A Task-level Description Language:
Preliminary Design

M.R. Barbacci
Software Engineering Institute and
Department of Computer Science

and

J.M. Wing
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213-3890
3 July 1986

1. Context

Computation-intensive, real-time applications such as vision, robotics, and vehicular control require
efficient concurrent execution of multiple fasks, e.g. sensor data collection, obstacle recognition, and
global path planning, devoted to specific pieces of the application. Since the speed and resources
required of each task may vary, these applications can best exploit a computing environment consisting of
multiple special- and general-purpose processors that are logically, though not necessarily physically,
loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly separate processors, and
communicate with each other by sending messages of different types. Since the pattems of
communication can vary over time and the speed of the individual processors can vary over a wide range,
additional hardware resources, in the form of switching networks and data butters are also required in the
heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these resources. We call
this prescription a task-level application description. it describes the tasks to be executed and the
intermediate queues required to store the data as it moves from producer to consumer processes. A
task-level description language is a notation to write these application descriptions. The probiem we are
addressing is the design of a task-level description language.

We are using the term "description language” rather than "programming language” to emphasize that a
task-level application description is not transiated into object code in some kind of executable “machine
language™. Rather, it is to be understood as a description of the structure and behavior of a logical
machine, to be synthesized into resource allocation and scheduling directives. These directives are to be
interpreted by a combination of software, firmware, and hardware in a heterogeneous machine.

2. Current Status

2.1. Scenario _

We assume that each of the processors in a heterogeneous machine has languages, compilers, libraries
of programs, and other software development tools that cater to the special properties of a processor's
architecture. For example, if an image processing application requires a task for computing matrix
multiplication, we assume code for it exists on one or more processors in the heterogeneous machine,
perhaps in assembly language on a systolic array processor or in C on a Sun workstation.

>From the user’s (i.e. application developer’s) viewpoint we imagine the following scenario of how he or
she is to use our task-level language.

1. The user writes a task-level application description. This description contains (1) task
selections, which are used to retrieve task descriptions and, ultimately, fask
implementations from the library, and (2) a process-queue graph', which is used to describe
the connections between processes (instances of tasks) and queues (means of
communication between processes).

2. The user compiles this description. The compiler generates a set of resource allocation and

1akin to a datafiow graph where processes are nodes and queues are arcs.

scheduling commands to be interpreted by the scheduler.

3. The user links the output of the compiler with the appropriate run time support facilities and
loads the resulting scheduler "program* on the scheduler.

4. The scheduler loads the task implementations (i.e. the real code) on the processors and
interprets the scheduling commands and initialization code for the machine.

5. The heterogeneous machine runs the processes on processors as dictated by the
schedule.
Although this scenario is currently biased toward a static configuration of processes, we do not wish to
preclude dynamic reconfiguration from our language. Since we are interested in language design we will
focus on the first step of our scenario, that of creating a task description.

2.2. Task Descriptions

Task descriptions, written and stored in task libraries, are building blocks for task-level programs. A
task-description (see, for example, Figure 1a) contains the essential information that an application
programmer needs to build task-level applications descriptions. The two most interesting kinds are
performance information and structural information. All other information, such as task, queue, and port
names, input and output data types flowing in queues and through ports, exceptional conditions signalled
or handled, can either be checked by the compiler or treated as documentation.

Performance information comes in the form of (1) timing expressions under timing, used to indicate what
protocol the task uses to consume and produce data and (2) attributes such as speed and resources,
under attribute.

Structural information, found under structure, defines a process-queue graph (see, for example, Figure
1b) and possible dynamic reconfiguration. For the sake of brevity, we discuss only two features of
defining a process-queue graph: process declarations and queue-connect statements. First, a process
declaration of the form
process-name: task task-selection

creates a process as an instance of the specified task. Since a given task (e.g. convolution) might have a
number of different implementations that differ along different dimensions such as algorithm used, code
version, performance, processor type, efc., the task selection in a process declaration specifies the
desirable features of a suitable implementation?, and is used to select among a number of alternative
implementations.

Second, a queue-connect statement such as

navigator.out > road-selection > road-predictor.in
creates a queue through which data of type road-selection flows between the output port of the navigator
process with the input port of the road-predictor process. Here, navigator and road-predictor must have
been declared as processes.

Note that since task selections appear within task descriptions, there is direct linguistic support for

2The task selection contains at least the name of a task and, optionally, attribute, interface, functional, perforrnance requirements,
i.e., anything, but structural information.

reflecting hierarchically structured tasks. This is illustrated by the encircled graph to the left ot Figure 1b,
which depicts the process-queue subgraph of the obstade-finder task, which itself is a component of a
larger description.

3. Plans for the Immediate Future

Although the goal is to design and implement a a task-level programming language that can be used for
different architectures and for varying applications, our first intended use is bound by both a specific
architecture and by specific applications. In particular, our target architecture is the HETO machine,
currently being designed in the Computer Science Department, CMU. The highlights of this machine are a
cross-bar switch, intelligent butfers on the input sockets, and a scheduler processor that can
communicate with all processors, butfers, and the switch. Our target application is an autonomous land
vehicle, with an initial bias toward the vision-related tasks.

Map database Oestination

from Missfom Control

Navigator

Map database

Road Selection Landmark List

Vehicle

Position Vehicls

Position

Landmark
Recognizep

Recognized
Road

Obstacle
Finder

Obstacles Obstacles
Motion
task obstacle~finder .

ports

inl: 1n recognized~road, Vehicle
t1m1:gt1: out obstacles Control

s in1 [10.15] outl [3,+1])+
attribute

author = "MRB",

speed = "50 msec”
structure

pdeal: task deal attribute mode = BY«TYPE snd, (b) Process-Queue Graph

pmerge: task merge attribute mode = FIFO end,
psonar: task sonar,
plaser: task laser attribute processor = warpl,

s gbstacle~finder.inl
pdeal.outl > sonar~road > psonar.ini,
psonar.outl > pmerge. inl,
poeal.out2 > lssereroad > plaser.inl,
plaser.outl > > pmerge.in2,
pmerge.outl = obstacle~finder.outl

if time-ofe-day = [6:00:00 , +12:00:00]
then begin -- dynamic reconfiguration
pvision: task vision attribute processof = warp2 end,

pdeal.inl

pdeal.outd > visione~road > pvision.inl,
pv;sion.out1 > obstacles > pmerge.ind
on

end task

(a) Task Description

Figure 1 -- Task-level Description Language

