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Abstract

We present a notation and a methodology for specifying the functional and timing behavior of
real-time applications for a heterogeneous machine. In our methodology we build upon well-
defined, though isolated, pieces of previous work: Larch and Real Time Logic. In our notation,
we strive to keep separate the functional specification from the timing specification so that a
task’s functionality can be understood independently of its timing behavior. We show that while
there is a clean separation of concerns between these two specifications, the semantics of
both pieces as well as their combination are simple.

1 Problem Context

Many computation-intensive, real-time applications require efficient concurrent execution of
multiple tasks devoted to specific pieces of the application. Typical tasks include sensor data
collection, obstacle recognition, and global path planning in applications such ‘as robotics and
vehicular control. Since the speed and throughput required of each task may vary, these
applications can best exploit a computing environment consisting of multiple special and
general purpose processors that are logically, though not necessarily physically, loosely
connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly separate
processors, and communicate with each other by sending messages of different types. Since
the patters of communication can vary over time, and the speed of the individual processors
can vary over a wide range, additional hardware resources, in the form of switching networks
and data buffers are required in the physical heterogeneous machine. Logically, queues are
used to buffer data; processes dequeue data on queues attached to input ports and enqueue
data from queues attached to output ports.

The application developer is responsible for prescribing a way to manage all of these
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resources. We call this prescription a task-level application description. It describes the tasks
to be executed, the assignment of processes to processors, the data paths between the
processors, and the intermediate queues required to store the data as it moves from source to
destination processes. A task-level description language is a notation in which to write these
application descriptions.

We are using the term “description language” rather than “programming language” to
emphasize that a task-level application description is not translated into object code in some
kind of executable “machine language.” Rather, it is to be understood as a description of the
structure and behavior of a logical machine, that will be synthesized into resource allocation
and scheduling directives. These directives are to be interpreted by a combination of software,
firmware, and hardware in a heterogeneous machine.

task task-name

ports —- Used for communication between a process and a queue
port-declarations

signals --— Used for communication between a user process and the scheduler
signal-declarations

behavior -- A description of the functional and timing behavior of the task

requires predicate
ensures predicate
timing timing expression

attributes -- Additional properties of the task
attribute-value-pairs
structure -- A process-queue graph describing the internal structure of a task

process-declarations

queue-declarations

reconfiguration-statements
end task-name

Figure 1: A Template for Task Descriptions

We have an initial design of such a description language [3], a compiler for it, and a simulator
that takes task descriptions as input. A task description (see Figure 1) contains information
about four aspects of a task: (1) its interface to other tasks (ports) and to the scheduler
(signals), (2) its functional and timing behavior, (3) its attributes, and (4) its internal
structure, thereby allowing for hierarchical task descriptions. Reference [3] contains a more
complete explanation of these and other features of the language. In this paper we focus on
only one aspect: the information appearing in the behavior part of a task description.

2 Contributions

Formal specifications have been used successfully for specifying the functional behavior of
software systems, e.g., individual program modules and abstract data types. These
specifications have traditionally been used to verify a program’s correctness (“is the right
answer computed?”). Often, however, one is interested in not only the functional correctness
of a system but also other properties, such as reliability, performance, security, and real-time
behavior. Less work has focused on formally specifying these other properties of software
systems, let alone their interactions with each other.

To our knowledge no work has addressed the formal integration of the formal specification of
functional and timing behavior of software. The main contribution of this paper is exactly this
integration of functional and timing specifications as embodied in our task description
language.
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We combine two separate formalisms: an axiomatic specification language, Larch [15, 16],
used to specify functional behavior, and an event expression language used to specify timing
behavior. Both are mapped to the same underlying logic, typed first-order predicate logic, so
that their combination has a formal semantics.

Two significant aspects of our work are as follows:

« Since the formal semantics is relatively simple (first-order logic), not only can
people easily understand our specifications but the specifications themselves can
easily be subject to machine analysis.

