Reasoning About Exceptions Using Model Checking

George Fairbanks David Garlan Balaji Sarpeshkar
Reid Simmons Gil Tolle Jeannette M. Wing

August 2002
CMU-CS-02-165

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Reasoning about code that uses exceptions is difficult because exception han-
dling mechanisms introduce many possible alternate flows of control besides the
“normal” flow of control. Moreover, we often want to know something about
the state of the system when an exception is raised. We describe a tool suite
to help programmers reason simultaneously about exceptional flow and state.
Central to our tools is an Intermediate Exception Language. We use Moped,
a model checker for pushdown systems, as a backend to check IEL programs
for properties expressed in Linear Temporal Logic. Our current tool suite in-
cludes a java2iel translator, which translates a subset of Java into IEL, and an
iel2moped translator, which gives a pushdown systems semantics to IEL.

This research is sponsored in part by the Defense Advanced Research Projects
Agency and the Army Research Office (ARQO) under contract no. DAAD19-01-1-
0485, in part by the National Aeronautics and Space Administration (NASA) under
agreement no NCC2-1241, and in part by the National Science Foundation under
Grant No. CCR-0121547. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the DOD, NASA, ARO, or
the U.S. Government.

Keywords: exceptions, exception handling, dynamic analysis, static anal-
ysis, model checking, linear temporal logic, Moped, SPIN, Java

1 Introduction

In safety-critical and mission-critical code, exceptions are used to signal an abor-
mal condition, due to a bad data value or a rare environmental event. Exception
handling code executes to bring the system to a well-defined state. For example,
the system may abort or continue to operate from the recovered state. Program-
mers use exceptions to handle boundary conditions, e.g., accessing an array out
of bounds, dividing by zero, and popping from an empty stack. Designers of
robust systems use exceptions to guard against all aberrant behavior they can
imagine:

o If water pressure goes above a certain level, a valve must open.
o If the power fails, the backup generator must start.

¢ When the space vehicle faces the sun, the camera lens must be shut.

1.1 Exceptions Are Hard To Reason About

Reasoning about code that uses exceptions is inherently difficult because one
is reasoning about the dynamic behavior of the system. Static analyses used
to reason about dynamic behavior can be overly conservative or only approx-
imate need citations to back these claims. Most do not treat exceptions
comprehensively or at all.

Programming languages can help restrict the possible flows of control by
placing constraints on the syntax and semantics of exception handling features.
For example, it is easier to reason about the termination model found in C++
and Java than the resumption model found in Mesa and Eiffel. In the resumption
model, the call stack is not “unwound”; thus, the presence of nested subroutines
complicates determining the lexical context needed by the handler, and recursive
resumption could lead to infinite recursion and stack overflow [BMO00]. Even in
the simpler termination model, variations can still complicate reasoning. For
example, Java’s finally construct and CommonLisp’s similar unwind-protect
mechanism are not found in C+4. While useful, their generality allows more
possible flows of control.

Programmers can exacerbate the difficulty in reasoning about exceptions.
They tend to add exception handling code as an afterthought, often in response
to finding errors during debugging, or worse, in response to bugs found by
customers in fielded systems. These post facto additions can easily lead to
convoluted code.

Programmers, however, should not be blamed for writing complex code, if it
is warranted by the inherent complexity of the system or by nature of the envi-
ronment in which the system is to be deployed. Indeed, they should be encour-
aged to use exception handling to help structure the possible return conditions
of each subroutine. By imposing such structure on their code, programmers can
avoid unnecessary convolution.

Ironically, programmers may shy away from an extensive use of exceptions
because of the very difficulty in reasoning about the additional control paths
introduced. For example, they may simply rely on a common built-in catchall
failure exception that propagates any unhandled exception all the way to the
top. It would be better to catch the exceptional condition as close as possible
to the true point of failure, with the hope that the system could continue to
operate.

What would help ease the difficulty of reasoning about exceptions and en-
courage programmers to use exceptions effectively is a an analysis tool. We have
built a tool suite whose sole purpose is to help reason about exception handling.
This report describes the current state of our tool suite.

1.2 Reasoning about Control Flow and State

In designing our tool suite, we imagined what kinds of questions a system de-
signer or a programmer would want answered:

Feel free to sort these questions in some logical order and add new
kinds of questions.

e Can this exception ever be thrown? Under what conditions?

— Is the system always in a “safe” state when this exception is thrown?
Here “safe” could be defined in terms of an invariant over state vari-
ables.

— Will the system be in a “bad” state if ever this exception is thrown?

e What are the possible exceptions that can be thrown if the system is in
this state (i.e., satisfies a given predicate)?

o If the system ever reaches this “bad” state, is it subsequently handled by
an exception?

o If this exception is thrown, can I guarantee that I will get to a “good”
system state in the next state? Eventually?

e Are all states from which an exception is potentially thrown reachable?

To answer these types of questions we need to track the program’s (1) flow
of control (from where is an exception raised, where is it subsequently handled,
and where does control resume after handling it?) and (2) state (what are the
values of the global and local variables when this exception is raised?). For
example, it is not enough to know that if the “shutdown” exception is thrown,
it is handled; we may also want to check that when it is thrown, all locks have
been released, and that after it has been handled, all global clock variables have
been reset to zero and the shared resource is free.

Whereas program analyses, such as control flow graph analysis, used by
compilers are useful, they do not keep track of state. Whereas model checking
facilitates reasoning about state, they are limited to finite state models and

cannot handle recursive procedures. Current work on using model checkers
for reasoning about software ignore exceptions, treats them naively, or limits
their applicability. For example, the SLAM project [BRO1] safely ignores the
problem since it checks code written in C, which does not have exceptions. The
Bandera project [CDHROO0] ignores control flow associated with exceptions; it
treats only null-pointer and type-cast exceptions in Java in a meaningful way.
The ESC/Java [LNS00] project also does not explicitly track exceptional flow of
control. Java PathFinder [?, ?] does handle exceptions, but works only for finite
state Java programs. This rich past and current work suggest some starting
points of attacking our problem:

e We could start with a static analysis algorithm for generating control flow
graphs with exceptions. For example, Sinha and Harrold give an algorithm
for computing CFGs with exceptions for Java [SHO00]. Given a CFG, we
could annotate the node/edges with state information. For example, an
edge, e, might be labeled with a state predicate that captures exactly
when control flows along e.

e We could start with a model checker for programs that handles flow of
control, but ignores or need not deal with exceptions. For example the
SLAM Project’s tool suite includes a model checker for boolean abstrac-
tions of C code. We could then add to such a model checker the ability
to deal with exceptions. For example, we could extend SLAM to C++,
thereby forcing us to model exception handling.

e We could start with standard model checkers like SMV [McM93] or SPIN [Hol97],
which are used to reason about high-level designs, usually hardware, but
not usually for low-level code. To handle control flow, we could a special
state variable to stand for the program counter.

The problem with the first two approaches, is that we end up having to do
the analysis of the original source code twice. Need to expand on the point
in the previous sentence. The problem with the last approach is that we
quickly run into the state space explosion problem when modeling the program
counter explicitly.

Our approach has two novel aspects: (1) we abstract from the original source
code, retaining its original flow of control, and model check our abstraction; and
(2) we use a model checker that supports a pushdown automata model. These
are the explicit steps in our current approach, as illustrated in Figure 1:

e We translate Java source code into an Intermediate Exception Language
(IEL). The result of our translation is an abstraction of the original Java
program with all control information retained. IEL, roughly speaking, is
an abstract programming language.

e We translate IEL into Moped, an off-the-web model checker for pushdown
systems [EHRS00].

Java program

IEL

java2iel iel2moped Moped — yes/counterexample

LTL specification

Figure 1: Exceptional Tool Suite

e We check properties of our original Java program using Linear Temporal
Logic (LTL), Moped’s specification language.!

Our use of IEL as an abstraction language has the advantage that multiple
source languages can translate into IEL, hence our use of the term “intermedi-
ate.” We envision for the future translators from other languages, such as C++
and CommonLisp, into IEL. Another advantage is that we can have multiple
backends, i.e., different model checkers, perhaps to handle different source lan-
guage semantics or to handle more complex features, such as concurrency, not
easily handled by Moped.

Our use of Moped, a model checker for pushdown systems, has the advantage
over other model checkers such as SPIN or SMV in that we do not have to
represent the program counter explicitly, thereby avoiding a source of state
space explosion. It has the advantage over the Java PathFinder model checker
in that we are not restricted to finite Java programs.

