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Perils of Using t-SNE (and friends)



Pop-Quiz!

Let’s say you created a 2d t-SNE visualization of a dataset you collected and 
it produced the following plot.

Questions: 
• What would you conclude about the clusters that may be present in your dataset? 
• How confident are you about your conclusions? 

Interpoint distance profile



Understanding the Visualizations 

These critical questions require a white-box functional understanding 
of the visualization that was used (ie how exactly does t-SNE work).

let’s quickly review t-SNE and what is known 
about its optimization criterion. 



Stochastic Neighbor Embedding (SNE)

Goal: Find a low-dim. map that preserves the “local geometry”
 local geometry = similarity between points in local neighborhoods

Idea:
Model the neighborhood structure/information as a probability 
distribution, then find a low-dimensional mapping that matches the same 
distribution!

Notation:    
• x1,…,xn given high dim. data (given)
• y1,…,yn mapped low dim. Representation (to be learned)
•  pj|i = probability of xj being the neighbor of xi (computed from data)
• qj|i = probability of yj being the neighbor of yi (to be matched to pj|i) 



Stochastic Neighbor Embedding

Stochastic Neighbor Embedding approach:

Key optimization: Maximize the similarity between the distributions

         minimizey

Highly non-convex, just do gradient descent 
and settle with the local optimal solution

Meta parameter controlling 
the neighborhood sizeProbability 

model for high-
dim input data

Probability model 
for low-dim 
mapped data

y’s are the variables 
that need to be learned

[Hinton and Roweis ’03]



Stochastic Neighbor Embedding

The individual class clusters 
are well all together producing 

an effective visualization

But the clusters are 
NOT well separated

The issue: “crowding problem”



t-distributed Stochastic Neighbor Embedding

The crowding problem:

Consider three clusters A, B, C

High dimensional data is being cramped into a low dimensional 
space. To match the probabilities, the clusters can “crowd” together

Organization in high 
dimensions 

Organization in low 
dimensions 

Because of the gaussian-type neighborhood structure in low 
dimensions, large distance between A and C will be penalized a lot 

causing them to be mapped close (ie crowd) to each other

B

A C

1 1

1



t-distributed Stochastic Neighbor Embedding

Solution to the crowding problem
Idea: instead of using a thin-tailed Gaussian in the lower dimensions, we can 
use a heavier-tailed distribution, e.g. student’s t-distribution!

Final optimization:

 minimizey

Symmetrize the high dimensional 
neighborhood distribution

Use the heavier tailed 
student’s t-distribution

[Van der Maaten and Hinton ’08]



t-SNE on a Benchmark Dataset

PCA        LLE

Sammon mapping      t-SNE



t-SNE



Question

So t-SNE visualization tends to unravel beautiful clear-cut clusters, and usually 
it “just works” in-practice straight out of the box.

Does it come with any sort of guarantees on the visualization it produces?



Results on True Positive discovery
Good News: If there are clear well-separated clusters in the high-
dimensional input data, then 2D t-SNE visualization will be able unravel it.

Literature:
Global minima of t-SNE can reveal clusters for highly separated Gaussian-
like clusters.     [Shaham and Steinerberger ’17]

• Very first theoretical result
• Cluster preservation defined in an odd unintuitive way
• Requires unrealistically large number of clusters to work

A local minima of t-SNE ran with exaggeration phase can potentially reveal 
well-separated clusters           [Lindermann and Steinerberger ’18]

• Analyzed by viewing the gradient update as a dynamical system
• The intra-cluster distances contract at a fast-enough rate

A local minima of t-SNE ran with exaggeration phase will reveal well-
separated clusters     [Arora, Hu, Khotari ’19]

• Extends previous result and have an intuitive definition of ‘reveal’
• Not only the clusters contract, but remain separated



Other Notable (Theoretical) Results
Some fundamental results are just being established…

t-SNE gradient update acts a Markov chain and the visualization it produces 
is similar to doing spectral clustering on a specific kind of Laplacian matrix 

      [Tony Cai and Ma ’22] 

t-SNE is consistent in the sense that embeddings generated by an i.i.d. 
sample from a fixed probability distribution converge in the limit 

            [Auffinger and Fletcher ’23]

t-SNE optimization provably has a minimizer (under mild assumptions)
           [Jeong and Wu ’24]



Negative (Theoretical) Results
All theoretical results (so far) are on “positive”, i.e. t-SNE works. 

