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Abstract

We examine a well known confidentiality requirement
callednoninterferenceand argue that many systems do not
meet this requirement despite maintaining the privacy of its
users. We discuss a weaker requirement calledincident-
insensitive noninterferencethat captures why these systems
maintain the privacy of its users while possibly not satisfy-
ing noninterference. We extend this requirement to depend
on dynamic information in a novel way. Lastly, we present
a method based on model checking to extract from program
source code the dynamic incident-insensitive noninterfer-
ence policy that the given program obeys.

1 Introduction

Given a multi-user system, a user might wonder how it
protects his privacy. Such a user would benefit from a sum-
mary of who else may use the system to access his informa-
tion and under what conditions. We hope to develop a tool
that automatically produces such a summery, or dynamic
confidentiality policy, from the source code of the program
controlling such a system. Before we may describe an ap-
proach to this problem, we must first consider what it means
for a user’s information to remain confidential.

Confidentiality Requirements. What must a system
keep secret to maintain the privacy of its users? No single
answer is correct for all systems: different balances of pri-
vacy and functionality result in systems with different con-
fidentiality guarantees.

Consider a system with a high-level userH and a low-
level userL, whom H does not trust. The userH desires
that the system guarantees that the userL has no way of
learning about the inputs ofH to the system. This guaran-
tee may be formalized as aconfidentiality assertion. Such a
formalization must make clear what exactly it means for the
untrusted userL to learn about an input ofH. Each differ-
ent formalization of this concept corresponds to a different
confidentiality requirement.

One of the most well known and earliest confidentiality
requirements isnoninterferenceas defined by Goguen and
Meseguer [7] and later extended to nondeterministic sys-
tems by McCullough [20, 21]. Informally, the confidential-
ity assertion that the userH is noninterfering with the user
L requires that the set of possible outputs seen byL is the
same regardless of any inputs provided byH to the system.
This requirement is so strong that the userL may not even
know if H has provided any inputs to the system.

Such a strong requirement is often too stringent, that is,
it places so much emphasis on privacy that it prevents some
systems from achieving a reasonable level of functionality.
In many realistic systems, allowing the userL to know that
the userH has entered an input into the system is acceptable
as long asL does not learn about the contents of the input. In
Section 3, we provide examples of such systems and present
a weakened form of noninterference that allowsL to learn
thatH has provided inputs to the system while still protect-
ing the contents of these inputs. We also formalize a weak-
ened confidentiality requirement based on this observation
that we callincident-insensitive noninterferencesince the
userL is allowed to learn of the incident of the input. Like-
wise, we call the original noninterference requirement of
Goguen and Meseguerincident-sensitive noninterference.

Dynamic Confidentiality Assertions. The confidential-
ity assertions described thus far have been static: they hold
between two users regardless of their actions. Often static
requirements cannot capture the confidentiality guarantee
that a system should make to its users. For example, con-
sider a system that stores emails for its users. The system
should not allow a user to read any of the emails unless
that user provides the correct password. To formally cap-
ture such a guarantee requires adynamic confidentiality as-
sertion, an assertion that some confidentiality requirement
should hold between two users unless some condition that
depends on dynamic information is met at runtime.

Along with noninterference, Goguen and Meseguer in-
troduced a form of dynamic confidentiality assertion [7]. A
dynamic assertion of their form declares that an input from
a high-level userH should remain unknown to a low-level
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userL unless some predicate holds of the inputs that pre-
ceded the input in question. Since the dynamic assertion
may only depend on the inputs that precede the input in
question, we term their formulationat-input-checking.

In the password example above, the dynamic assertion
should hold unless the userL enters the correct password,
an event that might occurafter the system has already re-
ceived an email (fromH). Since at-input-checking asser-
tions may depend only on inputs receivedbeforesuch an
email arrived, they cannot capture the needed assertion.

To fix this problem, we remove the requirement that the
predicate of a dynamic assertion may only depend on inputs
that precede the input in question. Under our formulation,
a dynamic assertion will require that an input be protected
until enough dynamic information is collected to rule oth-
erwise. This information may come at anytime as long the
input in question does not affect any outputs to the userL

until it arrives. If such input never comes, the input will
always be protected. We term this formulationat-output-
checkingsince at the time of an output, all the inputs that
have arrived may affect whether the output may depend on
some previous input, rather than just those inputs that pre-
ceded the input in question. In Section 4, we formalize this
new form of dynamic assertion.

Policy Extraction. A set of dynamic incident-insensitive
noninterference (DIINI) assertions defines a DIINI policy.
Given a DIINI policy, a programmer can take two different
approaches to ensuring that a program obeys the policy. In
the first approach, the programmer codes with the policy in
mind and manually inserts any dynamic checks that the pro-
gram must perform to ensure that the policy is obeyed. In
the second approach, the programmer abstracts the policy
enforcement mechanism from core application logic of the
program and configures the program with an explicit repre-
sentation of the policy.

While the first approach is usually easier to implement,
the second approach has many advantages. Firstly, an or-
ganization with an explicit policy may apply that policy to
multiple programs. Secondly, the decoupling of policy from
application logic allows multiple organizations with differ-
ing confidentiality policies to use a single program since
each organization may separately configure the program to
enforce its policy. Thirdly, having a centralized policy fa-
cilitates reasoning about the policy and editing it.

To gain these advantages for legacy programs written
using the first approach, the program maintainers should
convert them to use a explicit policy as in the second ap-
proach. A tool that aggregates the manually inserted dy-
namic checks used to ensure that the program obeys the
policy together into an explicit representation of this policy
would ease this conversion, especially for large programs.

Many other uses for such a tool exist. A system admin-

istrator could examine the extracted policy by hand or use
tools to answer queries about the policy. Furthermore, such
a tool could verify that an extracted policy meets the re-
quirements of a specified policy. Even in the absence of
a formal specification, change-impact analysis is possible:
given application code before and after some set of edits,
one could compare the extracted policies to ensure that the
program edits has introduced no new security holes.

In Section 5, we present an approach based on model
checking for this policy extraction problem. Our approach
tracks the flow of information through the program in
a manner similar to type systems that track information
flow [29]. However, our approach allows the same vari-
able to carry both high- and low-level information without
the low-level information being considered high-level pre-
venting an overly conservative analysis. Furthermore, our
approach attempts to rule out infeasible paths. While these
features matter little in the context of writing a program
with type analysis in mind, they become important in our
primary use case of extracting policies from legacy code.

Road Map and Contributions. The order of this paper
mirrors the development of this introduction: After han-
dling some technical preliminaries in Section 2, we mo-
tivate and present incident-insensitive noninterferencein
Section 3. Then we present our formulation of dynamic
confidentiality assertions in Section 4. With the notation of
dynamic confidentiality policy fully formalized, we at last
return to the original motivation of this work, automated
policy extraction, in Section 5. Lastly, we cover related
work.

The three main sections of this work each represent a
separate contribution:

• Section 3 motives the need for incident-insensitive
noninterference clarifies its relation to the original def-
inition of noninterference. (Since a similar confiden-
tiality requirement has appeared in the literature be-
fore [25], we do not consider the presentation of the
requirement to be our contributionper se.)

• Section 4 motives the need for and presents a more
general notation of dynamic confidentiality assertion,
which allows for the expression of realistic policies.

• Section 5 provides an approach to automated policy
extraction.

An additional contribution is that of unwinding conditions
for incident-insensitive noninterference in both its static and
dynamic form. Using unwinding conditions eases proving
that a system satisfies a noninterference policy. We demon-
strate their usefulness by employing them to prove the cor-
rectness of our approach to policy extraction.
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2 The System Model

Automata. The input-output behavior of a system deter-
mines what confidentiality assertions it satisfies. Agents
acting in varioussecurity domainscreate the inputs and re-
ceive the outputs. Each domain is a different entity or class
of entities that might interact with the system. For exam-
ple, the domains might beTop Secret, Secret, Classified,
andUnclassified for modeling the flow of information be-
tween security classes in a military system and if the actual
identity of the entity is irrelevant (only its security clear-
ance matters). For modeling the use of different resources,
the domains might beHard Drive, Network, andUser.

These domains interact with one another by using the
system. We will model such a system as an automaton. For-
mally, ansystem automatonm consists of

• a set of inputsI,

• a set of outputsO such thatI ∩ O = ∅,

• a set of domainsD,

• a functiondom : A → D that assigns to each action
the domain that created or received it where the set of
actionsA is I ∪ O,

• a set of statesQ,

• a start stateq0 ∈ Q, and

• a transition relation� ⊆ Q × A × Q.

We write q1
a
� q2 if 〈q1, a, q2〉 ∈ �. We writeq1

α
� q2 for

α ∈ A∗ if either

• α = [] andq1 = q2, or

• α = a:α′, q1
a
� q′1, andq′1

α′

� q2

where [] is the empty sequence anda:α is the sequence
formed by prependinga to α. (For example,a:b:[] = [a, b].)
Since we never have a list of lists, we abuse notation and
also use: to append lists and to add elements to their end.

The above automaton model is asynchronous and nonde-
terministic, which greatly complicates proofs about them.
We use asynchronous automata since programs often pro-
duce output for one user without producing it for other
users. We require nondeterminism since we have the end
goal of model checking in mind and model checking works
over a nondeterministic abstraction of an actual program.

Behaviors. Let the set of behaviors of an automatonm =
〈I, O, D, dom, Q, q0, �〉 be

behv(m) = {α ∈ A∗ | ∃q ∈ Q s.t. q0
α
� q }

Each behavior represents one way in which the system
might operate. Since each domain has control over its input
actions, each domain may affect which behaviors the sys-
tem can execute. Letι ∈ I∗ represent a sequence of inputs.
If the system is subjected to the inputs ofι and no other in-
puts, then the system may only execute those behaviors that
include all the inputs ofι in order and no other inputs.

To formalize this notion, let us first define therestrict
function⌊·⌋· : A∗ × 2

A → A∗. The restrict function takes
a sequenceα and a subsetA′ of A and returns the sequence
⌊α⌋A′ which only includes the elements ofα that are inA′.
Let ⌊α⌋A′ be defined as follows:

⌊[]⌋A′ = []

⌊a:α⌋A′ =

{

a:(⌊α⌋A′) if a ∈ A′

⌊α⌋A′ otherwise

whereA′ ∈ 2
A. For example,⌊[a, c, a]⌋{a,b} = [a, a] and

⌊[c, a, b, c, a]⌋{a,b} = [a, b, a].
The set of behaviors that are possible given a sequence

that provides all the inputs to the systemm is given byruns :
I∗ → 2

A where

runs(ι) = {α ∈ behv(m) | ⌊α⌋I = ι }

A domaind cannot observe all the actions of a system:d
can only observe those actionsa such thatdom(a) = d.
Thus, if the system executes a behaviorα, then the do-
main d only sees the sequence of actions⌊α⌋Ad where
Ad = { a ∈ A | dom(a) = d }. If two behaviorsα1 and
α2 are such that⌊α1⌋Ad = ⌊α2⌋Ad , thenα1 andα2 provide
the domaind with the same observations and thus look the
same to domaind. In general, if a domaind sees the action
sequenceα, d will only be able to tell that some behaviorα′

such that⌊α′⌋Ad = α was executed;d will not know which
one.

Let us raise⌊·⌋· to work over sets of sequences as fol-
lows: ⌊{α1, α2, . . .}⌋A′ = {⌊α1⌋A′ , ⌊α2⌋A′ , . . .}. Then,
if for two input sequencesι1 and ι2 of a systemm,
⌊runs(ι1)⌋Ad = ⌊runs(ι2)⌋Ad , then domaind cannot tell
between whenι1 or ι2 is the input sequence tom. This pro-
vides an opportunity to prevent a domain from learning the
inputs of another domain.

Adding Internal Transitions. A problem with the above
automation model is that each transition either results in
output or is the result of input. This limitation does not
allow internal transitions. To allow internal transitions, we
allow a distinguished actionτ /∈ A that represents an action
that no domain can observe. If the users may deduce the
execution of an internal transition (perhaps by timing), then
this model is inappropriate.

Since users cannot observe internal transitions, they
should not show up in the behaviors of a system and we
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must redefinebehv with this in mind. Letq
a

−→ q′ iff q
a
� q′,

or bothq
τ
� q′′ andq′′

a
−→ q′ for someq′′ Let

behv(m) = {α ∈ A∗ | ∃q ∈ Q s.t. q0
α

−→ q }

where−→ is raised to sequencesα in the same manner as
� was.

3 Noninterference

3.1 What is Confidentiality?

Consider the following simple program:

bool in = load("secret-file.db");
print(‘x’);

The first line reads in the contents of a secret file. The
second line simply prints the character ‘x’ to the low-level
user. If we model the reading of the secret file as receiv-
ing input from a high-level user, then this program fails to
meet the requirements of incident-sensitive noninterference
as defined by Goguen and Meseguer [7]. The reason is
that the low-level user does not see the output ‘x’ unless
the high-level user produces input, which allows theload
statement to stop blocking and terminate. Thus, the low-
level user has learned that the high-level user has interacted
with the system. This violation occurs even though the low-
level user clearly does not learn anything about the contents
of secret-file.db. (We formalize this example in Ap-
pendix A.1.)

We believe that in many cases allowing the low-level
user to know that the high-level user is interacting with the
system is acceptable as long as the low-level user does not
learn the contents of these interactions. Consider the fol-
lowing realistic examples:

• “Upon startup, a web server for online banking receives
financial records from a secure database before answer-
ing any queries from users.”

This web server violates incident-sensitive noninterfer-
ence since if the web server answers the user’s queries
with low-level outputs, the user will know that the server
has consumed high-level input from the database. This
violation holds even if the inputs consumed from the
high-level database did not influence the server’s re-
sponse to the low-level user. However, such a system
maintains an acceptable level of confidentiality since the
low-level user cannot learn what inputs the high-level
database provided to the server and the low-level user
learning that server has received high-level input only
tells the low-level user that system is working correctly.

• “A student is applying for graduate school online. During
the application process, both the student and the profes-
sors recommending him must enter information into the
application database. Once the recommending professors
have finished, the student receives a notice stating that the
graduate school has received his recommendations. The
applicant is not allowed access to his recommendation.”

The low-level student only receives the notice if the pro-
fessors have entered their high-level recommendations.
Thus, by receiving the notice, the student learns that the
system has consumed high-level inputs. This violates
incident-sensitive noninterference even if the content of
the high-level recommendation does not affect the con-
tent of the notice.