We do, however, currently have other restrictions—at both the front and
back ends—on what of Java we can model. Not all of a source language’s features
are easily represented by IEL. For example, we cannot express the creation of
new objects in Java; this problem is addressed by model checkers specifically
designed to analyze Java programs, e.g., the Java PathFinder [?] and work by
Park, Stern, and Dill in model checking Java bytecode [?]. Not all of general
exceptional flow are easily represented/checkable by Moped. For example, we
cannot currently handle the full generality of Java’s finally blocks; this problem
is addressed in principle (i.e., there is no tool support) by Obdrzalek [?, ?] but
he models only Java control flow and not state information.

1.3 Roadmap

In the next section we introduce our Intermediate Exception Language. We give
its full concrete grammar and an informal semantics. In Section 3 we describe
how we translate a subset of Java into IEL. In Section 4 we describe Moped

L Although the figure shows the LTL specification as input to the java2iel translator, cur-
rently we feed it to Moped directly.

and our translation of IEL into Moped. Section 5 contains three examples of
increasing complexity. We state ideas for future work in Section 6.

2 IEL
2.1 Design Goals

Our primary goal in designing our Intermediate Ezceptions Language (IEL) is to
have a simple language that allows us to express flow of control in the presence of
exceptions. We add to a straight-line procedural language with assignments, if-
then-else, loops, and procedure call the means for throwing exceptions, catching
and handling them, and executing “clean up” code. We restrict IEL to have only
simple types: booleans, integers, and bounded arrays. We also have assertions,
as a placeholder for uninterpreted annotations or for state formulae (e.g., pre-
and post-conditions, invariants).

Ideally IEL itself could serve as a source language for programmers who
simply want to “sketch” out the exceptional flow of control in their designs.
They would then analyze their IEL program to make sure their use of exceptions
captures the intended flow of control. This analysis can be done prior to any
commitment in representating data.

Initially, however, we expect that programmers will use our tool suite to ana-
lyze existing source code. As such, we also designed IEL so that multiple source
languages, including C++, Java, and CommonLisp, which have exception han-
dling features, could be translated into IEL. Thus, we want sufficient generality
to express different exception handling constructs. For example, IEL’s finally
block is useful for Java and CommonLisp, but not for C++.

Since we intend IEL to be expressive enough to handle different exception
handling mechanisms, we would need to provide different semantics for each
model, and even perhaps for each source language from which we translate into
IEL. For the most part, however, we are giving an interpretation based on a ter-
mination model of exceptions to IEL, the same as in Ada, C++, CommonlLisp,
ML, Modula-3, and Java. This model covers the programming languages we are
currently interested in, so this interpretation does not seem overly restrictive.

Weave a couple of examples throughout next two sections.

2.2 Grammar

start — declist

declist — dec declist

dec — exception | const | variable | procedure | assertion
exception — exception string [extends string]

const — const string num | const string true | const string false
variable — variable string : tydec [(num)] [:= init_exp]
tydec — int | bool | array of tydec [num]

init_exp — num | true | false | { init_ezps }

init_exps — init_exp [, init_ezps]

procedure — procedure string ([param_list]) [assertions] block
param_list ~— param [, param_list]

param, — string : type

type — int | bool | array of type

assertions ~ — assertion [assertions]

assertion — [string]

block — { [block_stmts] }

block_stmts — block_stmt [block_stmts]

block_stmt — stmt | variable

stmt

try_block
catch_list
catch_block
finally_block

call
arg_list

conditional
loop

assign
choice

assert
check

exrp
var
op_exp
cmp_exp

num
string

114l 1l

s

114l

11

return | break | throw string | try_block | call | conditional |
loop | block | assign | assert | check

try stmt [catch_list] [finally_block]
catch_block [catch_list]

catch string stmt

finally stmt

string ([arg_list])
exp [, arglist]

if exp then stmt [else stmt]
while exp stmt

var := exp | var := choice
choice [[arg_list]]

assert string exp
check string exp

num | true | false | var | Yexp | op_exp | cmp_exp | (exp)

string | var [exp]

exp + exp | exp - exp | exp * exp | exp / exp | exp && exp | exp || exp
exp < exp | exp > exp | exp <= exp | exp <= exp | exp = exp | exp '= exp

INTEGER_LITERAL
STRING_LITERAL

2.3 Informal Semantics

IEL is an intermediate language, and as such, is not interpreted or executed.
Therefore, there is no formal semantics for the language. However, since IEL
may be used directly as a design language, it is helpful to have an informal guide
to the language. This includes assumptions and restrictions not inherent in the
syntax of the language. The following is a concise list of such features of IEL.

¢ In a variable declaration, an optional integer argument may be given after
the type declaration that specifies the number of bits Moped should use

for that variable.

e Multidimensional arrays are currently not supported by IEL or Moped.

e IEL assertions (as specified by the assertions production) are currently

ignored.

e The test expression in an if-then or while statement must be a compar-
ison expression.

e The choice operator represents a nondeterministic choice from some set
of values. If any arguments are present, they must be integer literals.

3 Java to IEL

Weave a couple of examples throughout.

3.1 Restrictions
1. Restrictions on classes:

e There are no calls or references to external classes (or libraries).
o All classes are in the same package (or there are no packages defined).
e Exception classes do not define any fields.

e Inheritance is not supported (except for exception types).
2. Restrictions on instance fields:

e Fields of object type must be initialized in a constructor.

¢ Object fields may be initialized at most once.
3. Restrictions on methods:

e The return type of all methods must be either void, int, or boolean.

e There may only be one method named “main”.
4. Other restrictions:

e Multidimensional arrays are not supported.
e Any arrays are initialized at most once, with a constant size.
e A call to an object constructor may only take literal arguments.

e All new expressions must be statically countable.

All throw expressions must create a new exception object.

3.2 Translation Rules

The rules to translate a Java method body will be presented as a set of inference
rules that recursively produce an IEL abstract syntax tree. Also, the type
signatures of the translation functions are given below. Types of structures
representing Java syntactic elements are in roman, and IEL object types are
given in italics. Also, where a list of elements is returned, the possible types of
the elements are given in parentheses. Finally, in translation rules that check
the returned type of the exp rule, the object checked is the last element of the
returned List.

stmit Statement — List(Stmt, VarDec)
bstmt BlockStatement — List(Stmt, VarDec)
bvar VariableDeclarator — String * TyDec * InitExp
bty Type * TyDec — TyDec
bexp Literal — InitExp
finit ForInit — List(AssignStmt, VarDec)
fupd ForUpdate — List(AssignStmt)
swstmt SwitchCaseBlock — Ezp * BlockStmt
swezp Literal — FExp
cstmt CatchBlock — CatchStmt
exc AllocationExpression — String
erp Expression — List(Exp, AssignStmt, CallStmt)

Vi bz —?bstmt b;

Block

(b1 .- b} —stme BlockStmt({0],..., 0. })

A method body in Java consists of a list of block statements, each of which
can be either a standard statement or a local variable declaration.

S —stmt s
—™— BlockStmt
8 —bstmt S

Vi v; —pvar (U;';Tiaii)a (Ta Ti) bty Ti’

— - BlockVarDec

T {v1,. .., Un} —pstmt {VarDec(v},7},4;),. .., VarDec(v),,7;,,in)}

A local variable declaration in a Java block has the following syntax:

type (name [[1][= init_exp])*

Since an IEL type declaration incorporates array information, we must rec-
oncile the (optional) array information from the second chunk of the declaration
(the “VariableDeclarator”, in Java parlance) with the stated type.

In addition, this rule ignores all declarations of objects. In those cases where
an object is declared as an instance field, it must be initialized with one of its

constructors.

BlockIntArrayDec

(int, ArrayDec) —pzy ArrayDec(IntDec)

(bool, ArrayDec) —p4,y ArrayDec(BoolDec)

BlockBool ArrayDec

BlockBoolDec

(int, -) —psy IntDec

BlockIntDec (bool,) —, BoolDec

The above rule resolves the type information in the declaration. For our

purposes, we require that the type of the declaration be a primitive type (either
int or boolean) and that array information be given after the name of the
variable.

'
€ —pezp €

V = pyar (v, null, null) BlockVarName V=€ —pyar (v,null,e’) BlockVartnit
BlockA 1%
v[] = new _[n] =pyar (v, ArrayDec(_,n), null) ockArrayVar
Yi e; —pezp €
i “"bexp & - Block ArrayInit

v[] = {e1,---,€en} =bvar (v, ArrayDec(_,n), ArrayInit({e},...,eL}))

Currently, we conservatively require that all arrays be initialized upon cre-
ation, either with a constant size or a list of literal expressions. Also, when
initializing an array, we ignore the type information in the ArrayDec object for
now. This information is filled in by the bty rule above.

