Durra: A Task-level Description Language

Mario R. Barbacci'2 and Jeannette M. Wing?
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

i
\

Abstract

Computation-intensive, real-time applications such as
vision, robotics, and vehicular control require efficient
concurrent execution of multiple tasks, e.g., sensor
data collection, obstacle recognition, and global path
planning, devoted to specific pieces of the application.
At CMU we are developing some of these applications
and the hardware and software environments to
support them, and in this paper we present a. new
language, Durra, to write what we call task-level
application descriptions. Although the language was
developed with a concrete set of needs, we aim at a
broader class of applications and hardware
implementations. After a brief description of the nature
of these applications .and a scenario for -the
development process, we concentrate on the language
and its main features.

1 Introduction .

We are interested in a class of real-time, embedded
applications in which a number of concurrent, large-
grained tasks cooperate to process data obtained from
physical sensors, make decisions based on these data,
and send commands to control motors and other
physical devices. Since the speed and resources
required of each task may vary, these applications can
best exploit a computing environment consisting of
multiple special- and general-purpose, loosely
connected processors. We call this environment a
heterogeneous machine. :

During execution time, processes, which are instances
of tasks, run on possibly separate processors and
communicate with each other by sending messages of
different types. Since the patterns of communication
can vary over time and the speed of the individual

iSoftware Engineering Institute, 2Department of Computer
Science

This research is carried out jointly by the Software Engineering
Institute, a Federally Funded Research and Development Center,
sponsored by the Department of Defense, and by the Department
of Computer Science, sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 497,
monitored by the Air Force Avionics Laboratory Under Contract
F33615-84-K-1520. Additional support for J.M. Wing was
provided in par by the National Science Foundation under. grant
DMC-8519254.

processors can vary over a wide rangé, additional
hardware resources, in the form of switching networks
and data buffers are also required in the
heterogeneous machine. The application developer is
responsible for prescribing a way to manage all of
these resources. We call this prescription a task-level
application description. It describes the tasks to be
executed and the intermediate queues required to store
the data as it moves from producer to consumer
processes. A task-level description language is a
notation for writing these application descriptions.

This paper addresses the design of Durra, a task-level
description language[2]. We are using the term
“description language” rather than “programming
language” to emphasize that a task-level application
description is not translated into. object code in some
kind of executable “machine language.” Rather, it is to
be understood as a description of the structure- and
behavior of a logical machine, to be synthesized into
resource allocation and scheduling directives. These

* directives are to be interpreted by a combination of

software, firmware, and hardware in a heterogeneous
machine.

2 Scenario v

We assume that each of the processors in a
heterogeneous machine has languages, compilers,
libraries of programs, and other software development
tools that cater to the special properties of a
processor's architecture. For example, if an application
requires a task for matrix multiplications, we assume

" code for it exists on one or more processors in the

370

heterogeneous machine, ‘perhaps in assembly
language on an array processor or in C on a
workstation. :

Developing programs for some of the more exotic
machines involves the selection of algorithms
appropriate to a maching’s architecture and the
painstaking testing and ‘tuning of the code to take
advantage of any special features of the machine. This

‘is a slow and difficult process and it would be natural to

try to reuse these programs in muttiple applications.

We assume therefore the existence of libraries of
reusable programs, that is, programs that can be
shared across applications (e.g., “feature detection”
routines that could be shared in a variety of vision
applications). The programs may be written in different
programming languages (e.g., Ada, C, Common Lisp,
as well as assembly language or even microcode), and
executable on the different processors. We also
assume a run time system that follows a scheduler’s
directives for downloading and executing the programs.

The following is a scenario from the user's viewpoint of
how the task-leve! language is used to develop an
application for some target, heterogeneous machine.
We see three distinct phases in the process: the
creation of a library of tasks, the creation of an
application description, and finally, the execution of the
application.

These three phases are illustrated in Figure 1. During
the first phase, the developer breaks the application
into specific tasks (e.g., sensor processing, feature
recognition, map database Mmanagement, route
planning, etc.) and writes code implementing the tasks.
For a given task, there may be many implementations,
differing in programming language (e.g., one written in
C or one written in assembly language), processor type
(e.g:, Motorola 68020 or IBM 1401), performance
characteristics, or other attributes.

