyzed language, we first present a simple language before
formalizing our approach for that language.

5.2 The Language WhilelO

WhilelO is simple language witwhi | e loops, i f
statements, and operators for input and output. The syntax
of WhilelO consists of statemerftsand expressioni:

S:=X:=E|print(E, D) |read(X, D) |S;S
|i f(E){S}el se{S}|while(E){S}
E:=E+E|X|D|N

whereX ranges over variable namd3,over domains, and

N over numbers. Statements always evaluate to void (writ-
ten ase), and expressions always evaluate to a number. A
program is just a single statement.

Table 1 gives the semantics of WhilelO. The judgment
(T, s) <(I", s') means that the statemengoes tas’ while
performing the actiom and changing the store froin to
I”. The store is a mapping from variables to numbérs:

X — N. LetT'[z — v] be the store such th&{z — v](y)

ing, which precedes it, directly depends on the value of is v if x = y and isI'(y) if  # y. We extend stores to

emai | s. Itis passed)i ven_pw andreal pw since

assign a number to expressions as followsI'let +e2) be

by being in ani f statement whose predicate depends onI'(e1) + I'(e2) andI'(n) = n for numbersa.

these values, thgr i nt statement indirectly depends them.

An actionis an ordered triple: the first componentiis

These three shadow variables are conjoined since all thredf the action is an input and if it is an output, the sec-

of them must be independentefor thepr i nt statement
to be independent af

The print’ statement in theel se branch only has
given_pw & real pw sincetheri nt statementit
is shadowing only depends (indirectly) on these values.

Checking for the safety property thatr‘i nt’ is never
passed the value 6fal se” yields a counterexample when-
evergi ven_pw == real pw. This condition is only
satisfied when the contents passwor d is equal to the
user’s input. Thusy only gains access to the input eff
the input ofpasswor d equals the input ofi. Therefore,
the program obeys the poliey wheree ~»* u when the
input sequencehas the same secondgal _pw) and third
input (@i ven_pw) ande -4 u otherwise.

ond component is the domain of the action, and the third
component is the contents of the action. For example,
(i,e," Dear Bob...") could be the input for the emails
in the email server above example.

A program of WhilelO defines an automaton. The inputs
I are those actions withas the first component; the out-
putsO, those witho as the first componentom projects
the second component of an action. Each gBirs) de-
fines a state. The transitions are provided by the judgment
form <: (I, s) 31V, &'} iff (T, s)<>(I",s'). The initial
state is(I'y, s) wheres is the program and, is the store
that assigns zero to every variable. Given a progsaet
autom(s) represent this automaton.

A programs obeysa DIINI policy iff autom(s) obeys

We can use the same method to extract the policy thatthe DIINI policy as defined in Section 4.2.



(T, z:=¢) <(T'[x — D(e)], o)

,read(z, d)) ST —n),e)

n =1IYe)

Tprint(e d)) T,
<F381>(i><r/75/1> <F382>&<F/7S/2>
<F581! 82>(i><F » 815 52> <F7.' 82>(i><rlv.; SI2>

I'(e) =
(T,0; 0) (T, 0) (T,i f () {s1}{s2}) (T, 82)
T(e) #0

(T,i f(e) {s1}{s2}) (T, 52)

(T, whi l e(e) {s1}) =
(T,i f(e){s;; while(e){si}}el se{e})

Table 1. Semantics of WhilelO

5.3 Constructing the Model

Now we show how to convert a program of WhilelO

to an automaton model. Rather than preform a source-to-
source transformation as in the example of Section 5.1, we

show how to reify the noninterference property directly in

disjoint union of the sets of labels for its sub-statements.

Atastate(T', ¢, n), the independence predicateassigns
to each variable true if at that state the value ofis inde-
pendent of the value of any input from the domdin If
x does depend on the value of an input frdpor it is un-
clear if it does or not, them(z) = F. Letn(ei+es) be
n(e1) An(ez) andn(n) = F forn € N.

The start stateg is (I'o, pre(s), nt) wheres is the pro-
gram andy is the independence predicate that assigns true
to all variables.

— IS a transition relation fré)m a state to a state under
both an action and a booleaql¢> ¢’ means that the model

transitions from state to stateg’ during the actiorn with-
out providing any information about to d;. ¢ % ¢’ means
that the model transitions fromto ¢’ duringa while possi-
bly providing information abouds to d..
To define—, we use a translation from a statement to a

transition relgtion. We write>s> for the translation ok.
We write ¢ >‘§> ¢’ if the stateq transitions tog’ under the

actiona and boolear in the transition relation-s>. The
value of— for the prograns is >s>.

The translation>s> is defined recursively on the struc-
ture of s. For each syntactic form that a statement can take,

we provide all the cases in whicks> holds: if ¢ >%> q

is not explicitly listed, then it does not hold (is not in the
relation). (All variables are universally quantified.)

1. Whens has the forme:=e:

(L', pre(s), m) >_%><F[I — T'(e)]; post(s), [z — n(e)])

the model. Thus, the model contains some features that are 2. Whens has the fornt ead(z, d) with d; # d # ds:

unnecessary for simply modeling the behavior of the pro-
gram. Strictly speaking, these extra features mean that the

model is not a system automaton as defined in Section 2.

We present the model construction algorithm for find-
ing the conditions under which the confidentiality assertio
ds + dy is violated for a fixed pair of domaing andd;
such thatd; # ds¢. In the next section, we discuss dealing
with more than two domains.

Let model(s) = (I,0, D,dom, Q, qo, —) be the model
constructed for the program I, O, D, anddom come
from the definition of action found in Section 5.2. The set
of statex) is (X — N)x Lyx (X — {T,F})whereL,isa
set of labels defined below. Each stdfe?, n) € @ consists
of a storel’, a labell, and arindependence predicate

The set of labeld.; for atomic statements holds just
two labels: pre(s) and post(s), which represent the state
right before executing and the state right after. The set
of labels for a compound statement{ani f, whi | e, or
; statement) results from addimpge(s) andpost(s) to the
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(i,d,n)

(L', pre(s),n) >s>(L'[x — n], post(s), n[z — T)

3. Whens has the fornr ead( z,
d = dt:

d) with d = ds or

(T, pre(s), ) S5 (Tl = ], post(s). e+ )

4. Whens has the fornpri nt (e, d) with d # d;:

(0,d,T(¢))
(T, pre(s),n) >8> (', post(s), n)

5. Whens has the fornprint (e, dy):
(o,dt,F(e)>
(T, pre(s),n) >ES)> (T, post(s), n)
n(e



6. Whens has the forns; ; s3:

(T, pre(s),n) >$><1—‘, pre(s1),n)
<1—‘7 pOSt(Sl)v 77) >_7‘|9—_> <Fa pre(32), 77>
(T, post(s2),n) >_%><F, post(s), n)

a ;. a ’ a ’
q>,z>q if ¢g>s1>¢ orqg>s2>q

b b

7. Whens has the form f (¢) s; el se so:

(T, pre(s), n) >5> (T, pre(s;),n')

n(e)Vw
(T, post(s;),n) >_Sr><F, post(s),n’)

q >%> q if ¢ >saj> q

b
wherej = 1if T'(e) # 0andj = 2if I'(e) = 0, and
' (x) =n(x) A (n(e) vV ¢ def(s1) Udef(s2)) where
def(s) is the set containing all variables defined (on
the left-hand side of a= statement or the variable in a
r ead statement) iy, andw is false ifs; or s contain
awhi | e loop, ar ead statement, or a statement of the
formprint(e, dy).