N —pexp IntInit(n) BlockIntInit

true —pesp Boollnit(true) BlockBoolInit False —penp Boolnit(false) BlockBoolInit

These rules are used by the bvar rules above to handle variable initializers.

Next, we look at the rules to translate Java statements.

eturn
return; —4m: ReturnStmt R

€ —ezp €t Exp
return €; — g, { AssignStmt(cur M ethod_result, e'), ReturnStmt}

ReturnExp

These rules handle return expressions. In the second case, a value is re-
turned from the Java method. IEL does not support value-returning functions,
so we have a special “return” variable for each defined procedure. The rule then
sets this special variable to the value of €', which is then accessed by the caller.

Another point to note is that the exp rule, which will be specified later,
does not necessarily return an object of type Exp. The Exp class represents an
IEL expression. However, since method calls and assignments are expressions
in Java but statements in IEL, the ezp rule must return a generic Absyn object.
Therefore, an assignment expression, for instance, will return a Stmt object
when translated, rather than an Exp. Here, we apply the constraint that the
translated expression must be an IEL Exp object.

break; —s¢m¢ BreakStmt Break

10

The break statement is included in IEL only for completeness. Currently,
the IEL to Moped translator does not support break statements, but they may
be still be used in switch blocks to end cases. Also, continue statements are
currently not handled.

Empt
; —>stmt BlockStmt(null) mety

This rule handles the trivial statement. As such, it is not intended to handle

semicolons at the end of statements, but rather, semicolons used as standalone
statements.

€ —egp € tEXp s s 8
if (e) s = seme fStmt(e’, ', null)

IfThen

!, 1 !
€ egp € 1 EXD 81 —gtmt ST S2 —Pstmt S

IfThenElse
if (e) s1 else Sy —>spme IStmt(e’, s, s5) f
e —ezp€ :Exp 8 —gmt 8
—F — e While
while (e) § = s¢me WhileStmt(e', s")
€ ezp € :Exp 8 —gme 8
=z = DoW hile

do s while (€); = stme {s', WhileStmt(e', s")}

i 2 finit i € egp€ :EXp U Dfupa ! S pme 8
for(i; e; u) § = stme {¢', WhileStmt(e’, BlockStmt({s’,u'}))}

For

In a Java for loop, the init, test, and update expressions are all optional.
For our purposes, we require that they all be present.

Vie; — e
LR — ForInitExp
{e1,...,en} = pinit {€},... €L}
T{v1,..., 05} = vy, ..., 0!
{vr, Un} ostmt { ,1’ ’ ,n} ForlInitDecs
T{’Ul,...,Un} _)finit {’Ul,...,’Un}

A valid init expression here can be either an assignment to an existing vari-
able (as specified in the sexp rule below), or a local variable declaration. In
the case of a local declaration, we require that the variable be initialized to
a constant value. In addition, a comma-separated list of expressions may be
substituted for a single expression.

€ —vezp € 1 AssignStmt

= ; Statement Exp
€ sexp €

11

- !
Vi e; —sexp €;

{e1,.--,en} 2 rupa {€1,---, €0}

ForUpdate

A valid update expression may only be a list of assignment statements to
existing local variables.

e egp € tExp Vi g Sswstme (Mi, {bi1 - -0 })
switch (e) {g1-..9gn} = stme UStmt(e’ = ny, {bl;...b4,,,},- .., HStmt(e’ = ny, {b; ...b,,,},null))

SwitchNol

e —ezp € EXp Vi <n gi Dgwstmt (Niy {1 ---bin}) 9n = swstme (null, {b; ... 07, })
switch (e) {g1---gn} = stme IStmt(e’ = na, {by; ... 0, }, -, HStmt (€' = nn—1, {0, 1)1 -~ Oy 1) > {001 - - -

We translate a switch statement into a set of nested if-then-else clauses. If
there is no default clause present, then the final IEL else clause is left as null.

€ _>swewp e Vi bz —*bstmt b;
casee: by... by 2 swstmt (€, {b],...,bL})

SwitchCase

Vi by =psimt b;
default: by ...by, —swstme (null, {b7,...,0,,})

SwitchDe faultCase

Each switch case may have a list of block statements.

SwitchIntEx
N —swezp INtExp(n) P

itchBool E itchBool E
true —gyeqzp BoOlExp(true) SwitchBool Ezp false —gyeqp BoolExp(false) SwitchBool Exp

A general case must specify as the test value an integer or boolean literal,
and not a general expression. This rule exists to enforce this constraint.

bl —>stmt bll VZ Ci —cstmt C; b2 —>stmt bIQ
try bi{ci...c,} £inally by —gpme TryStmt(b), {cl,-..,cl}, b5)

TryBlock

A Java try block can have the following forms: try-catch, try-finally,
and try-catch-finally. Although the above rule seems to indicate otherwise,
IEL supports all of the above forms. The statements b; and by above are required
to be Java blocks.

b —*stmt v
catch(T) b = ¢seme CatchStmt (7, ')

Catch

As with try and finally clauses above, a catch statement must consist of
a Java block. The exception type 7 must be a valid (defined) exception type.

12

e —egc €
throw e — 44 ThrowStmt(e')

Throw
——— FExceptionName
new e(_) —vegc €

Currently, we do not support dynamic creation of exception objects. So, a
throw expression must explicitly create an exception object immediately before
throwing it.

Now, we look at the rules for translating expressions.

n —eqp IntExp(n) IntConst

BoolConst BoolConst

true —¢zp BoOlExp(true) false —¢;p BoolExp(false)

€ —ezp € : Exp

SimpleVar ArrayVar

V —rezp SimpleVar(v) v[e] —ezp ArrayVar(v,e')

These rules handle variable access expressions. Of particular note is the
return type of these rules. In the IEL abstract syntax, both the SimpleVar
and ArrayVar classes are subclasses of the VarExp class. So, under these rules,
any variable access expression, when translated, will return an object of type
VarExp, which can be either type of expression.

€ —egp € 1 VarExp
++4e —rezp AssignStmt(e’, OpExp(e/, IntExp(1), +

) Prelncrement

€ —egp € : VarExp
——e —egp AssignStmt(e’, OpExp(e’, IntExp(1), —

) PreDecrement

The increment and decrement expressions in Java provide an example of a
situation in which the exp translation rule produces an IEL object that is not
of type Exp. These two, in particular, produce an AssignStmt object that in-
crements or decrements the specified variable.

Notably omitted here are rules to translate postfix increment and decrement,
expressions, for instance, x++. While these appear to be identical to the prefix
versions, they are not permitted because the Java semantics handle them differ-
ently. Specifically, the value of a postfix expression is the value of the variable
before it is modified. To avoid unnecessarily complicating the translation and
the TEL semantics, we have decided to avoid these types of expressions.

13

€ —regp € Exp

le = ¢qp OpExp(null,e’,!) Not

€ —ezp € Exp
—e —ezp OpExp(IntExp(0), €', —)

UnaryMinus

I . ! .
€1 —Fegp €1 1 EXp €2 —degp €5 : Exp

OpExp
€1 0p €2 —ezp OpExp(e], eh, op)

€1 —egp € : VarExp ez —eup) 1 Exp

AssignEx
€1 = €3 —egp AssignStmt(el, e5) gnep

€1 —ezp €1 : VarExp ey —¢yp €h 1 CallStmt
€1 = €3 —exp €5, AssignStmt (e}, SimpleVar(calledM ethod_result))}

CallAssign

Since procedure calls in IEL do not return values, we have to deal with the
special case where the result of a Java method call is assigned to a variable.
In this case, we declare a special IEL variable for each procedure that should
return a value. This variable is assigned the appropriate return value prior to
exiting the procedure in question. Then, the local variable can be assigned the
value of this special “return” variable.

€1 —egp €] : VarExp s —egp €} : Exp

AssignO
€1 0p = €2 —beqp AssignStmi(e;, OpExp(er, e5,0p) 0 ¥

This rule handles arithmetic assignment expressions in Java, e.g. x += 5.

3.3 Translating a Java Program

The above rules will translate a Java method, but they will not suffice to trans-
late an entire program consisting of multiple classes. The following algorithm
will show how to take a whole Java program and produce an IEL abstract syntax
tree.