« We build upon previous well defined and isolated pieces of research and combine
them in a meaningful way. Their combination is applied in a context
(heterogeneous machines) that itself is of growing interest to those involved in
parallel architectures and languages.

3 Introduction to Larch ,
Before we describe the functional and timing specifications of a task, we give a brief
introduction to Larch. We are keeping this introduction to Larch very short. The reader is

encouraged to consult the appropriate references in the bibliography.

Larch uses a two-tiered approach to specifying program modules: a trait defines state-
independent properties, and an interface specification defines state-dependent properties of a
program. A frait is written in the Larch Shared Language (LSL), and it provides the assertion
language used to express and define the meaning of the predicates of an interface

specification.

Qvals: trait
introduces
empty: — Q
insert: Q, E =2 Q
first: Q > E
rest: Q =2 Q 3
isEmpty: Q@ — Boolean ey
isIn: Q, E — Boolean - it
constrains Q so that
Q generated by [ empty, insert ]
forall g: Q, e, el: E
first (insert (empty), €)) = e
first (insert(q, e)) = I isEmpty(q) then e else first (qQ)
rest (insert (g, e)) = it isEmpty (q) then empty else insert (rest(q), e)

isEmpty (empty) = true

isEmpty(insert(q, e)) = false

isIn(empty, e) = false

isIn(insert(q, e), el) = (e = el) | isIn(q, el)

a. A Trait for Queue Values
Enqueue = operation (q: queuve, €: element)

ensures Goost = insert(q, e)
Dequeue = operation (q: queue) returns (e: element)

requires ~isEmpty (q) '
ensures Gpost = rest(g) & e = first(q)

b. Interfaces for Queue Operations
Figure 2: Alarch Two-Tiered Specification for Queues
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For a program module, such as a procedure, a Larch interface specification is written in a
Larch !nterface Language (LIL) and contains predicates about the states before and after the
execution -of the procedure. The Larch Interface Language to be used is specific to the
programming language in which the procedure is written (e.g., C, Common Lisp, Ada, etc.).

For this paper we will use a relatively simple interface language i
. , such as woul
an Algol-like language. M Puldbe defined for

Figure 2 depicts a Larch (two-tiered) specification of queues with Enqueue and Dequeue
operations. The top part of the specification (Figure 2.a) is a trait written in LSL used to
describe values of queues. A trait is akin to an algebraic specification (see Section 7 on
Related Work). A set of operators and their signatures following introduces defines a
vocabulary of terms to denote values of a type. For example, empty and insert(empty, 5)
denote two different queue values. The set of equations following the constrains clause
defines a meaning for the terms; more precisely, an equivalence relation on the terms, and
hence on the values they denote. For example, from the above trait, one could prove that
first(rest(insert(insert(empty, 5), 6))) = 6.

The bottom part of the specification (Figure 2.b) contains two interfaces written in our “generic”
Larch interface language. They describe the functional behavior of two queue operations,
Enqueue and Dequeue (queue operation names are used to write timing expressions, which
are described later in this paper). A requires is a pre-condition on the state of an operation’s
input data that must be true upon operation invocation; an ensures is a post-condition on the
state of an operation’s input and output data that is guaranteed to be true upon operation
termination. An omitted predicate is taken to be true. The specification for Dequeue states
that Dequeue must be called with a non-empty queue and that it modifies the original queue by
removing its first element and returning it.

4 Behavioral Information

The behavioral information in a task description is divided into two parts: a functional
specification and a timing specification. In the next two subsections we describe informally the
syntax and meaning of these two specifications. Section 5 gives the formal meaning, and in
particular, the meaning of the combination of functional and timing specifications.

4.1 Functional Specifications

The functional information of a task description (see Figure 1) describes the behavior of the
task in terms of predicates about the data in the queues, before and after each execution of
the task. It consists of a requires clause and an ensures clause, together constituting a
simple Larch interface specification. LSL is used as the assertion language in the predicates
of these clauses.

A requires clause states what is required to be true of the data coming through the input ports;
an ensures clause states what is guaranteed to be true of the data going out through the
output ports. If one were to view each cycle of a task as one execution of a procedure, the
requires and ensures are exactly the pre- and post-conditions on the functionality of that
cycle.