8. Whens has the formnhi | e( e) s; with T'(e) # 0:
(L pre(s), ) >35> (L' pre(sa).)
n(e
(L post(s1), ) >5> (L' pre(s).)
n(e
q >%> q if ¢g>s1>q
b

9. Whens has the formwhi | e( e) s, with T'(e) = 0:

(', pre(s),n) >(§)><F, post(s),n)
n(e

The transitions fomhi | e statements produce the boolean
n(e) despite producing no output since their termination or
lack there of may affect the output seen by the ushr.l e
andr ead statements are treated specially in statements
for the same reason.

5.4 Using the Model

Oncemodel(s) has been constructed, our approach uses
it to create an approximation of the most restrictive DIINI
policy that the program obeys. First, our approach finds all

reachable transitions of the forgn % q2. These transitions
indicate that the output might provide the low-level user
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d; with information about an input af;. Second, for each
such transition, our approach finds each input sequence
that leads to this transition. Third, for each sughy ~*" d,
is added to the policy for eveny that has as a prefix. Af-
ter this process is complete, the resulting policy is regdrn
with ds +6¢ d; for all . such thatds ~* d; was not added to
the policy. Letpolicy(model(s)) represent this policy. (We
definepolicy(model(s)) more formally in Appendix C.)
Correctness of our approach may be stated as follows:

Theorem 4. For every programs of WhilelO, autom(s)
obeys the DIINI policyolicy(model(s)).

We prove this theorem in Appendix C.
To convert our approach to an actual algorithm, we must
select a method for finding all the input sequences that

lead to a transition of the fornpy % q2- Finding these se-

guences is equivalent to finding all the counterexamples to
the property no such transition is reachable. While stahdar
model checkers will stop after finding one counterexample
to this property, algorithms exist for producing all the neu
terexamples. Jha and Wing [15] give an algorithm using a
symbolic representation of the state space and a modified
version of a standard iterative fixed-point algorithm [24].
Sheyner [30] gives another algorithm uses an explicit state
representation.

For handling more than the two domaids andd;, a
tool can repeat the above approach for each ordered pair
of domains. The transitive closure of the union of these
policies provides a policy that the program obeys.

6 Related Work and Discussion

Assumptions. All the systems discussed in this paper
have beerinteractive that is, they receive input and pro-
duce output throughout their executionbAtch-jobsystem

only allows users to determine the contents of its memory at
the beginning of its execution and to observe any changes at
the end of its execution. Much of the work on type systems
for enforcing confidentiality policies have been for batch-
job systems [29].

We have assumed that the user may observe not only
the outputs from a system but also the system consuming
his inputs. Many systems actually buffer user inputs mak-
ing it unclear when an input actually affects the state of the
system. McCullough discusses some issues that arise from
modeling systems that use buffers [21].

A system isinput-enabledf it will always accept any
input offered by a user. While most confidentiality require-
ments have been defined for input-enabled systems, we have
not made this assumption.

We have modeled systems as asynchronous automata,
which can provide output to one user without sending out-
put to all the users. Most authors use synchronous automata,



which must produce outputs to all users at regular intervals Dynamic Unwinding. Leslie has also provided a set of
(See [9] for a detailed comparison.) We believe our unwind- dynamic unwinding conditions [17]. Rather than asyn-
ing conditions to be the first for asynchronous automata.  chronous, nondeterministic automata, she defines her un-

We have assumed that the users cannot observeévinding conditions for synchronous, deterministic au-
the termination of a system. This assumption makestomata. Her conditions ensure that an intransitive indiden

our incident-insensitive noninterference requirement Sensitive noninterference policy is obeyed while ours is
termination-insensitive  Others have considered pro- for transitive incident-insensitive noninterference rther-

gram analysis fortermination-sensitiveconfidentiality ~ more, hers is for at-input-checking dynamic policies rathe
requirements [33]. than at-output-checking dynamic policies.

Related Tools. Although we are the first to propose using
all-counterexamples model checking for policy extraction
others have used standard model checking for verifying that
a given policy is obeyed. They observed that by compos-
'g‘ng a program with itself, one can obtain the two behav-
iors necessary to check the 2-safety property of noninterfe

concerns has led Gray and Syverson to defirdabilis- ence [3, 2]. Later work improv_e(_j this approach by using
tic noninterference, which requires the observation to be type theory to produce more efficient models [33, 35].

equiprobable under both and:, [14]. Program dependence graphs represent how inputs from
different users interact [4, 5]. Thus, they reveal if a syste
obeys a noninterference policy [32]. Hammer et al. have
extended this approach also to produce “witnesses” (coun-
terexamples) in cases where the policy fails to hold [10].

tion is incident-sensitive. O’Neill et al. created an irend- These counterexamples could form the basis of an algo-

insensitive version to characterize formally the proerti rithm for dynamic p.ollcy.e>$tract|o.n. .
that information-flow type systems enforce for interactive ~ Just as a confidentiality policy may become buried
systems [25]. We suspect that few if any modifications Within the code of a large program, the operating proce-

would be required to use our approach for extracting nond-dures of a business may also become hidden within large
educibility policies. applications. Thus, others have created tools to extrastth

Even if two automata obey the same noninterference pol_business “.J'?S from source code [12, 31]. These tools use
icy, their composition might not. McCullough has proposed program S“C'njq [3_4] instead of model checking. _
requirements that ensure that the composition of two obey- Once a policy is extracted from a program, the main-
ing automata will also obey a policy [20, 21]. Also, remov- tainer mightwant to update the program to accept the policy
ing nondeterminism from an automaton that obeys a nonin-2s & configuration parameter. This requires refactoring the
terference policy might result in one that does not. Others¢ode to use a centralized policy enforcement mechanism.
have studied conditions under which such refinement will Ganapathy etal. have developed tools to retrofit legacy code
not destroy the security of an automaton [16, 19, 1]. for this purpose [6].

We have required that each polisy be transitive. In-
transitive policies model channel control, the requiretnen
that information passes through a downgrading domain be-
fore reaching a domain of a lower level. Rusby defined the

Other Requirements. Incident-insensitive noninterfer-
ence requires that if, %ﬁ”’d L2, then any behavior of the
system under; must also appegrossibleunder:; to the
domaind. Thus, this formulation is calledossibilistic In
some contexts, a system is unacceptable if the observation
of d is likely to occur under; and unlikely unders. Such

Nondeducibility on strategiesequires that no matter
how a high-level user interacts with a system, a low-
level user will still not be able to learn anything about
the high-level user’s inputs [36]. The original formula-

7 Summary

most commonly used formulation of intransitive noninter- Firstly, we have clarified the difference between
ference [28]. However, Roscoe and Goldsmith [27] offer a incident-sensitive and incident-insensitive nonintefeee,
competing formulation using CSP [11]. two requirements often conflated as simply “noninterfer-

Whereas confidentiality requires that protected data doesence”. Secondly, we have introduced at-output-checking
not become known to untrusted usensegrityrequiresthat ~ dynamic policies to express policies that at-input-chegki
protected data does not become tainted or corrupted by undynamic policies cannot. Thirdly, we have presented an ap-
trusted users. By reversing the roles of the high- and low- proach based on all-counterexamples model checking for
level users of a system, integrity becomes confidentiality. the automated extraction of at-output-checking dynamic
Thus, our confidentiality requirements also define an in- incident-insensitive noninterference policies from pieoyg
tegrity requirements. source code.
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A Proofs about Static Noninterference = U], = A3 = {UF ] ag, )
= [{[F,x]}] ay, = [runsexs([F])] at_
A.1 Formalization of Example since T and F are not in AL_. Thus,
[runsecs(t1) | ar, = |runses(i2) ] ac_if o1 270 4.