Given: J: a set of ASTs of the Java classes
Require: classes represented by C can be compiled by javac
Output: E: a set of IEL exception declarations
C: a set of IEL constant declarations
V. a set of IEL variable declarations
P: a set of IEL procedure declarations
Declare: P,: a mapping from Java constructor names and types to IEL procedure names
P;: a set of procedure templates
V;: a set of variable templates

14

for all c€ J do
if ¢ extends some class ¢’ then
add (¢,c') to E {c must be an exception}
else
for all declarations d € ¢ do
if d is a constructor then
determine ¢, a list of the input types to d
create d’, a fresh constructor for class ¢
add new mapping (d,t) — d' to P,
else if d is a method then
translate the formal parameters into p
get m, the name of the method
extract b, the body of the method add new procedure template
(c,m,p,b) to P,
else {d is a field declaration}
get f, the name of the field
determine ¢, the IEL type of the field
determine ¢, an optional initializer for the field
add new variable decl template (c, f,t,7) to V;
end if
end for
end if
end for
for all m € P, do
translate and store the body of m
end for
for all v € V; do
if v is a constant then
add a new v’ to C
else if v is static then
add a new v’ to V
else
add a new v’ to V for each instantiation of v’s class
end if
end for
for all m € P, do
if m is static then
add a new m' to P
else
add a new m’' to P for each instantiation of m’s class
end if
end for

15

4 IEL to Moped

4.1 Model Checking Pushdown Systems

Moped [Sch] is a tool for model checking for pushdown systems. What follows
is an synopsis of a formal description of the theory underlying Moped, taken
from [EKS00].

A pushdown system has a finite set of control locations, a finite stack al-
phabet, a finite set of transition rules, an initial control location, and a bottom
stack symbol. Each transition rule takes a configuration of the system to an-
other, where a configuration is a pair of a control location and a stack.

Moped’s specification language is Linear Temporal Logic. The validity of an
LTL formula is defined for a run of a state transition system, where a run is an
infinite sequence of states.

Moped can handle these variants of the model checking problem, for a given
property ¢, written in LTL:

o Is ¢ valid for the initial configuration?
e Compute the set of all configurations, reachable or not, that violate ¢.
e Compute the set of all reachable configurations that violate ¢.

The stack component of pushdown systems allow us to model the dynamic
call chain of a program, i.e., through a stack of activation records. No special
state variable is needed to model the program counter or to track a procedure’s
return location; where to return from a procedure call is implicit in the stack
discipline. Pushdown systems also can handle recursion. For these reasons we
chose Moped as our backend model checker. Pushdown systems cannot model
concurrent programs; thus we are restricted to date to model checking only
sequential programs.

4.2 Restrictions due to Moped

¢ Moped cannot support an efficient heap, due to the state-space explosion
of a single large array. We do not translate programs that allocate dynamic
data, and do not include support in IEL for these programs.

e Moped does not support pointer-style indirect reference. This can be
simulated by indexes into arrays, but again we start to deal with large
arrays and the concomitant state-space explosion.

4.3 Restrictions on Finally Blocks

Correctly maintaining the Java semantics for finally blocks has proven to be one
of the more difficult parts of this translation.

Code within finally blocks must execute in a context that does not contain
a propagating exception. If a try block exists within a finally block, the test for

16

thrown exceptions after the call returns should not see any exceptions propagat-
ing when the finally block started. If that thrown exception is not caught within
the finally block, it should supersede any previously propagating exceptions and
cause the finally block to end immediately. If the exception is caught within the
finally block, and the finally block ends normally, then the original exception
must continue to propagate.

We considered several approaches to this problem. First, we tried omitting
the exception propagation check after a procedure call if the call was inside a
finally block. We hoped to not let exceptions propagate out of finally blocks as
a first approximation. This provided an incorrect semantics in the case where
an exception is thrown within that procedure call. Without the check, the try
block will complete normally and the exception will then propagate from the
check after the next procedure call outside of the try block.

Next, we tried including a flag in the Moped program that was set upon
entry into a finally block. This flag stopped the check after function calls when
it was set, producing a similar effect to before, but not limited purely to finally
blocks. We set the flag upon entry to a finally block, and cleared it upon exit.
We also cleared the flag when an exception was thrown. This approach proved
incorrect as well. If a finally block executes because of an exception, and another
exception is both thrown and caught within the finally block, then the original
exception is cancelled out and ceases to propagate.

To correctly translate finally blocks, we need to save the contents of all
exception variables when a finally block is entered, clear the variables, and re-
place the contents of the variables when the finally block exits normally. This
could be accomplished for finally blocks of arbitrary nesting depth by executing
a finally block as a subroutine and saving the exceptions on the stack. But,
Moped’s local variables cannot be shared between subroutines, leaving the code
within the finally block unable to access the variables in the enclosing procedure.
We could push the currently-propagating exception information onto a separate
data stack when entering a finally block, and pop it when leaving normally. We
decided that allocating space for a stack with numberO f Existing Exceptions
bits times depthO f Deepest Finally Block might overwhelm Moped, and the ad-
ditional stack-manipulation code might slow down the execution.

We choose to deal with this problem by including support for one level of
finally blocks, and not supporting nested finally blocks. For each exception, we
allocate both a variable and a save variable. When a finally block is entered,
we copy the exceptions to the save variables, and clear them. When the finally
block exits, we restore the contents of the exception variables. If an exception is
propagating when the finally block is entered, and no new exception is thrown
from within the finally block, then the original exception will propagate after
being saved and restored. If a new exception is thrown and caught within the
finally block, then the original exception will not be touched and will continue
after the finally block ends. If a new exception is thrown and not caught within
the finally block, control will leave the finally block without restoring the saved
exceptions. The new exception will propagate. We believe this to be a reason-
able approximation, and it is extendable to support greater finite nesting depths

17

if we later find real-world programs that require more than one level of finally
blocks.

4.4 TEL to Moped Translation Rules

The translation from IEL to Moped is presented below as a set of inference rules
specifying a recursive translation. These rules are presented in the following
format:

IEL Exp(subExpy, ..., subExp,), parameters, ..., parameter,,
subExp; — subExpTranslated;

subExp,, — subEzpTranslated,
moped translation
subExpTranslatedy,

moped translation

nextstate = (explained below)

The first section of the rule indicates the specific type of node in the IEL
abstract syntax tree being translated by the rule. The elements in the following
parentheses are the subtrees below the node. The parameters following the rule
can be thought of as arguments to the translation function, and are used to hold
state throught the recursive translation.

The next section of the rule describes the recursive translations that have
to occur before this translation can occur. These are described as mappings
from the elements of the subtree to translated versions of those elements, to be
used in the third section of this rule. This translation uses several environments
to manage variable declarations and procedure declarations. Actions on these
environments, like add and lookup, may also be described in this line of the
rule. Finally, the lines in this rule should be read in order, as the result of one
recursive action may be used as input to a subsequent recursive action within
the same rule.

The third and fourth parts of the rule describe the output of the translation.
The third part contains Moped code in typewriter face, the contents of the
parameters in roman face, and the output of recursive translations in italic face.
This code is the primary “return value” of each rule.

The fourth part of the rule contains the “nextstate” variable when trans-
lating IEL statements, and nothing otherwise. States in Moped code must be
uniquely named. We accomplish this by identifying each state with the name
of the procedure containing the IEL statement from which the Moped state
transition was derived. We then append a unique number to the state name.
This number increases as the translation proceeds through the sequential moped
states. “nextstate” is defined to be the next available number for subsequent
statements. This value is also “returned” from each statement rule.

When a global variable declaration, exception declaration, or procedure dec-
laration is being translated, the purpose of the rule is to add the output to an

18

environment for later use in the “Start” rule described below. Nextstate is not
needed, and therefore is not displayed.

Start(decList)

Exceptions= (), Globals= @), Procedures= ()
decList 4. Exceptions, Globals, Procedures
Globals U(Exception, (1),0)

Globals U(Exception_save, (1),0)

Globals —yar1ist globalDecs

Procedures, —giqternist stateListy
Procedures;.Locals 4 List localDecsy

Proceduresy —rsiaterist StateListy,
Proceduresy.Locals = yqorList localDecsy,
Procedures +,rocrist procedureDecs
Globals —yarAssignList globalInitAssign
Globals +— treme frameGlobals

global int globalDecs;
local (stateList;) int localDecs;

local (stateListy) int localDecsy,;

(q <init1>)

procedureDecs

q <init1> --> q <mainl> "initialize globals" (globallnitAssign)

q <normalend> --> q <normalend> "normal termination" (frameGlobals)
q <exnend> --> q <exnend> "exceptional termination" (frameGlobals)

This rule is the beginning of the translation. It calls all other rules recur-
sively. An IEL program is expressed as a list of declarations. Each declaration
is translated individually. Three environments, named Exceptions, Globals, and
Procedures are filled with the output of these translations. The format of the
entries in these environments will be described with the rules for variable, ex-
ception, and procedure declarations below. Once these environments have been
filled, the contents are translated into the Moped code above. The details of
these translations will be explained below.

