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Abstract

Humans have the remarkable ability to follow the gaze of other people to identify
what they are looking at. Following eye gaze, or gaze-following, is an important
ability that allows us to understand what other people are thinking, the actions they
are performing, and even predict what they might do next. Despite the importance
of this topic, this problem has only been studied in limited scenarios within the
computer vision community. In this paper, we propose a deep neural network-
based approach for gaze-following and a new benchmark dataset, GazeFollow, for
thorough evaluation. Given an image and the location of a head, our approach
follows the gaze of the person and identifies the object being looked at. Our deep
network is able to discover how to extract head pose and gaze orientation, and to
select objects in the scene that are in the predicted line of sight and likely to be
looked at (such as televisions, balls and food). The quantitative evaluation shows
that our approach produces reliable results, even when viewing only the back of
the head. While our method outperforms several baseline approaches, we are still
far from reaching human performance on this task. Overall, we believe that gaze-
following is a challenging and important problem that deserves more attention
from the community. Our model, code and dataset are available for download at
http://gazefollow.csail.mit.edu.

1 Introduction

You step out of your house and notice a group of people looking up. You look up and realize they are
looking at an aeroplane in the sky. Despite the object being far away, humans have the remarkable
ability to precisely follow the gaze direction of another person, a task commonly referred to as gaze-
following (see [3] for a review). Such an ability is a key element to understanding what people are
doing in a scene and their intentions. Similarly, it is crucial for a computer vision system to have
this ability to better understand and interpret people. For instance, a person might be holding a book
but looking at the television, or a group of people might be looking at the same object which can
indicate that they are collaborating at some task, or they might be looking at different places which

Figure 1: Gaze-following: We present a model that learns to predict where people in images are
looking. We also introduce GazeFollow, a new large-scale annotated dataset for gaze-following.
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can indicate that they are not familiar with each other or that they are performing unrelated tasks
(see Figure 1). Gaze-following has applications in robotics and human interaction interfaces where
it is important to understand the object of interest of a person. Gaze-following can also be used to
predict what a person will do next as people tend to attend to objects they are planning to interact
with even before they start an action.

Despite the importance of this topic, only a few works in computer vision have explored gaze-
following [5, 16, 14, 15, 18]. Previous work on gaze-following addresses the problem by limiting
the scope (e.g., people looking at each other only [14]), by restricting the situations (e.g., scenes
with multiple people only or synthetic scenarios [9, 7]), or by using complex inputs (multiple images
[5, 15, 18] or eye-tracking data [6]). Only [16] tackles the unrestricted gaze-following scenario but
relies on face detectors (therefore can not handle situations such as people looking away from the
camera) and is not evaluated on a gaze-following task. Our goal is to perform gaze-following in
natural settings without making restrictive assumptions and when only a single view is available.
We want to address the general gaze-following problem to be able to handle situations in which
several people are looking at each other, and one or more people are interacting with one or more
objects.

In this paper, we formulate the problem of gaze-following as: given a single picture containing one
or more people, the task is to the predict the location that each person in a scene is looking at. To
address this problem, we introduce a deep architecture that learns to combine information about
the head orientation and head location with the scene content in order to follow the gaze of a person
inside the picture. The input to our model is a picture and the location of the person for who we want
to follow the gaze, and the output is a distribution over possible locations that the selected person
might be looking at. This output distribution can be seen as a saliency map from the point of view
of the person inside the picture. To train and evaluate our model, we also introduce GazeFollow,
a large-scale benchmark dataset for gaze-following. Our model, code and dataset are available for
download at http://gazefollow.csail.mit.edu.

Related Work (Saliency): Although strongly related, there are a number of important distinctions
between gaze-following [3] and saliency models of attention [8]. In traditional models of visual
attention, the goal is to predict the eye fixations of an observer looking at a picture, while in gaze-
following the goal is to estimate what is being looked at by a person inside a picture. Most saliency
models focus on predicting fixations while an observer is free-viewing an image [8, 11] (see [2] for
a review). However, in gaze-following, the people in the picture are generally engaged in a task
or navigating an environment and, therefore, are not free-viewing and might fixate on objects even
when they are not the most salient. A model for gaze-following has to be able to follow the line
of sight and then select, among all possible elements that cross the line of sight, which objects are
likely to be the center of attention. Both tasks (gaze-following and saliency modeling) are related in
several interesting ways. For instance, [1] showed that gaze-following of people inside a picture can
influence the fixations of an observer looking at the picture as the object being fixated by the people
inside the picture will attract the attention of the observer of the picture.