We formalize the example found in Section 3.1. We
model this program as the systens where 2. 11 ¢ {[T],[F]}. Then, as explained above; ¢

{[T], [F]} sinces; %TQXP’L t2. Thus,

® lexs = {Ta F},
[runsexs(t1)] ar_ = [{}] L = [runses(t2)]
° Oexs — {X, y7 Z}, exs exs exs
since no behavior adxs includes neither the input se-
® Des ={H,L}, quenceT] nor the input sequende).
o dome,s(T) = domes(F) = H O

domeys(x) = domeys(y) = domeys(z) = L,
A.2 Proof of Theorem 1

Qexs = {(JO,Q17Q2},
Lemma 3. For a systemn, foralld € D anday, as € T*,

" : T F
and the transition- is such thaty — g1, o — ¢1, and J J
& o1 gﬁ”’ (%) |mpI|eSa1 grg’ ()

0 = a2
_ _ Proof. Proof by induction over the length af;. Note that
whereq is the start state. The system only accepts input j; ay 2% oy then|a| = |as].

from the domainH and only produces output for the do- Base Casela;| = 0 anda; = [|. Thena, must be].
mainL. It only has two behavior§T, x| and[F,x]. Each
consumes an input from the domaihand then produces
the output for the domain_.

The desire of the system designer is to protect the confi-
dentiality of the domaird from the domairlL. So let~

Thus,a; 25¢ oy since]] 25 [.

Inductive Case}a; | = n > 0. Here we may assume that
a1 = ap:¢) forsomea; € Aanda) € A*, as = as:a, for

I ahd

someas € A andafy € A*, and thate] =7 o implies

be a policy such thatl e, L andL ~,, H. This policy thata; = © a. VY?deSt show thataf " axial
makesH a high-level domain ant a low-level domain. implies thata; :y s az:ay

Assumea; 7% ag. Thendom(a;) = dom(az),
Lemma 1. The systenexs fails to obey~.,, as incident-  dom(ay) ~ d implies thata; = as, ando, 257% o).
sensitive noninterference policy. Thus,a, 245 o,. Consider the following two cases
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1. dom(ay) % d. In this casegs = a;. Sinced, =
d

/ e/ ~ e
Qy, a1:0] =57 ag:ah.

2. dom(ay) 7 d. In this casedom(az) + d also since

dom(ay) = dom(az). Thus,a, =3¢ o/, implies that
N'\/) d

/I And

ap:o =5 of, which implies thaty 25 of, im-
plies thata,:o, 25% a:ab.
H N’\”7d .

Thus, either wayg,:of 225 az:ab. O

Now the proof of Theorem 1.

Proof. Assume that a systemn obeys~» as a noninter-
ference policy. This implies that ifi; >4, then
lruns(ay)]a, = |[runs(as)|a,. By Lemma 3, ifa; 257¢

s, then ay gz’d as. Thus, if oy gr)’d as, then
[runs(a1)|a, = [runs(az)]|a,. This means that: obeys
~ as an incident-insensitive noninterference policy.

Lemmas 1 and 2 show that the converse is not truel
A.3 Proof of Theorem 2

In each of the following lemmas let- - be an unwinding
relation for the automatom = (I,0, D,dom, @, qo, )
and policy~.

Lemma 4 (Step Respect)For all d € D, i1,i5 € I, and
ql,ql,qg €Qif dom(i;) = dom(iz), dom(i1) % d,
q1 qu, and ¢ —>q1, then there must exigt, € Q such

that g2 7 g5 andq; 4 .

Proof By Step ConS|stency, there must exigtjasuch that
q2 —> g5 andgqy < -

agh such tha’rq2 —> ¢, andgf 4 ¢5. By the transitivity of
d

By Local Respect, there must exist

Lemma 6. For all d € D, e O,
o1y /

and q1,d;, 02 € Q, if [o1)ae = [, a1 Lo, a1t 2 g,
dom(i1) = dom(iz), anddom(i;) ~ d impliesi; = io,
then there must exist, € O* and ¢, € @ such that

11,19 € I o1

0'212 12

0 % g, ¢ < g, and o] 40 = ).
o1 12

Proof. Since|oy |44 =[], 1 — ¢} implies thatg; —>q1
Consider the following two cases:

e dom(i1) ~ d. Inthis cas€;, = is. Thus, by Step Con-
sistency, there must exigt, such thatg. —>q2 and

Q1N(J2-

e dom(i1) + d. In this case, Step Respect (Lemma 4)
implies the same thing.

In either caseq, 7i>q’2 implies that there existss such
thatgs 222 ¢4 and| o 40 = [). O

Lemma 7. Foralld € D, o € O, 01,04 € O*, and

0,4, q2 € Q, if dom(o) = d, g1 L g0, 1 204}, and
o4 = |o1] a4, then there must exist, € O* andg}, € Q

such thatyy 22 ¢4, ¢, % b, and |02 4a = 0.

Proof. Proof by induction over the structure @f.

Case: 4 = . The result follows directly from
Lemma 5.

Case:oy = 0':0/]. In this caseg; must have the form
o}:0:cf where Laled =[] and |_O'1JAd = ad Since

@ 253 ¢, there must exisg/ such thaty; 2> q1 D24
By Lemma5 there must exist, € O* andgy € @ such

thatgs 25 ¢, ¢}/ ~q2, and| o} | 4« = []. By the inductive
hypothesis, there must exisf € O* and¢) € @ such that

"
%20 ;o 4, d " o
45 — ¢5, ¢y ~ g3, and[ o7 | qa = 0.

.N-’q Nq .y i . .
PR Let oy = ohio':0l. o 22 ¢ and ¢ 25 ¢, implies
g2:0 . .
Each of the next five lemmas proves almost the sameg2 == |opJaa = [ and [0f]4a = of implies
. . / / 1 / 1"
statement for a more complicated set of behaviors than thelo2] aa = [05:0":05 | 40 = 0":07 = 4. O

last.
Lemmab. Foralld € D,o € 0,07 € O*, andq1, ¢}, 2 €
. d :
Q,ifdom(o) = d, |01 ] 40 = [], ¢1 ~ g2, andq; 22 ¢}, then
there must exist, € O* andg) € Q such thatg, 2% g5,
/ d /
4y~ g, and oz | 4a = [].

g1:0 4

Proof. Since|oy | 4¢ = [], ¢1 == ¢} implies thaty; %qi.
Thus, by Output Consistency, there must esfssuch that
g % ¢, andg, L q}. ¢ % ¢, implies that there exisis,

g2:0 4

such thaty = ¢} and| oz ] 4« = [J. O

Lemma 8. Forall d € D, i1,i5 € I, o4 € O*, and

. d g . .
01,4, 2 € Q, if 1 ~qo, ¢1 &5 ¢, dom(iy) = dom(iz),
anddom(iy) ~ d impliesi; = i2, then there must exist
g2t ’LQ

o2 € O* and ¢ € @ such thatgs = ¢, ¢} ~q2, and
|_012i1JAd = \_UQZZ.QJAd.

Proof. In the case wher¢o; |4« = [], the result follows
directly from Lemma 6.
Otherwiseg; has the formy|:0:0} whereo?,

o € O, dom(o) = d, and|o/ | 4a
there must exist} € Q such thaty, 70} ¢! gl d,.