A task implementation must satisfy the predicates, R and E, of the requires and ensures
clauses. A task implementation is simply a program written in some programming language,
e.g., C, Common Lisp, or Ada. Using Hoare-like notation, an implementation, Prog, satisfies
the (functional) specification if:

{R} Prog {E}
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It is up to the task implementor to show that a task implementation satisfies the functional
specification as given by the requires and ensures clauses. This verification can be done
formally — standard verification techniques can be used ( [17, 18]) and some mechanical tools
are available to aid this process ( [13, 22, 24]). We defer to Section 5.2 for the definition of the
meaning of the predicates in the presence of timing information.

task multiply
ports
inl, in2: in matrix:
outl: out matrix;
behavior
requires number of rows (first (inl)) = number_of_cols(first (in2)):
ensures outlp”t = insert (outl, first(inl) * f£irst(in2)):
end multiply;

Figure 3: The Functionality of a Matrix Multiplication Task

For example, consider a matrix multiplication task (Figure 3) that takes input matrices from two
queues and outputs the result matrix on an output queue. The data traveling through these
ports are of type matrix. Matrix values are specified using LSL just as for queue values, so
“number_of_rows,” “number_of_cols” and «* \would be defined in a trait about matrix values.
The requires clause states that the task implementor may assume that the number of rows of
the matrix entering through the port in1 equais the number of columns of the matrix entering
through in2. The ensures clause states that the result of multiplying the two input matrices in
one cycle is output to the queue attached to the output port.

4.2 Timing Specifications

The timing information describes the behavior of the task in terms of the operations that it
performs on the queues attached to its input and output ports; this is the behavior of the task
seen from the outside. A timing expression is a regular expression built from concurrent and
sequential queue operations, with optional conditional expressions or guards that control when
a subexpression is to be executed. Timing expressions are similar to a number of formalisms
derived from Path Expressions [7].

The simplest timing expression is the name of a queue operation on the queue attached to a
specific port, e.g., in1.Dequeue or OutPort.Enqueue. The duration of a queue operation or the
delay between two operations is described by a time window, denoted by a pair of time values,
[T ominsTmasx)» defining the boundaries of the interval. The time window associated with a queue
operation describes the minimum and maximum time needed to perform the operation
(in1.Dequeue[15,25)) Intervals of time between queue operations are denoted by a Delay
“operation” whose time window describes the minimum and maximum time consumed by the
process in between queue operations.

A composite timing expression denotes the sequential and/or concurrent execution of
operations on queues. Sequential composition is denoted by a space between operations;
parallel composition is denoted by a “I|” between operations. For example,

loop (in1.Dequeue[10,15] || in2.Dequeue) delay[*,30] out1.Enqueue

is a sequential timing expression that specifies two parallel Dequeue operations on the queues
attached to the input ports in1 and in2, followed after some delay by an Enqueue on the queue
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attached to the output port out1. The Delay lasts some undetermined amount of time less than

30 seconds. The Dequeue operation on port in1 takes between 10 and 15 seconds to

complete. The other two operations take some implementation dependent default time to
complete. The keyword loop denotes a cyclic or repeating task.

1. The task is executed some integral number of times:
repeat integer => expression

2. The task is allowed to start during some time interval:

during timewindow => expression

3. The task is allowed to start no earlier than some time value:
after timevalue => expression

4. The is allowed to start no later than some time value:
before timevalue => expression

5. The task is allowed to start only if some predicate on the state.of the input queues or
the current time is true:

when predicate => expression
Table 1: Timing Expression Guards

An optional guard in a timing expression specifies a restriction on the execution of the
associated timing expression, as shown in Table 1.