For each implementation of a task, the developer writes
a task description and enters it into the library. This is
where the task-description language first enters the
picture. The user writes specifications of each task’s
performance and functionality, the types of data it
produces or consumes, the poris it uses to
communicate with other tasks, and other attributes of
the task.)

During the second phase the user writes a task-level
application description. Syntactically, a task-level
application description is a single task description and
could be stored in the library as a new task. This
allows writing hierarchical task-level application
descriptions. When the application description is
compiled, the compiler generates a set of resource
allocation and scheduling commands to be interpreted
by the scheduler.

During the last phase, the scheduler downloads the
task implementations, (i.e., code corresponding to the
component tasks), to the processors and issues the
appropriate commands to execute the code

This scenario is not restricted to a static configuration
of processes. The language allows the specification of
alternative configurations and the_ conditions under
which a configuration is selected. The dynamic
reconfiguration of the process-queue graph is, of

371

course, the responsibility of the scheduler. In the
remainder of the paper, we concentrate on the
language aspects of the above scenario, in particular,
the writing of task descriptions and task selections.

3 Task Descriptions

Task descriptions, written and stored in task libraries,
are building blocks for task-level programs. A task
description contains the essential information that an
application programmer needs to build- task-level
applications descriptions. This information is provided
in several clearly identifiable clauses of a task
description (see Figure 2): (1) its interface to other
tasks (ports) and to the scheduler (signals), (2) its
attributes, (3) its functional and timing behavior, and
(4) its internal structure, thereby allowing for
hierarchical task descriptions. See the Durra Reference
Manual[2] for the precise syntax and further
explanation of the semantics.

Perhaps the most interesting features are the
behavioral information and the. structural information.
Other features, such as task, queus, and port names,
input and output data types flowing in queues and
through ports, and exceptional conditions signalled or
handled, are not unlike similar constructs in
conventional programming languages. The attribute
information captures a number of additional properties
of the task that are not easily cast in terms of the other
pieces. :

3.1 Interface Information
Interface information defines the ports of the processes
instantiated from the task and the signals used by
these processes to communicate with the scheduler.
Here is a concrete example:
ports
inl: in heads;
outl, out2: out tails;
signals
stop, start, resums: In;
range_exxor, format_error: out;

A port declaration specifies the direction and the type
of the data moving through the port. An in port takes
input data from a queue, an out port deposits data into
a queue. A signal declaration specifies only the
direction of the scheduler messages. An In signal is a
message that a process can receive from the
scheduler, an out signal is a message that a process
can send 1o the scheduler, an in out signal is used for
both directions of communication.

The data types specified in port declarations are
declared independently of the tasks and are also stored
in the library. In our language, these data type
declarations specify scalars (of possible variable
length), arrays of types, or even unions of other types,
as shown in the following examples: :

type packet Is size 128 to 1024;
-- Packets are of variable length
type tails is array (5 10) of packet;
-- Tails are 5 by 10 arrays of packets
type mix I8 union (heads, tails):
-- Mix data could be heads or tails

3.2 Attribute Information

Attribute infdrination specifies miscellaneous properties
of a task. They are a means of indicating pragmas or
hints to the compiler and/or scheduler. In a task
description, the developer of the task lists the possible
values of a property; in a task selection (to be defined
in section 4), the user of a task lists the desired values
of a property. All attribute values used in matching task
selections with task descriptions must be constants,
computable before execution time.

Example attributes include: author, version number,
programming language, file-name, and processor type.
There may be as many attributes as desired. Attributes
defined in other tasks can be accessed by prefixing the
name of the attribute with the name of a process
instantiated from that task, e.g., p1.author.
attributes

author = "jmw";

implementation = "/usr/jmw/sample.o”;

Queue_Size = 25;

The name of an attribute' can appear in any context in
which its value can appear. For instance, if the user
defines an attribute “Queue_Size” as in the example
above, then “Queue_Size” can appear anywhere an
integer value is expected. This permits the user to
name say, a queue size and use the name to declare
queues with identical size in a number of task
descriptions. The syntax and semantics of the attribute
values are attribute dependent. If the attribute is not
predefined in the language, the values are treated as
uninterpreted numbers, time values, or strings, as the
case may be, and compatibility is based on value
equality. If the attribute is predefined in the language,

the syntax for the legal values and the rules for-

matching of attributes are attribute dependent.