The overall structure of a Moped program begins with a list of the global
variable declarations. The addition of the Exception variable to the global
environment establishes the root of the exception subtyping hierarchy as a real
variable. Exception_save will be explained in the section on finally blocks.

Next, we associate the list of states corresponding to each procedure with a
list of the local variables declared in that procedure. The following line defines
the initial configuration of the pushdown system. We set this to be the state
called “init1”. Next, we append the code of each procedure. Our translation
creates the state “init1” to be the initial state. This state initializes the global
variables to the correct values, and then transitions to the state “mainl”. This
is the first state of the required main procedure. Finally, we create two states

19

named “normalend” and “exnend”. These states are designed to be included
in LTL formulas, and they represent a normal ending of the program and an
exceptional ending respectively. These termination states only self-loop, as this
is the accepted way of terminating execution in Moped.

The stateList translation produces a comma-separated list the names of each
Moped state associated with a procedure. The varList translation produces a
comma-separated list of Moped variable declarations for each variable in the
environment. The form of a Moped variable declaration is described below the
VarDec rule. The procList translation concatenates the Moped code associated
with each procedure, separated by blank lines.

The varAssignList translation and the frame translation will be explained
below the VarDec rule, as an explanation of the variable environments is nec-
essary first.

4.4.1 dec Translation Rules

VarDec(name, ty, init)
ty 4y tyDec
init —egp initExp
Globals U (name, tyDec, init Exp)

Global variable declarations are only entered into the Globals environment.
Each entry in the environment contains the name of the variable, a string rep-
resenting the type as produced by the ty translation, and may contain a string
representing an initializer expression. The exp and ty translations are detailed
at the end of this section.

In Moped, changes to the state of a variable use the syntax var’ = exp,
indicating that as the state transition is taken, the value of var changes to the
result of evaluating the expression exp. The var AssignList translation seen in
the Start rule is defined over variable environments like these. It produces a
list of these assignment expressions, separated by the & sign. The translation
varAssign is used later, in the rule for AssignStmt, and produces a Moped
expression with a single assignment.

The frame translation mentioned in the Start rule is also defined over these
variable environments. The output of the translation is a Moped expression
with the form vary, ...’ = var; & ...& vary > = varg,,,..- Whenin-
cluded in a state transition, this expression ensures that each variable in the
environment stays the same as the transition is taken. We call this the frame
aziom. Without this axiom, the transition system would not accurately reflect
the original IEL program, as all variables would be free to change on their own
at any time.

We will use frameGlobals as a shorthand notation without including the
translation “Globals — ¢rqme frameGlobals” in the recursive section.

As a side note, the frame axiom as applied to an array variable has a some-
what different form in Moped. Moped expressions can use the for-all operator A

name name

20

in this manner: (A _i (0, n-1) arr’[.i] = arr[_i]). This expression main-
tains the values of each element in the array. When element k of the array must
change while the rest stay the same, we use the following expression: (arr’ [k]
=exp) & (A i (O,n-1) i =k | arr’[_i] = arr[i]).

ExceptionDec(name, parent)
Globals U (name, (1), 0)
Globals U (name_save, (1),0)
Exceptions U (name, parent)
Exceptions U (name, parent)

Exception declarations are entered into the Exceptions environment, which
maintains the subtyping hierarchy of the exceptions for use in rules to be de-
scribed later. Each exception declaration is also entered into the Globals envi-
ronment, as a non-array variable with one bit allocated for it, represented by the
string (1), and an initalizer string of 0. We translate exceptions into boolean
variables that start false, and are set to true as described below in the rule for
Throw.

ProcedureDec(pname, paramNameList, body)

pname.Locals=

paramNameList — gringrist paramList

pname.Locals F (body, pname, nextstate = 1, exjump = 0) — gt (bodyCode, N)
< code below > +— code

Procedures U(pname, code, paramList, pname.Locals)

q <pname0> --> q <> "exceptional return" (frameGlobals)
bodyCode
q <pnameN> --> q <> "normal return" (frameGlobals)

Procedure declarations are entered into the Procedures environment. Fach
entry in the Procedures environment contains the name of the procedure, the
Moped code corresponding to the procedure, a list of the names of the formal
parameters, and a variable environment named Locals. This environment is
identical in structure to the Globals environment described above.

We define the zeroth states to be the “exceptional return” state, and the
last state to be the procedure is the “normal return” state. The moped code q
<> pops the pushdown stack, and transitions to the popped state.

The stringList translation just produces a list of strings representing the
names of the formal parameters. This list will be stored for later use in building
the assignment expression.

21

ProcedureDec(main, _, body)

pname.Locals= 0

pname.Locals F (body, main, nextstate = 1, exjump = 0) st (bodyCode, N)
< code below > +— code

Procedures U(main, code, paramList, pname.Locals)

q <main0> --> q <exnend> "exceptional main return" (frameGlobals)
bodyCode
q <mainN> --> q <normalend> "normal main return" (frameGlobals)

All TEL programs must contain a main function, following C conventions,
and this main function is translated slightly differently. The zeroeth and last
states transition to the normalend and exnend states described in the Start
rule instead of popping the call stack.

4.4.2 stmt Translation Rules

The stmt translation takes four arguments. The first argument is a part of the
IEL abstract syntax tree representing a statement. The second argument is the
name of the procedure containing the statement. The third argument is the next
available state number for use in numbering the Moped states corresponding to
the statement. This argument is set to 1 at the beginning of each new procedure.
The fourth argument is the number of a state in the current procedure to jump
to when an exception is thrown. This argument is set to 0 at the beginning
of each new procedure. This indicates that in the event of an exception being
thrown, the system will transition to the state pname0, which will return from
the current procedure.

The stmt translation returns two elements. The most important returned
element is a string containing the Moped code corresponding to the statement.
These code fragments are concatenated together by the BlockStmt rule be-
low. The other returned element is the number immediately after the last state
number used in that rule.

BlockStmt(Stmt(stmt), stmtList), pname, ns, exj
(stmt, pname, ns, exj) Hgme (stmtCode, N)
(stmtList, pname, N, exj) — stmirist (stmtListCode, N')
stmtCode
stmtListCode
nextstate = N’

22

BlockStmt(VarDec(name, ty, init), stmtList), pname, ns, exj

ty —y tyDec

init —epp initExp

(name, tyDec, init Exp) —yorinitAssign varInitAssign

(stmtList, pname, ns+1, exj) —sgmirnist (stmtListCode, N')

pname.Locals U(name, ty Dec, init Exp)

Globals U pname.Locals N —name +¢,qme initEFrame

q <pname(ns)> --> q <pname(ns+1)> "init assign" (varlnitAssign &
initEF'rame)

stmiListCode

nextstate = N'

IEL has block structure. Elements allowed within a block statement are
other statements and variable declarations. These statements are translated
in order, and the “nextstate” counter is increased as described in each specific
stmt rule.

Variable declarations are stored in the local variable environment for the
enclosing procedure, and are translated into a transition that initializes the
variable to a given expression. This time, the frame expression includes both
global and local variables, excluding the variable being initialized. We will use
frameAll Except(name) without reference as a shorthand for the “Globals U
pname.Locals N —name = f,qpme initFrame” translation.

ReturnStmt(), pname, ns, exj

q <pname(ns)> --> q <> "explicit return" (frameGlobals)
nextstate = ns+1

AssignStmt(varRef, value), pname, ns, exj
value ¢z, valueExp
(varRef, value Exp) — yar Assign varAssign
q <pname(ns)> --> q <pname(ns+1)> "assign" (varAssign &
frameAll Except(varRef))
nextstate = ns+1

This rule uses assign statements as described in the VarDec rule, to set the
value of a single variable.

IfStmt(check, thenClause), pname, ns, exj

check 5, checkExp
(thenClause, pname, ns+1, exj) — szt (thenCode, N)
Globals U pname.Locals = frqme frameAll

q <pname(ns)> --> q <pname(ns+1)> "if true" (checkExzp & frameAll)
q <pname(ns)> --> q <pname(N)> "if false" (!(checkEzp) & frameAll)
thenCode

nextstate = N

23

In translating if-then statements, we use multiple transitions out of a starting
state. An expression and a negated expression distinguish the two branches.

We will use frameAll without reference as a shorthand notation for the
frame axiom applied to both global and local variables.