task multiply
ports
inl, in2: in matrix;
outl: out matrix;

behavior
requires number_ of_rows (first(inl)) = number_ of cols(f:.rst(;nZ))

ensures outl post = J.nsert(outl, first (inl) * f;rst(1n2))

timing when (~:|.sEmpty(1n1) and ~isEmpty(in2)) =>
((inl.Dequeue || in2.Dequeue) delay[10,15] outl. Enqueue) ;

end multiply
Figure 4: The Timing of a Matrix Multiplication Task

For example, consider a revised matrix multiplication task (Figure 4). The timing clause states
that the task does not start executing until both input queues contain data. Once that condition
is satistied, the task will remove its input data from both input queues concurrently (the
Dequeue operations), will operate on the data for between 10 and 15 seconds (this
“computation” time is lumped together under the delay operation), and finally will enqueue
some output in the output queue. Notice another use of LSL in our specifications: the when
condition places a constraint on the state of the queues (not on the state of the data in the
queues). We use the trait from Section 3 to define the assertion language for predicates in a
when guard.
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5 Formal Meaning of Functional and Timing Specifications

We use Jahanian and Mok’s Real-Time Logic (RTL)[19] to give meaning to our timing
expressions. Furthermore, we use their logic to give meaning to the combination of our
functional and timing specifications. We use four of their notational conventions:

Syntax Meaning

TA The start of an operation (“action” in RTL'’s terminology).

LA The end of an operation.

@(E, ) The time of the it" occurrence of event E, where events in our context are

the start of an operation or the end of an operation. @ is an occurrence
function that captures the notion of real-time.

P(t1, t2) The interval of time during which the predicate P holds. P holds before or
att1, from t1 to t2, and at or after 2. If t1 and t2 are identical, then P holds
at an interval around t1. For brevity, we will use P(t) when t1 =t2 (i.e., “P
holds around time t").

5.1 Assigning Meaning to Timing Specifications

In this section we describe the meaning of our timing specifications in terms of RTL logic. In
the following discussion, we assume E, E1, and E2 are arbitrary timing expressions; A, A1,
and A2 are operations; t1 and t2 are times (absolute or relative); a1 and a2 are absolute times;
r1 and r2 are relative times: and W is a predicate of a when guard.

1. For any queue operation A, and for some implementation defined time window 71,72},
the following axiom expresses the (default) duration of the operation:

Vi[T1 <@{A)) - @(TA) T2}
2. For any queue operation A[t1,12], with a duration defined by the time window {t1,12], the
following axiom expresses the duration of the operation:
Vi[tl s@{A) -@(TA) <12]

3. For any sequence of queue operations, A = A1 ... An, the following axiom relates the
start and end times of the composition to the start and end times of the individual

operations:
Vi[@(TA, i) = @(TA1 i) @A, i) = @ An, i)

4. For any parallel queue operations, A = A1 || ...]| An, the following axiom relates the start
and end times of the composition to the start and end times of the individual
operations:

v i[@(TA, i) = min(@(TA1, i), ..., @TAn, i)) A @UA, i) = max(@({A1, ), ..., @{An, i))]

5. Cycles in a repeating task do not overlap. The following two axioms express that an
input operation cannot finish after the last output operation finishes, and that an output
operation cannot start before the earliest input operation starts:

v i [ max(@(douty i),@(louty,i)....@(outyi) > max(@(diny,i)@(Ling,i),... @ ing,0)) ]
v i [ min(@(Tout, i),@(Touty,i),....@(Tout,,)) > min(@(Tin.i),@(Tinai),....@(Tin,i) ]
where J and K are the number of output and input queues, respectively.
Table 2: Axioms About Operation Start and End Times
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To simplify the exposition, we introduce a simple rewrite rule: Any timing expression of the
form “repeat n => E” can be rewritten as a sequence of n occurrences of the unguarded
expression E (“E E E ... E”). Thus, the only guards we need to consider are before, after,

during, and when. Table 2 gives the axioms that describe the start and end times of
operations and composition of operations.

