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Several real-world data are naturally represented 

as collection of points in very high dimensions

Some Examples

Nature of modern data

Images Text Sensor Networks



How can we design effective learning algorithm for 

data that is represented in very high dimensions?

Key Observation: 

Examples of intrinsic structure

manifold structure

sparse structure

taxonomy structure

Even though data is represented in high dimensions, 

it typically conform to some intrinsic structure

Fundamental question



As a practitioner one hopes:

With richer representation of data, we have more information; and 
thus should be able to guarantee that specific ML tasks such as 
prediction, classification, recommendation better.

Unfortunately…

Nature of modern data



Bad News…

Having inappropriate data representation often leads to 

• Poor understanding of global relationships in data

• Wastefully large dimensionality (leading to curse of dimensionality)

• Complicated learning models

• Low quality predictions

We spend time on designing good, finely tuned ML models,

BUT often forget to think about effective and appropriate data 
representations



• Topological analysis of data and the need for non-Euclidean 
representations

• Case study: Hyperbolic representations of hierarchical data

• Technical considerations when working with non-Euclidean 
representations. 

• Improved prediction quality in non-Euclidean representations

• Future directions, and further discussion

Outline of the Talk



[Carlsson et al., 2008]

A closer look at data

Natural image patches have a Klein Bottle topology



A closer look at data

Hierarchical data is naturally represented in hyperbolic spaces

Observation: number of leaves grow 
exponentially with tree depth 



A closer look at data

Observations:

1. Number of leaves grow exponentially with tree depth.

2. Unfortunately, d-dimensional surface of a ball in

Euclidean space grows only polynomially with radius.

Consequence: Euclidean space cannot adequately represent hierarchical 
data!

Need a representation space that grows exponentially fast with distance…

eg. Hyperbolic space! 



Of Hierarchies and Hyperbolic spaces

Since hierarchical data is prevalent, data analysis on hyperbolic spaces 
is gaining much attention.

Difficulties hyperbolic spaces:

• Cannot even do basic operations like vector addition!

There are now hyperbolic ML models for…

• Multi dimensional Scaling (MDS)

• Support Vector Machines (SVMs)

• Recommender systems (RecSys)

• Neural networks (NN)

[2017-present]

Algorithm design relies crucially on the structure of 
hyperbolic spaces and cannot extend to other exotic spaces.



ML on non-Euclidean spaces

Some classic machine learning algorithms can be extended to generic 
non-Euclidean spaces (beyond, Hyperbolic spaces)

• Metric Learning 

• k-means clustering

• Multi-dimensional Scaling

[Aalto and Verma, 2019]

Can we re-design ML algorithms that can work in 
generic non-Euclidean spaces?



Metric Learning in Euclidean Spaces

Comparing observations in feature space:

Q: What should be the correct weighting M? 

A: Problem is dependent and data-driven. 

feature 1
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(all features are equally weighted)

(using weighting mechanism M) 

[sq. Euclidean dist]

[sq. Mahalanobis dist]

Given data of interest, learn a metric (M), which helps in the prediction task. 



How to Learn Optimal Weighting?

Want:

Distance metric:  

such that:    data samples from same class yield small values

data samples from different class yield large values

One way to solve it mathematically: 

Create two sets:   Similar set   

Dissimilar set

Define a cost function:

Minimize        w.r.t.      ! 

i, j = 1,…, n



Empirical performance (faces dataset)

Query 

Original
space

learned 
metric

[Weinberger and Saul, 2009]



Metric Learning in non-Euclidean Spaces

Observation:

Reweighting of features via Metric Learning can be thought as 
transforming the underlying coordinate system

application of 
weighting metric M

Can apply the same coordinate system 

transformation trick in curved spaces!



Metric Learning in non-Euclidean Spaces

original coord. system

transformed coord. system

Hyperboloid space Kleinbottle surface

Swisroll



Learn Optimal Weighting

Want:

Distance metric:  

such that:    data samples from same class yield small values

data samples from different class yield large values

One way to solve it mathematically: 

Create two sets:   Similar set   

Dissimilar set

Define a cost function:

Minimize        w.r.t.      ! 

i, j = 1,…, n

Distances get 
computed wrt curved 

coord. system

HOW?



Transforming coordinates in non-Euclidean space
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F(M(G))



non-Euclidean spaces + Metric Learning

[Aalto and Verma, 2019]

Using the correct representation followed by simple transformations 
and greatly simplify the problem difficulty!

cannot separate the 
classes easily

Can easily separate 
the classes



Empirical performance

Dataset Euclidean
Euclidean+

Metric learn
Hyperbolic

Hyperbolic+
Metric Learn*

football 0.41  0.09 0.40  0.09 0.29  0.09 0.25  0.10

polbooks 0.24  0.05 0.31  0.12 0.25  0.06 0.23  0.06

adjnoun 0.58  0.06 0.56  0.07 0.55  0.09 0.49  0.05

Error of nearest neighbor classifier

* Results comparable to better than state of the art reported results 

[Aalto and Verma, 2019]

Datasets:
• football: a network of American football teams, edges represent games, 12 

categories for each division
• polbooks: books on US politics, edges represent co-purchase, 3 categories: 

‘liberal’, ‘conservative’, ‘neutral’
• adjnoun: a network of words in Dicken’s novel, edges represent adjacent 

words, categories: ‘nouns’ and ‘adjectives’



Clustering in Euclidean spaces

Recall k-means clustering (aka Lloyd’s method):

• Initialize k centers randomly

• Repeat until convergence
• Partition the data wrt k centers
• Recompute the centers for each partition by taking the mean
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Clustering in non-Euclidean spaces

Recall k-means clustering (aka Lloyd’s method):

• Initialize k centers randomly

• Repeat until convergence
• Partition the data wrt k centers
• Recompute the centers for each partition by taking the mean

mean = (1/n) xi

vector addition is not possible!

now what?



Clustering in non-Euclidean spaces

Need to group datapoints, without computing the mean (or barycenter) 

Observation:
• k-means minimizes the following objective function

partitions C1,…,Cj

means 1,…,j



Clustering in non-Euclidean spaces

k-means clustering in non-Euclidean spaces:

• Randomly partition the data in k groups

• Repeat until no more improvement can be made
• For each datapoint xi and each partition Cj compute the k-means 

cost when xi is assigned to cluster Cj

[Aalto and Verma, 2019]

Results show about 5% 
improvement in clustering quality 

on 20 newsgroup dataset



Future directions

• Extend other ML algorithms

• Find effective representations of other interesting structured data

time series data!



Future directions: time series

Time series data has many interesting patterns such as seasonality

time series considered separately time series considered jointly



Future directions: time series

Seasonal patterns can be well represented in cyclical spaces 

cycle 1

cycle 2

Actively investigating how such 
toroidal representations are 

beneficial in time series prediction



Questions/Discussion



Thank You!

for patiently listening! 
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