• “PhoneBook is a system produced by NS that organizes
phone numbers for a law firm. While adding a new con-
tact, PhoneBook reaches an error state. PhoneBook of-
fers to send a bug report to NS stating only that the sys-
tem failed to add a new contact. The law firm considers
any personally identifiable information about its contacts
to be private.”

Since the error state was reached during the addition of
contact information, the bug report indicates that the sys-
tem was receiving high-level contact information. Thus,
even if the bug report maintains the privacy of the con-
tacts by not providing any information about them, the
system will still violate incident-sensitive noninterfer-
ence by sending the bug report to NS, which is low-level.

• “A physician uses a computer to record his interactions
with patients. The physician enters into the computer
both the treatment rendered and the fee charged (the
physician negotiates the fee with each patient). The sys-
tem should only allow the physician to access the treat-
ment. However, the system provides the fee to his secre-
tary for billing.”

Since the low-level secretary receives a notice to bill a
patient from the system, he knows that the physician
has entered into the system a high-level input describ-
ing the treatment. This knowledge implies a violation of
incident-sensitive noninterference even if the notice does
not reveal any information about the treatment.

From these examples, it should be clear that often sim-
ply learning that some high-level input has taken place does
not provide the low-level user with enough information to
constitute a violation of the high-level user’s confidential-
ity. However, most confidentiality requirements (e.g., re-
strictiveness [20, 21, 22] and separability [23]) areincident
sensitive: they prohibit low-level users from learning that
any high-level input has taken place.

What we desire areincident-insensitiverequirements,
ones that allow low-level users to learn that high-level input

4



has taken place while protecting thecontentsof these high-
level inputs. Intuitively, a system obeys incident-insensitive
noninterference if the content of inputs from a high-level
user has no effect on the outputs that a low-level user sees.
To make this slightly more formal, incident-insensitive non-
interference requires that the set of possible outputs seenby
a low-level user is the same regardless of the content of the
inputs from high-level users. Note that the low-level user
is, however, allowed to learn that the high-level user sent
inputs to the system.

Incident-insensitive requirements have appeared in
works on information-flow type systems (Sabelfeld and
Myers provide a survey [29]). O’Neill et al. have proved
that these type systems ensure that a program obeys an
incident-insensitive requirement they simply call “noninter-
ference” [25].

The rest of this section formalizes a slightly weaker form
of O’Neill’s noninterference. We delay describing how our
formulation is weaker than O’Neill’s until Section 6.

3.2 Noninterference Formalized

First we present policies in general. Then we present the
statement of incident-sensitive noninterference as defined
by McCullough for nondeterministic systems [20, 21]. Af-
ter showing our definition for incident-insensitive noninter-
ference, we compare the two.

Policies. For a systemm, a generic confidentiality pol-
icy ; is an reflexive, transitive relation onD. We write
df 6; dt iff ¬(df ; dt). If df 6; dt, then information about
df should not flow todt. A generic policy does not spec-
ify exactly what it means for information to flow. That is,
a generic policy does not specify a confidentiality require-
ment.

Below, we formalize two confidentiality requirements
that can give a generic policy meaning: incident-sensitive
noninterference and incident-insensitive noninterference.
Since these two requirements may be viewed as two differ-
ent interpretations that one may assign to a generic policy,
we represent policies of either type using; as with generic
policies and let the surrounding text make clear which type
of policy it is.

Incident-Sensitive Noninterference. Let∼=;,d
IS be a rela-

tion on input sequences such that[] ∼=
;,d
IS [], andi1:ι1 ∼=

;,d
IS

i2:ι2 iff

• i1 = i2 andι1 ∼=
;,d
IS ι2,

• dom(i1) 6; d andι1 ∼=
;,d
IS i2:ι2, or

• dom(i2) 6; d andi1:ι1 ∼=
;,d
IS ι2.

A systemm obeys; as an incident-sensitive noninter-
ference policy iff for alld ∈ D andι1, ι2 ∈ I∗,

ι1 ∼=
;,d
IS ι2 implies⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

Intuitively, this definition says that ifι1 has been received
by the system andd should not be able to rule out the possi-
bility that it wasι2 that the system received, then there must
exist no behavior of the system underι1 that is impossible
underι2 from the perspective ofd.

Incident-Insensitive Noninterference. Let ∼=
;,d
II be a

relation on input sequences such that[] ∼=
;,d
II [] and

i1:ι1 ∼=
;,d
II i2:ι2 iff

• dom(i1) = dom(i2),

• dom(i1) ; d impliesi1 = i2, and

• ι1 ∼=
;,d
II ι2.

A systemm obeys a policy; as an incident-insensitive
noninterference policy iff for alld ∈ D andι1, ι2 ∈ I∗,

ι1 ∼=
;,d
II ι2 implies⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

Comparison. Note that for alld and;, both∼=;,d
IS and

∼=
;,d
II are equivalence relations. They are also alike in that

if dom(i1) ; d and dom(i2) ; d, both require that
i1 = i2 for i1:ι1 ∼=

;,d
II i2:ι2 or i1:ι1 ∼=

;,d
IS i2:ι2 to hold.

However, if dom(i1) 6; d, then∼=;,d
II still requires that

dom(i1) = dom(i2) whereas∼=;,d
IS makes no requirements

at all and simply dropsi1 from consideration. This differ-
ence is the difference between incident-sensitive noninter-
ference and incident-insensitive noninterference.

Since∼=;,d
II places more requirements oni1 than∼=;,d

IS ,
it should come as no surprise thatι1 ∼=

;,d
II ι2 implies

ι1 ∼=
;,d
IS ι2 (see Lemma 3 in Appendix A.2). A direct result

of this follows:

Theorem 1. If a system obeys a generic policy; as an
incident-sensitive noninterference policy, then it will obey
; as an incident-insensitive noninterference policy; the
converse is not true.

Appendix A.2 provides a proof.
A specification may place both an incident-insensitive

noninterference policy and an incident-sensitive noninter-
ference policy on the same system. A specification might
require that some users be incident-sensitively noninterfer-
ing with a second group of users and incident-insensitively
noninterfering with a third group. The above theorem
makes clear the relationship between these two policies.
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3.3 Unwinding

Since noninterference is a global property, proving that
a nontrivial system obeys a given policy is a daunting task.
Thus, Goguen and Meseguer provided a property, the ex-
istence of anunwinding relation, to ease this task [8]. We
provide such a property for incident-insensitive noninterfer-
ence.

Let q
a

−→
d

q′ iff

• q
a
� q′;

• q
τ
� q′′ andq′′

a
−→

d
q′; or

• there existso ∈ O such thatdom(o) 6= d, q
o
� q′′, and

q′′
a

−→
d

q′.

Informally,q
a

−→
d

q′ means that the automaton can transition

from q to q′ by using only internal transitions, transitions
that produce output for a domain other thand, and finally
one transition usinga.

Given a system automaton, let aview partitionbe a func-
tion from a domain to an equivalence relation on states.
That is, a view partition is inD → 2

Q×Q. We will write

q1
d
∼ q2 if for the domaind, the statesq1 andq2 are within

the relation.
Let a view partitioning for a program automatonm and

policy ; be called anincident-insensitive unwinding rela-
tion if it satisfies the followingunwinding conditions:

1. Local Respect: for alld ∈ D, q, q′1 ∈ Q, andi1, i2 ∈

I, if dom(i1) = dom(i2), dom(i1) 6; d andq
i1−→
d

q′1,

then there must existq′2 ∈ Q such thatq
i2−→
d

q′2 and

q′1
d
∼ q′2.

2. Step Consistency: for alld ∈ D, q1, q
′
1, q2 ∈ Q, and

i ∈ I, if q1
d
∼ q2 andq1

i
−→

d
q′1, then there must exist

q′2 ∈ Q such thatq2
i

−→
d

q′2 andq′1
d
∼ q′2.

3. Output Consistency: for alld ∈ D, q1, q
′
1, q2 ∈ Q,

ando ∈ O, if dom(o) = d, q1
d
∼ q2, andq1

o
−→

d
q′1,

then there must existq′2 ∈ Q such thatq2
o

−→
d

q′2 and

q′1
d
∼ q′2.

The above unwinding conditions are much more complex
than the standard ones presented for incident-sensitive non-
interference. However, incident-insensitivity is not blame:
this actually stems from using asynchronous, nondetermin-
istic automata for our system model instead of synchronous,
deterministic automata.

Theorem 2. If there exists an incident-insensitive unwind-
ing relation for a incident-insensitive noninterference pol-
icy given an automaton, then that automaton obeys the pol-
icy.

Appendix A.3 offers the proof.

4 Dynamic Policies

4.1 Motivation

Now we motivate the need for dynamic confidentiality
assertions by relating in more detail the email server exam-
ple from the introduction. As described before, the server
should only allow access to the emails if the user supplies
the correct password. The following program written in a
C-like language enforces this requirement:

emails = load("mbox");
real_pw = load("password");
given_pw = read();
if(given_pw == real_pw)
print(emails);

else
print("wrong");

where the file"mbox" holds the emails and"password"
holds the correct password.

To model this program, let the emails be represented by
the domaine, the password by the domainp, and user by the
domainu. Since the useru can gain access to the emailse by
entering the correct password, the system does not obey any
policy ; such thate 6; u. However, such a static policy
fails to convey the design goal of only allowing the user
access to the emails if he provides the correct password.
We desire a policy that captures how supplying the correct
password at runtime changes the allowed information flows.

To address such concerns, Goguen and Meseguer pre-
sented a dynamic version of incident-sensitive noninterfer-
ence [7]. Informally, it allows an input from a high-level
domain to be treated as insecure (accessible to the low-level
domain) if the inputs that precede it satisfy some predicate.
This allows the security of an input to depend on the inputs
provided before it at runtime. Since all the information on
which the security of an input may depend is present at the
time that the input enters the system, we call their formula-
tion at-input-checking.

The inability of at-input-checking to consider informa-
tion that follows the input in question limits the expressive-
ness of at-input-checking. In the above example, the emails
were the first input to the system. Since no input precedes
the emails and the security of an input may only depend on
those inputs that precede the input in question, the emails
must either always be secure or always be insecure. This
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has the same problem as static policies: we cannot have the
emails be secure in some behaviors of the system and inse-
cure in others.

To fix this problem, we must allow the security of an
input to depend on inputs that arrive after it. In this case,
the security of the emails is undetermined until the user has
entered his input. It may seem that such information comes
too late: How can information from the future be used to
determine the security of an input now? The answer is that
the determination need not be made when the input has just
arrived: as long as the input is treated as though it is secure
until information becomes available indicating otherwise,
this determination may be delayed.

To make use of this observation, we define a new version
of dynamic policy that depends not only on the inputs that
precede the input in question, but also those inputs that fol-
low it. At the time of an output, whether that output may
provide information about an input depends on all the in-
puts that precede that output, not just those the precede the
input in question. Thus, we call our formulationat-output-
checking.

4.2 Formalization

Dynamic Policies. Let a generic dynamic policybe a
function from an input sequence to a static generic policy
(a relation on domains). Give the set of inputsI and do-
mainsD, the set of possible generic dynamic policies is
I∗ → 2

D×D. Given a dynamic policy; we writedf ;ι dt

if ι is mapped to a policy that allows information to flow
from df to dt.

At-Input-Checking. To define dynamic incident-
insensitive noninterference (DIINI) using at-input-
checking, we must replace the relation∼=II . Since the
security of an input may only depend on the inputs that
precede it, we define a new relation∼=DII that effectively
forgets the inputs that follow the input currently in question.
To achieve this, we define∼=DII to work from the end of
input sequences to their front forgetting the inputs seen
along the way.

Let ι1:i1 ∼=
;,d
DII ι2:i2 iff dom(i1) = dom(i2),

dom(i1) ;ι1:i1 d impliesi1 = i2, andι1 ∼=
;,d
DII ι2. Also let

[] ∼=
;,d
DII [].

A systemm obeys a DIINI policy; using at-input-
checking iff for alld ∈ D andι1, ι2 ∈ I∗,

ι1 ∼=
;

ι1 ,d
DII ι2 implies⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

At-Output-Checking. Since DIINI using at-output-
checking does not need to forget any information, its
definition is actually simpler. We provide the dynamic

policy ; with the current input sequenceι1 to obtain the
static policy;ι1 for use with∼=II .

A systemm obeys a DIINI policy; using at-output-
checking iff for alld ∈ D andι1, ι2 ∈ I∗,

ι1 ∼=
;

ι1 ,d
II ι2 implies⌊runs(ι1)⌋Ad ⊆ ⌊runs(ι2)⌋Ad

Discussion. Although the at-output-checking formulation
allows us to formalize the email server policy, at-input-
checking does have some advantages. Both use the input
sequence on the left-hand side to produce a static policy.
Given this sequence, the at-output-checking formulation se-
lects one such static policy using the whole input sequence.
The at-input-checking formulation, however, selects a new
static policy with each recursive application. This allows
the at-input-checking formulation more flexibility to treat
each input of the sequence differently even if the inputs
come from the same domain.

A related limitation of at-output-checking is its inability
to capturerevocation, the removal of a previously held ac-
cess right. For example, revocation takes place ifdf ;[i1]

dt butdf 6;[i1,i2] dt. Under the at-input-checking formula-
tion, this would mean thatdf may access the inputi1 but not
the inputi2. However, for a system to obey the policy un-
der the at-output-checking formulation, the system must not
produce output influenced byi1 for df even if the output is
produced beforei2 arrives. If the system did, it would lead
to a violation of the policy oncei2 arrives. Thus, for a sys-
tem to obey the above policy, it must actually also obey the
policy wheredf 6;[i1] dt anddf 6;[i1,i2] dt. For this reason,
at-output-checking policies cannot express revocation.

We defined both of the above dynamic formulations to
depend on input sequences and domains but not the states
of the automaton, making theminput-based. We view the
states of an automaton to be implementation specific unlike
the input-output behavior and domains of the system, which
are at the specification level. Since policies should be at the
specification level, we avoided referring to the states in the
definition of a policy.

Henceforth, unless otherwise noted, all dynamic policies
will be at-output-checking.

4.3 Dynamic Unwinding

Unlike policies that should be defined without reference
to the states of an automaton, unwinding conditions must
be. Thus, we need a version of dynamic policy that depends
on the states instead of being input-based. Let ageneric
state-based dynamic policy be a function from a set of
states to a relation on domains.