Timing Expression M,(Timing Expression)
E= M;,(E) =
(E1) , ’ My, (E1)
E1...En M ((E1 E2) ...En)
E1]}...|| En AM(Ei || Ej) foralli#]
E1E2 M (E1) A My(E2) A
Vil @M (E1), i) < @(TM,(E2), 1) ]
E1 || E2 M (E1) A My(E2) A

Vi [@(TM(E1), i) < @I M(E2), i) A
@(TM(E2), i) < @(IM((E2), )]

when W => Et1 M(E1) A Vi [ W(@(TM,,(E1), 1)) ]

before at => E1 M(E1) A Vi [@(TM(E1), ) <al]

after a1 => E1 M (E) AV i [ @(TM,,(E1), i) 2a1]

during [a1, a2] => E1 Mp(E)aVi[al< @(TM,,(E1), ) sa2]
during [a1, r2] => E1 My (E) AVi[al< @(TM,(E1), ) sal +r2]
Alr1, r2] Vi[@(TA i) +r1 <@UA, i) <@(TA, i) + r2]
A, ri] Vi[@WA i) <@TA, i) +r1]

Alr1, %] Vi[@(TA i)+ <@{A, )]

A true

a. My, -- Mapping from Timing Expressions to Booleans

Timing Expression M,(Timing Expression)
E = MtO(E) =
loop E1 M,o(E1)
Etl..En Mo(E1) ... Mio(En)
E1]l..- |} En M (EN ] - I M,,(En) o
guard => E1 M,,(E1) for all guards, when, before, during, and after
At1,t2] A
A A

b. M,, -- Mapping From Timing Expressions to Operations
Table 3: Assigning Meaning to Timing Specifications

We assign a meaning to timing expressions by introducing a function, My, (Table 3.a), which
maps timing expressions to Boolean values,

My, : Timing Expression — Boolean.
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in the definition of My, we use an auxiliary function, M,, (Table 3.b), which maps timing
expressions to operations,

M,,,: Timing Expression — Operation.
M,, is needed because “start time"” and “end time” are meaningful only for queue operations.

As an example of how to interpret the formalism intuitively, consider the entries for the during
guard in Table 3.a. This guard specifies a time window during which the operation is allowed
to start. The first time value of the window is the earliest start time allowed and must be an
absolute time value. The second time value is the latest start time allowed and can be an
absolute time value or a time value relative to the former. The meaning of the guarded
expression is the conjunction of the meaning of the expression proper and a predicate stating
the restriction on starting times.

5.2 Assigning Meaning to the Combined Specifications
Given a task description of the form:

task taskname

behavior
requires Req ;
ensures Ens;
timing E;

end taskname ;

we give meaning to the predicates of the functional specification as related to time (i.e., at what
times are these predicates to hold?) via a function My which maps from behavioral
specifications to Boolean vaiues:

M; : Predicate x Timing Expression — Boolean
Pred. Expr. M[Predicate, Timing Expression)

Req E M,(Req,E) = Vi [Req(@(TM,o(E).i)) A My(E)]
Ens E M{(Ens,E) = V i [Ens(@(lM,o(E),i)) A M (E) A Consistent(Ens,E)]

where Consistent(Ens, E) checks to see if the ensures Ens predicate is meaningful with
respect to the timing expression E. Consistent is defined by using two auxiliary predicates,

Uses and Depends:

For all input queues g;,, output queues Qg elements in the output queues x:
Uses: element x input queue x output queue x Predicate — Boolean

Uses(X, Qi Goutr ENS) = true, if q;, appearsinx A Ens => isin{qgy: X);
faise, otherwise.
UsesSet(x, qy ENs) = {Qin | Uses(x, Qi Qoutr Ens) } for ali x such that isln{qg, X)

where “a appearsin b” is a syntactic relation that checks if the text a occurs in the text b.
Intuitively, Uses checks to see if the computation of x, the element enqueued on g, can be
proven from the Ens to use any of the elements from q;,. In general, the element x is written in
terms of a trait expression involving queue operators (e.g., first) as well as other type-specific
operators (e.g,. *) as in the multiply example where x is taken to be first(in1) * first(in2).
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For all input queues g;,,, output queues q,,4, elements in the output queues x, and forall 1 <i <
length(qgyy) Where iMY(q,,) is first(rest™1(q,0):
Depends: element x input queue x output queue x Timing Expression — Boolean