IfStmt(check, thenClause, elseClause), pname, ns, exj

check ¢z, checkExp
(thenClause, pname, ns+1, exj) + st (thenCode, N)
(elseClause, pname, N+1, exj) +>gme (elseCode, N')

q <pname(ns)> --> q <pname(ns+1)> "if true" (checkExzp & frameAll)

q <pname(ns)> --> q <pname(N + 1)> "if false" (!(checkExp) & frameAll)
thenCode

q <pname(N)> --> q <pname(N')> "jump past else" (frameAll)

elseCode

nextstate = N’

WhileStmt(check, body), pname, ns, exj

check 5, checkExp
(body, pname, ns+1, exj) —s¢me (bodyCode, N)

q <pname(ns)> --> q <pname(ns+1)> "while" (checkEzp & frameAll)

q <pname(ns)> --> q <pname(N+1)> "not while" (!(checkExp) & frameAll)
bodyCode

q <pname(N)> --> q <pname(ns)> "loop while" (frameAll)

nextstate = N + 1

The only loops included in IEL are while loops. These are translated into a
bidirectional test, and a looping state transition at the end of the while body.

CallStmt(procName, argExpList), pname, ns, exjump

ProceduresprocName = procParamList paramN ames

argExpList = czprist argEzps

(paramNames, argErps) —yarAssignList paramAssignCode

pname.Locals = framecan frameLocalsForCall

q <pname(ns)> --> q <procNamel pname(ns+1)> "call procName"
(paramAssignCode & frameGlobals & frameLocalsForCall)

q <pname(ns+1)> --> q <pname(ns+2)> "normal ret"
(! (Exception = 1) & frameAll)

q <pname(ns+1)> --> g <pname(exjump)> "exceptional ret"
(Exception = 1 & frameAll)

nextstate = ns+2

Procedure calls make use of Moped’s pushdown stack. The syntax above
indicates a transition to procNamel, while pushing the state “pname(ns+1)”
onto the stack, for later execution.

We implement exception propagation by following each call with a test to
see if an exception was thrown within that procedure. If so, we transition to
the state currently indicated as the exception handler. If not, we move on.

24

The procParamList translation extracts the names of the formal parame-
ters of the procedure. The expList translation translates each expression into
a Moped string, and returns a list. The varAssignList produces a string con-
taining a series of &-separated assignment expressions as described earlier.

The frameCall translation acts similarly to the standard frame translation.
Because we are pushing the next state onto the stack, we must indicate that the
variables will not change when that state is popped by a later return statement.
Moped indicates an assignment to variables in a pushed state with two primes
after the variable name. frameCall builds the standard frame expression with
two primes instead of one, as in var’’ = var.

ThrowStmt(exnName), pname, ns, exj
ExceptionsexnName FeznAncestors €LnAncestorSet
q <pname(ns)> --> q <pname(exj)> "throwing exnName"
(exnAncestorSet;’ = 1 & ... & exnAncestorSet;,’ = 1
frameAll Except(exnAncestorSet))
nextstate = ns+1

A throw statement makes use of the exception ancestry hierarchy, to set the
thrown exception and all ancestors to one. This enables us to test the root
Exception variable to find out if any exception has been thrown, and allows a
catch block to catch all subclassed exceptions.

TryStmt(body, catchList), pname, ns, exj

(catchList, pname, ns+2, exj, resumejump = ns+1) > c4¢cn (catchCode, N)
(body, pname, N, exjump = ns+2) g (bodyCode, N')

q <pname(ns)> --> q <pname(N)> "jump past catch" (frameAll)

q <pname(ns+1)> --> q <pname(N')> "jump after try block" (frameAll)
catchCode

bodyCode

nextstate = N’

Statements within a try block are translated with a new exception handling
state, namely the first associated catch block. The catch block is translated
with another parameter, a state for resuming after handling an exception.

25

4.4.3 cstmt and catch Translation Rules

CatchStmt(name, body), pname, ns, exj, resj

(body, pname, ns+2, exj) — s¢me (bodyCode, N)
Exceptions —eznay allExnSet

q <pname(ns)> --> q <pname(ns+1)> "caught exn" (name = 1 & frameAll)

q <pname(ns)> --> q <pname(N+1)> "didn’t catch exn"
(Y (name = 1) & frameAll)
q <pname(ns+1)> --> g <pname(ns+2)> "clear exns"

(allExnSet1” = 0 & ...& allEznSety’ = 0 & frameAllExcept(allExnSet))

bodyCode
q <pname(N)> --> q <pname(resj)> "resume normally" (frameAll)

nextstate = N + 1

The named exception is tested, and if the exception is not set, then control
transfers to the next catch block. If this is the last catch block, control will
transfer to a state that transfers to the current exception handler, propagating
it upwards. If the exception is set, then all exceptions are cleared and the catch
body executes, transitioning to the resume state upon completion.

CatchList(catchBlock, catchList), pname, ns, exj, resj
(catchBlock, pname, ns, exj, resj) —csime (catchCode, N)
(catchList, pname, N, exj, resj) —cqten (catchListCode, N')
catchCode
catchListCode
nextstate = N’

CatchList(catchBlock), pname, ns, exj, resj
(catchBlock, pname, ns, exj, resj) —csimt (catchCode, N)
catchCode
q <pname(N)> --> g <pname(exj)> "unhandled exn" (frameAll)
nextstate = N + 1

The last catch block is followed by a statement that propagates the exception
upward, indicating an unhandled exception.

26

4.4.4 Finally Block stmt Translation Rules
TryStmt(body, finally), pname, ns, exj

(finally, pname, ns+3, exj) —stme (finallyCode, N)

(body, pname, N + 2, exjump = ns+1) —gm: (bodyCode, N')
Exceptions —reznay allExnSet

Exceptions —reznsavean allExnSaveSet

(allExznSaveSet, allExnSet) — yar AssignList €xnSave
(allExnSet,0) —yarassignList exnClear
(allExnSet,allExnSaveSet) —yar AssignList €xnRestore

q <pname(ns)> --> q <pname(N+2)> "jump to try body" (frameAll)
q <pname(ns+1)> --> q <pname(ns+2)> "save exns"
(exznSave & frameAllExcept(allExnSaveSet))
q <pname(ns+2)> --> q <pname(ns+3)> "clear exns"
(exnClear & frameAllExcept(allExnSet))
finallyCode
q <pname(N)> --> q <pname(N+1)> "restore exns"
(eznRestore & frameAllExcept(allExznSet))
q <pname(N+1)> --> q <pname(N’+1)> "no exn before finally"
(! (Exception = 1) & frameAll)
q <pname(N+1)> --> q <pname(exj)> "exn before finally"
(Exception = 1 & frameAll)
bodyCode
q <pname(N’)> --> q <pname(ns+1)> "run finally" (frameAll)

nextstate = N' +1

27

TryStmt(body, catchList, finally), pname, ns, exj

(finally, pname, ns+3, exj) Hgime (finallyCode, N)

(catchList, pname, N+2, ns+1, resumejump = ns+1) —¢qecn (catchCode, N')
(body, pname, N', exjump = N+2) 5, (bodyCode, N")

Exceptions —eznan allExnSet

Exceptions —eznsavedn allExnSaveSet

(allEznSaveSet, all ExnSet) — yar AssignList €xnSave

(allExnSet,0) »yarassignList exnClear

(allExnSet,allExnSaveSet) — yar AssignList €xnRestore

q <pname(ns)> --> q <pname(N’)> "jump to try body" (frameAll)
q <pname(ns+1)> --> q <pname(ns+2)> "save exns"
(eznSave & frameAllExcept(all ExznSaveSet))
q <pname(ns+2)> --> g <pname(ns+3)> "clear exns"
(exnClear & frameAllExcept(allExnSet))
finallyCode
q <pname(N)> --> q <pname(N+1)> "restore exns"
(exnRestore & frameAllExcept(all EznSet))
q <pname(N+1)> --> q <pname(N”+1)> "no exn before finally"
(! (Exception = 1) & frameAll)
q <pname(N+1)> --> q <pname(exj)> "exn before finally"
(Exception = 1 & frameAll)
catchCode
bodyCode
q <pname(N”)> --> q <pname(ns+1)> "run finally" (frameAll)

nextstate = N" +1

This rule applies the exception-saving technique explained earlier, support-
ing a single level of finally blocks only. Before the finally block executes, all
of the exception variables are assigned to the exception-save variables, and the
exception variables are cleared. If the finally block exits normally, all of the
exception-save variables are assigned back to the exception variables, and a test
is made that will propagate an exception if one exists. Note that the exceptional
jump variable for the finally block is the previously existing value of “exjump”.
If an exception is thrown within the finally block, then control will immediately
translate to the next outer handler without restoring the saved exceptions.