To give the unwinding conditions meaning with respect
to an input-based policy, we must relate the input-based pol-
icy to a state-based policy. Let the state-based dynamic pol-
icy  be asafe approximationof a input-based dynamic
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policy ; iff df 6;ι dt, ⌊α⌋I = ι, andq0
α

−→ q implies
df 6 q dt. We call non-revokingiff for all α ∈ A∗,
q

α
−→ q′ anddf  

q dt implies thatdf  
q′

dt.
Given a system automaton, let adynamic view parti-

tion be a function from a pair of domains to an equiv-
alence relation on states. That is, a view partition is in

D × D → 2
Q×Q. We will write q1

dt∼
df

q2 if for the pair

of domains〈dt, df〉, the statesq1 andq2 are within the re-

lation. Intuitively, q1
dt∼
df

q2 means that the statesq1 andq2

should look the same todt since they only differ by secret
inputs fromdf .

Let a dynamic view partitioning·
·
∼
·
· for a program au-

tomatonm be called adynamic unwinding relationfor a
state-based dynamic policy if ∼ satisfies the following
dynamic unwinding conditions:

1. Local Respect: for alldt, df ∈ D, q, q′1 ∈ Q, and

i1, i2 ∈ I if dom(i1) = dom(i2) = df , q
i1−→
dt

q′1, and

df 6 q′

1 dt, then there must existq′2 ∈ Q such that

q
i2−→
dt

q′2 andq′1
dt∼
df

q′2.

2. Step Consistency: for alldt, df ∈ D, q1, q
′
1, q2 ∈ Q,

and i ∈ I, if q1
dt∼
df

q2, q1
i

−→
dt

q′1, and df 6 q′

1 dt,

then there must existq′2 ∈ Q such thatq2
i

−→
dt

q′2 and

q′1
dt∼
df

q′2.

3. Output Consistency: for alldt, df ∈ D, q1, q
′
1, q2 ∈ Q,

ando ∈ O if dom(o) = dt, q1
dt∼
df

q2, andq1
o

−→
dt

q′1,

anddf 6 
q′

1 dt, then there must existq′2 ∈ Q such that

q2
o

−→
dt

q′2 andq′1
dt∼
df

q′2.

As with static unwinding relations, the existence of a dy-
namic unwinding relation implies that the system obeys the
policy:

Theorem 3. For all automatam, if  is a non-revoking
safe approximation of the at-output-checking DIINI policy
; and there exists an unwinding relation for and m,
thenm obeys;.

Appendix B provides the proof.

5 Automated Policy Extraction

Although using the dynamic unwinding conditions eases
proving that a program obeys an DIINI policy, we really
desire an automatic algorithm to check for obedience. Fur-
thermore, as motived in the introduction, often one would

like to know the most restrictive policy that a program
obeys. Thus, we describe an approach for extracting from
the source code of a program an approximation of the most
restrictive policy obeyed by that program.

Our approach tracks the flow of information through the
program in a manner similar to information-flow type sys-
tems [29, 25]. However, since our approach must work for
legacy code designed without the analysis in mind, some
of the limitations of these type systems render them unac-
ceptable. For example, type systems will consider high-
level any information stored in a variable that has ever
stored high-level information even if the current informa-
tion stored in the variable is low-level. Furthermore, type
systems make no attempt to rule out infeasible paths.

Thus, we approach the problem with model checking.
For each ordered pair of domainsdf anddt, we will check
for the property that the static incident-insensitive noninter-
ference assertiondf 6; dt is not violated by the program.
The collection of all counterexamples to this property will
form all the executions in whichdt gains access to informa-
tion aboutdf . From these, we construct a DIINI policy that
the program obeys.

Our approach differs from standard model checking in
that we need all of the counterexamples to the noninterfer-
ence property, not just one. Furthermore, our approach dif-
fers in that the noninterference property is neither a safety
nor liveness property and, thus, not expressible in any of the
standard temporal logics used as property languages [23].
Like a safety property, noninterference requires that some-
thing does not happen: noninterference is not violated.
However, unlike a safety property, to determine if noninter-
ference is violated requires comparing two behaviors of the
program. Thus, Terauchi and Aiken calls noninterference a
2-safety property[33].

To address the first difference, we use an all-
counterexample extension to standard model checking [15,
30]. To address the second difference, our approach con-
structs a model of the program that reifies this 2-safety prop-
erty as a normal safety property. Before presenting this con-
struction formally, we provide an example. In the example,
and most of the rest of the section, we will only concern our-
selves with extracting the dynamic conditions under which
one given domain gains access to one other given domain.
We discuss extending this approach to more than two do-
mains in Section 5.4.

5.1 An Example

Consider the program from the email server example in
Section 4.1. We would like to extract from this program
the most restrictive DIINI policy that it obeys. For simplic-
ity, we restrict our attention to only cases where the user
(domainu) gains access to the emails (domaine). Thus,
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we will model check for the property that the static policy
e 6; u is obeyed.

The first step of our approach performs a property-
reifying transformation to the program making the 2-safety
property thate 6; u is obeyed into a safety property. For
each variablex, the transformation creates a shadow vari-
ablex’ that tracks ifx is independent of the value of all the
inputs produced bye. The transformed program is

emails = load("mbox");
emails’ = false;
real_pw = load("password");
real_pw’ = true;
given_pw = read();
given_pw’ = true;
if(given_pw == real_pw)
print(emails);
print’(emails’ & given_pw’ & real_pw’);

else
print("wrong");
print’(given_pw’ & real_pw’);

where& is boolean AND. The variableemails’ is the
shadow variable foremails. It is set tofalse because
emails depends on an input frome. real_pw’, the
shadow variable ofreal_pw, is set totrue since it is
independent ofe. Likewise withgiven_pw’.
print’ is a special function that shadows calls to

print. It allows us to reify thatu has gained access to
the inputs ofe since wheneveru does,print’ is called
with the value offalse.

In the then branch of theif statement,print’ is
passedemails’ & given_pw’ & real_pw’. It is
passedemails since theprint statement it is shadow-
ing, which precedes it, directly depends on the value of
emails. It is passedgiven_pw’ andreal_pw’ since
by being in anif statement whose predicate depends on
these values, theprint statement indirectly depends them.
These three shadow variables are conjoined since all three
of them must be independent ofe for theprint statement
to be independent ofe.

The print’ statement in theelse branch only has
given_pw’ & real_pw’ since theprint statement it
is shadowing only depends (indirectly) on these values.

Checking for the safety property that “print’ is never
passed the value offalse” yields a counterexample when-
evergiven_pw == real_pw. This condition is only
satisfied when the contents ofpassword is equal to the
user’s input. Thus,u only gains access to the input ofe if
the input ofpassword equals the input ofu. Therefore,
the program obeys the policy; wheree ;ι u when the
input sequenceι has the same second (real_pw) and third
input (given_pw) ande 6;ι u otherwise.

We can use the same method to extract the policy that

governs access byu to the inputs ofpassword (the do-
main p) by tracking how the value of the filepassword
flows through the system instead of how the value ofmbox
does. One may see from the above transformed pro-
gram, that bothprint statements depend on the value of
password. Thus, the user always gets access to the in-
put ofp. Indeed, the user does learn if the password he has
supplied as input is equal to value ofpassword or not. In
practice, this small bit of information is often negligible, a
concept others have formalized [13, 18, 26], but we consider
outside the scope of this paper.

Since our approach relies on the semantics of the ana-
lyzed language, we first present a simple language before
formalizing our approach for that language.

5.2 The Language WhileIO

WhileIO is simple language withwhile loops, if
statements, and operators for input and output. The syntax
of WhileIO consists of statementsS and expressionsE:

S ::= X:=E | print(E, D) | read(X, D) | S;S

| if(E){S}else{S} | while(E){S}

E ::= E+E | X | D | N

whereX ranges over variable names,D over domains, and
N over numbers. Statements always evaluate to void (writ-
ten as•), and expressions always evaluate to a number. A
program is just a single statement.

Table 1 gives the semantics of WhileIO. The judgment
〈Γ, s〉

a
→֒〈Γ′, s′〉 means that the statements goes tos′ while

performing the actiona and changing the store fromΓ to
Γ′. The store is a mapping from variables to numbers:Γ :
X → N . Let Γ[x 7→ v] be the store such thatΓ[x 7→ v](y)
is v if x = y and isΓ(y) if x 6= y. We extend stores to
assign a number to expressions as follows: letΓ(e1+e2) be
Γ(e1) + Γ(e2) andΓ(n) = n for numbersn.

An action is an ordered triple: the first component isi

if the action is an input ando if it is an output, the sec-
ond component is the domain of the action, and the third
component is the contents of the action. For example,
〈i, e,"Dear Bob..."〉 could be the input for the emails
in the email server above example.

A program of WhileIO defines an automaton. The inputs
I are those actions withi as the first component; the out-
putsO, those witho as the first component.dom projects
the second component of an action. Each pair〈Γ, s〉 de-
fines a state. The transitions are provided by the judgment
form →֒: 〈Γ, s〉

a
�〈Γ′, s′〉 iff 〈Γ, s〉

a
→֒〈Γ′, s′〉. The initial

state is〈Γ0, s〉 wheres is the program andΓ0 is the store
that assigns zero to every variable. Given a programs let
autom(s) represent this automaton.

A programs obeysa DIINI policy iff autom(s) obeys
the DIINI policy as defined in Section 4.2.
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〈Γ, x:=e〉
τ
→֒〈Γ[x 7→ Γ(e)], •〉

〈Γ,read(x, d)〉
〈i,d,n〉
→֒ 〈Γ[x 7→ n], •〉

n = Γ(e)

〈Γ,print(e, d)〉
〈o,d,n〉
→֒ 〈Γ, •〉

〈Γ, s1〉
a
→֒〈Γ′, s′1〉

〈Γ, s1;s2〉
a
→֒〈Γ′, s′1;s2〉

〈Γ, s2〉
a
→֒〈Γ′, s′2〉

〈Γ, •;s2〉
a
→֒〈Γ′, •;s′2〉

〈Γ, •;•〉
τ
→֒〈Γ, •〉

Γ(e) = 0

〈Γ,if(e){s1}{s2}〉
τ
→֒〈Γ, s2〉

Γ(e) 6= 0

〈Γ,if(e){s1}{s2}〉
τ
→֒〈Γ, s2〉

〈Γ,while(e){s1}〉
τ
→֒

〈Γ,if(e){s1; while(e){s1}}else{•}〉

Table 1. Semantics of WhileIO

5.3 Constructing the Model

Now we show how to convert a program of WhileIO
to an automaton model. Rather than preform a source-to-
source transformation as in the example of Section 5.1, we
show how to reify the noninterference property directly in
the model. Thus, the model contains some features that are
unnecessary for simply modeling the behavior of the pro-
gram. Strictly speaking, these extra features mean that the
model is not a system automaton as defined in Section 2.

We present the model construction algorithm for find-
ing the conditions under which the confidentiality assertion
df 6; dt is violated for a fixed pair of domainsdf anddt

such thatdt 6= df . In the next section, we discuss dealing
with more than two domains.

Let model(s) = 〈I, O, D, dom, Q, q0,֌〉 be the model
constructed for the programs. I, O, D, anddom come
from the definition of action found in Section 5.2. The set
of statesQ is (X → N)×Ls×(X → {T, F}) whereLs is a
set of labels defined below. Each state〈Γ, ℓ, η〉 ∈ Q consists
of a storeΓ, a labelℓ, and anindependence predicateη.

The set of labelsLs for atomic statementss holds just
two labels: pre(s) andpost(s), which represent the state
right before executings and the state right after. The set
of labels for a compound statements (an if, while, or
; statement) results from addingpre(s) andpost(s) to the

disjoint union of the sets of labels for its sub-statements.
At a state〈Γ, ℓ, η〉, the independence predicateη, assigns

to each variablex true if at that state the value ofx is inde-
pendent of the value of any input from the domaindf . If
x does depend on the value of an input fromdf or it is un-
clear if it does or not, thenη(x) = F. Let η(e1+e2) be
η(e1) ∧ η(e2) andη(n) = F for n ∈ N .

The start stateq0 is 〈Γ0, pre(s), ηT〉 wheres is the pro-
gram andηT is the independence predicate that assigns true
to all variables.
֌ is a transition relation from a state to a state under

both an action and a boolean.q
a
֌

T
q′ means that the model

transitions from stateq to stateq′ during the actiona with-

out providing any information aboutdf to dt. q
a
֌

F
q′ means

that the model transitions fromq to q′ duringa while possi-
bly providing information aboutdf to dt.

To define֌, we use a translation from a statement to a
transition relation. We write>s> for the translation ofs.
We write q

a
>s>

b
q′ if the stateq transitions toq′ under the

actiona and booleanb in the transition relation>s>. The
value of֌ for the programs is >s>.

The translation>s> is defined recursively on the struc-
ture ofs. For each syntactic form that a statement can take,

we provide all the cases in which>s> holds: if q
a

>s>
b

q′

is not explicitly listed, then it does not hold (is not in the
relation). (All variables are universally quantified.)

1. Whens has the formx:=e:

〈Γ, pre(s), η〉
τ

>s>
T

〈Γ[x 7→ Γ(e)], post(s), η[x 7→ η(e)]〉

2. Whens has the formread(x, d) with dt 6= d 6= df :

〈Γ, pre(s), η〉
〈i,d,n〉
>s>

T
〈Γ[x 7→ n], post(s), η[x 7→ T]〉

3. Whens has the formread(x, d) with d = df or
d = dt:

〈Γ, pre(s), η〉
〈i,d,n〉
>s>

T
〈Γ[x 7→ n], post(s), η[x 7→ F]〉

4. Whens has the formprint(e, d) with d 6= dt:

〈Γ, pre(s), η〉
〈o,d,Γ(e)〉

>s>
T

〈Γ, post(s), η〉

5. Whens has the formprint(e, dt):

〈Γ, pre(s), η〉
〈o,dt,Γ(e)〉

>s>
η(e)

〈Γ, post(s), η〉
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6. Whens has the forms1 ; s2:

〈Γ, pre(s), η〉
τ

>s>
T

〈Γ, pre(s1), η〉

〈Γ, post(s1), η〉
τ

>s>
T

〈Γ, pre(s2), η〉

〈Γ, post(s2), η〉
τ

>s>
T

〈Γ, post(s), η〉

q
a

>s>
b

q′ if q
a

>s1>
b

q′ or q
a

>s2>
b

q′

7. Whens has the formif(e) s1 else s2:

〈Γ, pre(s), η〉
τ

>s>
η(e)∨w

〈Γ, pre(sj), η
′〉

〈Γ, post(sj), η〉
τ

>s>
T

〈Γ, post(s), η′〉

q
a

>s>
b

q′ if q
a

>sj>
b

q′

wherej = 1 if Γ(e) 6= 0 andj = 2 if Γ(e) = 0, and
η′(x) = η(x) ∧ (η(e) ∨ x /∈ def(s1) ∪ def(s2)) where
def(s) is the set containing all variables defined (on
the left-hand side of a:= statement or the variable in a
read statement) ins, andw is false ifs1 or s2 contain
awhile loop, aread statement, or a statement of the
formprint(e, dt).