1/60*

o1 /

= Sinceql - q,



By Lemma7 there must exist, € O* andgy € @ such

thatgy 222 q2, ql i gy, and|of:0] 4a = |0h:0] 4a. Since

" d n 1 1

q1 ~ Q42,97 —
that there exists! € O andgin@Q such thatg) 2 73 @,

> ¢}, and [0 |4 = [, Lemma 6 implies

d
q1 ~qa, and|oy ] e = ).
Let oo = oh:0:04. S|nceq2—>q2 =% qz, qgaz—z?qz
d
whereq| ~q¢b. From |o}:0]4a = |05:0]| 44, |07 ]4a =

[| = [0% ] aa, and the fact thadom(i;) = d impliesi; = iy
(~ isreflexive), it follows that o1 :i1 | 4a = |02:i2]4,. O

Lemma 9. Forall d € D, q1,¢2,¢; € Q, t1,12 € I*,
i1,10 € I, anda1 e A, if 110 gr}’d 12119, \_CYlJ] =1,
Q1 f‘ifh, and q; iy q’l, then there existev, € A* and
¢, € @ such thatg] Nq’2, qzoﬂ%qé, laa|r = o, and
LozlzilJAd = LOLQSiQJ Ad -
Proof. Proof by induction over the structure af.

Case:t; = [|. Sincety:iy %“””d L2312, to must be[],
dom(i1) = dom(iz), anddom(iy) ~ d impliesi; = is.
Since a1 |r = [i1], there must exist; € O* such that

a1 = o1:1. Thus, Lemma 8 implies that there must exist

022

o2 € O* andg, € Q such thatg, = ¢}, qiifé, and
La'lzilJAd = LO’Q:iQJAd. Since LO’QJ] = [], LUQSiQJ[ =
12:12. Thus, the result holds withy = o5.

Caseiy = i}:t}. Sincery %ﬁ”’d L2, there must exist, €
I andi, € I* such thaty = i5:05, ¢} Zﬁ” 4t dom(i}) =
dom(i}), anddom(i}) ~ dimpliesi} = i}. Since|lay |1 =
11 = dq:4, there must exist; € O* anda1 € A* such that

/
L ’ ’ //0‘1 iy
ay = oy, oy = ¢, andgy ! q] = q}.

Slncedom(zl) = dOm(’Lz) dom(i}) ~ d impliesi| =
i5 1 < 2, andgy 24 q{, Lemma 8 |mpI|es that there ex-
istsg € @ andoy € O* such thay 4 4, q2 721t ¢4 and
lo1:8) | aa = |02:95] ga.

Since ¢} 41 %T,”’d thig, |oq]r = qlwqé’, and

qy o q1, the inductive hypothesis implies that there must

//0‘2 i2

exista, € A* andgy, € @ such thatqiiq’g, a4 == ¢,
lag]r = 13, and|ad:ir] 4e = [ajiz] Ad-

Let ap = o09:h:ab. Sinceq 721 ¢y and ¢4 iz @,
q2a2—>:12q§. Sincewy = ih:h and|ab] 4a = vy, [az] 4a =
L. Since |o1:i]]4a = |o2:ih]|4a @nd [ofiig|ge =
LOL/QZZ:QJAd, LO’l:'L’&iO/l:'L'lJAd = |o2:thiadia] 4a. That is,
|u1:i | ga = |@2tin] ga. O

Theorem 2 is a corollary of the next lemma.

Lemma 10. Forall d € D, 11,12 € I*, 0q € A*, andq; €
Q, if 11 gﬁ’d L2, qo i’q1, and \_CYlJ] = 11, then there

exists, € A* andgs € Q suchthay =2 ga, |21 = 12,
and \_aled = \_CMQJAd.
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Proof. Consider the case whera = af:i1:01:0:07 with
oy € A%, iy € 1, andal,ai € 0%, 0 € O,dom(o) = d
and|o} | 40 = [] SInCEqQ —>q1, there must exisf}, ¢

;) 01:0

Q such thagy 5 q —qf L.

Since a1 |1 = 1, it must be the case that = ¢}
where, = |a)];. Furthermore, since; 2477 1,
L1 11 X7 d t2. This implies thats must have the form
th:i5 wheredom(iy) = dom(iz) anddom(iy) ~ d implies
thati; = 5. Thus, by Lemma 9, there must exisf € A*
andg, € Q such thaw, < g, g0 “2 g5, ah) s = ib, and
LOélllilJAd = LO[/Q:iQJ Ad-

Sinceq} 2 ¢, andg, 2% ¢/, Lemma 7 implies that there

) 02:0

must existoo € O* andg: € @ such thatgy — go,
nd d _
4{ ~ ¢z, and[o1] 4a = |02] 4a.

'
t'_f(t a = alyizioyio.  Since go 25 ¢} and
G—q2 qo—q. |az]r = |ayixoo]; =
|_04I2J]Zi2 = leiig = 2. Since |_04I12i1JAd =
lagiiz| ga, |o1]as = |o2]ae, @nd |o7]4e = ],
oo qa = |ohtigioa:0] 40 = |dbiia]gai|o2] gqai0 =
|ri1 | gaz| o1 gai0 = | ii1:01:0:00 | qa = |1 ] ga.

In cases where; is not of the formn} :41:01:0:07, SOMe
subset of the above arguments are sufficient to achieve the
same result. O

B Proof of Theorem 3

First, we must define some new notation.
Let ¢, d'/%.(; qe for d':6 € D* iff ¢4 5;(13 andq3r‘§q2. Let

q%q hold for alld andgq. ForD’ C D, let¢; §q2 iff there

existsd € (D')* such thaty "Z\:JQQ.

ForD’' C D, let D’ /4% d mean that for ald’ € D',
d +1d.
Lemma 11. For all D’ € D, a € A* andq,q¢ € Q,
if the the state-based dynamic poliey is a non-revoking
safe approximation of the dynamic polisy, ¢ — ¢/, and
D' /7 d, thenD’ 49 d.
Proof. Consider eacll’ € D’ separately, this follows from
the contrapositive of the fact that is non-revoking. [

Lemma 12. Let ~~ be a state-based safe approxima-
tion of the dynamic policy» for some automatom =
(I,O,D,dom,Q,qo,—~). Foralld € D,q1 € Q, t1,12 €
I*, i1,io € I, anda € A*, 1T d 1919,
la]r = ¢, and qoﬂql, thendom(iy) ~~% d implies

11 = 12.

if 011 =

vy

Proof. Sincey:i; 2 Ty, dom(iy) = dom(iy)
anddom(iy) ~*" d impliesi; = i5. Since~- is a safe



approximation ok andqy =2 ¢;, dom(iy) 2444 d im-
pliesdom(i;) ¥~ d. Thus, by taking the contrapositive,
dom(iy) ~% dimpliesdom(iy) ~+*1'% d. This means that
dom(iy) ~% dimpliesiy = is. O

In each of the following lemmas let~- be an

dynamic unwinding relation for the automaton
(I,0,D,dom, @, g, —) and state-based dynamic poliey
where~ is a non-revoking safe approximation of the dy-
namic policy~.

The next two lemmas just raise up the second two un-
winding conditions to work over sets.

Lemma 13 (Set Step Con5|steny):or alld € D, D’ C
D,i e I,andq1,q¢i,q2 € Q, if q1Nq2a (J1—’Q1: and

D' 7%»‘11 d, then there must exigt, € Q such thaig, 7 d
d
andq; ~ 3.

Proof. We will actually prove the following slightly
stronger statement: For all € D, D’ C D,é € (D),

i € I, andq,qi,q2 € Q, if q1~q2, a1 7(11, and
D' 44 d, then there must exigt, € Q such tha, %’ e

andq; %%-
Proof by induction over the structure &f
Case:é = []. In this casey = ¢2. Thus, letg) = ¢}.

Theng, % ¢, by definition.

Case:§ = d':8'. In this caseq 5;(13 and Q3§;QQ for
somed’ andgs. Sinced’ € D', d’ +% d. Thus, by Step
Consistency, there must exisiza such thaig; %qg and
q gqg. By the inductive hypothesis, there must exfste

@ such thaiy TZ» g5 andgs § ¢5- Thus,qy d,%, @>- =

Lemma 14(Set Output Consistenyfor all d € D, D' C
D,o € O, andq1,4¢},q2 € Q, if dom(o) = d, Q1§Q2.