Related Work (Gaze): The work on gaze-following in computer vision is very limited. Gaze-
following is used in [16] to improve models of free-viewing saliency prediction. However, they only
estimate the gaze direction without identifying the object being attended. Further, their reliance
on a face detector [23] prevents them from being able to estimate gaze for people looking away
from the camera. Another way of approaching gaze-following is using a wearable eye-tracker to
precisely measure the gaze of several people in a scene. For instance, [6] used an eye tracker to
predict the next object the user will interact with, and to improve action recognition in egocentric
vision. In [14] they propose detecting people looking at each other in a movie in order to better
identify interactions between people. As in [16], this work only relies on the direction of gaze
without estimating the object being attended, and, therefore, cannot address the general problem of
gaze-following, in which a person is interacting with an object. In [5], they perform gaze-following
in scenes with multiple observers in an image by finding the regions in which multiple lines of
sight intersect. Their method needs multiple people in the scene, each with an egocentric camera,
used to get 3D head location, as the model only uses head orientation information and does not
incorporate knowledge about the content of the scene. In [15, 18], the authors propose a system to
infer the region attracting the attention of a group of people (social saliency prediction). As in [5]
their method takes as input a set of pictures taken from the viewpoint of each of the people present
in the image and it does not perform gaze-following. Our method only uses a single third-person
view of the scene to infer gaze.
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(b) Test set statistics
Figure 2: GazeFollow Dataset: We introduce a new dataset for gaze-following in natural images.
On the left, we show several example annotations and images. In the graphs on the right, we summa-
rize a few statistics about test partition of the dataset. The top three heat maps show the probability
density for the location of the head, the fixation location, and the fixation location normalized with
respect to the head position. The bottom shows the average gaze direction for various head positions.

2 GazeFollow: A Large-Scale Gaze-Following Dataset
In order to both train and evaluate models, we built GazeFollow, a large-scale dataset annotated with
the location of where people in images are looking. We used several major datasets that contain
people as a source of images: 1, 548 images from SUN [19], 33, 790 images from MS COCO [13],
9, 135 images from Actions 40 [20], 7, 791 images from PASCAL [4], 508 images from the Ima-
geNet detection challenge [17] and 198, 097 images from the Places dataset [22]. This concatenation
results in a challenging and large image collection of people performing diverse activities in many
everyday scenarios.

Since the source datasets do not have gaze ground-truth, we annotated it using Amazon’s Mechanical
Turk (AMT). Workers used our online tool to mark the center of a person’s eyes and where the
worker believed the person was looking. Workers could indicate if the person was looking outside
the image or if the person’s head was not visible. To control quality, we included images with
known ground-truth, and we used these to detect and discard poor annotations. Finally, we obtained
130, 339 people in 122, 143 images, with gaze locations inside the image.

We use about 4, 782 people of our dataset for testing and the rest for training. We ensured that every
person in an image is part of the same split, and to avoid bias, we picked images for testing such
that the fixation locations were uniformly distributed across the image. Further, to evaluate human
consistency on gaze-following, we collected 10 gaze annotations per person for the test set.

We show some example annotations and statistics of the dataset in Fig.2. We designed our dataset
to capture various fixation scenarios. For example, some images contain several people with joint
attention while others contain people looking at each other. The number of people in the image can
vary, ranging from a single person to a crowd of people. Moreover, we observed that while some
people have consistent fixation locations others have bimodal or largely inconsistent distributions,
suggesting that solutions to the gaze-following problem could be multimodal.

3 Learning to Follow Gaze
At a high level, our model is inspired by how humans tend to follow gaze. When people infer where
another person is looking, they often first look at the person’s head and eyes to estimate their field
of view, and subsequently reason about salient objects in their perspective to predict where they are
looking. In this section, we present a model that emulates this approach.
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Figure 3: Network architecture: We show the architecture of our deep network for gaze-following.
Our network has two main components: the saliency pathway (top) to estimate saliency and the gaze
pathway (bottom) to estimate gaze direction. See Section 3 for details.

3.1 Gaze and Saliency Pathways

Suppose we have an image xi and a person for whom we want to predict gaze. We parameterize this
person with a quantized spatial location of the person’s head xp and a cropped, close-up image of
their head xh. Given x, we seek to predict the spatial location of the person’s fixation y. Encouraged
by progress in deep learning, we also use deep networks to predict a person’s fixation.

