A Language for Distributed Applications

Mario R. Barbacci and Jeannette M. Wing

Software Engineering Institute and School of Computer Science
Carnegie Mellon University

Abstract

Durra is a language designed to support the development
of distributed applications consisting of muiltiple,
concurrent, large-grained tasks executing in a
heterogeneous network.

An application-level program is written in Durra as a set
of task descriptions that prescribes a way to manage the
resources of a heterogeneous machine network. The
application describes the tasks to be instantiated and
executed as concurrent processes, the intermediate
queues required to store the messages as they move
from producer to consumer processes, and the possible
dynamic reconfigurations of the application.

The application-level programming paradigm fits very
naturally a top-down, incremental method of software
development. Although we don't claim to have solved all
problems or identified all the necessary tools, we would
like to suggest that a language like Durra would be of
great value in the development of large, distributed
systems.

1. Programming Heterogeneous Machines

A computing environment consisting of loosely-
connected networks of multiple special- and general-
purpose processors constitutes a heterogeneous
machine. Users of heterogeneous machines are
concerned with allocating specialized resources to tasks
of medium to large size. They need to create processes,
which are instances of tasks, allocate these processes to
processors, and specify the communication patterns
between processes. These activities constitute
application-level programming, to distinguish them from
the activities leading to the development of the individual
component tasks.

This work is sponsored by the U.S. Department of Defense. The
views and conclusions contained in this document are solely those of
the author(s) and should not be interpreted as representing official
policies, either expressed or implied, of Carnegie Mellon University,
the U.S. Air Force, the Department of Defense, or the U.S.
Government.

CH2854-8/90/0000/0059$01.00 © 1990 IEEE

59

Currently, users of a heterogeneous machine follow the
same pattern of program development as users of
conventional processors: Users write individual tasks as
separate programs, in the different programming
languages (e.g., C, Lisp, Ada) supported by the
processors, and then hand code the allocation of
resources to their application by explicitly loading specific
programs to run on specific processors at specific times.
Often, these programs are written with built-in knowledge
about the cooperating programs, thus making them
difficult to reuse in alternative applications, or with
knowledge about the network structure, making them
difficult to reuse in a different environment. Tailoring the
programs to the application or the environment further
complicates the development of applications whose
structure might change as a result of requirements of the
application (e.g., mode changes in signal processing) or
to support fault-tolerance (e.g., restarting a program in a
different processor after the original processor fails).

We believe that a better approach is to separate the
concerns of the developers of the individual component
programs from those of the developers of the
applications using these programs. We claim that
developing software in this style is qualitatively different
from developing software at the level of the component
programs. It requires different kinds of languages, tools,
and methodologies; and in this paper we address some
of these issues by presenting a language, Durra, and
showing how it can support a top-down, incremental
software development methodology. In this paper we
only address language and methodology issues. For a
description of the Durra runtime environment and tools
see [4].

2. The Durra Language

Durra[2,5] is a language designed to support the
development of distributed applications. An application is
written in Durra as a set of task descriptions that
prescribes a way to manage the resources of a
heterogeneous machine network. The result of compiling
a Durra application description is a set of resource
allocation and scheduling directives, as suggested in
Figure 1.

Status and Task requests
Get/Put data
Test port
Terminate task

Uspo

Bmx_' :> [Executive | j O

Schedule
Conectivity
Task names
Transformations

Messages O

Start task
Allocate queue
Shutdown

Figure 1: Compilation of an Application Description

Durra
Compiler

Heterogeneous
Machine

Application / AN Executive

Description program
Library of Task Library of Task
Descriptions Implementations
(Durra) (C, Lisp, Ada, etc.)

Figure 2: Scenario for Developing a Distributed Application

2.1. Scenario for Developing an Application

We see three distinct phases in the process of
developing an application using Durra: the creation of a
library of tasks, the creation of an application using library
tasks, and the execution of the application. These three
phases are illustrated in Figure 2.

During the first phase, the developer writes (in the
appropriate programming languages) the various tasks
that will be executed as concurrent programs in the
heterogeneous machine. For each of these task
implementations, the developer writes (in Durra) a
corresponding task description.