8. Whens has the formwhile(e)s1 with Γ(e) 6= 0:

〈Γ, pre(s), η〉
τ

>s>
η(e)

〈Γ, pre(s1), η〉

〈Γ, post(s1), η〉
τ

>s>
η(e)

〈Γ, pre(s), η〉

q
a

>s>
b

q′ if q
a

>s1>
b

q′

9. Whens has the formwhile(e)s1 with Γ(e) = 0:

〈Γ, pre(s), η〉
τ

>s>
η(e)

〈Γ, post(s), η〉

The transitions forwhile statements produce the boolean
η(e) despite producing no output since their termination or
lack there of may affect the output seen by the user.while
andread statements are treated specially inif statements
for the same reason.

5.4 Using the Model

Oncemodel(s) has been constructed, our approach uses
it to create an approximation of the most restrictive DIINI
policy that the programs obeys. First, our approach finds all

reachable transitions of the formq1
o
֌

F
q2. These transitions

indicate that the outputo might provide the low-level user

dt with information about an input ofdf . Second, for each
such transition, our approach finds each input sequenceι
that leads to this transition. Third, for each suchι, df ;ι′ dt

is added to the policy for everyι′ that hasι as a prefix. Af-
ter this process is complete, the resulting policy is returned
with df 6;ι dt for all ι such thatdf ;ι dt was not added to
the policy. Letpolicy(model(s)) represent this policy. (We
definepolicy(model(s)) more formally in Appendix C.)

Correctness of our approach may be stated as follows:

Theorem 4. For every programs of WhileIO,autom(s)
obeys the DIINI policypolicy(model(s)).

We prove this theorem in Appendix C.
To convert our approach to an actual algorithm, we must

select a method for finding all the input sequences that

lead to a transition of the formq1
o
֌

F
q2. Finding these se-

quences is equivalent to finding all the counterexamples to
the property no such transition is reachable. While standard
model checkers will stop after finding one counterexample
to this property, algorithms exist for producing all the coun-
terexamples. Jha and Wing [15] give an algorithm using a
symbolic representation of the state space and a modified
version of a standard iterative fixed-point algorithm [24].
Sheyner [30] gives another algorithm uses an explicit state
representation.

For handling more than the two domainsdf and dt, a
tool can repeat the above approach for each ordered pair
of domains. The transitive closure of the union of these
policies provides a policy that the program obeys.

6 Related Work and Discussion

Assumptions. All the systems discussed in this paper
have beeninteractive, that is, they receive input and pro-
duce output throughout their execution. Abatch-jobsystem
only allows users to determine the contents of its memory at
the beginning of its execution and to observe any changes at
the end of its execution. Much of the work on type systems
for enforcing confidentiality policies have been for batch-
job systems [29].

We have assumed that the user may observe not only
the outputs from a system but also the system consuming
his inputs. Many systems actually buffer user inputs mak-
ing it unclear when an input actually affects the state of the
system. McCullough discusses some issues that arise from
modeling systems that use buffers [21].

A system isinput-enabledif it will always accept any
input offered by a user. While most confidentiality require-
ments have been defined for input-enabled systems, we have
not made this assumption.

We have modeled systems as asynchronous automata,
which can provide output to one user without sending out-
put to all the users. Most authors use synchronous automata,
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which must produce outputs to all users at regular intervals.
(See [9] for a detailed comparison.) We believe our unwind-
ing conditions to be the first for asynchronous automata.

We have assumed that the users cannot observe
the termination of a system. This assumption makes
our incident-insensitive noninterference requirement
termination-insensitive. Others have considered pro-
gram analysis for termination-sensitiveconfidentiality
requirements [33].

Other Requirements. Incident-insensitive noninterfer-
ence requires that ifι1 ∼=

;,d
II ι2, then any behavior of the

system underι1 must also appearpossibleunderι2 to the
domaind. Thus, this formulation is calledpossibilistic. In
some contexts, a system is unacceptable if the observations
of d is likely to occur underι1 and unlikely underι2. Such
concerns has led Gray and Syverson to defineprobabilis-
tic noninterference, which requires the observation to be
equiprobable under bothι1 andι2 [14].

Nondeducibility on strategiesrequires that no matter
how a high-level user interacts with a system, a low-
level user will still not be able to learn anything about
the high-level user’s inputs [36]. The original formula-
tion is incident-sensitive. O’Neill et al. created an incident-
insensitive version to characterize formally the properties
that information-flow type systems enforce for interactive
systems [25]. We suspect that few if any modifications
would be required to use our approach for extracting nond-
educibility policies.

Even if two automata obey the same noninterference pol-
icy, their composition might not. McCullough has proposed
requirements that ensure that the composition of two obey-
ing automata will also obey a policy [20, 21]. Also, remov-
ing nondeterminism from an automaton that obeys a nonin-
terference policy might result in one that does not. Others
have studied conditions under which such refinement will
not destroy the security of an automaton [16, 19, 1].

We have required that each policy; be transitive. In-
transitive policies model channel control, the requirement
that information passes through a downgrading domain be-
fore reaching a domain of a lower level. Rusby defined the
most commonly used formulation of intransitive noninter-
ference [28]. However, Roscoe and Goldsmith [27] offer a
competing formulation using CSP [11].

Whereas confidentiality requires that protected data does
not become known to untrusted users,integrityrequires that
protected data does not become tainted or corrupted by un-
trusted users. By reversing the roles of the high- and low-
level users of a system, integrity becomes confidentiality.
Thus, our confidentiality requirements also define an in-
tegrity requirements.

Dynamic Unwinding. Leslie has also provided a set of
dynamic unwinding conditions [17]. Rather than asyn-
chronous, nondeterministic automata, she defines her un-
winding conditions for synchronous, deterministic au-
tomata. Her conditions ensure that an intransitive incident-
sensitive noninterference policy is obeyed while ours is
for transitive incident-insensitive noninterference. Further-
more, hers is for at-input-checking dynamic policies rather
than at-output-checking dynamic policies.

Related Tools. Although we are the first to propose using
all-counterexamples model checking for policy extraction,
others have used standard model checking for verifying that
a given policy is obeyed. They observed that by compos-
ing a program with itself, one can obtain the two behav-
iors necessary to check the 2-safety property of noninterfer-
ence [3, 2]. Later work improved this approach by using
type theory to produce more efficient models [33, 35].

Program dependence graphs represent how inputs from
different users interact [4, 5]. Thus, they reveal if a system
obeys a noninterference policy [32]. Hammer et al. have
extended this approach also to produce “witnesses” (coun-
terexamples) in cases where the policy fails to hold [10].
These counterexamples could form the basis of an algo-
rithm for dynamic policy extraction.

Just as a confidentiality policy may become buried
within the code of a large program, the operating proce-
dures of a business may also become hidden within large
applications. Thus, others have created tools to extract these
business rules from source code [12, 31]. These tools use
program slicing [34] instead of model checking.

Once a policy is extracted from a program, the main-
tainer might want to update the program to accept the policy
as a configuration parameter. This requires refactoring the
code to use a centralized policy enforcement mechanism.
Ganapathy et al. have developed tools to retrofit legacy code
for this purpose [6].

7 Summary

Firstly, we have clarified the difference between
incident-sensitive and incident-insensitive noninterference,
two requirements often conflated as simply “noninterfer-
ence”. Secondly, we have introduced at-output-checking
dynamic policies to express policies that at-input-checking
dynamic policies cannot. Thirdly, we have presented an ap-
proach based on all-counterexamples model checking for
the automated extraction of at-output-checking dynamic
incident-insensitive noninterference policies from program
source code.
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A Proofs about Static Noninterference

A.1 Formalization of Example

We formalize the example found in Section 3.1. We
model this program as the systemexs where

• Iexs = {T, F},

• Oexs = {x, y, z},

• Dexs = {H, L},

• domexs(T) = domexs(F) = H

domexs(x) = domexs(y) = domexs(z) = L,

• Qexs = {q0, q1, q2},

• and the transition�
exs

is such thatq0
T
� q1, q0

F
� q1, and

q1
x
� q2

whereq0 is the start state. The system only accepts input
from the domainH and only produces output for the do-
main L. It only has two behaviors[T, x] and [F, x]. Each
consumes an input from the domainH and then produces
the outputx for the domainL.

The desire of the system designer is to protect the confi-
dentiality of the domainH from the domainL. So let;exp

be a policy such thatH 6;exp L andL ;exp H. This policy
makesH a high-level domain andL a low-level domain.

Lemma 1. The systemexs fails to obey;exp as incident-
sensitive noninterference policy.

Proof. Both [] and [T] are in I∗ and [] ∼=
exp,L
IS [T]

since domexs(T) = H and H 6;exp L. Thus, it
should be the case that⌊runsexs([])⌋AL = ⌊runsexs([T])⌋AL .
However, ⌊runsexs([])⌋AL = ⌊{}⌋AL = {} whereas
⌊runsexs([T])⌋AL = ⌊{[T, x]}⌋AL = {[x]}.

Lemma 2. The systemexs does obey;exp as incident-
insensitive noninterference policy.

Proof. For H, ι1 ∼=
;exp,H
II ι2 only if ι1 = ι2 for all ι1, ι2 ∈

I∗ sincedomexs(i) ; d for all d ∈ Dexs and i ∈ Iexs.
Thus, clearly,ι1 ∼=

;exp,H
II ι2 implies that⌊runsexs(ι1)⌋AH

exs
=

⌊runsexs(ι2)⌋AH
exs

.
ForL, consider the following two cases:

1. ι1 ∈ {[T], [F]}. Thenι1 ∼=
;exp,L
II ι2 if and only if ι2 ∈

{[T], [F]} since no other input sequences of length one
exists anddomexs(T) = domexs(F) = H andH 6;exp

L. Note

⌊runsexs([T])⌋AL
exs

= ⌊{[T, x]}⌋AL
exs

= {⌊[T, x]⌋AL
exs
} = {[x]} = {⌊[F, x]⌋AL

exs
}

= ⌊{[F, x]}⌋AL
exs

= ⌊runsexs([F])⌋AL
exs

since T and F are not in AL
exs. Thus,

⌊runsexs(ι1)⌋AL
exs

= ⌊runsexs(ι2)⌋AL
exs

if ι1 ∼=
;exp,L
II ι2.

2. ι1 /∈ {[T], [F]}. Then, as explained above,ι2 /∈

{[T], [F]} sinceι1 ∼=
;exp,L
II ι2. Thus,

⌊runsexs(ι1)⌋AL
exs

= ⌊{}⌋AL
exs

= ⌊runsexs(ι2)⌋AL
exs

since no behavior ofexs includes neither the input se-
quence[T] nor the input sequence[F].

A.2 Proof of Theorem 1

Lemma 3. For a systemm, for all d ∈ D andα1, α2 ∈ I∗,

α1
∼=

;,d
II α2 impliesα1

∼=
;,d
IS α2

Proof. Proof by induction over the length ofα1. Note that
if α1

∼=
;,d
II α2, then|α1| = |α2|.

Base Case:|α1| = 0 andα1 = []. Thenα2 must be[].
Thus,α1

∼=
;,d
IS α2 since[] ∼=

;,d
IS [].

Inductive Case:|α1| = n > 0. Here we may assume that
α1 = a1:α

′
1 for somea1 ∈ A andα′

1 ∈ A∗, α2 = a2:α
′
2 for

somea2 ∈ A andα′
2 ∈ A∗, and thatα′

1
∼=

;,d
II α′

2 implies
thatα′

1
∼=

;,d
IS α′

2. We must show thata1:α
′
1
∼=

;,d
II a2:α

′
2

implies thata1:α
′
1
∼=

;,d
IS a2:α

′
2

Assumeα1
∼=

;,d
II α2. Then dom(a1) = dom(a2),

dom(a1) ; d implies thata1 = a2, andα′
1
∼=

;,d
II α′

2.
Thus,α′

1
∼=

;,d
IS α′

2. Consider the following two cases

14



1. dom(a1) 6; d. In this case,a2 = a1. Sinceα′
1
∼=

;,d
IS

α′
2, a1:α

′
1
∼=

;,d
IS a2:α

′
2.

2. dom(a1) 6; d. In this case,dom(a2) 6; d also since
dom(a1) = dom(a2). Thus,α′

1
∼=

;,d
IS α′

2 implies that
a1:α

′
1
∼=

;,d
IS α′

2, which implies thatα′
1
∼=

;,d
IS α′

2 im-
plies thata1:α

′
1
∼=

;,d
IS a2:α

′
2.

Thus, either way,a1:α
′
1
∼=

;,d
IS a2:α

′
2.

Now the proof of Theorem 1.

Proof. Assume that a systemm obeys; as a noninter-
ference policy. This implies that ifα1

∼=
;,d
IS α2, then

⌊runs(α1)⌋Ad
= ⌊runs(α2)⌋Ad

. By Lemma 3, ifα1
∼=

;,d
II

α2, then α1
∼=

;,d
IS α2. Thus, if α1

∼=
;,d
II α2, then

⌊runs(α1)⌋Ad
= ⌊runs(α2)⌋Ad

. This means thatm obeys
; as an incident-insensitive noninterference policy.

Lemmas 1 and 2 show that the converse is not true.

A.3 Proof of Theorem 2

In each of the following lemmas let·
·
∼ · be an unwinding

relation for the automatonm = 〈I, O, D, dom, Q, q0, �〉
and policy;.