Keeping the motivation from Section 3 in mind, we design our network to have two separate path-
ways for gaze and saliency. The gaze pathway only has access to the closeup image of the person’s
head and their location, and produces a spatial map, G(xh, xp), of size D ×D. The saliency path-
way sees the full image but not the person’s location, and produces another spatial map, S(xi), of
the same size D ×D. We then combine the pathways with an element-wise product:

ŷ = F (G(xh, xp)⊗ S(xi))

where⊗ represents the element-wise product. F (·) is a fully connected layer that uses the multiplied
pathways to predict where the person is looking, ŷ.

Since the two network pathways only receive a subset of the inputs, they cannot themselves solve the
full problem during training, and instead are forced to solve subproblems. Our intention is that, since
the gaze pathway only has access to the person’s head, xh and location, xp, we expect it will learn to
predict the direction of gaze. Likewise, since the saliency pathway does not know which person to
follow, we hope it learns to find objects that are salient, independent of the person’s viewpoint. The
element-wise product allows these two pathways to interact in a way that is similar to how humans
approach this task. In order for a location in the element-wise product to be activated, both the gaze
and saliency pathways must have large activations.

Saliency map: To form the saliency pathway, we use a convolutional network on the full image to
produce a hidden representation of size D×D×K. Since [21] shows that objects tend to emerge in
these deep representations, we can create a gaze-following saliency map by learning the importance
of these objects. To do this, we add a convolutional layer that convolves the hidden representation
with a w ∈ R1×1×K filter, which produces the D ×D saliency map. Here, the sign and magnitude
of w can be interpreted as weights indicating an object’s importance for gaze-following saliency.

Gaze mask: In the gaze pathway, we use a convolutional network on the head image. We concate-
nate its output with the head position and use several fully connected layers and a final sigmoid to
predict the D ×D gaze mask.

Pathway visualization: Fig. 4 shows examples of the (a) gaze masks and (b) saliency maps learned
by our network. Fig. 4(b) also compares the saliency maps of our network with the saliency com-
puted using a state of the art saliency model [11]. Note that our model learns a notion of saliency
that is relevant for the gaze-following task and places emphasis on certain objects that people tend
to look at (e.g., balls and televisions). In the third example, the red light coming from the computer
mouse is salient in the Judd et al [11] model but that object is not relevant in a gaze-following task
as the computer monitor is more likely to be the target of attention of the person inside the picture.
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Figure 4: Pathway visualization: (a) The gaze mask output by our network for various head poses.
(b) Each triplet of images show, from left to right, the input image, its free-viewing saliency esti-
mated using [11], and the gaze-following saliency estimated using our network. These examples
clearly illustrate the differences between free-viewing saliency [11] and gaze-following saliency.

3.2 Multimodal Predictions

Although humans can often follow gaze reliably, predicting gaze is sometimes ambiguous. If there
are several salient objects in the image, or the eye pose cannot be accurately perceived, then humans
may disagree when predicting gaze. We can observe this for several examples in Fig. 2. Conse-
quently, we want to design our model to support multimodal predictions.

We could formulate our problem as a regression task (i.e., regress the Cartesian coordinates of
fixations) but then our predictions would be unimodal. Instead, we can formulate our problem
as a classification task, which naturally supports multimodal outputs because each category has a
confidence value. To do this, we quantize the fixation location y into a N ×N grid. Then, the job of
the network is to classify the inputs x into one of N2 classes. The model output ŷ ∈ RN×N is the
confidence that the person is fixating in each grid cell.

Shifted grids: For classification, we must choose the number of grid cells, N . If we pick a small N ,
our predictions will suffer from poor precision. If we pick a large N , there will be more precision,
but the learning problem becomes harder because standard classification losses do not gradually
penalize spatial categories − a misclassification that is off by just one cell should be penalized less
than errors multiple cells away. To alleviate this trade-off, we propose the use of shifted grids,
as illustrated in Fig. 3, where the network solves several overlapping classification problems. The
network predicts locations in multiple grids where each grid is shifted such that cells in one grid
overlap with cells in other grids. We then average the shifted outputs to produce the final prediction.

3.3 Training

We train our network end-to-end using backpropagation. We use a softmax loss for each shifted
grid and average their losses. Since we only supervise the network with gaze fixations, we do not
enforce that the gaze and saliency pathways solve their respective subproblems. Rather, we expect
that the proposed network structure encourages these roles to emerge automatically (which they do,
as shown in Fig. 6).