Task descriptions are used to specify the properties of a
task implementation (a program). For a given task, there
may be many implementations, differing in programming
language (e.g., C or Ada), processor type (e.g., Motorola
68020 or DEC VAX), performance characteristics, or
other properties. For each implementation of a task, a
task description must be written in Durra, compiled, and
entered in the library. A task description includes
specifications of a task implementation’s performance
and functionality, the types of data it produces or
consumes, the ports it uses to communicate with other
tasks, and other miscellaneous attributes of the
implementation.

task task-name
orts
port-declarations

attributes
attribute-value-pairs

behavior
requires predicate
ensures predicate
timing timing expression

structure
process-declarations
bind-declarations
queue-declarations
reconfiguration-statements
end task-name

-—- Name of the task or task family

-- Used for communication between a process and a queue
-—- Used to specify miscellaneous properties of the task

-- Used to specify functional and timing behavior of the task

~- A graph describing the internal structure of the task
-- Declaration of instances of internal subtasks

-- Mapping of internal ports to this task’s ports

-- Means of communication between internal processes

-- Dynamic modifications to the structure

Figure 3: A Template for Task Descriptions

During the second phase, the user writes an application
description. Syntactically, an application description is a
single task description and could be stored in the library
as a new task. This allows writing of hierarchical
application descriptions. When the application
description is compiled, the compiler generates a set of
resource allocation commands to be interpreted by the
executive.

During the last phase, the executive loads the task
implementations (i.e., programs corresponding to the
component task descriptions) into the processors and
issues the appropriate commands to execute the
programs.

2.2, Task Descriptions

Task descriptions are the building blocks for applications.
Task descriptions include the following information
(Figure 3): (1) its interface to other tasks (ports); (2) its
attributes; (3) its functional and timing behavior; and (4)
its internal structure, thereby allowing for hierarchical
task descriptions.

Interface information.- This portion defines the ports of
the processes instantiated from the task.
ports

inl: In heads:
outl, out2: out tails;

A port declaration specifies the direction and type of data
moving through the port. An in port takes input data from
a queue; an out port deposits data into a queue.

Attribute Information.- This portion specifies
miscellaneous properties of a task, In a task description,
the developer of the task lists the actual value of a
property; in a task.selection, the user of a task lists the
desired value of the property. Example attributes include
author, version number, programming language, file
name, and processor type:

61

attributes
author = "jmw";
implementation = "program name";
Queue_Size = 25;

Behavioral Information.- This portion specifies
functional and timing properties about the task. The
functional information part of a task description consists
of a pre-condition on what is required to be true of the
data coming through the input ports, and a post-condition
on what is guaranteed to be true of the data going out
through the output ports. The timing expression
describes the behavior of the task in terms of the
operations it performs on its input and output ports. For
additional information about the syntax and semantics of
the functional and timing behavior description, see [1].

Structural Information.- This portion defines a process-
queue graph (e.g., Figure 1) and possible dynamic
reconfiguration of the graph.

A process declaration of the form
process_name : task task_selection
creates a process as an instance of the specified task.

Task selections are templates used to identify and
retrieve task descriptions from the task library. A given
task, e.g., convolution, might have a number of different
implementations that differ along dimensions such as
algorithm used, code version, performance, or processor
type. In order to select among a number of alternative
implementations, the user provides a task selection as
part of a process declaration. This task selection lists the
desirable features of a suitable implementation.
Syntactically, a task selection looks somewhat like a task
description without the structure part. Figure 4 shows a
template for a task selection.

A queue declaration of the form

queue_name [queue_size]: .
src_port > data_transformation > dst_port

task task-name
ports
port-declarations

attributes
attribute-expression

behavior
requires predicate
ensures predicate
timing timing expression
end task-name

-- REQUIRED. Name of a task or
-- OPTIONAL.

-- OPTIONAL. Miscellaneous properties of the

—- OPTIONAL. Functional and timing behavior of the

task family.
desired task

Interface of the
desired task

desired task

-— OPTIONAL.

Figure 4: A Template for Task Selections

creates a queue through which data flow from an output
port of a process (src_port) into the input port of another
process (dst_port). Data transformations are operations
applied to data coming from a source port before they are
delivered to a destination port.

A reconfiguration statement of the form

If condition then
remove process-and-queue-names
process process-declarations
queues queue-declarations
reconnect queue-reconnections
exit condition

end If;

is used to specify changes in the current structure of the
application (i.e., process-queue graph) and the conditions
under which these changes take effect, and the
conditions under which the changes are undone, thus
reverting to a previous configuration. Typically, a number
of existing processes and queues are replaced by new
processes and queues, which are then connected to the
remainder of the original graph. The reconfiguration and
exit conditions are Boolean expressions involving time
values, queue sizes, signals raised by the processes,
and other information available to the executive at
runtime.