Lemma 4 (Step Respect). For all d ∈ D, i1, i2 ∈ I, and
q1, q

′
1, q2 ∈ Q, if dom(i1) = dom(i2), dom(i1) 6; d,

q1
d
∼ q2, andq1

i1−→
d

q′1, then there must existq′2 ∈ Q such

thatq2
i2−→
d

q′2 andq′1
d
∼ q′2.

Proof. By Step Consistency, there must exist aq′′2 such that

q2
i1−→
d

q′′2 andq′1
d
∼ q′′2 . By Local Respect, there must exist

a q′2 such thatq2
i1−→
d

q′2 andq′′2
d
∼ q′2. By the transitivity of

·
d
∼ ·, q′1

d
∼ q′2.

Each of the next five lemmas proves almost the same
statement for a more complicated set of behaviors than the
last.

Lemma 5. For all d ∈ D, o ∈ O, σ1 ∈ O∗, andq1, q
′
1, q2 ∈

Q, if dom(o) = d, ⌊σ1⌋Ad = [], q1
d
∼ q2, andq1

σ1:o
−→ q′1, then

there must existσ2 ∈ O∗ andq′2 ∈ Q such thatq2
σ2:o
−→ q′2,

q′1
d
∼ q′2, and⌊σ2⌋Ad = [].

Proof. Since⌊σ1⌋Ad = [], q1
σ1:o
−→ q′1 implies thatq1

o
−→

d
q′1.

Thus, by Output Consistency, there must existq′2 such that

q2
o

−→
d

q′2 andq′1
d
∼ q′2. q2

o
−→

d
q′2 implies that there existsσ2

such thatq2
σ2:o−→ q′2 and⌊σ2⌋Ad = [].

Lemma 6. For all d ∈ D, i1, i2 ∈ I, σ1 ∈ O∗,

and q1, q
′
1, q2 ∈ Q, if ⌊σ1⌋Ad = [], q1

d
∼ q2, q1

σ1:i1−→ q′1,
dom(i1) = dom(i2), anddom(i1) ; d impliesi1 = i2,
then there must existσ2 ∈ O∗ and q′2 ∈ Q such that

q2
σ2:i2−→ q′2, q′1

d
∼ q′2, and⌊σ2⌋Ad = [].

Proof. Since⌊σ1⌋Ad = [], q1
σ1:i1−→ q′1 implies thatq1

i1−→
d

q′1.

Consider the following two cases:

• dom(i1) ; d. In this casei1 = i2. Thus, by Step Con-

sistency, there must existq′2 such thatq2
i1−→
d

q′2 and

q′1
d
∼ q′2.

• dom(i1) 6; d. In this case, Step Respect (Lemma 4)
implies the same thing.

In either case,q2
i

−→
d

q′2 implies that there existsσ2 such

thatq2
σ2:i−→ q′2 and⌊σ2⌋Ad = [].

Lemma 7. For all d ∈ D, o ∈ O, σ1, σd ∈ O∗, and

q1, q
′
1, q2 ∈ Q, if dom(o) = d, q1

d
∼ q2, q1

σ1:o
−→ q′1, and

σd = ⌊σ1⌋Ad , then there must existσ2 ∈ O∗ andq′2 ∈ Q

such thatq2
σ2:o
−→ q′2, q′1

d
∼ q′2, and⌊σ2⌋Ad = σd.

Proof. Proof by induction over the structure ofσd.
Case: σd = []. The result follows directly from

Lemma 5.
Case:σd = o′:σ′′

d . In this case,σ1 must have the form
σ′

1:o
′:σ′′

1 where⌊σ′
1⌋Ad = [] and ⌊σ′′

1 ⌋Ad = σ′′
d . Since

q1
σ1:o
−→ q′1, there must existq′′2 such thatq1

σ′

1
:o′

−→ q′′1
σ′′

1
:o

−→ q′1.
By Lemma 5, there must existσ′

2 ∈ O∗ andq′′2 ∈ Q such

thatq2
σ′

2
:o′

−→ q′′2 , q′′1
d
∼ q′′2 , and⌊σ′

2⌋Ad = []. By the inductive
hypothesis, there must existσ′′

2 ∈ O∗ andq′2 ∈ Q such that

q′′2
σ′′

2
:o

−→ q′2, q′1
d
∼ q′2, and⌊σ′′

2 ⌋Ad = σ′′
d .

Let σ2 = σ′
2:o

′:σ′′
2 . q2

σ′

2
:o′

−→ q′′2 and q′′2
σ′′

2
:o

−→ q′2 implies
q2

σ2:o
−→ q′2. ⌊σ′

2⌋Ad = [] and ⌊σ′′
2 ⌋Ad = σ′′

d implies
⌊σ2⌋Ad = ⌊σ′

2:o
′:σ′′

2 ⌋Ad = o′:σ′′
d = σd.

Lemma 8. For all d ∈ D, i1, i2 ∈ I, σ1 ∈ O∗, and

q1, q
′
1, q2 ∈ Q, if q1

d
∼ q2, q1

σ1:i1−→ q′1, dom(i1) = dom(i2),
and dom(i1) ; d implies i1 = i2, then there must exist

σ2 ∈ O∗ and q′2 ∈ Q such thatq2
σ2:i2−→ q′2, q′1

d
∼ q′2, and

⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad .

Proof. In the case where⌊σ1⌋Ad = [], the result follows
directly from Lemma 6.

Otherwise,σ1 has the formσ′
1:o:σ

′′
1 whereσ′

1, σ
′′
2 ∈ O∗,

o ∈ O, dom(o) = d, and⌊σ′′
1 ⌋Ad = []. Sinceq1

σ1:i1−→ q′1,

there must existq′′1 ∈ Q such thatq1
σ′

1
:o1

−→ q′′1
σ′′

1
:i1

−→ q′1.
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By Lemma 7, there must existσ′
2 ∈ O∗ andq′′2 ∈ Q such

thatq2
σ′

2
:o

−→ q′′2 , q′′1
d
∼ q′′2 , and⌊σ′

1:o⌋Ad = ⌊σ′
2:o⌋Ad . Since

q′′1
d
∼ q′′2 ,q′′1

σ′′

1
:i1

−→ q′1, and ⌊σ′′
1 ⌋Ad = [], Lemma 6 implies

that there existsσ′′
1 ∈ O andq′2inQ such thatq′′2

σ′′

2
:i2

−→ q′2,

q′1
d
∼ q′2, and⌊σ′′

2 ⌋Ad = [].

Let σ2 = σ′
2:o:σ

′′
2 . Sinceq2

σ′

2
:o

−→ q′′2
σ′′

2
:i2

−→ q′2, q2
σ2:i2−→ q′2

whereq′1
d
∼ q′2. From ⌊σ′

1:o⌋Ad = ⌊σ′
2:o⌋Ad , ⌊σ′′

1 ⌋Ad =
[] = ⌊σ′′

2 ⌋Ad , and the fact thatdom(i1) = d impliesi1 = i2
(; is reflexive), it follows that⌊σ1:i1⌋Ad = ⌊σ2:i2⌋A2

.

Lemma 9. For all d ∈ D, q1, q2, q
′
1 ∈ Q, ι1, ι2 ∈ I∗,

i1, i2 ∈ I, andα1 ∈ A∗, if ι1:i1 ∼=
;,d
II ι2:i2, ⌊α1⌋I = ι1,

q1
d
∼ q2, and q1

α1:i1−→ q′1, then there existsα2 ∈ A∗ and

q′2 ∈ Q such thatq′1
d
∼ q′2, q2

α2:i2−→ q′2, ⌊α2⌋I = ι2, and
⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Proof. Proof by induction over the structure ofι1.
Case: ι1 = []. Sinceι1:i1 ∼=

;,d
II ι2:i2, ι2 must be[],

dom(i1) = dom(i2), anddom(i1) ; d implies i1 = i2.
Since⌊α1⌋I = [i1], there must existσ1 ∈ O∗ such that
α1 = σ1:i1. Thus, Lemma 8 implies that there must exist

σ2 ∈ O∗ and q′2 ∈ Q such thatq2
σ2:i2−→ q′2, q′1

d
∼ q′2, and

⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad . Since⌊σ2⌋I = [], ⌊σ2:i2⌋I =
ι2:i2. Thus, the result holds withα2 = σ2.

Case:ι1 = i′1:ι
′
1. Sinceι1 ∼=

;,d
II ι2, there must existi′2 ∈

I andι′2 ∈ I∗ such thatι2 = i′2:ι
′
2, ι′1

∼=
;,d
II ι′2, dom(i′1) =

dom(i′2), anddom(i′1) ; d impliesi′1 = i′2. Since⌊α1⌋I =
ι1 = i′1:ι

′
1, there must existσ1 ∈ O∗ andα′

1 ∈ A∗ such that

α1 = σ1:i
′
1:α

′
1, ⌊α′

1⌋I = ι′1, andq1
σ1:i′

1−→ q′′1
α′

1
:i1

−→ q′1.
Sincedom(i′1) = dom(i′2), dom(i′1) ; d implies i′1 =

i′2, q1
d
∼ q2, andq1

σ1:i′
1−→ q′′1 , Lemma 8 implies that there ex-

istsq′′2 ∈ Q andσ2 ∈ O∗ such thatq′′1
d
∼ q′′2 , q2

σ2:i′
2−→ q′′2 and

⌊σ1:i
′
1⌋Ad = ⌊σ2:i

′
2⌋Ad .

Since ι′1:i1
∼=

;,d
II ι′2:i2, ⌊α′

1⌋I = ι′1, q′′1
d
∼ q′′2 , and

q′′1
α′

1
:i1

−→ q′1, the inductive hypothesis implies that there must

exist α′
2 ∈ A∗ andq′2 ∈ Q such thatq′1

d
∼ q′2, q′′2

α′

2
:i2

−→ q′2,
⌊α′

2⌋I = ι′2, and⌊α′
1:i1⌋Ad = ⌊α′

2:i2⌋Ad .

Let α2 = σ2:i
′
2:α

′
2. Sinceq2

σ2:i′
2−→ q′′2 and q′′2

α′

2
:i2

−→ q′2,

q2
α2:i2−→ q′2. Sinceι2 = i′2:ι

′
2 and⌊α′

2⌋Ad = ι′2, ⌊α2⌋Ad =
ι2. Since ⌊σ1:i

′
1⌋Ad = ⌊σ2:i

′
2⌋Ad and ⌊α′

1:i1⌋Ad =
⌊α′

2:i2⌋Ad , ⌊σ1:i
′
1:α

′
1:i1⌋Ad = ⌊σ2:i

′
2:α

′
2:i2⌋Ad . That is,

⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Theorem 2 is a corollary of the next lemma.

Lemma 10. For all d ∈ D, ι1, ι2 ∈ I∗, α1 ∈ A∗, andq1 ∈
Q, if ι1 ∼=

;,d
II ι2, q0

α1−→ q1, and ⌊α1⌋I = ι1, then there
existsα2 ∈ A∗ andq2 ∈ Q such thatq0

α2−→ q2, ⌊α2⌋I = ι2,
and⌊α1⌋Ad = ⌊α2⌋Ad .

Proof. Consider the case whereα1 = α′
1:i1:σ1:o:σ

′
1 with

α′
1 ∈ A∗, i1 ∈ I, andσ1, σ

′
1 ∈ O∗, o ∈ O, dom(o) = d,

and⌊σ′
1⌋Ad = []. Sinceq0

α1−→ q1, there must existq′1, q
′′
1 ∈

Q such thatq0
α′

1
:i1

−→ q′1
σ1:o
−→ q′′1

σ′

1−→ q1.
Since⌊α1⌋I = ι1, it must be the case thatι1 = ι′1:i1

where ι′1 = ⌊α′
1⌋I . Furthermore, sinceι1 ∼=

;,d
II ι2,

ι′1:i1
∼=

;,d
II ι2. This implies thatι2 must have the form

ι′2:i2 wheredom(i1) = dom(i2) anddom(i1) ; d implies
thati1 = i2. Thus, by Lemma 9, there must existα′

2 ∈ A∗

andq′2 ∈ Q such thatq′1
d
∼ q′2, q0

α′

2
:i2

−→ q′2, ⌊α′
2⌋I = ι′2, and

⌊α′
1:i1⌋Ad = ⌊α′

2:i2⌋Ad .

Sinceq′1
d
∼ q′2 andq′1

σ1:o
−→ q′′1 , Lemma 7 implies that there

must existσ2 ∈ O∗ and q2 ∈ Q such thatq′2
σ2:o−→ q2,

q′′1
d
∼ q2, and⌊σ1⌋Ad = ⌊σ2⌋Ad .

Let α2 = α′
2:i2:σ2:o. Since q0

α′

2
:i2

−→ q′2 and
q′2

σ2:o
−→ q2, q0

α2−→ q2. ⌊α2⌋I = ⌊α′
2:i2:σ2:o⌋I =

⌊α′
2⌋I :i2 = ι′2:i2 = ι2. Since ⌊α′

1:i1⌋Ad =
⌊α′

2:i2⌋Ad , ⌊σ1⌋Ad = ⌊σ2⌋Ad , and ⌊σ′
1⌋Ad = [],

⌊α2⌋Ad = ⌊α′
2:i2:σ2:o⌋Ad = ⌊α′

2:i2⌋Ad :⌊σ2⌋Ad :o =
⌊α′

1:i1⌋Ad :⌊σ1⌋Ad :o = ⌊α′
1:i1:σ1:o:σ

′
1⌋Ad = ⌊α1⌋Ad .

In cases whereα1 is not of the formα′
1:i1:σ1:o:σ

′
1, some

subset of the above arguments are sufficient to achieve the
same result.

B Proof of Theorem 3

First, we must define some new notation.

Let q1
d
∼

d′:δ
q2 for d′:δ ∈ D∗ iff q1

d
∼
d′

q3 andq3
d
∼
δ

q2. Let

q
d
∼
[]

q hold for alld andq. ForD′ ⊆ D, let q1
d
∼
D′

q2 iff there

existsδ ∈ (D′)∗ such thatq1
d
∼
δ

q2.

For D′ ⊆ D, let D′ 6 q d mean that for alld′ ∈ D′,
d′ 6 q d.

Lemma 11. For all D′ ⊆ D, α ∈ A∗, and q, q′ ∈ Q,
if the the state-based dynamic policy is a non-revoking
safe approximation of the dynamic policy;, q

α
−→ q′, and

D′ 6 q′

d, thenD′ 6 q d.