Implementation details: We implemented the network using Caffe [10]. The convolutional layers
in both the gaze and saliency pathways follow the architecture of the first five layers of the AlexNet
architecture [12]. In our experiments, we initialize these convolutional layers of the saliency path-
way with the Places-CNN [22] and those of the gaze pathway with ImageNet-CNN [12]. The last
convolutional layer of the saliency pathway has a 1 × 1 × 256 convolution kernel (i.e., K = 256).
The remaining fully connected layers in the gaze pathway are of sizes 100, 400, 200, and 169 re-
spectively. The saliency map and gaze mask are 13× 13 in size (i.e., D = 13), and we use 5 shifted
grids of size 5 × 5 each (i.e., N = 5). For learning, we augment our training data with flips and
random crops with the fixation locations adjusted accordingly.

5



Figure 5: Qualitative results: We show several examples of successes and failures of our model.
The red lines indicate ground truth gaze, and the yellow, our predicted gaze.

Min
Model AUC Dist. Dist. Ang.
Our 0.878 0.190 0.113 24◦

SVM+shift grid 0.788 0.268 0.186 40◦

SVM+one grid 0.758 0.276 0.193 43◦

Judd [11] 0.711 0.337 0.250 54◦

Fixed bias 0.674 0.306 0.219 48◦

Center 0.633 0.313 0.230 49◦

Random 0.504 0.484 0.391 69◦

One human 0.924 0.096 0.040 11◦

(a) Main Evaluation

Min
Model AUC Dist. Dist. Ang.
No image 0.821 0.221 0.142 27◦

No position 0.837 0.238 0.158 32◦

No head 0.822 0.264 0.179 41◦

No eltwise 0.876 0.193 0.117 25◦

5× 5 grid 0.839 0.245 0.164 36◦

10× 10 grid 0.873 0.218 0.138 30◦

L2 loss 0.768 0.245 0.169 34◦

Our full 0.878 0.190 0.113 24◦

(b) Model Diagnostics
Table 1: Evaluation: (a) We evaluate our model against baselines and (b) analyze how it perfor-
mances with some components disabled. AUC refers to the area under the ROC curve (higher is
better). Dist. refers to the L2 distance to the average of ground truth fixation, while Min Dist. refers
to the L2 distance to the nearest ground truth fixation (lower is better). Ang. is the angular error of
predicted gaze in degrees (lower is better). See Section 4 for details.

4 Experiments
4.1 Setup

We evaluate the ability of our model to predict where people in images are looking. We use the dis-
joint train and test sets from GazeFollow, as described in Section 2, to train and evaluate our model.
The test set was randomly sampled such that the fixation location was approximately uniform, and
ignored people who were looking outside the picture or at the camera. Similar to PASCAL VOC
Action Recognition [4] where ground-truth person bounding boxes are available both during training
and testing, we assume that we are given the head location at both train and test time. This allows
us to focus our attention on the primary task of gaze-following. In Section 4.3, we show that our
method performs well even when using a simple head detector.

Our primary evaluation metric compares the ground truth annotations1 against the distribution pre-
dicted by our model. We use the Area Under Curve (AUC) criteria from [11] where the predicted
heatmap is used as confidences to produce an ROC curve. The AUC is the area under this ROC
curve. If our model behaves perfectly, the AUC will be 1 while chance performance is 0.5. L2 dis-
tance: We evaluate the Euclidean distance between our prediction and the average of ground truth
annotations. We assume each image is of size 1× 1 when computing the L2 distance. Additionally,
as the ground truth may be multimodal, we also report the minimum L2 distance between our pre-

1Note that, as mentioned in Section 2, we obtain 10 annotations per person in the test set.
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diction and all ground truth annotations. Angular error: Using the ground truth eye position from
the annotation we compute the gaze vectors for the average ground truth fixations and our prediction,
and report the angular difference between them.

We compare our approach against several baselines ranging from simple (center, fixed bias) to more
complex (SVM, free-viewing saliency) as described below. Center: The prediction is always the
center of the image. Fixed bias: The prediction is given by the average of fixations from the training
set for heads in similar locations as the test image. SVM: We generate features by concatenating
the quantized eye position with pool5 of the ImageNet-CNN [12] for both the full image and the
head image. We train a SVM on these features to predict gaze using a similar classification grid
setup as our model. We evaluate this approach for both, a single grid and shifted grids. Free-
viewing saliency: We use a state-of-the-art free-viewing saliency model [11] as a predictor of gaze.
Although free-viewing saliency models ignore head orientation and location, they may still identify
important objects in the image.