Depends(ith(qout)v Gin' Yout’ E) =
true, if E=E1 qy E2 or E= E1'qo4 I E2 or E = E1 || 44 E2, and
Gin, a@ppearsin E1 and q,,, appearsin E1 i-1 times;
false, otherwise.
DependsSet(x, Qg E) = {q;, | Depends(x, g, Qo E) } for all x such that isin(q,, 4. X)

Intuitively, Depends says that output elements can depend on only elements that were
previously, or concurrently input.

We now define Consistent: Predicate x Timing Expression — Boolean as follows:
Consistent(Ens,E) =V X, V Qg [iSIN(qgyp,X) => (Uses(x,q,,,ENs) < Depends(x,qgy.E))]

Intuitively, we check to see that each element x in each output queue depends on only
elements that have been dequeued from input queues strictly before or concurrently with the
enqueueing of x.

5.3 Examples

in the absence of a timing expression, we can perform standard first-order reasoning on a
functional specification. For example, if the multiply task’'s ensures predicate had the
additional conjunct, first{outt pc,st) = first(in1), then by equational reasoning (substitution of
equals by equals), we see that the ensures predicate is satisfiable only if first(in1) * first(in2) =
first(in1).

In the absence of a functional specification, we can use the axioms and rules of RTL plus our
extensions listed in Section 5.1 to determine inconsistent timing expressions. For example, if
the expression is in1 out1 in2, we can apply axiom 5 of Section 5.1 to show that, for each task
cycle, the end of the last input operation (in2) cannot follow the end of the last output operation
(out1), thus invalidating the timing expression.

task merge
ports
inl, in2: in item;
outl: Out item;
behavior
ensures outlpo-t = insert (insert (outl, first (inl)), first (in2));
timing loop (in2 outl inl outl);
end merge;

Figure 5: Merge Task

More interestingly, however, is to show how a combined specification can be proven
inconsistent, where in fact, each separately is consistent and meaningful. For example,
consider a task that merges data coming from two input into one output queue, as shown in
Figure 5.
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The ensures clause specifies that the output queue’s items be ordered such that the item from
in1 is before that from in2, but the timing expression specifies that if the item from in1 is output
on the queue out1, it must be the second, not first, item in the queue (here we assume that the
output queue is initially empty.) This inconsistency can be formally proven:

UsesSet(first(out1), out1, Ens) = {in1}

DependsSet(first(out1), outt, E) = {in2}
Since the UsesSet is not a subset of the DependsSet for first(out1), Consistent(Ens, E) is
false.

task divide
pornts
a, b: In real;
q, r: out real;
behavior )
ensures first (qp“t) * first(a) + first(rpo.t) = first(b)
timing loop (a q b r);
end merge;

Figure 6: Divide Task

The example in Figure 6 illustrates why subsetting and not equality is used in the definition of
Consistent. It also shows the use of the Ensures predicate and the need for equational
reasoning about elements in a queue (see the second conjunct in the Uses predicate).

The ensures clause in the Divide task specifies that the quotient of b divided by a is in q and
the remainder in r; however, the timing expression says that the computation of the quotient
need depend on only what is in a, and not what is in b. This inconsistency can be formally

proven since:

UsesSet(first(q), g, Ens) = {a, b}
DependsSet(first(q), q, E) = {a}

More specifically, to show UsesSet(first(q), g, Ens) = {a, b} we first note that:

Uses(quotient(first(a), first(b)), a, q, Ens) = true
Uses(quotient(first(a), first(b)), b, q, Ens) = true

since a and b both “appear in” the first argument (assume quotient is a trait operator for real
numbers.)