Proof. Consider eachd′ ∈ D′ separately, this follows from
the contrapositive of the fact that is non-revoking.

Lemma 12. Let  be a state-based safe approxima-
tion of the dynamic policy; for some automatonm =
〈I, O, D, dom, Q, q0, �〉. For all d ∈ D, q1 ∈ Q, ι1, ι2 ∈

I∗, i1, i2 ∈ I, and α ∈ A∗, if ι1:i1 ∼=
;

ι1:i1 ,d
II ι2:i2,

⌊α⌋I = ι1, and q0
α:i1−→ q1, thendom(i1)  

q1 d implies
i1 = i2.

Proof. Since ι1:i1 ∼=
;

ι1:i1 ,d
II ι2:i2, dom(i1) = dom(i2)

anddom(i1) ;ι1:i1 d implies i1 = i2. Since is a safe
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approximation of; andq0
α:i1−→ q1, dom(i1) 6;ι1:i1 d im-

pliesdom(i1) 6 q1 d. Thus, by taking the contrapositive,
dom(i1) 

q1 d impliesdom(i1) ;ι1:i1 d. This means that
dom(i1) 

q1 d impliesi1 = i2.

In each of the following lemmas let·
·
∼
·
· be an

dynamic unwinding relation for the automatonm =
〈I, O, D, dom, Q, q0, �〉 and state-based dynamic policy 
where is a non-revoking safe approximation of the dy-
namic policy;.

The next two lemmas just raise up the second two un-
winding conditions to work over sets.

Lemma 13 (Set Step Consisteny). For all d ∈ D, D′ ⊆

D, i ∈ I, and q1, q
′
1, q2 ∈ Q, if q1

d
∼
D′

q2, q1
i

−→
d

q′1, and

D′ 6 q′

1 d, then there must existq′2 ∈ Q such thatq2
i

−→
d

q′2

andq′1
d
∼
D′

q′2.

Proof. We will actually prove the following slightly
stronger statement: For alld ∈ D, D′ ⊆ D, δ ∈ (D′)∗,

i ∈ I, and q1, q
′
1, q2 ∈ Q, if q1

d
∼
δ

q2, q1
i

−→
d

q′1, and

D′ 6 q′

1 d, then there must existq′2 ∈ Q such thatq2
i

−→
d

q′2

andq′1
d
∼
δ

q′2.

Proof by induction over the structure ofδ.
Case:δ = []. In this caseq1 = q2. Thus, letq′2 = q′1.

Thenq′1
d
∼
[]

q′2 by definition.

Case: δ = d′:δ′. In this case,q1
d
∼
d′

q3 andq3
d
∼
δ′

q2 for

somed′ andq3. Sinced′ ∈ D′, d′ 6 q′

1 d. Thus, by Step

Consistency, there must exist aq′3 such thatq3
i

−→
d

q′3 and

q′1
d
∼
d′

q′3. By the inductive hypothesis, there must existq′2 ∈

Q such thatq2
i

−→
d

q′2 andq′3
d
∼
δ′

q′2. Thus,q′1
d
∼

d′:δ′

q′2.

Lemma 14(Set Output Consisteny). For all d ∈ D, D′ ⊆

D, o ∈ O, and q1, q
′
1, q2 ∈ Q, if dom(o) = d, q1

d
∼
D′

q2,

q1
o

−→
d

q′1, and D′ 6 q′

1 d, then there must existq′2 ∈ Q

such thatq2
o

−→
d

q′2 andq′1
d
∼
D′

q′2.

Proof. We will actually prove the following slightly
stronger statement: For alld ∈ D, D′ ⊆ D, δ ∈ (D′)∗,

o ∈ O, and q1, q
′
1, q2 ∈ Q, if dom(o) = d, q1

d
∼
δ

q2,

q1
o

−→
d

q′1, and for all D′ 6 q′

1 d, then there must exist

q′2 ∈ Q such thatq2
o

−→
d

q′2 andq′1
d
∼
δ

q′2.

Proof by induction over the structure ofδ.

Case:δ = []. In this caseq1 = q2. Thus, letq′2 = q′1.

Thenq′1
d
∼
[]

q′2 by definition.

Case: δ = d′:δ′. In this case,q1
d
∼
d′

q3 andq3
d
∼
δ′

q2 for

somed′ andq3. Sinced′ ∈ D′, d′ 6 q′

1 d. Thus, by Output
Consistency, there must exist aq′3 such thatq3

o
−→

d
q′3 and

q′1
d
∼
d′

q′3. By the inductive hypothesis, there must existq′2 ∈

Q such thatq2
o

−→
d

q′2 andq′3
d
∼
δ′

q′2. Thus,q′1
d
∼

d′:δ′

q′2.

Now we raise Step Respect to work over sets.

Lemma 15(Set Step Respect). For all dt, df ∈ D, D′ ⊆ D,
i1, i2 ∈ I, andq1, q

′
1, q2 ∈ Q, if dom(i1) = dom(i2) = df ,

q1
dt∼
D′

q2, q1
i1−→
dt

q′1, df ∈ D′, and D′ 6 q′

1 dt, then there

must existq′2 ∈ Q such thatq2
i2−→
dt

q′2 andq′1
dt∼
D′

q′2.

Proof. Sinceq1
dt∼
D′

q2, Set Step Consistency (Lemma 13)

implies that there must exist aq′′2 such thatq2
i1−→
dt

q′′2 and

q′1
dt∼
D′

q′′2 . By Local Respect, there must exist aq′2 such that

q2
i2−→
dt

q′2 andq′′2
dt∼
df

q′2.

Since q′1
dt∼
D′

q′′2 , there must existδ ∈ (D′)∗ such that

q′1
dt∼
δ

q′′2 . Sinceq′′2
dt∼
df

q′2, q′1
dt∼

δ:df

q′2. Thus, sinced′, df ∈ D′,

q′1
dt∼
D′

q′2.

The next five lemmas mirror the corresponding five lem-
mas (Lemmas 5 to 9) of Section A.3 very closely.

Lemma 16. For all d ∈ D, D′ ⊆ D, o ∈ O, σ1 ∈ O∗,

andq1, q
′
1, q2 ∈ Q, if dom(o) = d, ⌊σ1⌋Ad = [], q1

d
∼
D′

q2,

q1
σ1:o
−→ q′1, andD′ 6 q′

1 d, then there must existσ2 ∈ O∗

andq′2 ∈ Q such thatq2
σ2:o
−→ q′2, q′1

d
∼
D′

q′2, and⌊σ2⌋Ad = [].

Proof. Since⌊σ1⌋Ad = [], q1
σ1:o−→ q′1 implies thatq1

o
−→

d
q′1.

Thus, by Set Output Consistency (Lemma 14), there must

existq′2 such thatq2
o

−→
d

q′2 andq′1
d
∼
D′

q′2. q2
o

−→
d

q′2 implies

that there existsσ2 such thatq2
σ2:o
−→ q′2 and⌊σ2⌋Ad = [].

Lemma 17. For all d ∈ D, D′ ⊆ D, i1, i2 ∈ I, σ1 ∈ O∗,

and q1, q
′
1, q2 ∈ Q, α ∈ A∗, if ⌊σ1⌋Ad

= [], q1
d
∼
D′

q2,

q1
σ1:i1−→ q′1, dom(i1) = dom(i2), dom(i1) /∈ D′ implies

i1 = i2, and D′ 6 q′

1 d, then there must existσ2 ∈ O∗

andq′2 ∈ Q such thatq2
σ2:i2−→ q′2, q′1

d
∼
D′

q′2, and⌊σ2⌋Ad = [].
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Proof. ⌊σ1⌋Ad = [], q1
σ1:i1−→ q′1 implies thatq1

i1−→
d

q′1. Con-

sider the following two cases:

• dom(i1) ∈ D′. SinceD′ 6 q′

1 d, dom(i1) 6 q′

1 d.
Thus, by Set Step Respect (Lemma 15, there must exist

q′2 such thatq2
i2−→
d

q′2 andq′1
d
∼
D′

q′2.

• d /∈ D′. Set Step Consistency (Lemma 13) implies the
same thing in this case.

In either case,q2
i

−→
d

q′2 implies that there existsσ2 such

thatq2
σ2:i
−→ q′2 and⌊σ2⌋Ad = [].

Lemma 18. For all d ∈ D, D′ ⊆ D, o ∈ O, σ1, σd ∈ O∗,

andq1, q
′
1, q2 ∈ Q, if dom(o) = d, q1

d
∼
D′

q2, q1
σ1:o
−→ q′1, σd =

⌊σ1⌋Ad , andD′ 6 q′

1 d, then there must existσ2 ∈ O∗ and

q′2 ∈ Q such thatq2
σ2:o
−→ q′2, q′1

d
∼
D′

q′2, and⌊σ2⌋Ad = σd.

Proof. Proof by induction over the structure ofσd.
Case: σd = []. The result follows directly from

Lemma 16.
Case:σd = o′:σ′′

d . In this case,σ1 must have the form
σ′

1:o
′:σ′′

1 where⌊σ′
1⌋Ad = [] and ⌊σ′′

1 ⌋Ad = σ′′
d . Since

q1
σ1:o
−→ q′1, there must existq′′2 such thatq1

σ′

1
:o′

−→ q′′1
σ′′

1
:o

−→ q′1.

By Lemma 11,q′′1
σ′′

1
:o

−→ q′1 impliesD′ 6 q′′

1 d.
By Lemma 16, there must existσ′

2 ∈ O∗ andq′′2 ∈ Q

such thatq2
σ′

2
:o′

−→ q′′2 , q′′1
d
∼
D′

q′′2 , and⌊σ′
2⌋Ad = []. By the

inductive hypothesis, there must existσ′′
2 ∈ O∗ andq′2 ∈ Q

such thatq′′2
σ′′

2
:o

−→ q′2, q′1
d
∼
D′

q′2, and⌊σ′′
2 ⌋Ad = σ′′

d .

Let σ2 = σ′
2:o

′:σ′′
2 . q2

σ′

2
:o′

−→ q′′2 and q′′2
σ′′

2
:o

−→ q′2 implies
q2

σ2:o
−→ q′2. ⌊σ′

2⌋Ad = [] and ⌊σ′′
2 ⌋Ad = σ′′

d implies
⌊σ2⌋Ad = ⌊σ′

2:o
′:σ′′

2 ⌋Ad = o′:σ′′
d = σd.

Lemma 19. For all d ∈ D, D′ ⊆ D, i1, i2 ∈ I, σ1 ∈ O∗,

and q1, q
′
1, q2 ∈ Q, if q1

d
∼
D′

q2, q1
σ1:i1−→ q′1, dom(i1) =

dom(i2), D′ 6 q′

1 d, anddom(i1) /∈ D′ impliesi1 = i2,
then there must existσ2 ∈ O∗ and q′2 ∈ Q such that

q2
σ2:i2−→ q′2, q′1

d
∼
D′

q′2, and⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad .

Proof. In the case where⌊σ1⌋Ad = [], the result follows
directly from Lemma 17.

Otherwise,σ1 has the formσ′
1:o:σ

′′
1 whereσ′

1, σ
′′
2 ∈ O∗,

o ∈ O, dom(o) = d, and⌊σ′′
1 ⌋Adt = []. Sinceq1

σ1:i1−→ q′1,

there must existq′′1 ∈ Q such thatq1
σ′

1
:o1

−→ q′′1
σ′′

1
:i1

−→ q′1. By

Lemma 11,q′′1
σ′′

1
:i1

−→ q′1 impliesD′ 6 q′′

1 d.
By Lemma 18, there must existσ′

2 ∈ O∗ andq′′2 ∈ Q

such thatq2
σ′

2
:o

−→ q′′2 , q′′1
d
∼
D′

q′′2 , and⌊σ′
1:o⌋Ad = ⌊σ′

2:o⌋Ad .

Sinceq′′1
d
∼
D′

q′′2 , q′′1
σ′′

1
:i1

−→ q′1, and⌊σ′′
1 ⌋Ad = [], Lemma 17

implies that there existsσ′′
1 ∈ O and q′2 ∈ Q such that

q′′2
σ′′

2
:i2

−→ q′2, q′1
d
∼
D′

q′2, and⌊σ′′
2 ⌋Ad = [].

Let σ2 = σ′
2:o:σ

′′
2 . Sinceq2

σ′

2
:o

−→ q′′2
σ′′

2
:i2

−→ q′2, q2
σ2:i2−→ q′2

whereq′1
d
∼
D′

q′2. From ⌊σ′
1:o⌋Ad = ⌊σ′

2:o⌋Ad , ⌊σ′′
1 ⌋Ad =

[] = ⌊σ′′
2 ⌋Ad , and the fact thatdom(i1) = d impliesi1 = i2

( q′

1 is reflexive, sod /∈ D′), it follows that⌊σ1:i1⌋Ad =
⌊σ2:i2⌋A2

.

Lemma 20. For all d ∈ D, D′ ⊆ D, q1 ∈ Q, ι1, ι2 ∈ I∗,
i1, i2 ∈ I, andα1 ∈ A∗, if D′ = { d′ ∈ D | d′ 6 q1 d },

ι1:i1 ∼=
;

ι1:i1 ,d
II ι2:i2, ⌊α1⌋I = ι1, andq0

α1:i1−→ q1, then there

existsα2 ∈ A∗ and q2 ∈ Q such thatq1
d
∼
D′

q2, q0
α2:i2−→ q2,

⌊α2⌋I = ι2, and⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Proof. Proof by induction over the structure ofι1.

Case:ι1 = []. Sinceι1:i1 ∼=
;

ι1:i1 ,d
II ι2:i2, Lemma 12

yields thatdom(i1)  
q1 d implies i1 = i2. Also, ι2 must

be []. SinceD′ = { d′ ∈ D | d′ 6 q1 d }, dom(i1) /∈ D′

impliesi1 = i2. Since⌊α1⌋I = [i1], there must existσ1 ∈
O∗ such thatα1 = σ1:i1. Thus, Lemma 19 implies that

there must existσ2 ∈ O∗ andq′2 ∈ Q such thatq0
σ2:i2−→ q2,

q1
d
∼
D′

q2, and⌊σ1:i1⌋Ad = ⌊σ2:i2⌋Ad . Since⌊σ2⌋I = [],

⌊σ2:i2⌋I = ι2:i2. Thus, the result holds withα2 = σ2.