3. A Task Emulator as a Prototyping Tool

To support the prototyping of distributed, large-grained
applications, we have developed a program that acts as
a “universal” task emulator. This program, MasterTask
[3], can emulate any task in an application by
interpreting the timing expression describing the behavior
of the task, performing input and output in the proper
sequence and at the proper time (within the precission of
Durra time values and the executive clock.)

MasterTask is useful to both application developers and
task developers. Application developers can build early
prototypes of an application by using MasterTask as a
substitute for task implementations that have yet to be
written. Task developers can experiment with and
evaluate proposed changes in task behavior or
performance by rewriting and reinterpreting the
corresponding timing expression.

62

3.1. Timing Expressions

Timing expressions are the critical piece of information
used by MasterTask. Tasks send and receive messages
following a task-specific pattern provided by a timing
expression. This expression describes the behavior of
the task in terms of the operations it performs on its input
and output ports; this is the behavior of the task seen
from the outside.

Queue operations constitute the basic events of a timing
expression. An event represents a queue operation (i.e.,
“Enqueue” and “Dequeue”) on the queue attached to a
specific port. In addition, a pseudo-operation, “delay”, is
used to represent the time consumed between (real)
queue operations.

A timing expression (Figure 5) is a regular expression
describing the patterns of execution of operations on the
input and output ports of a task. The optional keyword
loop can be used to indicate that the pattern of
operations is repeated indefinitely.

A timing expression is a sequence of parallel event
expressions. Each parallel event expression consists of
one or more event expressions separated by the symbol
|| to indicate that their executions overlap. Since the
expressions might take different amounts of time to
complete, nothing can be said about their completion,
other than a parallel event expression terminates when
the last event terminates.

A basic event expression is either a queue operation
(including “delay”) or a timing expression enclosed in
parentheses. The latter form also allows for the
specification of a guard, an expression specifying the
conditions under which a sequence of operations is
allowed to start or repeat its execution.

When MasterTask starts, it reads the timing expression
for the task it wants to emulate and assigns a number of
concurrent, light-weight processes (Ada task objects in
the current implementation) to interpret the timing
expression. These processes are responsible for
evaluating the guards and for invoking the queue
operations.

Syntax:

TimingExpression = {‘‘LOOP’’} SequentialEvent
SequentialEvent ParallelEvent List ...
ParallelEvent BasicEvent_Listy,upie vertical bar
BasicEvent := Event | - -
{Guard ‘‘'=>’'’} ‘“(’’ SequentialEvent ‘')’‘)
Event = PortName |
‘V'DELAY'’’ TimeWindow
TimeWindow = “W[’! TimeValue ‘‘,’’ TimeValue ‘‘]’’
TimeValue = Number_ Of Seconds {TimeBase} |
AR A -- Indeterminate amount of time
TimeBase = “'DTIME'' | -- Time since start of day
Y'ATIME'’’ | -- Time since start of applicatior
YYPTIME’ ! | -- Time since start of process
Guard = ‘'REPEAT’’ IntegerValue |
Y'BEFORE'’’ TimeValue | -- Absolute time
‘‘AFTER’’ TimeValue | -— Absolute time
‘'DURING'’’ TimeWindow | -—- Time intexrval
Y'WHEN’'’ Expression -- A Boolean expressior
Examples:

3615.5 atime

delay[10, 15]

delay(*, 10]

delay (10, *]

-- An application relative time: 1 hour and 15.5 seconds

-- after the start of the application.
-- A delay interval lasting between 10 and 15 seconds.
-- A delay interval taking at most 10 seconds.

-- A delay interval taking at least 10 seconds.

inl || in2

inl delay({10,15] outl

-- Two parallel input operations,

starting simultaneously.

-- Three sequential operations.

repeat 5 => (inl delay({10,15] outl)
-- Same as above but as a cycle repeated five times.
before 64800 DTIME => (. . .)
-- A sequence constrained to start before 6 pm.
(64,800 seconds after the start of the day)
after 64800 DTIME => (. . .)

during [40.5 PTIME, 100] => (

-- A sequence constrained to start after 6 pm.