Qn %qi, and D' % d, then there must exigt, € Q

such thatg, % ¢y andd; §, @b

Proof. We will actually prove the following slightly
stronger statement: Forall € D, D’ C D, § € (D)*,

o € O, andqi,q1,q2 € Q, if dom(o)

d
d! q1 ’E‘QQ;

¢ %qi, and for all D’ 4% d, then there must exist

¢4 € Q such thaty, % ¢, andq) %qg.
Proof by induction over the structure &f
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Case:é = []. In this casey = ¢2. Thus, letg) = ¢}.
Theng/ % ¢, by definition.
Case:§ = d:¢0'. In this casequv/qg andq3§q2 for

somed’ andgs. Sinced’ € D', d’ 4% d. Thus, by Output
Consistency, there must exisiya such thaig; %qg and

a1 fli/qg. By the inductive hypothesis, there must existe

Q such thaiy, %» g5 andgs § q5- Thus,q; d,i_é, Ga- -

Now we raise Step Respect to work over sets.
Lemma 15(Set Step Respectforall d;, dr € D, D' C D,
11,22 eI, andql,ql,lh €qQ,if dom(zl) = dom(zz) = ds,
I & ' q2, @1 —>q1, de € D', and D’ 7%»41 ds, then there

must existy; € @ such thaig, 7 g5 andg) 5 5.

Proof. Since Qs L g2, Set Step Consistency (Lemma 13)

implies that there must exist@ such thaty, —> ¢4 and

; de

qi ~ q2 By Local Respect, there must emsd;@such that

d
% —>d g5 andgy ~ qé
t

Since ¢} B‘quz, there must exist € (D’)* such that

d . d d .
q~qy. S|nceq’2’:;‘q§, 4} 5~; ¢5. Thus, sincel’,ds € D/,
£ g
d
0 > G- O

The next five lemmas mirror the corresponding five lem-
mas (Lemmas 5 to 9) of Section A.3 very closely.

Lemma 16. Foralld € D, D' C D,o € O, 01 € O*,
. d

andqi, 91,42 € Q, if dom(0) = d, [o1]as = [l &1 > @2,

q 25 ¢,, and D’ 49 d, then there must exist, € O*

andg¢, € Q such thaig, 22 ¢4, ¢} /q’2, and| oz 40 = [].

g1:0

. o
g1 — ¢; implies thatg, T a
Thus, by Set Output Consistency (Lemma 14), there must
existq, such thaty, %» A andq’1 2 g @2 %» q, implies

O

Proof. Since|o | 40 = ||,

020/

that there exists, such that, = ¢4 and|o2 | 4« = []

Lemma l7. Foralld € D, D’ C D, iy1,i3 € I, 01 € O*,
* d
andq1,¢5,q2 € Q, a € A*, if |o1]a, = ||, @ a2
@ 24 ¢4, dom(iy) = dom(is), dom(iy) ¢ D' implies
11 = 4o, and D’ 4% d, then there must exist; € O*

andgj € Q such thaig, % ¢, ¢} ,q/2, and|o2] 40 = [J.



o1t /

Proof. |o1|4a =[], 1 — ¢} implies thatg; %q’l. Con-
sider the following two cases:

e dom(iy) € D'. SinceD’ 4% d, dom(iy) % d

I/1

a —
|mpI|es that there existsy € O and¢, € @ such that

Jd=[]-

Srnceq1 £ . g5, ql, and|of] 4« = [, Lemma 17

a5 z% 5 ‘J1 ‘J2, and| o5

Thus, by Set Step Respect (Lemma 15, there must exist

g5 such that —> a3 and‘h < QQ

e d ¢ D'. Set Step Consistency (Lemma 13) implies t
same thing in this case.

In either casegs %q’z implies that there existss such

thatg, Eqé and|oz] 4a = [|. -

Lemma 18. Foralld € D, D' C D,o € O, 01,04 € O%,
andqi, ¢}, q2 € Q, ifdom(0) = d, 1 g{ G2, 1 25 ¢}, 00 =
|o1] 44, @and D’ 7%»‘11 d, then there must exist, € O* and

¢, € Q such thaig, 253 ¢4, ¢} gqé, and|oz] 40 = 04.

Proof. Proof by induction over the structure @f.

Case: 04 = . The result follows directly from
Lemma 16.

Case:oq = o’:0). In this caseg; must have the form
o} o—l where Lo—led = [J and |¢} |4« = o). Since

a1 22 ¢}, there must exis}, such thatg; LS qy Mqi.

By Lemma 114/ 25 ¢/ implies D’ 44 d

By Lemma 16 there must exist, € O* andg¢y € Q
such thatg, % ¢f, ¢/ £ 7, and [} 4 = [. By the
inductive hypothe5|s there must exagt € O* andg; € Q

such that —>q2. q1 £ qg. andtazJAd = oy).

Let oo = o0h:0":0y. ¢ 2 q2 and ¢§ —?qé implies
G2 7=y |obJaa = [ and [05]4a = o implies
o2 qa = |05:0":04 | ga = 0':0)] = 4. O

Lemma 19. Foralld € D, D' C D, iy,i3 € I, 01 € O*,

. d o1t .
and gi,q1,2 € Q, if g1~ a2, @ 22 ¢, dom(iy)
dom(iz), D’ 4% d, anddom(iy) ¢ D’ impliesi, = is,
then there must exists € O* and ¢, € @ such that

/qé' and LO’ltilJAd = LUQ:iQJ Ad -

[ 7,2
q2 — q2! Q1

Proof. In the case wheré¢o; | 4« = [], the result follows
directly from Lemma 17.

Otherwiseg; has the formv!:0:07 wheres}, o4 € O*,
0 € O, dom(o) = d, and|o? | yae = [] Slnceq1 [
there must eX|st; € @ such thatg; 7o q) — 7 — q;. By

Lemma1lg) ol ¢, impliesD’ 49 d
By Lemma 18, there must exist, € O* andg}

d
1!
a1 Nsz

€Q

such thatg, 25 ¢/, and|o}:0] g4a = |0h:0] aa.

he
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dz

Let 03 = oh:0:0Y. Sinceq, —>q2 =% q2, G2 —
whereg/ ,;i d,. From|o}:0]aa = |0h:0|aa, |07 aa
] :/Lag’JAd, and the fact thadom(i1) = d impliesi; = i
(~% is reflexive, sal ¢ D’), it follows that | oy :i1 | 4a
|_022i2J Ag-

O

Lemma 20. Foralld € D, D' C D, q1 € Q, 11,2 € I*,
11,12 € I, anqu € A if D' = {d e D |d /9 d},
iy 27 1gtia, lan |1 = 0, andgo ©Y g1, then there
existsaz € A* andgz € Q such thatqlg/qz, %0 == g2,

|_042J] = L9, and LOéllilJAd = Lagzingd.

Proof. Proof by induction over the structure af.

Case: []. Sinceu:iq = T d L9119, Lemma 12
yields thatdom(i;) ~»% d impliesi; = i5. Also, 12 must
be[]. SinceD’ = {d' € D |d % d}, dom(iy) ¢ D’
impliesiy, = i5. Since|ay |1 = [i1], there must exist; €
O* such thato; = o4:4;. Thus, Lemma 19 implies that
there must exist, € O* and¢, € Q such thaigy 2% ¢o,

d . . .
q1 BJ/(]Q, and |_01221JAd |_02:Z2JAd' Since \_O'QJ] = [],
|o2:ia |1 = t2:i2. Thus, the result holds withy = o9.