4.4.5 Assertion stmt Translation Rules

AssertStmt(name, exp), pname, ns, exj
eXP egp aSsETtETP
q <pname(ns)> --> q <name> (assertExp & frameAll)
q <pname(ns)> --> q <name_fail> (!(assertExp) & frameAll)
q <name> --> q <pname(ns+1)> (frameAll)
q <name_fail> --> q <name_fail> (frameAll)
nextstate = ns+1

28

CheckStmt(name, exp), pname, ns, exj

exp Fegp assertExp

q <pname(ns)> --> q <name> (assertExp & frameAll)

q <pname(ns)> --> q <name_fail> (!(assertExp) & frameAll)

q <name> --> q <pname(ns+1)> (frameAll)

q <name_fail> --> q <pname(ns+1)> (frameAll)

nextstate = ns+1

We translate the assert and check statements into tests that pass through

a state called “name”, named by the user, if the expression is true. If the
expression is false, they pass through a state called “name” _fail. In the assert
statement, the failure state loops infinitely, halting the execution of the program.
In the check statement, the failure state is only passed through. These states
are designed to be included as propositions in LTL formulas. The examples
section demonstrates how they may be used by the programmer.

4.4.6 exp and ty Translation Rules

These rules produce less complex output, and so are presented in standard
inference rule form. Actual moped code is in typewriter face, and variables are
in italic face.

IntExp(i) »egp

Bool Exp(true) megp 1

BoolExp(false) —egp 0

var Fyer var'
!
VarExp(var) —eqzp var

€LP1 Frezp ETP) OP Frop 0P €TP2 Fregp ETDY
OpEzp(expi,0p, exps) —eap €xp) 0p' exph

This table defines the operator symbol translation.

29

op translation
IEL Op Moped Op
+ -

A
IV AVA g~ *

SimpleVar(name) —yqr name

Var Fryer var' index gy indes’

ArrayV ar(var,index) «yqr var' [index']

IntDec(bits) 4, (bits)

BoolDec() —ry (1)

ty ey ty'

ArrayDec(size,ty) —y [sizelty'

5 Examples

Our first example, a Single Resource that can be locked or unlocked, illustrates
the basic constructs of IEL and how even simple exceptional flow of control
can be subtle to reason about. Our second example, the N Queens Problem,
is a standard search example illustrating an interesting use of exceptions, in
particular for effecting both shallow and deep backtracking. We use the third
example, Vending Machine, taken from Sinha and Harrold’s paper, to show how
our Exceptional Tool Suite works from end to end. Our last example, Finally
Blocks, is a simple demonstration of our finally block handling.

30

5.1 Single Resource

This first example is a simple locked resource example. In the program, the
resource is locked, and then an exception is thrown by a subroutine. This
exception is caught, and the resource is unlocked. The program then loops. We
have commented out the call to unlock in the exception handler, thus causing
the program to call lock twice in a row.

var locked: int
exception an_exception

procedure main() {
locked := 0
while true=true {
try {
lock()
randomException()
unlock()
}
catch an_exception {
/* If you uncomment out the following, the program is 0K */
/* unlock() */
}
}
}

procedure randomException() {
throw an_exception

}

procedure lock() {
if locked = 1 then

error()
if locked = 0 then
locked := 1

¥

procedure unlock() {
if locked = 0 then

error ()
if locked = 1 then
locked := 0

}

procedure error() {
__assert error true=true

31

We have inserted a check at the beginning of 1ock and unlock to ensure that
the lock is in the proper state before changing it. We name the error condition
in order to reference it in an LTL formula by using the IEL __assert statement
with a name of error and an expression that always evaluates to true.

We translate the IEL program into input for our model checker, and check
the validity of the following LTL formula:

I<>error

The model checker returns false, indicating that an error exists in the pro-
gram. We can determine where the error lies from examining the state trace
outputted by the model checker. After uncommenting the noted line above, the
model checker returns true.

5.2 N Queens

Next, we turn our attention to the N-queens problem. The program below
solves N-queens using exceptions to implement a backtracking search. We can
use our tool to determine whether N-queens is solvable for a given value of N,
by inputting the following formula into our model checker:

<>normalend

If the checker returns true, then eventually the program will end normally,
and the problem is solvable for the specific N. If not, then the program must
end exceptionally.

var qj: array of int[4]
var conflict: bool

exception Conflict

procedure conflict(i: int, j: int, n: int) {
var gqi:int := 0
conflict := false

while (qi < i) {
if (i =qi |l j =qjlqil Il (i+j) = (gi+qjlqil) Il
(i-j) = (qi-qjl[qil)) then {
conflict := true
return

¥
qi = qi + 1
}

32

procedure addqueen(il: int, jl: int, nl: int) {
while (j1 <= n1) {
try {
conflict(il, j1, nl)
if (conflict = true) then throw Conflict

else {
qj[i1] := j1
if (i1 !'= nl1) then addqueen(il+l, 0, nl)
return
}
}

catch Conflict {
if (j1 = nl1) then throw Conflict

}
j1o:= §1 + 1
}
}
procedure main() {
var n_queens: int := 4
addqueen(0, 0, n_queens-1)

}

Our model checker returns true for N=1 and N greater than or equal to 4,
as is expected. We have tested values of N from one to twelve.

5.3 Vending Machine

This example is a simplified control program for a vending machine, written in
Java. We use this example to demonstrate how our toolset handles try-catch
constructs and data. The full source code is presented in Appendix A, with
auxilliary classes omitted for brevity.

The first step in our toolset translates this object-oriented Java program to
the simplified and procedural IEL. The IEL source is presented below.

/* Vending machine IEL code */

exception IllegalAmountException

exception IllegalCoinException

exception ZeroValueException

exception SelectionException

exception IllegalSelectionException extends SelectionException
exception SelectionNotAvailableException extends SelectionException

const VendingMachine_Dispenser_MIN_SELECTION 1
const VendingMachine_Dispenser_ MAX_SELECTION 6

33

/* Various constants, definitions not given */
const VendingMachine MAX_ATTEMPTS 5

const VendingMachine_INSERT 0

const VendingMachine_VEND 1

const VendingMachine_RETURN 2

const VendingMachine_action 0

const VendingMachine_coin 5

const VendingMachine_selection 3

/* There is an instance variable defined here for each instance of a
class that is instantiated. Since this program only creates one
VendingMachine object, there is one set of instance variables. */

var VendingMachine_totValue_1:int

var VendingMachine_currValue_1:int

var VendingMachine_currAttempts_1:int

var VendingMachine_valueOf_1_result:int

var VendingMachine_Dispenser_available_1_result:bool
var VendingMachine_Dispenser_value_1_result:int

/* constructor */

procedure VendingMachine_VendingMachine_1() {
VendingMachine_totValue_1 := 0
VendingMachine_currValue_1 := 0
VendingMachine_currAttempts_1 := 0

}

procedure VendingMachine_insert_1(coin:int) {

var value:int

VendingMachine_value0f_1(coin)

value := VendingMachine_valueOf_1_result

if (value = 0) then

throw IllegalCoinException

VendingMachine_currValue_1 := VendingMachine_currValue_1 + value
I:
¥

procedure VendingMachine_valueOf_1(coin:int) {
if(coin = 5 || coin = 10 || coin = 25) then {
VendingMachine_valueOf_1_result := coin
return

}

VendingMachine_valueOf_1_result := 0

¥

34

procedure VendingMachine_returnCoins_1() {
if (VendingMachine_currValue_1 = 0) then
throw ZeroValueException
VendingMachine_currValue_1 := 0
VendingMachine_currAttempts_1 := 0
R:
X
procedure VendingMachine_vend_1(selection:int) {
if (VendingMachine_currValue_1 = 0) then
throw ZeroValueException
try {
VendingMachine_Dispenser_dispense_1(VendingMachine_currValue_1,selection)
var bal:int
VendingMachine_Dispenser_value_1(selection)
bal := VendingMachine_Dispenser_value_1_result
VendingMachine_totValue_1 :=
VendingMachine_totValue_1 + VendingMachine_currValue_1 - bal
VendingMachine_currValue_1 := bal
VendingMachine_returnCoins_1()
}
catch SelectionException {
AC: VendingMachine_currAttempts_1 := VendingMachine_currAttempts_1 + 1
if (VendingMachine_currAttempts_1 < VendingMachine MAX_ATTEMPTS) then
{}
else {
VendingMachine_currAttempts_1 := 0
throw SelectionException
X
X
catch ZeroValueException {
}
¥

procedure VendingMachine_Dispenser_dispense_1(currVal:int, sel:int) {
if (sel < VendingMachine_Dispenser_MIN_SELECTION ||
sel > VendingMachine_Dispenser_MAX_SELECTION) then {
throw IllegalSelectionException
}
else {
VendingMachine_Dispenser_available_1(sel)
if(VendingMachine_Dispenser_available_1_result = false) then {
throw SelectionNotAvailableException
}
else {