Case:ι1 = i′1:ι
′
1. Sinceι1 ∼=

;
ι1:i1 ,d

II ι2, there must exist

i′2 ∈ I andι′2 ∈ I∗ such thatι2 = i′2:ι
′
2, ι′1

∼=
;

ι1:i1 ,d
II ι′2,

dom(i′1) = dom(i′2), anddom(i′1) ;ι1:i1 d implies i′1 =
i′2. Following the same logic as above, this allows us to
conclude thatdom(i′1) /∈ D′ impliesi′1 = i′2.

Since⌊α1⌋I = ι1 = i′1:ι
′
1, there must existσ1 ∈ O∗

and α′
1 ∈ A∗ such thatα1 = σ1:i

′
1:α

′
1, ⌊α′

1⌋I = ι′1,

and q0
σ1:i′

1−→ q′1
α′

1
:i1

−→ q1. By Lemma 11,q′1
σ′′

1
:i1

−→ q1 implies
D′ 6 q′

1 d.
Sincedom(i′1) = dom(i′2), dom(i′1) 

q′

1 d impliesi′1 =

i′2, q0
d
∼
D′

q0, and q0
σ1:i′

1−→ q′1, Lemma 19 implies that there

existsq′2 ∈ Q andσ2 ∈ O∗ such thatq′1
d
∼
D′

q′2, q0
σ2:i′

2−→ q′2

and⌊σ1:i
′
1⌋Ad = ⌊σ2:i

′
2⌋Ad .

Since ι′1:i1
∼=

;,d
II ι′2:i2, ⌊α′

1⌋I = ι′1, q′1
d
∼
D′

q′2, and

q′1
α′

1
:i1

−→ q1, the inductive hypothesis implies that there must

exist α′
2 ∈ A∗ andq2 ∈ Q such thatq1

d
∼
D′

q2, q′2
α′

2
:i2

−→ q2,

⌊α′
2⌋I = ι′2, and⌊α′

1:i1⌋Ad = ⌊α′
2:i2⌋Ad .

Let α2 = σ2:i
′
2:α

′
2. Sinceq0

σ2:i′
2−→ q′2 and q′2

α′

2
:i2

−→ q2,

q0
α2:i2−→ q2. Sinceι2 = i′2:ι

′
2 and⌊α′

2⌋Ad = ι′2, ⌊α2⌋Ad =
ι2. Since ⌊σ1:i

′
1⌋Ad = ⌊σ2:i

′
2⌋Ad and ⌊α′

1:i1⌋Ad =
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⌊α′
2:i2⌋Ad , ⌊σ1:i

′
1:α

′
1:i1⌋Ad = ⌊σ2:i

′
2:α

′
2:i2⌋Ad . That is,

⌊α1:i1⌋Ad = ⌊α2:i2⌋Ad .

Theorem 3 is a corollary of the next lemma.

Lemma 21. For all d ∈ D, ι1, ι2 ∈ I∗, α1 ∈ A∗, andq1 ∈
Q, if ι1 ∼=

;
ι1 ,d

II ι2, q0
α1−→ q1, and⌊α1⌋I = ι1, then there

existsα2 ∈ A∗ andq2 ∈ Q such thatq0
α2−→ q2, ⌊α2⌋I = ι2,

and⌊α1⌋Ad = ⌊α2⌋Ad .

Proof. Consider the case whereα1 = α′
1:i1:σ1:o:σ

′
1 with

α′
1 ∈ A∗, i1 ∈ I, σ1, σ

′
1 ∈ O∗, o ∈ O, dom(o) = d, and

⌊σ′
1⌋Adt = []. Sinceq0

α1−→ q1, there must existq′1, q
′′
1 ∈ Q

such thatq0
α′

1
:i1

−→ q′1
σ1:o
−→ q′′1

σ′

1−→ q1.
Since⌊α1⌋I = ι1 andα1 = α′

1:i1:σ1:o:σ
′
1, it must be

the case thatι1 = ι′1:i1. Furthermore sinceι1 ∼=
;

ι1 ,d
II ι2,

ι2 must have the formι′2:i2 for someι′2 ∈ I∗ and i2 ∈
I. Thus, by Lemma 12, this means thatdom(i1)  

q1 d
implies i1 = i2. Let D′ = { d′ ∈ D | d′ 6 q′

1 d }. By

Lemma 11,q′′1
σ′

1−→ q1 implies D′ 6 q′′

1 d, andq′1
σ1:o
−→ q′′1

impliesD′ 6 q′

1 d.
By Lemma 20, there must existα′

2 ∈ A∗ andq′2 ∈ Q

such thatq′1
d
∼
D′

q′2, q0
α′

2
:i2

−→ q′2, ⌊α′
2⌋I = ι′2, and⌊α′

1:i1⌋Ad =

⌊α′
2:i2⌋Ad .

Since q′1
d
∼
D′

q′2 and q′1
σ1:o
−→ q′′1 , Lemma 18 implies that

there must existσ2 ∈ O∗ andq2 ∈ Q such thatq′2
σ2:o
−→ q2,

q′′1
d
∼
D′

q2, and⌊σ1⌋Ad = ⌊σ2⌋Ad .

Let α2 = α′
2:i2:σ2:o. Since q0

α′

2
:i2

−→ q′2 and
q′2

σ2:o
−→ q2, q0

α2−→ q2. ⌊α2⌋I = ⌊α′
2:i2:σ2:o⌋I =

⌊α′
2⌋I :i2 = ι′2:i2 = ι2. Since ⌊α′

1:i1⌋Ad =
⌊α′

2:i2⌋Ad , ⌊σ1⌋Ad = ⌊σ2⌋Ad , and ⌊σ′
1⌋Ad = [],

⌊α2⌋Ad = ⌊α′
2:i2:σ2:o⌋Ad = ⌊α′

2:i2⌋Ad :⌊σ2⌋Ad :o =
⌊α′

1:i1⌋Ad :⌊σ1⌋Ad :o = ⌊α′
1:i1:σ1:o:σ

′
1⌋Ad = ⌊α1⌋Ad .

In cases whereα1 is not of the formα′
1:i1:σ1:o:σ

′
1, some

subset of the above arguments are sufficient to achieve the
same result.

C The Correctness of Our Approach

First, we must relatemodel(s) and autom(s). Given
the model model(s) = 〈I, O, D, dom, Q, q0,֌〉,
let ∃(model(s)) be the system automaton

〈I, O, D, dom, Q, q0, �〉 where q1
a
� q2 iff q1

a
֌

T
q2 or

q1
a
֌

F
q2.

Lemma 22. For all programs s, ∃(model(s)) and
autom(s) have the same set of behaviors.

This lemma means that if we can prove that∃(model(s))
obeys some policy, then we know thatautom(s) obeys that
policy.

Now we must more formally define our approach to pro-
ducing a policy frommodel(s).

Let q
a:α
֌֌ q′ iff

• there existsb such that eitherq
a
֌

b
q′′ or q

τ
֌

b
q′′, and

• q′′
α
֌ q′.

whereq
[]
֌֌ q′ only if q = q′.

Let q
a:α
֌֌

b
q′ iff

• q
a
֌

b
q′′ or q

τ
֌

b
q′′, and

• q′′
α
֌

b
q′.

whereq
[]
֌֌

b
q′ only if q = q′.

Let statePolicy(s) be the state-based dynamic policy 
wheredf  

q dt iff there existsα1, α2 ∈ A∗ anda ∈ A

such thatq0

α1

֌֌ q′
[a]
֌֌

F
q′′

α2

֌֌ q. This means thatdf  
q dt

for any stateq such that it is reachable from a transition that
produces the booleanF and that transition is reachable.

policy(s) is statePolicy(s) lifted from working on states
to input sequences. Letpolicy(s) be the input-based dy-
namic policy; wheredf ;ι dt iff there existsα1, α2 ∈

A∗, anda ∈ A, andq ∈ Q such thatq0

α1

֌֌ q′, q′
[a]
֌֌

F
q′′,

q′′
α2

֌֌ q, andι = ⌊α:a⌋I .

Lemma 23. For all programss, statePolicy(s) is a non-
revoking safe approximation ofpolicy(s) for ∃(model(s)).

Proof. Let policy(s) be; andstatePolicy(s) be . df ;ι

dt iff there existsα ∈ A∗, anda ∈ A, andq ∈ Q such that

q0
α
֌֌

F
q′, q′

[a]
֌֌

T
q, and ι = ⌊α:a⌋I . Thus, if df 6;ι dt,

then there does notα ∈ A∗, a ∈ A, and q ∈ Q such

that q0
α
֌֌

F
q′, q′

[a]
֌֌

T
q, and ι = ⌊α:a⌋I . If q0 −→ q in

∃(model(s)), then it must not be the case thatq0
α
֌֌

F
q′ and

q′
[a]
֌֌

T
q. Thus,df 6 q dt.

It is non-revoking because of how any states reach-
able from a stateq where df  dt has been added to
statePolicy(model(s)) also hasdf  dt added.

Before proving Theorem 4, we must prove that for all
programss, ∃(model(s)) obeys the DIINI policypolicy(s).
Since the above lemma tells us thatstatePolicy(s) is a non-
revoking safe approximation ofpolicy(s) for ∃(model(s)),
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we may use the unwinding conditions to prove this. First,
we explain the unwinding relation we will demonstrate, and
then we prove that it indeed satisfies each of the unwinding
conditions.

Recall that we have limited our construction to extracting
the policy for whendf flows dt. Thus,statePolicy(s) has
d1 ;q d2 for all q whend1 6= df or d2 6= dt. Thus, the
unwinding conditions places no requirements on suchd1

andd2. That is,q1
d1∼
d2

q2 must only be defined for the case

whered1 = dt andd2 = df for our unwinding condition.
Thus, to streamline notation, we usually drop the domains
and just writeq1 ∼ q2.

Given two storesΓ1 andΓ2, let Γ1 ≡η Γ2 iff for all x ∈
X such thatη(x) = T, Γ1(x) = Γ2(x). Let the dynamic
view partition∼ be such that〈Γ1, ℓ1, η1〉 ∼ 〈Γ2, ℓ2, η2〉 iff
ℓ1 = ℓ2, η1 = η2, andΓ1 ≡η1 Γ2. We will show that∼ is
an unwinding relation.

Lemma 24. ∼ has dynamic local respect for∃(model(s))
andstatePolicy(model(s)).

Proof. Since∃(model(s)) is constructed frommodel(s),

the only transitions in∃(model(s)) of the formq
i1
� q1 come

from a transition inmodel(s) of the formq
i1
֌

b
q1 for b = T

or b = F. Since the transitions ofmodel(s) come from
>s>, we may examine the definition of>·> to find when

transitions of the formq
i1
֌

b
q1 are possible. These are

only possible when there exists a statements′ that is a
sub-statement ofs (or equal tos) such thats′ has form
read(x, d). Furthermore, the stateq must have the form
〈Γ, pre(s′), η〉

By requiringdom(i1) to bedf , we further limit of the
form of s′ to read(x, df) and the form ofi1 to 〈i, df , n1

for somen1. Also the booleanb must beT. This implies
that q1 has the form〈Γ[x 7→ n1], post(s′), η[x 7→ F]〉.

Thus, if q
i1−→
dt

q′ in ∃(model(s)), it is becauseq
i1
֌

T
q1 in

model(s) wherei1 andq1 are of the above form.
For another inputi2 to be such thatdom(i2) = df ,

it must have the form〈i, df , n2〉 for somen2. Let q2 =
〈Γ[x 7→ n2], post(s), η[x 7→ F]〉. By the construction of

>s>, q
i2
֌

T
q2. Thus,q

i2−→
dt

q2 in ∃(model(s)).

Sinceη[x 7→ F](x) = F, andΓ[x 7→ n1] andΓ[x 7→ n2]
agree on all other variables,Γ[x 7→ n1] ≡η Γ[x 7→ n2].
Thus,q1 ∼ q2.

To prove step consistency we must strengthen the hy-
pothesis and introduce some additional concepts.
 1 �  2 if wheneverdf  

q
2 dt, df  

q
1 dt. Note that

 1 may be defined for more states than 2.  1 �  2

implies that if 2 is defined atq anddf 6 
q
1 dt, thendf 6 

q
2

dt.

Let q1 −→
d

q2 iff

• q1 = q2,

• q1
τ
� q′ andq′ −→

d
q2, or

• q1
o
� q′ andq′ −→

d
q2 wheredom(o) 6= d.

First we prove a key lemma to Step Consistency and Out-
put Consistency. One can views step Consistency as requir-
ing two states that are related by∼ will transition to other
related states. Likewise, Output Consistency requires that
two related states transition to two other related states after
producing an output. Under this view, the next lemma re-
quires that two related states transition to two other related
states upon finishing the execution of a statement.

Lemma 25. For all statements s and s′ where
∃(model(s)) = 〈I, O, D, dom, Q, q0, �〉 and s′ is a
sub-statement ofs, state-based dynamic policies ,
stores Γ′

1, independence predicatesη′, q1, q
′
1, q2 ∈ Q,

if  �statePolicy(model(s)), q1 ∼ q2, q1 −→
dt

q′1,

q′1 = 〈Γ′
1, post(s′), η′〉, and df 6 q′

1 dt, then there

must existq′2 ∈ Q such thatq2 −→
dt

q′2 andq′1
dt∼
df

q′2.

Proof. Since q1 ∼ q2 we know that q1 has the form
〈Γ1, ℓ, η〉 andq2 the form〈Γ2, ℓ, η〉 whereΓ1 ≡η Γ2.

Proof by induction over the derivation of>s>.
Case: s has the formx:=e. Sinceq1 −→

dt

q′1, ℓ must be

pre(s). Furthermore,Γ′
1 must beΓ1[x 7→ Γ1(e)] andη′

must beη[x 7→ η(e)].
Let q′2 = 〈Γ2[x 7→ Γ2(e)], post(s), η[x 7→ η(e)]〉.

q2
τ
� q′2 by the construction ofmodel(s). If η(e) = T, then

Γ1(e) = Γ2(e) sinceΓ1 ≡η Γ2. If η(e) = F, thenη[x 7→
η(e)](x) = F Either way, Γ1[x 7→ Γ1(e)] ≡η[x 7→η(e)]

Γ2[x 7→ Γ2(e)]. Thus,q′1 ∼ q′2.
Case: s has the formread(x, d) with df 6= d 6= dt.

In this case,q1 cannot make a transition without consuming
input. Thus, this case is trivially satisfied.