3.3 Behavioral Information

Behavioral information specifies functional and timing
properties about the task. Durra uses standard
axiomatic pre- and post-conditions to describe
functionality and extended path expressions 1o
describe timing. The functional information part of a
task description consists of a pre-condition (requires)
on what is required to be true of the data coming
through the input ports, and a post-condition (ensures)
on what is guaranteed to be true of the data going out
through the output ports. The timing information part of
a task description consists of a timing expression
following the keyword timing. The timing expression

372

describes the behavior of the task in terms of the
operations it performs on its input and output ports.

The formal meaning of the behavioral information is
based on first-order logic. The pre- and post-conditions
constitute a simple Larch interface specification [4, 5].
The Larch Shared Language is used. as the assertion
language in these predicates. The formal meaning of
the combined functional and timing behavior is defined
using Jahanian and Mok’s Real-Time Logic [6]. In the
following example we illustrate the nature of the
behavioral information without getting into details about
their formal meaning; we encourage the reader to see
{3] for the full details.

Consider a matrix ‘multiplication task (Figure 3) that
takes input matrices from two input queues and places
the result matrix on an output queue. The requires
clause states that the task implementor may assume
that the number of rows of the matrix entering through
the port in1, equals the number of columns of the
matrix entering through in2. The ensures clause
states that the result of multiplying the two input
matrices is output through the output port.

The timing clause states that the task does not start
executing until both input queues contain data. Once
that condition is satisfied, the task will remove its input
data from both input queues concurrently (the Dequeue
operations), will operate on the data for between 10
and 15 seconds (this “computation” time is lumped
together under the “delay” operation), and finally will
deposit some output in the output queue. The when
condition places a constraint on the state of the queues
(not on the state of the data in the queues).

3.4 Structural Information

Structural information defines a process-queue graph
(see, for example, Figure 4) and possible dynamic
reconfiguration of the graph. Three kinds of
declarations and one kind of statement can appear as
structural information. This is illustrated in Figure 5,
which shows the Durra (i.e., textual) version of the
structured task of the same name in Figure 4.

A process declaration of the form process_name: task
task_selection creates a process as an instance of the
specified task. Since a given task (e.g., convolution)
might have a number of different implementations that
differ along different dimensions such as algorithm
used, code version, performance, processor type, etc.,
the task selection in a process declaration specifies the
desirable features of a suitable implementation. The
presence of task selections within task descriptions
provides -direct linguistic support for reflecting
hierarchically structured tasks (see Section 4.)

A queue declaration such as queue_name queue_size:
port_name_1 > data_transformation > port_name_2
creates a queue through which data flows from an
output port of a process (port_name_1) into the input
port of another process (port_name_2). Port names
must be unique within a task description. Outside their
task (e.g., in a queue declaration) ports are identified
by their global name, obtained by prefixing the name of
a process (instance of a task) to the name of the port,
e.g., "pl.out2”.

Data transformations are operations applied to data
coming from a source port in order to make them
acceptable to a destination port. A data transformation
is needed if the port types are not compatible. Such
transformations are needed if, for instance, the types
have the same structure but the data are in the wrong
format, e.g., turning a square array on its side or
converting between floating point formats.
Complicated transformations can be written as
separate tasks, in which case an appropriate task must
be selected and instantiated as a process, and the
process name must be specified in the queue
declaration. Simple transformations can be specified
directly in the queue declaration:
queue

ql: pl > > p2 ;

q2: pl1 > (2 1) transpose > p2 ;

q3[100): pl > xyz > p2 ;

in the first example two ports, p1 and p2, aje
connected through an unbounded queue, q1, such that
data flows from p1 to p2. The two ports must have the
same type and no data transformations are performed.
In the second example the data items (arrays) are
transposed while in the queue. In the third example, the
two ports are connected through a bounded (size=100)
queue and the data items are transformed in the queue
by a process “xyz”.

A port binding maps a port of the process-queue graph
defining the internal structure of a task to a port
defining the external interface of a task.