-- A sequence constrained to start between 40.5 and 140.5 seconds

-- from the start of the process.

when (Current_Size(inl) > 0) and (Current_Size(in2) > 0) => ((inl || in2) outl):
-- A sequence that starts after both input queues have data.
loop when (Current_Size(inl) > 0) and (Current_Size(in2) > 0) => ((inl || in2) outl);

-- The same sequence as above but repeated indefinitely.

Figure 5: Timing Expressions

3.2. Using the Task Emulator

The task emulator described above provides natural
support for system development methodologies based on
successive refinements, such as the Spiral method [8].
Users of the spiral model selectively identify high-risk
components of the product, establish their requirements,
and then carry out the design, coding, and testing
phases. It is not necessary that this process be carried
out through the testing phase -- higher-risk components
might be identified in the process and these components
must be given higher priority, suspending the
development process of the formerly riskier component.

63

Durra allows the designer to build mock-ups of an
application, starting with a gross decomposition into tasks
specified by their interface and behavioral properties.
Once this is completed, the application can be emulated
using MasterTask as a stand-in for the yet-to-be written
task implementations.

The result of the emulation would identify areas of risk in
the form of tasks whose timing expressions suggest are
more critical or demanding. In other words, the purpose
of this initial emulation is to identify the component task
more likely to affect the performance of the entire system.

System manager

=

COM

AMH

F——)‘

Workstation

Figure 6: Initial Structure of the C31 Node

The designers can then experiment by writing alternative
behavioral specifications for the offending task until a
satisfactory specification (i.e., template) is obtained.
Once this is achieved, the designers can proceed by
replacing the original task descriptions with more detailed
templates, consisting of internal tasks and queues, using
the structure description features of Durra. These, more
refined, application descriptions can again be emulated,
experimenting with alternative behavioral specifications
of the internal tasks, until a satisfactory internal structure
(i.e., decomposition) has been achieved. This process
can be repeated as often as necessary, varying the
degree of refinement of the tasks, and even backtracking
if a dead-end is reached. It is not necessary to start
coding a task until later, when its specifications are
acceptable, and when it is decided that it should not be
further decomposed.

Of course, it is quite possible that a satisfactory
specification might be impossible to meet and a task
implementation might have to rejected. The designers
would then have to backtrack to an earlier, less detailed
design and try alternative specifications, or even
alternative decompositions of a parent subsystem. This
is possible because we are following a strictly top-down
approach. The effect of a change in an inner task would
be reflected in its impact on the behavioral specifications
of a “parent” task. The damage is, in sense, contained
and can not spread to other parts of the design.

4. An Example of Incremental Development

To illustrate an incremental development process using
Durra, in this section we show an application, a C31 node
[6]. The top level structure of the node is shown in
Figure 6. The node consists of four subsystems: System
Manager, Communications (COM), Application Message
Handler (AMH), and Workstation. These subsystems
correspond to the first four process declarations in Figure
7. In addition to these task, there are two auxiliary tasks
which are used for communications between the system
manager and the communication and application
message handler subsystems.

One of these auxiliary tasks broadcasts commands from
the system manager to the other two subsystems, and
the other merges their responses to the system manager.
Broadcast and merge are predefined in Durra and
implemented directly by the Durra runtime executive. A
broadcast task takes data from a single input port and
copies it to multiple output ports (the number of output
ports is specified in the task selection.) A merge task
takes data from multiple input ports and copies them into
a single output port (the number of input ports is specified
in the task selection.)

Figure 8 shows the tasks descriptions for the subsystems
of the initial configuration. At the start of the
development process we might not be ready to commit to
any particular structure for the subsystems and simply
opt to describe them as simple, unstructured tasks. This
information is sufficient to do static checks, including port
(i.e., type) compatibility and graph connectivity.
However, if we want to carry out some preliminary
dynamic checks, we need to provide a pseudo-
implementation for each subsystem. That is, we need to
write ad hoc programs that emulate the input/output
behavior of each of the subsystems and then specify
these programs as the “implementation” attributes in the
subsystem task descriptions.

Alternatively, if a subsystem’s behavior is relatively
simple and repetitive, we could use MasterTask as a
subsystem emulator by specifying “master” as its
“implementation” attribute. In fact, we can mix the two
approaches and have some subsystems emulated by ad
hoc programs, while other subsystems are emulated via
MasterTask, as illustrated in Figure 8.