Using equational reasoning on the Ens, we can show
first(q) = quotient(first(a), first(b))
By substitution, we get
Uses(first(q), a, g, Ens) A Uses(first(q), b, q, Ens)
yielding:
UsesSet(first(q), g, Ens) = {a, b}

6 Examples L .
y task with functional and timing information together. The figure

Figure 7 shows our muitipl . : _The
shows two different multiply tasks, specified to have the same functlonal.nty but wnt_h different
timing behavior. The timing expression in Figure 7.a states that the multiply task first checks

that the input queues are non-empty, and if so perform twq parallel Dequeue oper_ations
followed by an Enqueue operation. The timing expression in Figure 7.b states that the inputs

"come in sequentially instead of in parallel.
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task multiply
ports
inl, in2: in matrix;
outl: Out matrix;
behavior
requires nunber_ of rows(first(inl)) = number_of__cols(fix:st(inZ) )
ensures outlpo_t = insert (outl, first(inl) * first(in2)):
timing when (~isEmpty(inl) and ~isEmpty(in2)) =>
((inl.Dequeue || in2.Dequeue) delay(10,15] outl.Enqueue);
end multiply;

a. Parallel Input

task multiply
ports
inl, in2: in matrix;
outl: OUt matrix;
behavior
requires number of rows (first(inl)) = number_of_cols(first(inZ) ):
ensures outlpo_,_ = insert(outl, first(inl) * first(in2)):
timing when (~isEmpty(inl) and ~isEmpty(in2)) =>
(inl .Dequeue in2.Dequeue delay{10,15] outl.Enqueue);
end multiply;

b. Serial Input
Figure 7: Matrix Multiplication Task

To further illustrate the richness of our specification language and to show the benefits of
cleanly separating the functional from the timing information, we write three alternative
descriptions for a task built into our library. This task, deal, has one input port and a number of
output ports. Data dequeued from the input port is enqueued to one of the output ports, but this
can be implemented in a number of ways, as illustrated in Figure 8.

In the examples, we will drop the name of the queue operation and use just the name of the
port (i.e., in1 instead of in1.Dequeue). Since this paper introduces only two queue operations:
Enqueue and Dequeue, and given that the former applies only to input queues and the other
applies only to output queues, no confusion should occur as to which operation is implied.

The first example (Figure 8.a) states that we alternate the dequeuing of input and enqueueing
of output and ensures that the first (second) output queue will see the first (second) element
removed from the input queue. The second example (Figure 8.b) states that we dequeue all
input before the output operations start, which themselves take place concurrently. It allows
for the first dequeued element to be enqueued on either of the output queues, but ensures that
the second dequeued element will not be enqueued to the same as the first. The third
example (Figure 8.c) states that input data are dequeued and grouped in pairs before
enqueueing them into the output ports. The first pair is enqueued to the first output queue; the
second pair, to the second.
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task deal
ports
inl: in matrix;
outl, out2: out matrix;
behavior
ensures
outlpo',_ = insert (outl, first(inl)) &
out2_ . = insert (out2, second(inl)):
timing loop (inl outl inl out2);
end deal;

a. Alternating Input and Output

task deal
ports

inl: in matrix;
outl, out2: out matrix;
behavior

ensures
(out:llm”t = insert (outl,first(inl)) &
out‘.2p‘”t = insert (out2, second(inl))) |
(out2 _. = insert (out2, first(inl)) &
out:lp“t = insert (outl, second(inl)))

timing loop (inl inl (outl || out2))

end deal;

b. Concurrent Output

task deal
ports
inl: in matrix;
outl, out2: out matrix;
behavior
ensures
<>ut:1l,“t = insert (insert (outl, first(inl)), second(inl)) &
°‘-‘t2po-: = insert (insert (out2, third(inl))} fourth(inl))
timing loop (inl inl inl inl (outl || out2) (outl || out2))
end deal

¢. Grouping Data

l}ssume that‘§econd(in1), third(in1), and fourth(in1) as abbreviations for first(rest(in1)),
first(rest(rest(in1))), first(rest(rest(rest(in1)))), respectively, are defined in the trait for queues.