A reconfiguration statement of the form

it condition then
remove - process-names
process process-declarations
queues queue-declarations
end if; !
is a directive to the scheduler. It is used to specity
changes in the current structure, i.e., process-queue
graph, of the application and the conditions under
which these changes take effect. Typically, a number
of existing processes and queues are replaced by new
processes and queues, which are then connected to
the remainder of the original graph. The
reconfiguration predicate is a boolean expression
involving time values, queue sizes, and other
information available to the scheduler at run time.

373

i
4 Task Selections
As illustrated in the previous section, a process is an
instance of a task specified in the process declaration.
Given that’ a number of alternative task
implementations might exist in the library, it is
necessary to specify in the process declaration the
desirable properties of the appropriate implementation.
Here are some examples of process declarations,
which in turn are used to select tasks:
process
pl: task obstacle_finder;
p2: task obstacle_findex
ports foo: in heads, baxr: out tails;

end obstacle_finderx;
task obstacle_finder

sttributes authors"mzb":
end obstacle_gfinder;

p3:

An instance of a task is bound to each process’s name.
The name of a task is the minimal part of a task
selection. Local, actual names (e.g., ports “foo” and
“bar” in the example) can be introduced by providing &
port -declaration, provided that the types of ports
specified in the task declaration are identical to those
provided in the task selection.. If they are left out, the
formal names used in the task description are used
instead. The task selection contains at least the name
of a task and, optionally, interface, attribute, and
behavior requirements (i.e., anything but structural
information), and is used to select among & number of
alternative task implementations.

A task can therefore be identified and selected from the
library just by its name (if the name is unique in the
library), by its interface properties (e.g., pont types), by
its attributes (e.g., version number), by its functional or .
timing behavior (e.g., & pre-condition), or by any
combination of all of these. '

For example, assume a declaration of a process, p,
that includes the following task specification:

process
p: task t
attributes
author = "jmw"; version = "45";
end t; ’

The library search will proceed as follows. First, the
task name, “t”, is used to select as candidates all
library task descriptions with the same name. Next, the
attribute “author” in the task selection specifies the
value “jmw" and this further reduces the set of
candidates. Finally, the attribute “version” in the task
selection specifies the value “45” and this reduces
even further the remaining set of candidates. Since no
additional information is given in the task selection, the
candidates left uniquely identify those. task
implementations that could be used to implement the
process at run time. Obviously, a task selection could
be 100 constraining, eliminating all possible candidates
or it could be too unconstraining, yielding more that one

possible matching task description (and, by implication,
more than .one task implementation). In the former
case, an error is reported by the compiler. In the latter
case, a random choice is made.

The rules for matching task selections with task
descriptions vary depending on the construct being
tested. Thus, for matching pont types, a simple name
equality is required. For matching attributes, the user
can specify' (in the task selection) conjunctions -and
disjunctions of attribute values (e.g., author = "mrb" or
"jmw";). Finally, for matching behavior, the behavioral
information of a candidate task description in the library
must imply that of the task selection. This task
selection mechanism provides flexible support for the
reusability of code (task implementations) across
applications although, we hasten to add, this feature is
still untried and is likely to change based on real use.

5 Status and Conclusions

Our original motivation for designing and implementing
a task-level language was to fill a need of two
communities:

o Application programmers who want to
exploit the capabilities of a computing
envionment that includes not only
standard general-purpose processors and
workstations but also high-speed special-
purpose multiprocessors, all of which are
networked together.

e Hardware designers who provide = this
broad range of computing capabilities and
need customers to use their new
configurations as different processors and
communication links (e.g., optical
switches) became available.

What was missing was a high-level language usable by
the application programmers but targetable for the
possibly changing hardware configurations. The
language should let users focus their attention on
describing their application at a task level rather than at
a process or procedural level, without losing the ability -
to exploit the special features of each processor. We
were furthermore constrained by the fact that enough
“low-level” software, e.g., C and assembly programs
that do number-intensive image processing, had been
developed by both communities such that its reuse was
critical. Our task-level description language, Durra,
therefore evolved from this need for a language to
serve as a buffer between the application and the
hardware.

Durrais currently being applied to describing a part of
an autonomous land vehicle vision application that runs
on the existing Carnegie Mellon Warp machine[1],
which consists of one Sun workstation and a systolic
array of ten processors. The Durra compiler generates

374

Unix shell commands that specify which programs to
download to which processor at which times, and the
location of data and results. A simulator driven by
Durra’s timing expressions is used for debugging as
well as aiding in the design of the next version of a
CMU heterogeneous machine.