After some experimentation with the gross decomposition
outlined above, we can proceed to expand the
subsystems. For example, the Message Handier
subsystem (Figure 9) consists of five internal tasks.
Three of these tasks, AMHS_control, AMHS_inbound,
AMHS outbound, are user-implemented. The other two
tasks are instances of the predefined broadcast and
merge tasks described before.

task configuration

structure
process
- real system processes
sm : task system manager;
com : task comm;
amh : task amhs;
: task wkstn;
- auxiliary system processes
bec : task broadcast -~ command broadcast
ports
inl : in system_command;
outl, out2 : out system command;
end broadcast:
mg : task merge -- response multiplexor
ports
inl, in2 : in subsystem response;
outl : out subsystem response;
attribute
mode = fifo;
end merge;
queues
—-= system command propagation
q.cl : sm.SM Out >> be.inl;
q c2 : bec.outl >> com.SM_Commands;
q c3 : bc.out2 >> amh.SM_Commands ;
—- subsystem response propagation
q rl : com.SM Responses >> mg.inl;
q r2 : amh.SM Responses >> mg.in2;
q_r3 : mg.outl >> sm.SM In;
-- inbound message propagation -
q il : com.Inbound >> amh.COMM_Inbound;
q_i2 : amh.WS_Inbound >> wp.Inbound;
~~ outbound message propagation
q_ ol : wp.Outbound >> amh.WS_Outbound:
q_o4 : amh.COMM Outbound >> com.Qutbound;

end configuration;

Figure 7: Initial Application Description

The subsystem is an abstraction and does not
correspond to an executable program. Its ports
(SM_cCommands, SM _Response, COMM Inbound,
COMM_Outbound, WS_Inbound, and WS_Outbound)
must be implemented by internal-process ports. This is
the purpose of the bind declarations, which declare
which internal-process ports implement the subsystem
ports.

The development of the Message Handler does not
necessarily stop here. Each of the three user-
implemented tasks (AMHS Control, AMHS_inbound,
and AMHS_outbound) could in turn consist of multiple,
concurrent internal programs. The task description for
AMHS Control, for example, would declare internal
processes and queues, and would bind internal ports to
implement the interface of the task (i.e., the sM_1In,
SM Out, Cmd_Out, and Resp_In ports.) This level of
detail is not visible in the description of Figure 9.

We can continue the design in this fashion, successively
refining the subsystem descriptions until, at the end, the
application is fully described as a hierarchical graph in
which the innermost nodes are implemented as separate
programs, specified-by the “implementation” attribute of
the corresponding task descriptions.

65

An application description does not use language
features beyond those used in a compound task
description. An application description is simply a
compound task description which is compiled and stored
in a Durra library and, conceivably, could be used as a
building block for a larger application. From the point of
view of the users of Durra, the main difference between a
task description and an application description is that
application descriptions are translated into directives to
the runtime executive by executing an optional code
generation phase of the Durra compiler.

For brevity, we will not describe the complete design
process of the C3l node. See [7] for details about the
Durra task descriptions and the task implementations.

5. Related Work

CONIC[12] address the problem of dynamic
reconfiguration of real-time systems in the design of the
CONIC language. Originally, CONIC restricted tasks to
be programmed in a fixed language (an extension to
Pascal with message passing primitives) running on
homogeneous workstations. This restriction was later
relaxed to support multiple programming languages.

System Manager Subsystem

task system manager

ports SM_In : in subsystem response;
SM_Out : out system command;
attributes implementation = "syst
processor = "Vax";

end system_manager;

Communications Subsystem

task comm

ports SM_Commands : in
SM_Responses : out
Inbound : out
Outbound : in
attributes implementation = "comm
processor = "Vax";
end comm;
Application Message Handler Subsystem
task AMHS
ports SM_Commands : in
SM_Responses : out
COMM_Inbound : in
COMM_Outbound : out
WS_Inbound : out
WS_Outbound : in
attributes implementation = "“amhs
processor = "Vax";
end AMHS:
Workstation Subsystem
task wkstn
ports Inbound : in
Outbound : out
behavior

timing loop ((Inbound delay([5
attributes implementation = "mast
processor = "Vax";
end wkstn;

em _manager_emulator";

system_command;
subsystem_response;
comm_if message;
comm_if message;
emulator™;

system command;
subsystem response;
comm_if message;
comm_if message;
workstation if message;
comm_if_ message;
_emulator";

workstation if_ message;
comm_if message;
. 601) 11

er";