Figure 8: Deal Task

7 Related Work _
The axiomatic approach to specifying a program’s functional behavior has its origins in Hoare'’s

early work on verification [17] and later work on proofs of comrectness of implementations of
abstract data types [18], where first-order predicate logic pre- and post-conditions are used for
the specification of each operation of the type. The algebraic approach, which defines data
types to be heterogeneous algebras [5], uses axioms to specify properties of programs and
abstract data types, but the axioms are restricted to equations. Much work has been done on
algebraic specifications for abstract data types [12, 11, 14, 6]; we use more recent work on
Larch specifications [16] for program modules. None of this work addresses the formal
specification of timing behavior of systems.
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Operational approaches, such as those based on Timed Petri-net models [23, 26], are more
commonly used for specifying behavior of real-time systems. Timed Petri-nets can be roughly
characterized by whether “operation” time is assigned to the transitions, as in the original
model by Ramchandani [23], or is assigned to the places, as in Sifakis’ model [26]. In addition,
both deterministic and stochastic timing are allowed, giving origin to a variety of models for
specifying or evaluating performance requirements. This has been illustrated in recent work by
Coolahan [9] (places, deterministic), Smith [27] (transitions, deterministic), Wong [28] (places,
stochastic), and Zuberek [29] (transitions, stochastic). In contrast, our work takes a more
axiomatic than operational approach to specifying timing behavior.

Specification and verification of timing requirements for real-time systems include recent work
by Dasarthy [10], and by Lee, Gehlot, and Zwarico [20, 30]. This work as well as that by
Jahanian and Mok, whose real-time logic we borrow, all focus on timing properties and not on
functional behavior. Either states are left uninterpreted or predicates on states are simplistic,
e.g., Boolean modes as in Jahanian and Mok’s work. In contrast, since we have a formal
means of specifying the functional behavior of tasks and the data on which they operate, we
have a more expressive specification language with a richer semantics.

The programming model we have in mind for the developers of real time, concurrent
applications is based on data flowing between computing elements. However, we do not
impose a data driven computation model, a basic premise of most data flow languages [1].
Tasks in our applications are asynchronous and operate on their input and output queues
according to a regime described by each task’s timing expression. These requirements are
difficult to satisfy in traditional data fiow languages although a recent data flow language,
LUSTRE, overcomes these limitations. LUSTRE [4, 8] supports the concept of timing in a
stream language. LUSTRE is based on LUCID {2] with the addition of timing operators and
user defined clocks associated with the variables (sequences of values). In the original version
of the language [4] functions and operators required that all input variables be associated with
the same clock (i.e., the input and output streams moved in lock-step). These restrictions have
been relaxed in the iatest version of the language [8]

8 Summary
Our approach to specifying the functional and timing behavior of real-time applications for a
heterogeneous machine has the following characteristics:

« It takes advantage of two well defined, though isolated, pieces of previous work.
« There is a clean separation of concerns between the two specifications.

« The semantics of both specifications as well as their combination are simple.

In our language design, we strove to separate the functional specification from the timing
specification so that a task’s functionality could be understood independently of its timing
behavior. This separation of concerns gives us the usual advantages of modularity. Different
timing specifications can be attached to the same functional specification. Task implementors
can focus on satisfying functionality first, timing second. Task validation can be performed
separately. For example, one could use formal verification for functionality and simulation for
timing. However, we are not completely satisfied with our definition of Consistent(Ens, E)
(Section 5.2) since it depends on a syntactic relation, appearsin, which is easy to check for but
is probably too restrictive.
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Since the semantics can be given in terms of first-order predicate logic, our specifications are
amenable to machine manipulation and analysis. The algebraic style of Larch traits can be
" analyzed by rewrite-rule tools, e.g., Reve [21]; the two-state predicates of Larch interfaces and
thus, task predicates, can be analyzed by verification systems that support first-order
reasoning, e.g., Gypsy, HDM, and FDM [13, 24, 25]; formulae in realtime logic can be
mechanically transformed into equivalent formulae in Presburger arithmetic [19]. However,
though many of these tools are available, much work is needed to integrate them so our
specifications could be fully machine-checked and analyzed.
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