4 5, there must exist

ot

Caseu; = i}:/}. Sincer; =7
iy € I ande, € I* such that = dyus, ) = th,
dom(i}) :_dom(z"z), anddom(i’l) ~stiii g |mpllesi1 =
5. Following the same logic as above, this allows us to
conclude thatlom(¢}) ¢ D’ impliesi] = .

Since|aq|r = 11 = i}:y, there must exist; € O*
and o/l 6 A* such thata; = o)), )] = 4,

’s
/Ocl.’Ll

and go % ¢; ™5 g1
D’/ 7Aql

Slncedom(zl) = dom(zg) dom(i}) ~% dimpliesi| =

By Lemma 11,¢, =% ¢; implies

ih, %5 L -+ qo, andqo e q1, Lemma 19 implies that there

existsg, € Q andoy € O* such thaty] E/ ah, Qo &% q2
and|oy:i) | 4a = [02:05 ] 4a.

. ) ~ . d
Slncer’l:zl =4 d thita, |lay]r = 4, q{wqé, and

q an q1, the inductive hypothesis |mpl|es that there must
exista, € A* andgy € @ such thatql 4 ' g2, b iy 02,
lab |1 = b, and|af:iy | 40 = [ahria] 4a.

o .
. . o2 s
Let ay = oyiibh:ab. Sinceqy — ¢, and ¢b == o,

Qo 222 go. Sincewy = iyl and | o] aa = i, [an) ad
L. Since |o1:) |40 = |o2:ih] 40 and [af:iq | 4a



That is,
O

|abiia] aa, |o1:d):0d i1 | g0 = |o2iib:dyiia] ga.
|_041:i1JAd = LO(QZiQJAd.

Theorem 3 is a corollary of the next lemma.

Lemma 21 Forall d e D t1,t2 € I*, a1 € A*,andq; €
Q, if v = hd L2, Qo —% ¢, and [aljj = 11, then there
existsy € A* andg, € Q suchthaiyy =2 ¢o, || = 1o,
and LalJAd = LO{QJ Ad.

Proof. Consider the case where = af:i1:01:0:0] with
af € A%, i €1, Ul,cri € 0% 0¢€0, dom()—d and
AN [] SInCer —>Q1, there must exisy;, ¢f € @

/o110 g

such thae == ¢; ™% ¢ 5 q1.

Since|aq|r = ¢ anday = af:ig:oq:0:0%, it must be
the case that; = ¢:¢;. Furthermore since %ﬁ’” d L2,
t2 must have the formj:i, for some., € I* andiy €
I. Thus, by Lemma 12, this means thim(i;) ~% d
impliesi, = iy. LetD' = {d' € D | d »% d}. By

;7 910 gy

Lemma 11,¢) =5 ¢ implies D’ 4% d, andq} 23 ¢/
impliesD’ 4% d
By Lemma 20, there must exist, € A* andg} € Q

such thaty, g/qé, 2022 qb, lab]r = b, and| oty | 4a =
lahiiz] ga.
Since q; ~ £ g5 and ¢} 7= ¢, Lemma 18 implies that

) 02:0

there must eX|sd72 € O* andg, € @ such thaiy, = g2,
i d d _
q1 5 g2, and[o1] 40 = |02 aa.

‘s
Let ax = ahiigiogio. Since qo%—ﬁwq’2 and
G52, qo—>q loo)r = |abtisiono); =
lab|ria = thiis = 1o Since |af:ii|4e =
[0z ao, Lo1)as = loa)as, and [oflas = [
ag|aa = |abiisio2:0|4a = |abiia] gai|oa] a0 =
laqzin] aaz[o1] aaio = |adririonioio) | 40 = LalJAd

In cases where; is not of the formn :41:01:0:0%, SOme

o [a]
subset of the above arguments are sufficient to achieve thejo e q q el and.

same result. O

C The Correctness of Our Approach

First, we must relatenodel(s) and autom(s). Given
the model model(s) = (I,0,D,dom,Q,qo, —),
let  J(model(s)) be the system  automaton

<I707D7dom7Qaq01_>> Where QIE’QZ Iff q1 %QQ or

a
bamnd .
Q1FQQ

Lemma 22. For all programs s, J(model(s)) and
autom(s) have the same set of behaviors.
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This lemma means that if we can prove tBanodel(s))
obeys some policy, then we know thattom(s) obeys that
policy.

Now we must more formally define our approach to pro-
ducing a pol|cy frommodel(s).

Letq NN q iff
e there existd such that eitheq % q" orgq % q",and

o g’ Rl q.
I
whereq - ¢’ only if ¢ = ¢'.

Letq»Hq iff

. q%q" Orq%q”, and

I :
whereg e q onlyif g =¢.

Let statePolicy(s) be the state-based dynamic poliey
whereds ~? d, iff there existsa;,az € A* anda € A
such thaty N q >—[>l—;>]—> q"’ e q. This means thaf; ~~7 d
for any statey such that it is reachable from a transition that
produces the booledhand that transition is reachable.

policy(s) is statePolicy(s) lifted from working on states
to input sequences. Leblicy(s) be the input-based dy-
namic policy~ whered; ~* d, iff there existsay, as €

A*, anda € A, andg € @ such thatq0>—>—>—>q q F[H]_)q ,

q” >—>—>—> q, and, = LO&:CLJ[.

Lemma 23. For all programss, statePolicy(s) is a non-
revoking safe approximation pblicy(s) for 3(model(s)).

Proof. Letpolicy(s) be~ andstatePolicy(s) be~-. df ~*
d; iff there existsae € A*, anda € A, andg € @ such that

|ccalr. Thus, ifde ' dy,
then there does nat € A*, a € A, andg € @ such

[a] .
thatq0>—§—>q’, q’H:j%q, and: = |a:a]r. If gg—q in

I(model(s)), then it must not be the case tf@@t»%a ¢ and

q i%L q. Thus,ds /17 d;.
It is non-revoking because of how any states reach-

able from a statey whereds ~~ d; has been added to
statePolicy(model(s)) also hasls ~~ d; added. O

Before proving Theorem 4, we must prove that for all
programss, 3(model(s)) obeys the DIINI policypolicy(s).
Since the above lemma tells us thattePolicy(s) is a non-
revoking safe approximation @blicy(s) for 3(model(s)),



we may use the unwinding conditions to prove this. First,
we explain the unwinding relation we will demonstrate, and
then we prove that it indeed satisfies each of the unwinding
conditions.

Recall that we have limited our construction to extracting
the policy for whends flows d;. Thus,statePolicy(s) has
dy ~1 dy for all ¢ whend; # df ords # di. Thus, the
unwinding conditions places no requirements on sdgch

andd,. That is, ¢ 7 4 g2 must only be defined for the case

whered; = d; andd2 = ds for our unwinding condition.
Thus, to streamline notation, we usually drop the domains
and just writeg; ~ ¢o.

Given two storeg’; andl'y, letT'; =" Iy iff forall z €
X such thaty(z) = T, T'1(z) = T'z(x). Let the dynamic
view partition~ be such thatl'y, ¢1,71) ~ (T'a, b2, n2) iff
£y = Uy, m = o, andl’y =™ T'y. We will show that~ is
an unwinding relation.

Lemma 24. ~ has dynamic local respect fal{model(s))
andstatePolicy(model(s)).

Proof. Since 3(model(s)) is constructed frommodel(s),
the only transitions ifl(model(s)) of the formg 2 ¢; come

from a transition ifmodel(s) of the formg % g1 forb=T

or b = F. Since the transitions ahodel(s) come from
>s>, we may examine the definition of-> to find when

transitions of the forn’q%ql are possible. These are

only possible when there exists a statemgnthat is a
sub-statement of (or equal tos) such thats’ has form
read(z, d).Furthermore,the statemust have the form
(T, pre(s’), m)

By requiringdom(i;) to beds, we further limit of the
formof s’ tor ead(z, dr) and the form of; to (i, df, n1
for somen;. Also the boolead must beT. This implies
that ¢g; has the form(T'[z +— ny],post(s’),n[z — F]).