(delay[*, 180] Outbound)):;

Figure 8: Top Level Subsystem Descriptions

MINION [MINION89] consists of a language for
describing distributed applications and a graphics editor
for interactive modification of the application structure.
MINION allows a user to expand, contract, or reconfigure
an application in arbitrary ways during exscution time.
Hermes [1] hides from the programmers all knowledge
about storage layout, persistency of objects or even
operating system primitives. Processes communicate
through ports, connected via message queues although
the semantic of queue operations are similar to an Ada
entry call/accept mechanisms, albeit the binding of
processes to ports is dynamic, as in Durra, CONIC, and
MINION.

RNET [8] is language for building distributed real-time
programs. An RNET program consists of a configuration
specification and the procedural code, which is compiled,
linked with a run-time kernel, and loaded onto the target
system for execution. The language provides facilities for
specifying real-time properties, such as deadlines and
delays that are used for monitoring and scheduling the
processes. These features place RNET at a lower level
of abstraction, and thus RNET cannot be compared

directly to Durra. Rather, it can be considered as a
suitable language for developing the runtime executived
required by Durra and other languages in which the
concurrent tasks are treated as black boxes.

Specifying a data transformation in a queue declaration is
a way to support the transmission of structured data
types between heterogeneous processors or languages.
For example, two tasks written in different languages are
likely to use different layouts for record data types. The
Durra runtime executive will not alter the presentation of
the data to hide the layout differences and will transmit a
record type as a block of bytes, without attempting to
modify the data. It is up to the source and destination
tasks to implement the appropriate packing and
unpacking of the data.

Interfacing heterogeneous machines or language
environments is not a new problem. Several techniques
have been proposed to generate type declarations and
routines which perform the appropriate packing and
unpacking of the data [10, 11, 13, 14]. These and other
similar facilities could be adopted by the application
developers without difficulty in the data transformation
tasks or in the application tasks proper.

task AMHS

ports SM_Commands : in system_command;
SM_Responses : out subsystem_response;
COMM_Inbound : in comm if message;
COMM_Outbound : out comm if message;
WS_Inbound : out workstation_ if message:;
WS_Outbound : in comm_if message;
structure
process ac: task AMHS_control;
ai: task AMHS_ inbound;
ao: task AMHS_ outbound:
pb: task broadcast
port inl : in system command;
outl, out2 : out system command;
end broadcast;
pm: task merge
port inl, in2 : in subsystem response;
outl : out subsystem response;
attribute mode = fifo;
end merge;
bind SM_Commands = ac.SM _In;
SM_Responses = ac.SM_Out;
COMM_Inbound = ai.COMM Inbound;
COMM Outbound = ao.COMM Outbound;
WS_Inbound = ai.WS_Inbound;
WS_Outbound = ao.WS_Outbound:
queue ql: ac.Cmd Out >> pb.inl;
q2: pb.outl >> ai.Cmd_In;
q3: pb.out2 >> ao.Cmd_In;
q4: ai.Resp_Out >> pm.inl;
q5: ao.Resp_Out >> pm.in2;
g6: pm.outl >> ac.Resp_In;
end AMHS;

Figure 9: Message Handler Subsystem Description

6. Conclusions

Application-level programming, as implemented by Durra,
lifts the level of programming at the code level (task
implementations) to programming at the specification
level (task descriptions), separating the structure of an
application from its behavior. This separation provides
users with control over the evolution of an application
during application development as well as during
application execution. During development, an
application evolves as the requirements of the application
are better understood or change. This evolution takes the
form of changes in the application description, selecting
alternative task implementations from the library, and
connecting these implementations in different ways to
reflect alternative designs.

During execution, an application evolves through
application mode changes or in response to faults in the
system. This evolution takes the form of conditional,
dynamic reconfigurations, removing processes and
queues, instantiating new processes and queues, and
building a new process-queue graph without affecting the
remaining processes and queues.