Case: s has the formread(x, d) with d = df or
d = dt. Ditto.

Case:s has the formprint(e, d)with d 6= dt. Since
q1 −→

dt

q′1, ℓ must bepre(s). Furthermore,Γ′
1 = Γ1 and

η′ = η. Let q′2 = 〈Γ2, post(s), η〉. q2
τ
� q′2 by the construc-

tion of model(s) andq′1 ∼ q′2.
Case: s has the formprint(e, dt). In this caseq1

cannot make a transition without producing output todt.
Thus, the statement is trivially satisfied.

Case: s has the formsa; sb. SinceLs is the disjoint
union ofLsa

, Lsb
, and{pre(s), post(s)}, one of the follow-

ing cases must hold:
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• q1 and q′1 are both inQa. statePolicy(model(s)) �

statePolicy(model(sa)) sincemodel(s) has at least as
many transitions under a true boolean asmodel(sa).
The needed result follows from the inductive hypothe-
sis.

• q1 and q′1 are both inQb. statePolicy(model(s)) �

statePolicy(model(sb)) sincemodel(s) has at least as
many transitions under a true boolean asmodel(sb).
The needed result follows from the inductive hypothe-
sis.

• q1 ∈ Qa andq′1 ∈ Qb. Sinceq1 −→
d

q2 and the con-

struction ofmodel(s), there must exist a stateq1a of the
form 〈Γ1a, post(sa), η1a〉 and a stateq1b of the form
〈Γ1a, pre(sb), η1a〉 such thatq1 −→

dt

q1a
τ
� q1b −→

dt

q′1.

By the inductive hypothesis, this means there exists
a stateq2a such thatq2 −→

dt

q2a and q1a ∼ q2a. This

implies that the form ofq2a is 〈Γ2a, post(sa), η1a〉.
Thus, by the construction ofmodel(s), q2a

τ
� q2b where

q2b = 〈Γ2a, pre(sb), η1a〉.

Since q1b ∼ q2b, the inductive hypothesis again ap-
plies and there must existq′2 such thatq2b −→

dt

q′2 and

q′1 ∼ q′2.

• q1 ∈ Qb andq′1 ∈ Qa. Sinceq1 −→
dt

q′1 cannot hold in

this case, we need not consider it.

• q1 has the form〈Γ1, pre(s), η〉 andq′1 is in Qa or Qb.
Sinceq1 ∼ q2, q2 must have the form〈Γ2, pre(s), η〉
whereΓ1 ≡η Γ2. By the construction of∃(model(s)),
q1

τ
� q1a where q1a = 〈Γ1, pre(sa), η〉 and q2

τ
� q2a

where q2a = 〈Γ2, pre(sa), η〉. Sinceq1a ∼ q2a and
they are both in∃(model(sa)), the proof continues as
above.

• q1 is in Qa or Qb and q′1 has the form
〈Γ′

1, post(s), η′〉. If q1 −→
dt

q′1, then q1 −→
dt

q1b

where q1b = 〈Γ′
1, post(sb), η

′〉. Thus, as argued
above, there existsq2b = 〈Γ′

2, post(sb), η
′〉 such that

q1b ∼ q2b. By the construction ofmodel(s), q1b
τ
� q′1

andq2b
τ
� q′2 whereq′2 = 〈Γ′

2, post(s), η′〉. q′1 ∼ q′2.

• q1 has the form〈Γ1, pre(s), η〉 and q′1 has the form
〈Γ′

1, post(s), η′〉. In this case, just use the arguments
found in the two cases above.

Case: s has the formif(e)saelsesb. If η(e) = T,
thenΓ1(e) = Γ2(e) sinceΓ1 ≡η Γ2. In this case, the re-
sult follows from using the inductive hypothesis onsa if
Γ1(e) 6= 0 and onsb if Γ1(e) = 0 and the methods used
above for dealing with the cases whereq1 has the form
〈Γ1, pre(s), η〉 or q′1 has the form〈Γ′

1, post(s), η′〉.

The same holds even ifη(e) = F as long andΓ1(e) =
Γ2(e).

If df  
q′

1 dt, then we need not prove anything since it
violates a premise of the lemma. Note that ifη(e) = F

and eithersa or sb contained awhile loop, aread state-
ment, or a statement of the formprint(e, dt), then
statePolicy(model(s)) would allow information to flow
from df to dt at q1. SincestatePolicy(model(s)) is non-
revoking andq1 −→

d
q′1, the same would be true atq′1. Since

 �statePolicy(model(s)), df  
q′

1 dt would be true.
Thus, we have dealt with these cases.

This leaves the case whereη(e) = F, Γ1(e) 6= Γ2(e),
and neithersa norsb contains awhile loop, aread state-
ment, or a statement of the formprint(e, dt). Since
there are noread statements, all the transitions insa andsb

are transitions that the automaton has control over and there
is no chance of a transition being blocked by a user not of-
fering input. Since there are nowhile loops, oncesa or sb

is entered, they will surely be exited. This means that there
must existq′2 such thatq2 −→

dt

q′2 andq′2 = 〈Γ′
2, post(s), η′〉

for someΓ′
2 andη′. SinceΓ1 ≡d Γ2 andη′ assignsF to any

variable altered in eithersa or sb, Γ′
1 ≡η′

Γ′
2. Thus,q′1 ∼ q′2.

Case: s has the formwhile(e)sa with Γ1(e) 6= 0.
If η(e) = T, then Γ1(e) = Γ2(e) and the inductive
hypothesis may be applied tosa. If η(e) = F, then
statePolicy(model(s)) would allow information to flow
from df to dt at q1. As above, this implies thatdf  

q′

1 dt

and thus the result is trivially true.
Case:s has the formwhile(e)sa with Γ1(e) = 0. The

case is proved as the previous one was.

Now we prove a result slightly stronger than Step Con-
sistency.

Lemma 26. For all statementss where∃(model(s)) =
〈I, O, D, dom, Q, q0, �〉, state-based dynamic policies ,
q1, q

′
1, q2 ∈ Q, and i ∈ I, if  �statePolicy(model(s)),

q1 ∼ q2, q1
i

−→
dt

q′1, and df 6 q′

1 dt, then there must exist

q′2 ∈ Q such thatq2
i

−→
dt

q′2 andq′1
dt∼
df

q′2.

Proof. Since q1 ∼ q2 we know that q1 has the form
〈Γ1, ℓ, η〉 and 〈Γ2, ℓ, η〉 where Γ1 ≡η Γ2. Let q′1 =
〈Γ′

1, ℓ
′, η′〉.

Proof by induction over the derivation of>s>.
Case: s has the formx:=e. In this caseq1 does not

transition to any other state under an inputi in model(s).
Thus, the statement is trivially satisfied.

Case: s has the formread(x, d) with df 6= d 6= dt.
In this case, forq1 to transition toq′1, ℓ must bepre(s) and
ℓ′ must bepost(s). The inputi must be of the form〈i, d, n〉.
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Furthermore,Γ′
1 = Γ1[x 7→ n] andη′ = η[x 7→ T]. This

means thatq2 has the form〈Γ2, pre(s), η〉.
Let q′2 = 〈Γ2[x 7→ n], post(s), η[x 7→ T]〉. SinceΓ1 ≡η

Γ2, Γ1[x 7→ n] ≡η[x 7→T] Γ2[x 7→ n]. Thus,q′1 ∼ q′2 and

q2
i

−→
dt

q′2 in ∃(model(s)).

Case: s has the formread(x, d) with d = df or
d = dt. In this case, forq1 to transition toq′1, ℓ must be
pre(s) andℓ′ must bepost(s). The inputi must be of the
form 〈i, d, n〉. Furthermore,Γ′

1 = Γ1[x 7→ n] andη′ =
η[x 7→ F]. This means thatq2 has the form〈Γ2, pre(s), η〉.

Let q′2 = 〈Γ2[x 7→ n], post(s), η[x 7→ F]〉. SinceΓ1 ≡η

Γ2, Γ1[x 7→ n] ≡η Γ2[x 7→ n]. Thus,q′1 ∼ q′2 andq2
i

−→
dt

q′2

in ∃(model(s)).
Case: s has the formprint(e, d) with d 6= dt. In

this caseq1 does not transition to any other state under an
inputi in model(s). Thus, the statement is trivially satisfied.

Case:s has the formprint(e, dt). Ditto.
Case:s has the formsa; sb.
Since Ls is the disjoint union of Lsa

, Lsb
, and

{pre(s), post(s)}, one of the following cases must hold:

• q1 and q′1 are both inQa. statePolicy(model(s)) �

statePolicy(model(sa)) sincemodel(s) has at least as
many transitions under a true boolean asmodel(sa).
The needed result follows from the inductive hypothe-
sis.

• q1 and q′1 are both inQb. statePolicy(model(s)) �

statePolicy(model(sb)) sincemodel(s) has at least as
many transitions under a true boolean asmodel(sb). .
The needed result follows from the inductive hypothe-
sis.

• q1 ∈ Qa andq′1 ∈ Qb. Sinceq1
i

−→
d

q2 and the con-

struction ofmodel(s), there must exist a stateq1a of the
form 〈Γ1a, post(sa), η1a〉 and a stateq1b of the form

〈Γ1a, pre(sb), η1a〉 such thatq1 −→
dt

q1a
τ
� q1b

i
−→

dt

q′1.

By Lemma 25, this means there exists a stateq2a

such thatq2 −→
dt

q2a andq1a ∼ q2a. This implies that

the form of q2a is 〈Γ2a, post(sa), η1a〉. Thus, by
the construction ofmodel(s), q2a

τ
� q2b whereq2b =

〈Γ2a, pre(sb), η1a〉.

Sinceq1b ∼ q2b, the inductive hypothesis onsb applies

as above and there must existq′2 such thatq2b
i

−→
dt

q′2

andq′1 ∼ q′2.

• q1 ∈ Qb andq′1 ∈ Qa. Sinceq1
i

−→
dt

q′1 cannot hold in

this case, we need not consider it.

• q1 has the form〈Γ1, pre(s), η〉 andq′1 is in Qa or Qb.
Sinceq1 ∼ q2, q2 must have the form〈Γ2, pre(s), η〉

whereΓ1 ≡η Γ2. By the construction of∃model(s),
q1

τ
� q1a where q1a = 〈Γ1, pre(sa), η〉 and q2

τ
� q2a

whereq2a = 〈Γ2, pre(sa), η〉. Sinceq1a ∼ q2a and they
are both in∃model(sa), the proof continues as above.

• q′1 has the form〈Γ′
1, post(s), η′〉. q1

i
−→

dt

q′1 is impos-

sible in this case, so we need not consider it.

Case: s has the formif(e)saelsesb. If η(e) = T,
thenΓ1(e) = Γ2(e) sinceΓ1 ≡η Γ2. In this case, the re-
sult follows from using the inductive hypothesis onsa if
Γ1(e) 6= 0 and onsb if Γ1(e) = 0 and the methods used
above for dealing with the cases whereq1 has the form
〈Γ1, pre(s), η〉 or q′1 has the form〈Γ′

1, post(s), η′〉.
The same holds even ifη(e) = F as long andΓ1(e) =

Γ2(e).
As argued in Lemma 25, cases whereη(e) = F and ei-

ther sa or sb contains awhile loop, aread statement,
or a statement of the formprint(e, dt) are handled by
the construction ofstatePolicy(model(s)). However, if no

read statements are insa or sb, then clearlyq1
i

−→
dt

q′1 can-

not hold. Thus, all cases have be covered.
Case: s has the formwhile(e)sa with Γ1(e) 6= 0.

If η(e) = T, then Γ1(e) = Γ2(e) and the inductive
hypothesis may be applied tosa. If η(e) = F, then
statePolicy(model(s)) would allow information to flow
from df to dt at q1. As above, this implies thatdf  

q′

1 dt

and thus the result is trivially true.
Case: s has the formwhile(e)sa with Γ1(e) = 0.

Ditto.

Now to prove a statement slightly stronger than Output
Consistency.

Lemma 27. For all statementss where∃(model(s)) =
〈I, O, D, dom, Q, q0, �〉, state-based dynamic policies ,
q1, q

′
1, q2 ∈ Q, and o ∈ O, if dom(o) = dt,  

�statePolicy(model(s)), q1 ∼ q2, q1
o

−→
dt

q′1, and df 6 q′

1

dt, then there must existq′2 ∈ Q such thatq2
o

−→
dt

q′2 and

q′1
dt∼
df

q′2.

Proof. Since q1 ∼ q2 we know that q1 has the form
〈Γ1, ℓ, η〉 and 〈Γ2, ℓ, η〉 where Γ1 ≡η Γ2. Let q′1 =
〈Γ′

1, ℓ
′, η′〉.

Proof by induction over the derivation of>s>.
Case: s has the formx:=e. In this caseq1 does not

transition to any other state under an inputo in model(s).
Thus, the statement is trivially satisfied.

Case: s has the formread(x, d) with df 6= d 6= dt.
Ditto.

Case: s has the formread(x, d) with d = df or
d = dt. Ditto.
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Case: s has the formprint(e, d) with d 6= dt. In
this case,q1 will only transition to another state under an
outputo such thatdom(o) 6= dt. Thus, the statement is
trivially satisfied.

Case: s has the formprint(e, dt). q1
o
� q′1 if o =

〈o, dt, Γ1(e)〉, Γ′
1 = Γ1, ℓ = pre(s), ℓ′ = post(s), and

η′ = η.
If η(e) = T, Γ1(e) = Γ2(e) sinceΓ1 ≡η Γ2. Let q′2 =

〈Γ2, post(s), η〉. q2
o
� q′2 andq′1 ∼ q′2.

If η(e) = F, then statePolicy(model(s)) would allow
dt access todf at q′1. Since �statePolicy(model(s)),
df  

q1 dt. Thus, the result is satisfied trivially.
The remaining cases are as in Lemma 26 just replacing

i
−→

dt

with
o

−→
dt

.

Theorem 4 can now be proved:

Proof. Lemmas 24, 26, and 27 show that∼ is an unwinding
relation forstatePolicy(model(s)) and∃(model(s)). Since
by Lemma 23,statePolicy(model(s)) is a non-revoking
safe approximation ofpolicy(model(s)) this means that
∃(model(s)) obeyspolicy(model(s)). By Lemma 22, this
means thatautom(s) obeyspolicy(model(s)).
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