Thus, |fq—>q in 3(model(s)), it is because]%»ql in

model(s) wherezl andgq; are of the above form.

For another input, to be such thatlom(iz) = dy,
it must have the formi, dg, ny) for somensy. Let g2
(Tlx — n2] post(s),n[x — F]). By the construction of

>85>, q>—>q2 ThUS,q—>q2 in 3(model(s)).

Slncen[:c — F](z) = F andl[z — n1] andl'[z — no)
agree on all other variableE[x — ni] =" T'[z — na].
ThUS,ql ~ 2. O

To prove step consistency we must strengthen the hy-

pothesis and introduce some additional concepts.

~1 <~ if wheneverds ~1 dy, ds ~~{ di. Note that
~~1 may be defined for more states tha. ~~; < ~q
implies that if~-, is defined ay andds /1 d., thends 3
ds.
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Let¢qq 7(]2 iff
® q1= g2,

e g1 > ¢ andq — 2, OF

e ¢ > ¢ andq - g2 Wwheredom(o) # d.

First we prove a key lemmato Step Consistency and Out-
put Consistency. One can views step Consistency as requir-
ing two states that are related bywill transition to other
related states. Likewise, Output Consistency requirets tha
two related states transition to two other related staties af
producing an output. Under this view, the next lemma re-
quires that two related states transition to two other eellat
states upon finishing the execution of a statement.

Lemma 25. For all statementss and s’ where
I(model(s)) (I,0,D,dom,Q,qo,—~) and s’ is a
sub-statement ofs, state-based dynamic policies-,
storesI"}, independence predicateg, ¢1,¢},92 € Q,

dJstatePolicy(model(s)), ¢q1~q2, @ - q1,

¢ (T, post(s'),n’), and di % d,, then there
must existy, € Q such thaty, — ¢, andq) iléqg.
t f

if  ~

Proof. Since ¢; ~¢g2» we know thatg¢, has the form
(T'1, ¢, 7n) andgs the form(T's, ¢, ) wherel';y =" I's.

Proof by induction over the derivation ofs>.

Case: s has the formr:=e. Sinceq; Tq’l, £ must be

pre(s). Furthermorel} must bel'1[z — T'i(e)] and?’
must ben[z — n(e)].

Let ¢4 = (I'slx — Ta(e)], post(s),n[z — nle)]).
¢2 > ¢} by the construction ofnodel(s). If ( ) =T, then
I'i(e) = I'y(e) sincel’; =" T'y. If n(e ) F, thenn[z —
n(e)](z) = F Either way,I'i[z — Ty(e)] =nlz—n()]
Ta[z — T'a(e)]. Thus,g) ~ db.

Case: s has the forntr ead( xz, d) with df # d # d;.
In this caseg; cannot make a transition without consuming
input. Thus, this case is trivially satisfied.

Case: s has the fornread(z, d) with d =
d = d,. Ditto.

Case:s hasthe fornpri nt (e,
7 qul' £ must bepre(s).

df or

d) with d # d;. Since
FurthermoreI} = I'; and

n =n. Letgh = (', post(s),n). g2 = ¢, by the construc-
tion of model(s) andgj ~ ¢5.

Case: s has the formprint (e, d;). In this casep;
cannot make a transition without producing outputdto
Thus, the statement is trivially satisfied.

Case: s has the forms,; s,. SincelL; is the disjoint
union of L, Ls,, and{pre(s), post(s)}, one of the follow-
ing cases must hold:



e ¢; andq; are both inQ,. statePolicy(model(s)) < The same holds evenif(e) = F as long and’;(e) =
statePolicy(model(s,)) sincemodel(s) has at leastas T's(e).

many transitions under a true booleanmasdel(s,). If d¢ ~% dy, then we need not prove anything since it
The needed result follows from the inductive hypothe- violates a premise of the lemma. Note thatit) = F
sis. and eithers, or s, contained avhi | e loop, ar ead state-

ment, or a statement of the forprint (e, d;), then
statePolicy(model(s)) would allow information to flow
from df to d; at ¢;. SincestatePolicy(model(s)) is non-
revoking andy — q}, the same would be true gt. Since

e g1 andg; are both inQy. statePolicy(model(s)) <
statePolicy(model(sp)) sincemodel(s) has at least as
many transitions under a true booleannasdel(sy).
The needed result follows from the inductive hypothe-

sis. ~~ statePolicy(model(s)), di ~% d; would be true.
, . Thus, we have dealt with these cases.
* @ € Qs andg; € Q. Sinceq R and the con- This leaves the case when¢e) = F, I'1(e) # T'z(e),

struction ofmodel(s), there must exist a stage, of the and neithes, nor s, contains asvhi | e loop, ar ead state-
form (T'14, post(sa),m12) and a statey;, of the form ment, or a statement of the forpri nt (e, d;). Since
(T'1a, pre(sp), mia) such thaly, — qia = qip — ¢} - there are no ead statements, all the transitionsdpandsy,

] . e e _aretransitions that the automaton has control over and ther
By the inductive hypothesis, this means there exists j5 no chance of a transition being blocked by a user not of-
a stateqz, such thatg; —- gz andqia ~q2a. TS fering input. Since there are mdi | e loops, onces, or sy

implies that the form ofge, is (I'2a, post(sa), M1a)- is entered, they will surely be exited. This means that there
Thus, by the construction efodel(s), goa = gop Where ~ MUst existy; such thaty o gz andgy = (T', post(s), n’)
q26 = (I'2a; pre(sp), 11a)- for somel', andr’. Sincel'; =4 Ty andy’ assigns" to any
Since q1p ~ qop, the inductive hypothesis again ap- variable altered in eithey, or sy, I'} =" T'. Thus,q] ~ 5.
plies and there must exig such thaigzy, Tt>q’2 and Case: s has the formmhi | e(e) s, with T'y(e) # 0.

If nle) = T, thenTi(e) = T'z(e) and the inductive
hypothesis may be applied ta,. If n(e) = F, then
e 1 € Qpandg; € Q.. Sinceqy Tq’l cannothold in  statePolicy(model(s)) would allow information to,flow

t from ds to d; atq;. As above, this implies that; ~~% d,
and thus the result is trivially true.

q1 ~ qs-

this case, we need not consider it.

e ¢ has the formI';, pre(s),n) andq; is in Qa O Qb. Case: s has the fornwhi | e( e) s, with T'; (¢) = 0. The
Sinceqi ~ g2, g2 must have the formiI's, pre(s), n) case is proved as the previous one was.
wherel'; =" T's. By the construction oi(model(s)), O
q1 1} q1a where dia = <F1, Pre(Sa), 77> and q2 I’ q2a
where gz, = (I'2,pre(sa),n). Sinceqia~g2a and Now we prove a result slightly stronger than Step Con-
they are both ird(model(s,)), the proof continues as  sistency.
above.

Lemma 26. For all statementss where 3(model(s)) =

H H !
eq is in Qi or Q and ¢; has the form (I,O,D,dom,Q, qo, ), state-based dynamic policies,

! ! !
(I, post(s),n').  If @1 A Y then ¢; g, Db q1,4,,q2 € Q, andi € I, if ~ <statePolicy(model(s)),
where g1, = (I, post(sp),7'). Thus, as argued g, ~ gy, ¢, —> ¢}, andd; 4% d,, then there must exist
above, there existg, = (I',, post(sp),n’) such that de _ .
. T t
q1b ~ q2b. By the construction ofodel(s), qip — ¢} g5 € Q such thaty, Tq'g andg} zqé-

andgap = g5 wheregy = (I'y, post(s), ). ¢; ~ g5
Proof. Since ¢; ~¢2 we know that¢; has the form
!
o qllhas the fOII’m<l"1,p.re(s),77) _and q; has the form (U1, ¢,n) and (Ts,0,n) where[', =" Ty, Letq, —=
(T}, post(s),n’). In this case, just use the arguments (), 1),

found in the two cases above. Proof by induction over the derivation ofs>.