The application-level programming paradigm fits very
naturally a top-down, incremental method of software
development. Although we don't claim to have solved all
problems or identified all the necessary tools, we would

67

like to suggest that a language like Durra would be of
great value in the development of large, distributed
systems. It would allow the designer to build mock-ups of
an application, starting with a gross decomposition into
tasks described by templates specified by their interface
and behavioral properties. In the process of developing
the application, component tasks can be decomposed
into simpler process-queue graphs and at each stage of
the process, the application can be emulated using
MasterTask as a stand-in for the yet-to-be written task
implementations.

In our prototype implementation, we have intentionally
sacrificed semantic complexity in favor of simpler task
selection based only on interface and attribute
information, and have limited the performance and
reliability by implementing a centralized executive. As a
result, we gained the advantage of being able
immediately to test our general idea about application-
level programming with a real environment (Durra
compiler, runtime system, and debugger/monitor) that
runs on a heterogeneous machine (various kinds of
workstations connected via an Ethernet). Expanding task
selection features and distributing the runtime executive
are in our plans for the future.

References

g

(2

[3]

4

(5]

6]

(71

(8

&)

D.F. Bacon, R.E. Strom, and S.A. Yemini.

Hermes User Manual.

Technical Report, IBM Thomas J. Watson
Research Center, 1988.

M.R. Barbacci and J.M. Wing.

Specifying Functional and Timing Behavior for
Real-time Applications.

Lecture Notes in Computer Science. Volume
259, Part 2.Proceedings of the Conference on
Farallel Architectures and Languages Europe
(PARLE).

Springer-Verlag, 1987, pages 124-140.

M.R. Barbacci, C.B. Weinstock, and J.M. Wing.

Programming at the Processor-Memory-Switch
Level.

In Proceedings of the 10th International
Conference on Software Engineering.
Singapore, April, 1988.

M.R. Barbacci.

MasterTask: The Durra Task Emulator.

Technical Report CMU/SEI-88-TR-20 (DTIC AD-
A199 429), Software Engineering Institute,
Carnegie Mellon University, July, 1988.

M.R. Barbacci, D.L. Doubleday, C.B. Weinstock,

and J.M. Wing.

Developing Applications for Heterogeneous
Machine Networks: The Durra Environment.

Computing Systems 2(1), March, 1989.

M.R. Barbacci and J.M. Wing.

Durra: A Task-Level Description Language
Reference Manual (Version 2).

Technical Report CMU/SEI-89-TR-34, Software
Engineering Institute, Carnegie Mellon
University, September, 1989.

M.R. Barbacci, D.L. Doubleday, C.B. Weinstock,

S.L. Baur, D.C. Bixler, M.T. Heins.

Command, Control, Communications, and
Intelligence Node: A Durra Application
Example.

Technical Report CMU/SEI-89-TR-9 (DTIC AD-
A206575), Software Engineering Institute,
Carnegie Mellon University, February, 1989.

C. Belzile, M. Coulas, G.H. MacEwen, and

G. Marquis.

RNET: A Hard Real Time Distributed
Programming System.

In Proceedings of the 1986 Real-Time Systems
Symposium, pages 2-13. |IEEE Computer
Society Press, December, 1986.

Barry W. Boehm.

A Spiral Model of Software Development and
Enhancement.

Computer 21(5), May, 1988.

68

[10]

1]

[12]

(13]

(14]

P.H. Gibbons.

A Stub Generator for Multilanguage RPC in
Heterogeneous Environments.

IEEE Transactions on Software Engineering
13(1):77-87, January, 1987.

M.B. Jones, R.F. Rashid, and M.R. Thompson.

Matchmaker: An Interface Specification Language
for Distributed Processing.

In Conference Record of the Twelfth Annual ACM
Symposium on Principles of Programming
Languages, pages 225-235. ACM, January,
1984.

J. Kramer and J. Magee.

A Model for Change Management.

In Proceedings of the IEEE Workshop on Trends
for Distributed Computing Systems in the
1990’s, pages 286-295. |IEEE Computer
Society, September, 1988.

S.A. Mamrak, H. Kuo, and D. Soni.

Supporting Existing Tools in Distributed
Processing Systems: The Conversion
Problem.

In Proceedings of the 3rd International
Conference on Distributed Computing
Systems, pages 847-853. |EEE Computer
Society Press, October, 1982.

Sun Microsystems, Inc.

XDR: External Data Representation Standard.

RFC 1014, SRI Network Information Center,
June, 1987.