4.2 Results

We compare our model against baselines in Tbl.1(a). Our method archives an AUC of 0.878 and a
mean Euclidean error of 0.190, outperforming all baselines significantly in all the evaluation met-
rics. The SVM model using shifted grids shows the best baseline performance, surpassing the one
grid baseline by a reasonable margin. This verifies the effectiveness of the shifted grids approach
proposed in this work.

Fig.5 shows some example outputs of our method. These qualitative results show that our method
is able to distinguish people in the image by using the gaze pathway to model a person’s point of
view, as it produces different outputs for different people in the same image. Furthermore, it is also
able to find salient objects in images, such as balls or food. However, the method still has certain
limitations. The lack of 3D understanding generates some wrong predictions, as illustrated by the
1st image in the 2nd row of Fig. 5, where one of the predictions is in a different plane of depth.

To obtain an approximate upper bound on prediction performance, we evaluate human performance
on this task. Since we annotated our test set 10 times, we can quantify how well one annotation
predicts the mean of the remaining 9 annotations. A single human is able to achieve an AUC of
0.924 and a mean Euclidean error of 0.096. While our approach outperforms all baselines, it is still
far from reaching human performance. We hope that the availability of GazeFollow will motivate
further research in this direction, allowing machines to reach human level performance.

4.3 Analysis

Ablation study: In Tbl. 1(b), we report the performance after removing different components of our
model, one at a time, to better understand their significance. In general, all three of inputs (image,
position and head) contribute to the performance of our model. Interestingly, the model with only
the head and its position achieves comparable angular error to our full method, suggesting that the
gaze pathway is largely responsible for estimating the gaze direction. Further, we show the results
of our model with single output grids (5×5 and 10×10). Removing shifted grids hurts performance
significantly as shifted grids have a spatially graded loss function, which is important for learning.

Internal representation: In Fig. 6, we visualize the various stages of our network. We show the
output of each of the pathways as well as the element wise product. For example, in the second row
we have two different girls writing on the blackboard. The gaze mask effectively creates a heat map
of the field of view for the girl in the right, while the saliency map identifies the salient spots in the
image. The element-wise multiplication of the saliency map and gaze mask removes the responses
of the girl on the left and attenuates the saliency of the right girl’s head. Finally, our shifted grids
approach accurately predicts where the girl is looking.

Further, we apply the technique from [21] to visualize the top activations for different units in the
fifth convolutional layer of the saliency pathway. We use filter weights from the sixth convolutional
layer to rank their contribution to the saliency map. Fig. 7 shows four units with positive (left) and
negative (right) contributions to the saliency map. Interestingly, w learns positive weights for salient
objects such as switched on TV monitors and balls, and negative weights for non-salient objects.
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Figure 6: Visualization of internal representations: We visualize the output of different compo-
nents of our model. The green circle indicates the person whose gaze we are trying to predict, the
red dots/lines show the ground truth gaze, and the yellow line is our predicted gaze.
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Figure 7: Visualization of saliency units: We visualize several units in our saliency pathway by
finding images with high scoring activations, similar to [21]. We sort the units by w, the weights of
the sixth convolutional layer (See Section 3.1 for more details). Positive weights tend to correspond
to salient everyday objects, while negative weights tend to correspond to background objects.

Automatic head detection: To evaluate the impact of imperfect head locations on our system, we
built a simple head detector, and input its detections into our model. For detections surpassing the
intersection over union threshold of 0.5, our model achieved an AUC of 0.868, as compared to an
AUC of 0.878 when using ground-truth head locations. This demonstrates that our model is robust
to inaccurate head detections, and can easily be made fully-automatic.

5 Conclusion

Accurate gaze-following achieving human-level performance will be an important tool to enable
systems that can interpret human behavior and social situations. In this paper, we have introduced a
model that learns to do gaze-following using GazeFollow, a large-scale dataset of human annotated
gaze. Our model automatically learns to extract the line of sight from heads, without using any
supervision on head pose, and to detect salient objects that people are likely to interact with, without
requiring object-level annotations during training. We hope that our model and dataset will serve as
important resources to facilitate further research in this direction.
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