Case: s has the formi f () s,el sesp. If n(e) = T, Case: s has the formz:=e. In this caseg; does not
thenT';(e) = I'z(e) sincel’; =" T',. In this case, the re-  transition to any other state under an inpum model(s).
sult follows from using the inductive hypothesis ep if Thus, the statement is trivially satisfied.

T'i(e) # 0 and ons, if T'1(e) = 0 and the methods used Case: s has the fornr ead( z, d) with df # d # d;.
above for dealing with the cases where has the form In this case, fory to transition tog;, £ must bepre(s) and
(T'q, pre(s),n) or q; has the formT"}, post(s), n’). ¢’ must bepost(s). The inputi must be of the forndi, d, n).
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Furthermorel} = I'1[z — n] andn’ = nlz — T|. This
means thag has the formT'z, pre(s), n).

Let ¢ = (I's[x +— n], post(s), n[x — T]). Sincel’; ="
Ty, T1]z — n] ="~ Ty[z +— n]. Thus,q| ~ ¢, and
) dL> ¢ in 3(model(s)).

C:ase: s has the formr ead(z, d) with d = df or
d = d;. In this case, fog; to transition tog], ¢ must be
pre(s) and¢’ must bepost(s). The inputi must be of the
form (i,d,n). Furthermorel} = T'i[z — n] andn’ =
nlz — F]. This means thaf, has the formTs, pre(s), n).

Let ¢4 = (I's[x — n], post(s), n[z — F]). Sincel’; ="
Iy, T2 +— n] =" Ta[z — n]. Thus,q} ~ ¢4 andgs # ¢

in 3(model(s)).

Case: s has the fornprint (e, d) withd # d;. In
this casey; does not transition to any other state under an
inputi in model(s). Thus, the statement is trivially satisfied.

Case:s has the fornpri nt (e, d;) . Ditto.

Case:s has the forns,;  sp.

Since L; is the disjoint union ofL,, L., and
{pre(s), post(s)}, one of the following cases must hold:

e ¢; andg; are both inQ,. statePolicy(model(s)) <
statePolicy(model(s,)) sincemodel(s) has at least as
many transitions under a true booleanmasdel(s,).
The needed result follows from the inductive hypothe-
sis.

q1 andg; are both inQyp. statePolicy(model(s)) <
statePolicy(model(sp)) sincemodel(s) has at least as
many transitions under a true booleamasdel(sy). .
The needed result follows from the inductive hypothe-
sis.

@1 € Q. andg] € Qp. Sinceq; %QQ and the con-

struction ofmodel(s), there must exist a stage, of the
form (T'1a, post(sa), ma) and a statey, of the form

(T'1a, pre(sw), ma) such thaty; — a 5 qib % q;-
By Lemma 25, this means there exists a staie
such thatgs G2 andq;, ~ g2a. This implies that

the form of go, is (I'2a, post(sa),m1a). Thus, by
the construction ofmodel(s), ¢2a L gop Wheregop, =

(T'2a, pre(sp), ma)-

Sinceqip, ~ qap, the inductive hypothesis an applies
as above and there must exgtsuch thatys, Ti» ¢4

andq; ~ g;.

@1 € Qp andg; € Q,. Sinceq; Ti>q§ cannot hold in
this case, we need not consider it.

q1 has the formI'y, pre(s),n) andg] is in Q, or Q.
Sinceq; ~ q2, g2 must have the formIs, pre(s), )
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wherel'; =" I'y. By the construction ofimodel(s),

T T
q1 — {q1a where dila = <Fla pre(sa)a 77> and 42 7 Q2a
wheregs, = (I, pre(sa), n). Sincegi, ~ g2, and they
are both irdmodel(s,), the proof continues as above.

e ¢, has the form(T"}, post(s),n’). ¢1 7i>q’1 is impos-
sible in this case, so we need not consider it.

Case: s has the formi f (¢e) s,el sesp. If n(e) = T,
thenT';(e) = T'2(e) sincel’y =" T's. In this case, the re-
sult follows from using the inductive hypothesis ep if
T'i(e) # 0 and ons, if T'y(e) = 0 and the methods used
above for dealing with the cases where has the form
(T'q, pre(s),n) or ¢; has the formT, post(s), n’).

The same holds evenif(e) = F as long and™ (e)
Fg(e).

As argued in Lemma 25, cases whefe) = F and ei-
ther s, or s, contains awhi | e loop, ar ead statement,
or a statement of the forpri nt (e, d;) are handled by
the construction oftatePolicy(model(s)). However, if no

. K2
r ead statements are iy, or sy, then clearlyy; 7 q; can-
t

not hold. Thus, all cases have be covered.

Case: s has the formwhi | e(¢e) s, with T'1(e) # 0.
If nle) = T, thenTi(e) = Ty(e) and the inductive
hypothesis may be applied ta.. If n(e) F, then
statePolicy(model(s)) would allow information to flow
from ds to d; atq;. As above, this implies thai NAA
and thus the result is trivially true.

Case: s has the formwhi | e(e) s, with T'y(e) = 0.
Ditto. O

Now to prove a statement slightly stronger than Output
Consistency.

Lemma 27. For all statementss where 3(model(s))
(I,0,D,dom,Q, qo,—), State-based dynamic policies,
Q,q1,¢2 € Q, ando € O, if dom(o) = dy, ~
JstatePolicy(model(s)), q¢1 ~ g2, ¢1 %qi, andd; A%

di, then there must exigt, € Q such thatgy T‘)»qé and

g %
1d(

-
Proof. Since ¢; ~¢2 we know that¢; has the form
(T'1,¢,m)y and (T'2,£,n) whereT'; =7 T'a. Let ¢}
(T, 0,0,

Proof by induction over the derivation ofs>.

Case: s has the formz:=e. In this caseg; does not
transition to any other state under an inpuh model(s).
Thus, the statement is trivially satisfied.

Case: s has the forntr ead( x, d) with df # d # d,.
Ditto.

Case: s has the fornr ead( z,
d = d;. Ditto.

d) with d = df or



Case: s has the fornprint (e, d) withd # d;. In
this caseg; will only transition to another state under an
outputo such thatdom(o) # d;. Thus, the statement is
trivially satisfied.

Case: s has the formprint (e, dy). 1 >¢, if o =
(0,d,T'1(e)), Ty = Ty, £ = pre(s), ¢’ = post(s), and
n'=mn.

If n(e) = T, T'1(e) = I'z(e) sincel’y =" T'y. Letg), =
(T2, post(s), 7). g2 = g5 andg; ~ gj.

If n(e) = F, thenstatePolicy(model(s)) would allow
d, access tals at ¢;. Since~» <JstatePolicy(model(s)),
ds ~% dy. Thus, the result is satisfied trivially.

The remaining cases are as in Lemma 26 just replacing
L with 2. 0

Theorem 4 can now be proved:

Proof. Lemmas 24, 26, and 27 show thais an unwinding
relation forstatePolicy(model(s)) and3(model(s)). Since
by Lemma 23,statePolicy(model(s)) is a non-revoking
safe approximation opolicy(model(s)) this means that
J(model(s)) obeyspolicy(model(s)). By Lemma 22, this
means thadutom(s) obeyspolicy(model(s)). O
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