Our language work is still in an exploratory phase; we
consider Durra as a reasonable prototype language
that aims to satisfy both application programmers and
hardware designers. We encourage use of Durra for
other real-time applications developed for other parallel
and distributed architectures so that we know best how
to trim and change the language.

References

1] M. Annaratone.
The Architecture of a Systolic Supercomputer.
In Proceedings of the IEEE-CS Compcon
Spring 87 Conference. |EEE Computer
Society Press, February, 1987.

2 M.R. Barbacci and J.M. Wing.
Durra: A Task-level Description Language.
~ Technical Report CMU/SEI-86-TR-3, Software
Engineering Institute, Carnegie Melion
University, 1986.

[3] M.R. Barbacci and J.M. Wing. .
Specifying Functional and Timing Behavior for
Real-time Applications. -
In Proceedings of the Conference on Parallel
Architectures and Languages Europe -
PARLE. Springer-Verlag, June, 1987.

[4] J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in Five Easy Pieces.
Technical Report 5, DEC Systems Research
Center, July, 1985.

(5] J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch Family of Specification Languages.
IEEE Software 2(5):24-36, September, 1985.

(61 F. Jahanian and A.K. Mok. o
Safety Analysis of Timing Properties in Real-
Time Systems.) .
|EEE Transactions on Software Engineering
12(9):890-904, September, 1986.

“

Applicatién

Description
::J burra Scheduler Heterogeneous
Compiler "program® Machine
|
Library of Task Library of Task
Descriptions Implgmentation.
(Durra) (C,L;sp,Ada,etc.)

Figure 1 - Scenario for Developing an Application

task task-name

s —- Used for communication between a process and a queu
port-declarations .

signals -« Used for communication between a user process and the achedule
signal-declarations : '

sttributes -- Used to specefy additional properties of the tas
attribute-value-pairs

behavior —— A description of the functional and timing behavior of the tas

requires predicate
ensures predicate
timing timing expression

structure -~ A graph describing the internal structure of the tas
process-declarations - peclaration of instances of internal subtask.
bind-declarations “- Mapping of internal process ports to this task’s port
queue-declarations —— Means of communication between internal processe

reconfiguration-statements -- Dynamic modifications to the structur
end task-name .

Figure 2 - A Template for Task Descriptions

task multiply
ports
inl, in2: in matrix;
outl: out matrix;
behavior
requires rows (First (inl)) = cols(First(in2))
ensures Insert(outl, First(inl) * First (in2))
timing when (~isEmpty(inl) and ~isEmpty(in2)) =>
((inl.Dequeue || in2.Dequeue) delay({10,15] outl.Enqueue) .
end multiply

Figure 3 - The Timing of a Matrix Multiplication Task

375

Map database

Destination

Map database

Road ‘Selection

Vehicle
Position

Road

Landmark
Predictc

Recognized Road Predicte

Road
Finder

Obstacle
Finder

Positiocl
Computatlop

Misasion Control

Landmark List

Vehicle
Position

Vehicle
Motion

Obstacles

Figure 4 - Process-Queue Graph

task obstacle finder
ports -
inl: In recognized_road;
outl: out obstacles;
structure
process e
P_deal: ftask deal attribules mode = by type end deal;
P_merge: task merge attribules mode = fifo end merge;
P_sonax: task sonar;
P_laser: task laser afiributes Processor = warp 1 end laser;
bind
inl = p deal.ini;]
outl = p merge.outl;
queue .
ql: p sonar.outl > > Pp_merge.inl;
92: p laser.outl > > p_merge.in2;
q3: p_deal.ocutl > > P_sonar.inl;
qd4: p deal.outl > > P_laser.inl; -

reconfiguration
if Current_Time >= 6€:00:00 local and Current_Time < 18:00:00 local then
process _
" P_vision: task vision attributes processor = warp 2; end vision;
queue

q5: p;_doal.out3 > p_vision.inl;

>
q6: p vision.outl > > p_merge.in3;
end if;

end obstacle_finder;

Figure 5 - Structural Information

376