Are there any study on negative results?

t-SNE always biases towards “clustering” an input dataset (even if there 
may not be any clusters in the input dataset)  [Im, Verma, Branson ’18] 

• can result in false cluster discovery
• provides a generalization to f-divergences to ameliorate this effect 

That’s it, exactly seven theoretical results exist on this topic. 
(one negative result, all others positive :/ )



(New) Results on False Positive Discovery

Claim: Any visualization that can be produced by t-SNE on a 
given dataset, can also be produced by a slight perturbation 
of a regular simplex!

QUIZ: One of these visualizations have been generated from MNIST dataset (3 digits), 
the other from slightly perturbing the simplex. Which one is which?

simplexMNIST



(New) Results on False Positive Discovery
MNIST simplex
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(New) Results on False Positive Discovery

Claim: Any visualization that can be produced by t-SNE on a 
given dataset, can also be produced by a slight perturbation 
of a regular simplex!

Proof Sketch:
The neighborhood probability matrix P induced by any input dataset can also be 
induced by a (perturbed) regular simplex. 

How?
We show t-SNE’s P matrix is both additive and multiplicative invariant to the 
pairwise interpoint distances.

Consider pairwise distances between three points:
  a-b    b-c     a-c
  5   10     10
(additive invariance) 5+10000   10+10000    10+10000
(multiplicative invariance) (5+10000)/10000  (10+10000)/10000  (10+10000)/10000
(regular simplex!) 1.0005   1.0010     1.0010



(New) Results on False Positive Discovery

IRIS dataset simplex

Try #2: One of these visualizations have been generated from IRIS dataset (3 clusters), 
the other from slightly perturbing the simplex. Which one is which?



(New) Results on False Positive Discovery
IRIS simplex
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Effects in the Presence of Outliers
Claim: Extreme outliers in the input data cannot be shown as far away 
from the other (inlier) data points in any locally optimal t-SNE embedding 
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Universality Results
So we know tSNE can fail, is it possible to perhaps modify it or come up with 
an entirely new mapping (read U-MAPping) that works well? 

How can we answer this question formally?

Given a dataset X of n points with a designated partition into k clusters, we 
say that a visualization (ie a map f: X → Rd) recovers the partition at 
resolution ⍴ if points from distinct clusters are mapped ⍴ away

⍴



Universality Results
Questions to ask: 
• Can we design an f which recovers the partitions at some acceptable/tolerable 

resolution (say ⍴ = 1%, 0.1%, etc.) on input datasets with clear k-partitions?
• What restrictions, if any, such an f must have?  

An interesting observation:
 Any good f must obey the relationship

d ≥ log(k)/log(1/⍴)

 An elegant volume argument can be used.
Idea:  

?

Embedding space – size (1/⍴)nd

Each good cluster embedding

Want: distinct cluster embeddings to not overlap, so kn ≤ (1/⍴)nd

– kn total



Universality Results

Implications: 

Any visualization algorithm (tSNE, UMAP, autoencoder…) into 2-D MUST fail* 
on some dataset which has clear well-separated clusters with no outliers!

*fail means unable to recover/reveal/show the clusters

Alternatively, as a function of k (i.e. the number of clusters), any 2-D
visualization MUST suffer the issues of the “crowding problem” 

This result generalizes to any metric space (so the same bad news in spaces beyond 
Euclidean space, e.g. hyperbolic space, etc.)



Parting thoughts and future analysis

• t-SNE is a remarkably effective in visualizing cluster structure in data
Arguably the best (along with UMAP) ultra low-dimensional 
technique that “just works”!

 
• t-SNE tends to cluster even when there may not be any clusters
 Can result in false cluster discovery!

[Im, Verma, Branson ’18]
[Snoeck, Bergam, Verma ’25?]

• t-SNE unfortunately doesn’t behave well in the presence of outliers.
Can result in false understanding of the dataset

[Snoeck, Bergam, Verma ’25?]

• Universal cluster-revealing visualizations are unfortunately not possible.
[Snoeck, Bergam, Verma ’25?]



Parting thoughts and future analysis

Other interesting avenues to explore…

• Hardness of the t-SNE objective
• is it NP-hard?
• does a good approximation to the objective exist? 

• (theoretical) quality of the local minima

• Smart seeding/initialization

• There are absolutely no (theoretical) results on UMAP!!!



Questions/Discussion
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