35

var val:int
VendingMachine_Dispenser_value_1(sel)
val := VendingMachine_Dispenser_value_1_result
if (currVal < val) then

throw IllegalAmountException

}
D:
}

procedure Dispenser_available_1(sel:int) {
if(sel = 2 || sel = 4) then {

Dispenser_available_1_result := false
return
}
Dispenser_available_1_result := true
¥
procedure Dispenser_value_1(sel:int) {
Dispenser_value_1_result := 50
X

procedure main() {
VendingMachine_VendingMachine_1()
while(true=true) {
try {
try {
if VendingMachine_action = VendingMachine_INSERT then {
VendingMachine_insert_1(VendingMachine_coin)
}
else if VendingMachine_action = VendingMachine_VEND then
VendingMachine_vend_1(VendingMachine_selection)
else if VendingMachine_action = VendingMachine_ RETURN then
VendingMachine_returnCoins_1()
}
catch SelectionException {
VendingMachine_returnCoins_1()
}
catch IllegalCoinException {
MRC: VendingMachine_returnCoins_1()
}
catch IllegalAmountException {
}
}
catch ZeroValueException {}

}

36

We wish to verify the following property:
[1(insert -> <>(returnCoins || dispense))

Once coins are inserted, we would like to be sure that the coins will be
returned, or a product will be dispensed. We would like to ensure that the
vending machine has no modes in which it will simply keep the user’s money.

We begin by annotating the IEL source lines I, R, and D with assertions
to mark these specific points in the program. This was also seen in the lock
example above. Possible avenues for future improvement include allowing the
developer to make these annotations in the Java source, instead of at the IEL
level. This may be done through a class with methods that have no actual Java
meaning, but are treated specially by the translator.

We then make use of the IEL choice statement, to introduce nondetermin-
ism in order to model the user actions.

The main function becomes:

procedure main() {

VendingMachine_VendingMachine_1()

while(true=true) {

try {

try {
VendingMachine_action := choice[VendingMachine INSERT,

VendingMachine_VEND,
VendingMachine_RETURN]

if VendingMachine_action = VendingMachine_INSERT then {
VendingMachine_coin := choice[5,10,25]
VendingMachine_insert_1(VendingMachine_coin)
}
else if VendingMachine_action = VendingMachine VEND then {
VendingMachine_selection := choice[1,2,3,4,5,6,7]
VendingMachine_vend_1(VendingMachine_selection)

¥
else if VendingMachine_action = VendingMachine_RETURN then {
VendingMachine_returnCoins_1()
X
¥

For this program and the above formula, our model checker returns false.
Examining the trace, we see that the Tllegal AmountException is continually
thrown up to the main level, after the action choice statement selects VEND.
We infer that if the amount of money currently in the vending machine does

37

not match the price of any item, then the user can continually press vend and
never recieve either product or coins. A somewhat trivial example, yes, but it
is a violation of the above LTL formula.

We change the program to increase the “attempts” counter when an Ille-
galAmountException is thrown, similar to that done in line AC. We also change
the program to return the coins if that exception propagates up to the level of
the main procedure, similar to line MRC. The user can no longer select VEND an
unbounded number of times. This revised program now satisfies the formula.

5.4 Finally Blocks

Our last example is a simple program that uses a finally block.

exception exnA
exception exnB

procedure throwA()
{

throw exnA

¥

procedure throwB()
{

throw exnB

}

procedure main()
{

try {
throwA ()

} catch exnA {
throwB ()
throwA ()

} finally {
try {

throwA ()
} catch exnB {
/* do nothing */
}
}
}

This program demonstrates exceptional entry into finally blocks, when ex-
ception B is thrown from the first catch block. This program also demonstrates
an how exception thrown and not caught in the finally block can supersede an
exception thrown prior to entering the finally block.

38

We use this LTL formula: <>normalend. As we expect, the model check re-
turns false. This program can only end exceptionally. Examining the backtrace,
we see that the program ends with exception A. We see exception B in the save
variables described earlier.

[exceptional termination]
q (Exception=1 & Exception_save=1 & exnA=1 & exnA_save=0 & exnB=0
& exnB_save=1)
<exnend>

Our model checker behaves correctly on this example.

6 Future Work

e Concurrent threads of control.
— Use assume/guarantee approach but need to develop proof rules to
handle exceptions.

— Develop model checker for more powerful automaton. Restrict class
of programs and/or properties to check, to make this practical.

7 Appendix A: Java Source for Vending Ma-
chine Example

public class VendingMachine {
private int totValue;
private int currValue;
private int currAttempts;
private Dispenser d;

final int MAX_ATTEMPTS = 5;

static final int INSERT = 0;
static final int VEND = 1;

static final int RETURN = 2;
static final int action = 0;

static final int coin = 27;
static final int selection = 3;

public VendingMachine() {
totValue = 0;
currValue = 0;
currAttempts = 0;
d = new Dispenser();

39

public void insert(int coin) throws IllegalCoinException {
int value = valueOf(coin);
if(value == 0)
throw new IllegalCoinException();
currValue += value;

}
public int valueOf(int coin) {
if(coin == || coin == 10 || coin == 25)
return coin;
return 0;

}

public void returnCoins() throws ZeroValueException {
if (currValue == 0)
throw new ZeroValueException();
currValue = 0;
currAttempts = 0;
}

public void vend(int selection) throws Exception {
if(currValue == 0)
throw new ZeroValueException();
try {
d.dispense(currValue, selection);
int bal = d.value(selection);
totValue += currValue - bal;
currValue = bal;

returnCoins() ;
}
catch(SelectionException s) {
currAttempts++;
if (currAttempts < MAX_ATTEMPTS) {
// original example prints message
} else {
currAttempts = 0;
throw new SelectionException();
}
}
catch(ZeroValueException z) {
}

}

public static void main(String argv[]) throws Exception {
VendingMachine vm = new VendingMachine();
while(true) {

40

try {

try {
switch(action) {
case INSERT: vm.insert(coin); break;
case VEND: vm.vend(selection); break;
case RETURN: vm.returnCoins(); break;
}

}

catch(SelectionException s) {
vm.returnCoins() ;

}

catch(IllegalCoinException i) {
vm.returnCoins() ;

}

catch(IllegalAmountException i) {
// original example prints message

}
}
catch(ZeroValueException z) {
}
}
}
}
public class Dispenser {
final int MIN_SELECTION = 1;
final int MAX_SELECTION = 6;

public void dispense(int currVal, int sel) throws Exception {
if(sel < MIN_SELECTION || sel > MAX_SELECTION)
throw new IllegalSelectionException();
else
if(tavailable(sel))
throw new SelectionNotAvailableException() ;
else {
int val = value(sel);
if(currVal < val)
throw new IllegalAmountException();

public boolean available(int sel) {
if(sel == 2 || sel == 4)
return false;
return true;

41

public int value(int sel) {
return 50;

X

References

[BM00] Peter A. Buhr and W.Y. Russell Mok. Advanced exception han-
dling mechnanisms. IEEE Transactions in Software Engineering,
26(9):820-836, September 2000.

[BRO1] Thomas Ball and Sriam K. Rajamani. The slam toolkit. In Proceed-
ings of CAV’01, pages 260264, Paris, France, July 2001. Springer-
Verlag. LNCS 2102.

[CDHRO00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. A
language framework for expressing checkable properties of dynamic
software. In Proceedings of the SPIN Software Model Checking Work-
shop. Springer-Verlag, August 2000. LNCS.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient
algorithms for model checking pushdown systems. In Proceedings of
CAV’00. Springer-Verlag, July 2000. LNCS 1855.

[EKS00] Javier Esparza, Antonin Kucera, and Stefan Schwoon. Model-
checking 1tl with regular valuations for pushdown systems. In Pro-
ceedings of TACS’01. Springer-Verlag, October 2000. LNCS 2215.

[Hol97] Gerard Holzmann. The model checker spin. IEEE Trans. on Soft.
Eng., 23(5):1-17, May 1997.

[LNS00] K. Rustan M. Leno, Greg Nelson, and James B. Saxe. Esc/java
user’s manual. Technical Report Technical Note 2000-002, Compaq
Systems Research Center, October 2000.

[McM93] Ken McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic, 1993.

[Sch] Stefan Schwoon. Moped web site.
http://wwwbrauer.informatik.tu-muenchen.de/~schwoon/moped/.

[SHOO] Saurabh Sinha and Mary Jean Harrold. Analysis and testing of
programs with exception handling constructs. IEEE Transactions
in Software Engineering, 26(9):849-871, September 2000.

42

